
4.3 Prima prova di autovalutazione

[Auto1] [Tempo stimato	2h]
------------------------	-----

Soluzione.
$$-\frac{2-\sqrt{3}}{23}$$

2. $\mathbb{Q}[\sqrt{3}]$ è un campo con le operazioni standard? Se sì dare la formula per l'inverso di $a+b\sqrt{3}$.

Soluzione.
$$\mathbb{Q}[\sqrt{3}]$$
 è un campo, e $(a+\sqrt{3}b)^{-1}=\frac{2-b\sqrt{3}}{a^2-3b^2}$

3. Sia \mathbb{Z}_5 l'insieme dei numeri interi con l'uguaglianza ridefinita: per $x,y\in\mathbb{Z}_5$

 $x = y \Leftrightarrow \text{ il resto della divisione per 5 di } x \in y \text{ è uguale}$

Quanti elementi distinti esistono in \mathbb{Z}_5 ?

Soluzione.
$$5$$

4. (Difficile) L'insieme \mathbb{Z}_5 è un gruppo rispetto alla somma? Un anello rispetto alla somma e alla moltiplicazione? Un campo rispetto alla somma e moltiplicazione?

Soluzione. Si. Si. Si. Si.
$$\Box$$

5. Risolvere per $z\in\mathbb{C}$ il sistema di equazioni $\begin{cases} z^3-2z^2+i-2=0\\ z^4-1=0 \end{cases}$

Soluzione.
$$z = i$$

6. Disegnare sul piano di Argand-Gauss le soluzioni dell'equazione $e^{iz}=e^{2\overline{z}}$.

Soluzione.
$$z = \frac{2}{3}k\pi(1-2i)$$
 al variare di $k \in \mathbb{Z}$.

7. Disegnare sul piano di Argand Gauss le soluzioni dell'equazione $z^5=\overline{z}^5.$

Soluzione. Le semirette
$$\theta = \frac{k}{5}\pi$$
, con $k = 0, \dots, 9$.

8. Disegnare sul piano di Argand Gauss le soluzioni dell'equazione $e^{z+1}=e^{\overline{z}-1}$.

Soluzione. Non esistono soluzioni.
$$\Box$$