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Abstract

This paper deals with the problem of numerically computing the roots
of polynomials pk(x), k = 1, 2, . . ., of degree n = 2k − 1 recursively de-
fined by p1(x) = x+1, pk(x) = xpk−1(x)

2+1. An algorithm based on the
Ehrlich-Aberth simultaneous iterations complemented by the Fast Multi-
pole Method, and by the fast search of near neighbors of a set of complex
numbers, is provided. The algorithm has a cost of O(n logn) arithmetic
operations per step. A Fortran 95 implementation is given and numerical
experiments are carried out. Experimentally, it turns out that the num-
ber of iterations needed to arrive at numerical convergence is O(logn).
This allows us to compute the roots of pk(x) up to degree n = 224 − 1
in about 16 minutes on a laptop with 16 GB RAM, and up to degree
n = 228 − 1 in about one hour on a machine with 256 GB RAM. The case
of degree n = 230 − 1 would require higher memory and higher precision
to separate the roots. With a suitable adaptation of FMM to the limit of
256 GB RAM and by performing the computation in extended precision
(i.e. with 10-byte floating point representation) we were able to compute
all the roots in about two weeks of CPU time for n = 230 − 1. From the
experimental analysis, explicit asymptotic expressions of the real roots of
pk(x) and an explicit expression of mini ̸=j |ξ(k)i − ξ

(k)
j | for the roots ξ

(k)
i

of pk(x) are deduced. The approach is extended to classes of polynomials
defined by a doubling recurrence.

1 Introduction

Given c ∈ C, the Mandelbrot iteration is defined as

zj+1 = z2j + c, j = 0, 1, 2, . . .

z0 = 0.

The set of c ∈ C for which the sequence {|zj |} remains bounded defines the
celebrated Mandelbrot set. Among the bounded sequences generated by the
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Mandelbrot iteration, a certain relevance is played by periodic orbits of index
k, that is, sequences {zj} such that zi = zj if i − j = 0 mod k for some
positive integer k. These orbits are determined by choosing as c any root of the
polynomial qk(x) of degree 2k defined by

q0(x) = x,

qj(x) = qj−1(x)
2 + x, j = 1, . . . , k.

In fact, it is easy to verify that the periodicity condition zk = z0 = 0 turns into
qk(c) = 0. Since qk(0) = 0, the function pk(x) = qk(x)/x is still a polynomial
and satisfies the recurrence

p0(x) = 1,

pj(x) = xpj−1(x)
2 + 1, j = 1, . . . , k.

The polynomials pk(x) of degree n = 2k − 1, called Mandelbrot polynomials
for their role played in the context of the Mandelbrot iteration, are interesting in
themselves, have nice and interesting properties [9], [15], and have been used as
a benchmark for numerically testing the performance of polynomial root-finders
[5], [6], [33] since their roots are simple with a fractal structure.

Another interesting feature of the polynomials qk(x), and pk(x), is that they
can be viewed as the characteristic polynomials of sparse and highly structured
matrices defined by means of the Kronecker product [10].

The roots of pk(x) coincide with the centers of the hyperbolic components
of the Mandelbrot set, see for instance [34, Section 3.1].

Generalizations of this kind of polynomials, and the consequent interest for
their roots, have been addressed by different authors in [9], [13], and [34, Sections
3.2, 3.3].

1.1 The problem

Here, we are interested in approximating, up to a given precision, all the roots

ξ
(k)
1 , . . . , ξ

(k)
n of the Mandelbrot polynomials pk(x) of degree n = 2k−1 for values

of k including large degrees, say, for k = 2, . . . , 30.
Indeed, the numerical computation of polynomial roots is one of the oldest

problems in mathematics and a challenging issue in numerical analysis. A huge
literature exists on this subject, we refer the reader to the list of references given
in [25] and [26], and to the survey paper [28]. Many iterative methods have been
designed for numerically computing the roots of a general polynomial, moreover,
the complexity of the polynomial root-finding problem has been well analyzed.
Some software implementations exist based on different approaches. We refer in
particular to the package MPSolve [5], [6] that allows the certified computation,
up to any given precision, of all the roots of a polynomial assigned in different
forms. The maximum degree that can be processed by this package depends on
several factors, in particular, on the number of arithmetic operations and on the
number of digits needed for the computation. But we can say that polynomials
of degree up to several thousand can be reasonably solved by MPSolve.
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It is interesting to observe that, for a general polynomial p(x) of degree
n, assigned in terms of its coefficients in the monomial basis, computing the
value p(ξ) for ξ ∈ C costs 2n arithmetic operations (ops) by means of Horner’s
rule, whereas for the Mandelbrot polynomial pk(x) the cost amounts to just
3k = 3 log2(n + 1) ops. The same complexity bound holds for computing the
first derivative p′k(x). In fact, the following recurrences can be applied:

p1(x) = x+ 1, p′1(x) = 1,

pk(x) = xpk−1(x)
2 + 1, p′k(x) = pk−1(x)

2 + 2xpk−1(x)p
′
k−1(x).

