Math 0 test

FCS UNIPI - Math

Friday, September 5th, 2025

- 1. Compute 15/18 6/16. 11/24
- 2. Is it true that $\sqrt{2} + 2 + \sqrt{3} > 1 + \sqrt{5}$? True
- 3. Compute $\left(2\sqrt{2} + \frac{\sqrt{3}}{\sqrt{6}}\right)^2$. $\boxed{\frac{25}{2}}$
- 4. Solve, considering existence conditions, the equation

$$\frac{x\sqrt{x^2+1}}{x^2} = 0 \qquad \boxed{\emptyset}$$

- 5. Simplify $\frac{a^2 b^2 + a b}{a b} \left[a + b + 1 \right]$
- 6. Find the greater common divisor and the least common multiple of the integers 105, 110. 5, 2310
- 7. Solve 27x 18 = 0. $x = \frac{2}{3}$
- 8. Solve $x^2 x 6 = 0$. x = -2, 3
- 9. Solve 5 3x > x. $x < \frac{5}{4}$
- 10. Solve $x^2 x 6 < 0$. $\boxed{-2 < x < 3}$
- 11. Solve, considering existence conditions, $\frac{x+2}{x-1} \le 0$. $x \in [-2,1)$
- 12. Simplify $\frac{x^2 2x 15}{x^2 4x 21}$. $\frac{x-5}{x-7}$
- 13. Draw on the Cartesian plane the line for A:(1,1), B:(1,3).
- 14. Draw on the Cartesian plane the parabola $f(x) = x^2 + 4x 5$.

1

15. Simplify and calculate

$$\left[\left(2 - \frac{3}{4} \right) \cdot \frac{6}{15} \right] \cdot \frac{1}{2} + \left(\frac{1}{2} + \frac{3}{8} \right) - \left(\frac{7}{6} - \frac{9}{8} \right)$$

13/12

- 16. Draw on the Cartesian plane the triangle ABC, where A=(0,0), B=(0,2), C=(1,0). Find the area and the perimeter of the triangle. $1,3+\sqrt{5}$
- 17. Draw on the Cartesian plane the triangle ABC, where A=(-1,2), B=(0,5), C=(2,2). Find the area and the perimeter of the triangle. $9/2, 3+\sqrt{10}+\sqrt{13}$
- 18. Solve, considering existence conditions, the inequality

$$\frac{1}{x+1} \ge \frac{1}{x^2+1}$$
 $x \in (-1,0] \cup [1,+\infty)$

- 19. Compute the area and perimeter of the circle with center in C: (0,2) and that intersects the line x=0 at the origin O: (0,0). $A=4\pi,P=4\pi$
- 20. Put in rational standard form $\frac{\sqrt{2}}{3-\sqrt{2}}$. $\frac{2+3\sqrt{2}}{7}$
- 21. Given the function $f(x) = \sqrt{x^2 1}$, find f(1) and $f^{-1}(0)$. $0, \{\pm 1\}$
- 22. Solve, considering existence conditions, the equation

$$\frac{x^3 - x^2 - 16x + 16}{x - 4} = 0 \qquad \boxed{1, -4}$$

- 23. Find the greater common divisor and the least common multiple of the polynomials $x^2 1$, $x^2 + 3x + 2$. x + 1, $x^3 + 2x^2 x 2$
- 24. Solve graphically the inequality $2^x + x 1 > 0$. x > 0
- 25. Put in rational standard form $\frac{1}{1+\sqrt[3]{3}}$. $\boxed{\frac{1-\sqrt[3]{3}+\sqrt[3]{9}}{4}}$