(1)

This fact plays a substantial role in the design of algorithms for Mandelbrot
polynomial root-finding and makes methods based on Newton’s iteration the
best choice as candidate algorithms for this task. We recall that Newton’s
iteration takes the form

x(ν+1) = x(ν) −N(x(ν)), N(x) =
pk(x)

p′k(x)
.

Recently, based on the seminal paper [21] about the dynamic of Newton’s
iteration, the idea of simply applying m > n independent copies of Newton’s
iteration to a sufficiently (but moderately) large number m of starting approx-
imations taken from a given universal set, has been applied to design effective
solution algorithms. In particular, in [34, Section 4.6] a Newton-based algorithm
is shown to compute all the roots of the Mandelbrot polynomial pk(x) of degree
n = 2k − 1, for k = 20 in about 18.8 hours. In [30], Newton’s iteration is used
to compute all the roots of pk(x) for k = 20 in 6.51 hours and for k = 24 in
157.27 hours of CPU time on a PC with one core (see Figure 4 in [30]).

Rigorous bounds to the number of Newton’s iterations needed to reach ap-
proximations within a given error ϵ have been given. In this regard, we refer
the reader to the recent paper [33] for details on the complexity bounds, for a
synthesis of the experimental analysis, and a nice survey of the research in the
field with complete literature.

The approach to compute the roots of pk(x) by means of eigenvalues compu-
tation is made in [12]. This approach might be effective if the goal is to compute
only a few eigenvalues of the sparse matrix, but it is not applicable if the goal
is to compute all the eigenvalues due to the huge amount of memory needed.

Therefore, the best candidates as effective algorithms to compute all the
roots of pk(x) seem to be the ones based on Newton’s iteration.

Unfortunately, in the approach of [30] and [34], the number of iterations
(number of polynomial evaluations) needed before numerical convergence oc-
curs, can grow much with the degree n, the worst case has the orderO(n4 log2 n+
n3 log2 n| log ϵ|), while the expected value is O(n2 log4 n+n log | log ϵ|) [2]. This
fact requires applying some heuristic strategy to speed up convergence in order
to deal with polynomials of large degree as done in [30], [34]. On the other hand,
using these strategies may cause the loss of some roots [30], this drawback is
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overcome in [30] by means of a postprocessing stage where the missing roots are
somehow recovered.

A way to avoid this drawback is to modify the simultaneous Newton’s it-
eration by applying a form of implicit deflation which allows performing a si-
multaneous approximation to all the n roots, by generating only n orbits, with
a practically constant number of iterations. This technique is known as the
Ehrlich-Aberth (E-A) method [1], [17], and was independently discovered by
Börsch-Supan in the paper [7]. The key idea is to apply n copies of Newton’s
iteration modified in such a way that different sequences cannot converge to
the same root unless the root is multiple. Unlike the method of [30] and [34],
with this approach there is no need to iterate over more than n sequences, and,
most important, in practice, the number of simultaneous iterations is almost
independent of the degree n even though no theoretical result exists in this
regard.

The E-A method generates a sequence of vector approximations x(ν) =

(x
(ν)
i ) ∈ Cn, according to the iteration

x
(ν+1)
i = x

(ν)
i − N(x

(ν)
i )

1−N(x
(ν)
i )

∑
j=1, j ̸=i

1

x
(ν)
i −x

(ν)
j

, i = 1, 2, . . . , n, ν = 0, 1, . . . ,

(2)

starting from an initial approximation x(0) = (x
(0)
i ) ∈ Cn. We recall that the

term ai(x
(ν)) :=

∑
j=1, j ̸=i

1

x
(ν)
i −x

(ν)
j

is the one that realizes the implicit deflation

of the roots. We refer to ai(x
(ν)) as the Aberth corrections. The iteration (2)

has local convergence of order 3 to simple roots [29].
The E-A iteration, as well as the Durand-Kerner-Weierstrass iteration [23],

[16], has also very good properties of global convergence in practice; only very
recently, it has been proved that there are cases of polynomials where these two
methods fail to converge for a set of starting approximations of nonzero measure
[31], [32].

It is worth pointing out that the package MPSolve of [5], [6] relies on the E-A
iteration as the main approximation engine, and on the analysis performed in
[4]. Moreover, a comparison between Newton’s iteration and Ehrlich-Aberth’s
method is performed in [35].

In our case, the main drawback of the E-A iteration is that the computation
of the Aberth corrections ai(x

(ν)) that implement implicit deflation, has a cost
of O(n2) ops. This would not be bad for general polynomials since O(n2) is

the cost of computing the n values of the Newton corrections p(x
(ν)
i )/p′(x

(ν)
i ),

for i = 1, . . . , n, by relying on n copies of the Horner rule. But for Mandelbrot
polynomials, the latter computation costs just O(n log n) ops if (1) is used, so
that the computation of the Aberth corrections becomes a bottleneck for its
higher complexity.

4



1.2 The new contribution

In this paper, we provide an implementation of the E-A iteration for computing
all the roots of pk(x) where a single iteration, performed on all the components,
has the cost of O(n log n) ops instead of O(n2) and the number of iteration steps
to arrive at numerical convergence is practically estimated to be O(log n). The
implementation relies on two main ingredients:

1. using the Fast Multipole Method (FMM) for computing ai(x
(ν)) in O(n)

ops rather than O(n2) [19];

2. designing a heuristics for the choice of the initial approximations that is
based on the information provided by the roots of the polynomial pk−2(x)
and on the fast computation of the distance of each root to the closest one
performed by means of the quadtree construction [22].

The implementation has been performed in Fortran 95. The code, which is
available upon request from the author, can be applied to any class of polynomi-
als defined by a doubling recurrence where the roots of lower-degree polynomials
in the class are close, to a certain extent, to the roots of higher-degree polyno-
mials.

The iteration on the ith component x
(ν)
i at step ν is halted if

|pk(x(ν)i )/p′k(x
(ν)
i )| ≤ |x(ν)i |210ϵ,

where ϵ is the machine precision. Since, as we will show, the minimum distance

sepk = mini ̸=j |ξ(k)i − ξ
(k)
j |, i.e., the separation of the roots, is O(1/n2), then

higher precision is needed for large values of the degree. For this reason, our
software is designed to run in double, extended, and quadruple precision where
floating point reals are represented with 8, 10, and 16 bytes, respectively, and
the machine precision ϵ takes the values 2.22·10−16, 2.17·10−19, and 1.93·10−34,
respectively.

Concerning the correctness of the results, we recall that if ξ is any complex

number such that p′k(ξ) ̸= 0, then the disk of center ξ and radius n
∣∣∣pk(ξ)
p′
k(ξ)

∣∣∣
contains a root of the polynomial pk(x) of degree n [20, Corollary 6.4g]. This
result provides a simple a posteriori bound of the approximation error. In order
to check that the algorithm does not provide multiple approximations to the

same root, we verified that mini ̸=j |x(ν)i − x
(ν)
j | = O(1/n2).

A global indicator of correctness that we used is the difference

δ =

∣∣∣∣∣∣pk(ξ)p′k(ξ)
−

n∑
j=1

1

ξ − x
(ν)
j

∣∣∣∣∣∣
for a randomly choosen ξ ∈ C. If the approximations x

(ν)
j coincide with the

roots ξj , then clearly δ = 0 identically for any ξ.
We have performed numerical experiments both for testing the correctness

and the efficiency of the code, and for experimentally deducing formal properties
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of the roots. The experiments have been performed on a laptop with 16 GB
RAM and an Intel I3 processor for k = 10, . . . , 24, i.e., the degrees range roughly
from one thousand up to 16 million. The same experiments have been repeated
on a server having 256 GB RAM and 24 CPUs. In the latter case we were able
to extend the range of k up to k = 30, that is, roughly a billion.

Indeed, 16 GB RAM are not enough to apply FMM with more than n =
224 − 1 points, moreover 256 GB RAM are not enough to deal with more than
228−1 points. In order to treat the cases n = 229−1 and n = 230−1 with 250 GB
of available RAM, we had to split FMM into a large number of subproblems,
solve the subproblems separately with FMM of lower order, and assembling
together the results obtained this way.

Timings are particularly low. It is interesting to point out that for k = 20
we need just 30 seconds on a laptop and 11 seconds on a server, while in the
approach based on Newton iteration, the timing was 18.8 hours in [34] and 6.51
hours in [30] on a laptop. For k = 24 we need less than 16 minutes on a laptop
to compute all the roots while in the approach of [30] the same computation
takes 157.27 hours. On a server, the case k = 24 is solved in 3 minutes and 20
seconds. The case k = 28 required one hour and 4 minutes.

The largest case, i.e., k = 30, is more delicate not only for the lack of
memory that required us to split FMM in many subproblems of lower order,
but also since the minimum distance of the roots is smaller than the machine
precision in the 8-byte representation. Therefore, in order to correctly separate
the approximations to the roots we had to run the software in extended precision
where floating point numbers are represented with 10 bytes. This led to a further
increase in the CPU time. In fact the roots of p30(x) where computed in almost
13 days of CPU time.

From the numerical experiments, it turns out that the convergence of the
iteration is quite regular. The number of iterations seems to grow proportion-
ally to k, i.e., logarithmically with n. Finally, the accuracy of the computed
approximations is verified by performing the computation with different lev-
els of floating point precision and verifying that the estimated error decreases
accordingly.

1.3 Experimental analysis

In [15], it is deduced that the leftmost real root η
(k)
1 of pk(x) has the asymptotic

representation

η
(k)
1 = −2 +

3

2
π24−k−1 +O(km16−k),

for some positive integer m.
Here, we generalize this expression by showing that the jth leftmost real

root η
(k)
j of pk(x) is such that

η
(k)
j = −2 + (2j − 1)2

3

2
π24−k−1 + j5k216−kγ

(k)
j , |γ(k)j | < 1, (3)
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for j = 1, . . . , nr, where nr is the number of real roots of pk(x). The bound
|γk,j | < 1 has been verified computationally for k = 4, 5, . . . , 30.

Equation (3) can be viewed as an asymptotic estimate of η
(k)
j , for all the

values of j (as functions of k) such that the rightmost term in (3) goes to zero
faster than the mid term. This happens if j < 2αk for α < 2/3.

Experimentally, if k is even, sepk is given by η
(k)
2 − η

(k)
1 so that equation (3)

provides the asymptotic estimate

sepk = 3π24−k + ϵk, |ϵk| ≤ 33k2 · 16−k, k even.

If k is odd, then sepk is given by η
(k)
m+1 − η

(k)
m , where m = 2

k−1
2 . In this case,

equation (3) is not helpful. In fact,

η
(k)
j+1 − η

(k)
j = 3jπ24−k + k216−k((j + 1)5γ

(k)
j+1 − j5γ

(k)
j )

and for j = m, the rightmost term is not infinitesimal with respect to 3jπ24−k.
However, experimentally, we find that

sepk =
3

2
π24−k +O(k2 · 8−k) k odd.

As a byproduct of this experimentation, we find that the graphical repre-

sentation of the functions γ
(k)
j , obtained with different values of k, reveals an

intrinsic fractal structure, see Figure 15 in Section 4.

1.4 Organization of the paper

The paper is organized as follows. In Section 2, we provide the description of our
algorithm, in particular, we recall the E-A iteration, discuss the computation
of the Aberth correction by means of the Fast Multipole Method, provide a ro-
bust algorithm for computing the Newton correction pk(x)/p

′
k(x), introduce the

strategy of choice of the initial approximations, and discuss the error estimate.
In Section 3, we provide a description of the implementation of the algorithm

and of the organization of the software. Then we report and discuss the results
of the numerical experiments. In Section 4 we provide the explicit expressions

of the real roots and of sepk, and comments about the fractal structure of γ
(k)
j .

Section 5 draws the conclusions.

2 Algorithm description

As we have pointed out in the introduction, the Ehrlich-Aberth method is an
iterative procedure for the simultaneous approximation to all the roots of a
monic polynomial p(x) of degree n. Monic, means that the leading coefficient
of p(x) in the power basis is 1. The iteration generates a sequence of vectors
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x(ν) = (x
(ν)
i ) ∈ Cn, for ν = 0, 1, 2, . . ., defined as follows

x
(ν+1)
i = x

(ν)
i − N(x

(ν)
i )

1−N(x
(ν)
i )ai(x(ν))

ai(x
(ν)) =

∑n
j=1, j ̸=i

1

x
(ν)
i −x

(ν)
j

i = 1, . . . , n, (4)

where N(x) = p(x)/p′(x) is the Newton correction and the quantities ai(x) are
the Aberth corrections.

This method provides an implicit deflation of the roots in the following
sense. Given an integer i in the range [1, n], consider the rational function

qi(x) = p(x)/
∏n

j=1, j ̸=i(x − xj). If the values of x
(ν)
j coincide with the roots

ξj of pk(x) for j ̸= i, then qi(x) = x − ξj is a monic polynomial of degree 1.
Newton’s iteration applied to qi(x) would provide ξi in just one step. On the

other hand, if x
(ν)
j are good approximations to the roots ξj , for j ̸= i, then qi(x)

is in general not a polynomial but close to the linear polynomial x− ξi. In this
case, Newton’s iteration is expected to converge very quickly to ξi. Now, it is a
simple matter to verify that iteration (4) is nothing else but Newton’s iteration

applied to the function qi(x) = p(x)/
∏n

j=1, j ̸=i(x− x
(ν)
i ).

An interpretation of the Aberth correction ai(x
(ν)) is that it coincides with

the ratio ri(x) = s′i(x)/si(x) at x = x
(ν)
i where s(x) =

∏n
j=1(x − x

(ν)
j ). A

physical interpretation of the complex conjugate of ri(x) is given in the book
[24, Chapter 1, Section 3] in terms of the vector field given by a set of repulsive

unit forces of center x
(ν)
i depending on the reciprocal of the distance. Following

this line, a physical explanation of the E-A iteration is given in [1, Section 3]

where the n current approximations x
(ν)
i to the roots ξi are seen as particles in

this vector field, subjected to an electric force that keeps them far away.

2.1 Computing the Aberth correction: The Fast Multi-
pole Method

Indeed, the computation of ai(x
(ν)) for i = 1, . . . , n involves about 3n2 arith-

metic operations. In the case of a polynomial p(x) represented in the monomial
basis, this cost is comparable with the cost of computing the values of p(x)
and p′(x) by means of the Horner rule at n points, that is, about 4n2 ops.
This fact makes Aberth iteration a powerful tool for numerically computing the
roots of general polynomials. In fact, based on the work of [4], this method has
been numerically analyzed and implemented into a black box that computes
and certifies the roots of polynomials up to any given precision [5], [6]. This
software implementation, called MPSolve, is widely used in the applications and
distributed in the main Linux releases.

Apparently, the O(n2) cost of computing ai(x
(ν)) makes the E-A method

unsuited in the case of Mandelbrot polynomial where the cost of computing the
Newton corrections at n points is just (6k+1)n ops. However, there is a way to
overcome this drawback given by the Fast Multipole Method (FMM) [19], [11].
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The FMM, allows the computation of the functions ai(x
(ν)) for i = 1, . . . , n

in O(n log ϵ−1) ops if we allow an error in the computed values bounded in
modulus from above by ϵ. The principle of FMM is nicely in tune with our goal
of avoiding different approximations collapsing to the same root. In fact, the
underlying idea of FMM relies on the same physical interpretation of the E-A
iteration, that is, the summation in the expression of ai(x

(ν)) in (4) is viewed as

the resultant of the forces on the particle x
(ν)
i of the other particles x

(ν)
j . This

principle, clearly described in [14], relies on the fact that a cluster of charges

that are far away from the single charge x
(ν)
i , behaves like a single charge put

in the center of the cluster and whose strength is the sum of the strengths of
the charges in the cluster.

Similarly, in the physical interpretation of the Aberth correction, the re-
pelling action of a cluster of electric charges at a sufficiently far distance from
a given charge is almost the same as the action of a single charge put in the
center of the cluster whose value is the sum of the values of the charges in the
cluster. Therefore, the approximation provided by the FMM technique does
not affect much the action of automatic deflation of the roots provided by the
Aberth correction.

Moreover, a simple analysis shows that it is not needed that the accuracy
of the computation of ai(x

(ν)) must be high for all the values of i. In fact, for
simplicity, consider the expressions

y = x− N

1−Na

ỹ = x− N

1−Nã

where N and a represent the Newton and the Aberth corrections, respectively,
and ã is the perturbed value of a, say, provided by FMM. Subtracting the two
expressions yields

y − ỹ =
N2

(1−Nã)(1−Na)
(ã− a).

That is, a possibly large error |a − ã| in the approximation of the Aberth cor-
rection is reduced in y when |N | < 1 is sufficiently small.

The FMM algorithm makes use of the quad-tree computation and is a rather
involved but very effective general algorithm. We refer the reader to the original
papers [19], [11] but a wide literature has been produced on this topic. In
particular, a nice description of the ideas on which the method is based is given
in [14]. Different implementations of this algorithm exist, we relied on the
package fmmlib2d given in [18].

In our case, where the field expression depends on the inverse of the distance,
the computation of ai(x

(ν)) can be viewed as the computation of the matrix-
vector product

a = Ce, e = (1, 1, . . . , 1)T ∈ Rn, a = (ai(x
(ν))) ∈ Cn, (5)
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where the matrix C = (ci,j) is defined by ci,i = 0, ci,j = 1

x
(ν)
i −x

(ν)
j

for i ̸= j,

that is, C is a Cauchy matrix [3]. This fact might suggest a different and likely
more effective approach to computing the vector a based on the hierarchically
semi-separable representation of the Cauchy matrix C [8], [27].

2.1.1 Handling memory issues

A limitation in the use of the library fmmlib2d [18] is the need of a pretty large
amount of memory. In fact, inside the code of fmmlib2d, auxiliary vectors of
large size are allocated. A consequence of this fact is that 256 MB RAM are
not enough to apply FMM with sizes larger than 228 − 1.

To overcome this issue, we modified the computation of a = Ce in equation
(5) as follows. The matrix C is partitioned into q2 blocks, where q is a suitable
positive integer

C = (Ci,j)i,j=1,q

where Ci,i are square matrices of size m = ⌊n
q ⌋ for i = 1, . . . , q− 1 and Cq,q has

size n− qm. This way, the product (5) can be rewritten as

a(i) =

q−1∑
j=1

Ci,jem + Ci,qen−qm, i = 1, . . . , q. (6)

Here, ej denotes the vector of size j with unit components and a(i) denotes the
subvectors of a obtained by partitioning a conformally to the partitioning of C.

The computation of a can be performed by applying q2 times the fast multi-
pole method for computing the products Ci,jem for i = 1, . . . , q, j = 1, . . . , q−1,
and the products Ci,qen−qm for i = 1, . . . , q, and then assembling these terms
together by means of (6) to obtain the subvectors a(i), i = 1, . . . , q. This
workaround allows to deal with polynomials of larger degrees but with the draw-
back of a much larger computational cost.

2.2 Computing pk(x) and p′k(x)

When dealing with polynomials of very large degrees, the direct implementation
of equations (1) may encounter overflow problems so that the program would
break down. In particular, this occurs when the real or imaginary parts of
pk(x) and p′k(x) take large values in modulus and cannot be represented as
floating point numbers while the ratio pk(x)/p

′
k(x) can be represented. A way

to overcome this issue is to scale pk(x) and p′k(x) by the same constant αi

in order to keep their values representable as floating point numbers. More
precisely, we proceed in the following way.

Let αi = 1/|p′i(x)| and set di = αip
′
i(x), qi = αipi(x). Then, a simple formal

manipulation shows that

di+1 = viβi, vi = 2xqidi + q2i , βi = 1/|vi|,
qi+1 = (xq2i + α2

i )βi,

αi+1 = α2
iβi,
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Figure 1: Roots of p10(x) (red dots) and of p12(x) (blue circles) together with a zoom of
the left upper part of the figure. Roots of p10(x) are relatively close to the roots of p12(x).

where q0 = 1 + x, d0 = 1, α0 = 1. This way, we may compute pk(x)/p
′
k(x) =

qk/dk. Moreover, since |di| = 1, if the value pk(x)/p
′
k(x) is representable in

floating point, then also the values of di and qi are representable with no nu-
merical exception. The only source of numerical issues is the evaluation of αi+1.
In fact, if underflow is encountered, then the value of αi+1 is set to zero as well
as the values of αj for j ≥ i + 1. In order to avoid this loss of information, we
store the logarithm of αi in place of αi and modify the numerical scheme as
follows, where we have set γi := log(αi):

di+1 = viβi, vi = 2xqidi + q2i , βi = 1/|vi|,
qi+1 = (xq2i + exp(2γi))βi,

γi+1 = 2γi + log(βi).

The possible underflow in the computation of the exponential does not neces-
sarily zeroes the values of the subsequent αj . With this implementation, we
never encountered critical situations.

2.3 Choosing the initial approximations

Since the union of the roots of pk(x) forms a fractal, we deduce that the roots
of pk(x) should not be much far from the roots of the previous polynomials as
shown in Figure 1. This observation suggests to choose, as initial approximations
for starting the E-A iteration applied to pk(x), suitable perturbations of the
roots of ph(x) for some h < k. This observation leads to the following heuristics
to determine the initial approximations.

Denote ξ
(k)
i for i = 1, . . . , 2k−1, the roots of pk(x). Given the roots ξ

(k−2)
i of

pk−2(x), determine the values di = minj ̸=i |ξ(k−2)
j −ξ(k−2)

i |, for i = 1, . . . , 2k−2−
1. For any i = 1, . . . , 2k−2 − 1, choose 4 starting approximations equispaced

in the circle of center ξ
(k−2)
i and radius di/4. This choice provides 2k − 4

approximations that are close to the roots of pk−2(x) and that lie on circles that
do not intersect each other. The remaining 3 approximations are choosen on the
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Figure 2: Selection of the starting approximations: The initial approximations are chosen

on the dotted circles whose centers are the roots ξ
(k−2)
i of pk−2(x) and whose radii are

1
4
minj ̸=i |ξ

(k−2)
i − ξ

(k−2)
j |.

circle of center 0 and radius 2. This strategy is depicted in Figure 2 where the
five blue disks represent a set of five roots of pk−2(x), and the approximations
are chosen on the dotted circles.

As we will see later on in the experimental part, this strategy of selection of
the starting approximations provides a very good convergence behavior of the
algorithm. In fact the number of iterations is less than 2k.

The computation of the quantities di, i = 1, . . . , 2k−2 − 1, if performed
through the direct algorithm, would require O(n2) ops. However, there exists
an O(n) algorithm based once again on the quadtree construction; an imple-
mentation of this algorithm is given in [22].

2.4 Error estimates and guaranteed error bounds

In order to evaluate the error in the approximation x
(ν)
i to the closest root ξ

(k)
i

for i = 1, . . . , n, a possibility is to rely on the well-known bound [20]

|x(ν)i − ξ
(k)
i | ≤ n

∣∣∣∣∣pk(x(ν)i )

p′k(x
(ν)
i )

∣∣∣∣∣ , (7)

where n is the degree of pk(x). In fact, as stop criterion for the iteration we
used the condition ∣∣∣∣∣pk(x(ν)i )

p′k(x
(ν)
i )

∣∣∣∣∣ ≤ 210ϵ|x(ν)i | (8)

where ϵ is the machine precision. The coefficient 210 is used as a guard fac-
tor against the presence of rounding errors in the computation of the Newton
correction.

This condition provides an a posteriori error bound within the relative error
210ϵn, and ensures that each disk

Di = {z ∈ C : |z − x
(ν)
i | ≤ n210ϵ|x(ν)i |}, i = 1, . . . , n,

contains a root of the Mandelbrot polynomial. Indeed, if the n disks are pairwise
disjoint, then we are certain that all the n roots have been isolated.

Moreover, since |ξ(k)i | ≤ 2, a sufficient condition in order that Di ∩Dj = ∅
for i ̸= j is that 211nϵ < 1

2 sepk where

sepk = min
i ̸=j

|ξ(k)i − ξ
(k)
j |
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is the separation of the roots. As we will see later on, we have sepk = 3π24−k +
O(k216−k) for k even and sepk = 3

2π
24−k + O(k28−k) if k is odd. Therefore if

ϵ is small enough, say, ϵ < 2−12n−1sepk = 3π22−2k−13n−1 + O(k216−k), for k
even, then Di ∩Dj = ∅ for any i ̸= j. A similar bound to ϵ holds for k odd.

Relying on this analysis and neglecting the asymptotic term, one may check
that the quadruple precision where ϵ = 1.93 · 10−34 is sufficient to guarantee
the isolation of the roots of pk(x) for k ≤ 33 and to guarantee an a posteriori
error bound. Whereas the extended precision guarantees the correctness of the
approximation for k ≤ 17 and the double precision guarantees the correctness
for k ≤ 14.

Indeed, these are sufficient (worst case) conditions for getting isolated disks,
that in practice are not needed since the accuracy of the actual approximations
is usually much better than the bound (7).

A global and reliable indicator of the accuracy of the approximations to all
the roots is based on the identity

pk(x)

p′k(x)
=

n∑
i=1

1

x− ξ
(k)
i

valid for any polynomial, and on the fact that both the two expression above
can be computed at a low cost. This fact suggests to adopt as a measure of
accuracy, the quantity

δ(x) =

∣∣∣∣∣p′k(x)pk(x)
−

n∑
i=1

1

x− x
(ν)
i

∣∣∣∣∣ , (9)

where x
(ν)
i are the computed approximations at step ν, and x is a randomly

generated value. Indeed, δ(x) is identically zero if and only if, after a suitable

re-ordering of the approximations, one has x
(ν)
i = ξ

(k)
i for i = 1, . . . , n. In

our implementation, in order to have deterministic evaluations, we have chosen
x = − 1

2 (cos θ + i sin θ) for θ = 0.7. This value is in the inner part of the
Mandelbrot figure slightly far away from all the roots of pk(x) for any k.

3 Implementation and numerical experiments

In this section we spend a few words about the software implementation of the
algorithm and discuss more accurately the results of the numerical experiments.

Our tests are essentially limited to Mandelbrot polynomials. Other classes
of polynomials can be treated by modifying the subroutine newtc. We have
performed our experiments on a laptop with Intel-I3 CPU and 16 GB RAM for
degrees n = 2k−1, k = 8, 9, . . . , 24 using the compiler gfortran v.9.4.0 under
the Ubuntu system. The amount of RAM was not enough for handling higher
values of k unless we split the computaton of FMM as described in Section 2.1.1.

We repeated the experiments on a server with 24 CPU’s and 256 GB RAM;
the larger amount of memory allowed us to deal with values of k up to 29. In
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order to deal with the case k = 30, where the degree is larger than one billion,
we had to modify the computation of the Aberth correction by splitting it into
162 subproblems of size (n + 1)/16. In fact, the FMM computation requires a
high amount of RAM, even though still linear in the degree n. This fact created
a substantial slow-down of the execution.

The roots of pk(x) have been approximated with different values of the pre-
cision, that is, kind 8, kind 10, and kind 16.

In the next subsections, we provide information on the software, discuss the
results of the experimentation performed on a laptop and on a server, and pro-
vide an example of generalization to a different class of polynomials defined by
a doubling recurrence. Then, in the next section, we give an explicit represen-
tation of the real roots of pk(x) and of the sep deduced from the high precision
approximations to the roots provided by our software.

3.1 The software

We have implemented the algorithm relying on the language Fortran 95. Three
versions of the executable code can be generated: the version that performs the
computation in the standard double precision where real floating point numbers
are represented in 8 bytes; the version in extended precision where storage of
floating point numbers is performed on 10 bytes, and the quadruple precision
version where storage is on 16 bytes. We denote these three versions as kind 8,
kind 10, and kind 16, respectively. The corresponding machine precisions are
given by 2.22 · 10−16, 2.17 · 10−19, and 1.93 · 10−34, respectively.

We relied on the library fmmlib2d [18], suitably modified to work also in
extended and in quadruple precision, i.e., kind 10 and kind 16, respectively.
The modification that we have performed does not improve the precision of
computation of the output values that remains the one of kind 8.

We used the software [22] for computing in a fast way the distance of each

x
(ν)
i from the closest x

(ν)
j for i, j = 1, n, i ̸= j. Also in this case, we have

modified the code to work with kind 10 and kind 16 representation of floating
point numbers. In both packages, we have also modified the representation of
integers from 4 bytes to 8 bytes in order to deal with larger values of n.

In order to allow three different kinds of precision, we have created the
files sharekind-8.f90, sharekind-10.f90, sharekind-16.f90, defining the
module sharekind with the shared variable knd that takes the values 8, 10, and
16, respectively. To create the executable in the desired precision, the user must
first create the module sharekind by compiling the file sharekind-xx where
xx is 8, 10, or 16, corresponding to the desired precision.

The module sharedvariables declares the variables in common where real
and complex variables are declared as kind=knd. Inside the Fortran 95 subrou-
tines the local real and complex variables are declared as kind=knd.

The main shared variables are:

x(:) : complex vector containing the approximations to the roots
abc(:) : complex vector containing the Aberth corrections
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dist(:) : real vector such that dist(i) = minj ̸=i |x(i)− x(j)|

The code consists in three main subroutines, namely:

subroutine ea feed(k) that computes the roots of pk(x) given the roots of
pk−1(x), by means of the E-A iteration with the strategy of Section 2.3;
subroutine ea start(k) that computes the roots of pk(x) by using the E-A
iteration starting from the 2k − 1 roots of the unity;
subroutine ea roots(k) that computes the roots of pi(x) for i = 4, 6, 8, . . . , k,
if k is even and for i = 5, 7, 9, . . . , k if k is odd, by means of the E-A iteration.

The following auxiliary subroutines are part of the software.

subroutine abcorr(n,m) that computes the Aberth correction relying on FMM;
subroutine abc split(n) that computes the Aberth correction by splitting
the computation into several subproblems of lower size as shown in Section
2.1.1;
subroutine nwtnc(k, zx, znc) that computes the Newton correction accord-
ing to the algorithm of Section 2.2;
subroutine distances(k) that computes the distances dist(i);
subroutine expand(k) that implements the selection of starting approxima-
tions performed with the strategy of Section 2.3;

Some driver programs are included. They take input from the keybord and
call the corresponding subroutine. In particular:

drive roots.f90 invokes the subroutine ea roots;
drive step.f90 computes the roots of pk(x) given the roots of pk−2(x);
drive refine.f90 refines the roots from 8-byte to 10-byte precision;
drive rerefine.f90 refines the roots from 10-byte to 16-byte precision.

Other additional software is included.
The subroutine nwtnc can be modified in order to compute the roots of any

other class of polynomials defined by a doubling recurrence as the polynomials
considered in [34].

3.2 Experiments on a laptop

In this section we discuss the results of the experiments performed on a laptop.
The following figures and tables report the output errors, the number of itera-
tions, the CPU time, and more information concerning the convergence dynamic
of the iteration.

3.2.1 Errors

In Figure 3, we have plotted, in log scale, the graph of the errors of the com-
putation performed with the three different precisions kind 8, kind 10, kind 16,
respectively, computed by means of (9). We may see that the growth of the
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errors with respect to k is really tiny. For the largest degree, i.e., about 16 mil-
lions, the error differs from the machine precision about 4 orders of magnitude.
For the minimum value, i.e., k = 7 the difference is of 2 orders of magnitude.

The availability of 16 GB RAM allowed us to deal with the case k ≤ 24 in
kind 8, k ≤ 23 in kind 10, and k ≤ 22 in kind 16. It must be said that the stop
condition (8) has been satisfied in all the computations so that the a posteriori
bound

|x(ν)i − ξ
(k)
i | ≤ 210nϵ|x(ν)i |

is guaranteed.

6 8 10 12 14 16 18 20 22 24
10-35

10-30

10-25

10-20

10-15

10-10
Errors

kind 8
kind 10
kind 16

Figure 3: Values of the errors δ (y axis), as defined in (9), obtained for different values of k
(x axis) and different values of the precision: 2.22 · 10−16 for kind 8, 2.17 · 10−19 for kind 10,
and 1.93 · 10−34 for kind16.

3.2.2 Number of iterations and convergence dynamics

In order to test the effectiveness of the strategy of selecting the starting approxi-
mations introduced in Section 2.3, we considered the number of approximations
to the roots of pk(x) not yet converged at the generic νth iteration. Figure 4
plots the graph of this number in log scale for different values of k. We have
separated the case of k even from the case of k odd. In fact, our strategy behaves
slightly differently in the two cases.

It is interesting to observe that the convergence dynamic is the same inde-
pendently of the value of k, with a slight difference between k even and k odd.
In fact, we notice that, after a small number of steps (roughly 5) where the
number of non-converged approximations remains almost unchanged, an almost
exponential decrease of the number of non-converged approximations follows
until no roots are left to compute. In the case where k is even, the exponential
decrease is almost uniform. In the case k odd, there is a slight slow down after
an initial exponential decrease. It is also interesting to observe that the conver-
gence dynamic follows the same pattern independently of the values of k except
for the parity of k.
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Figure 4: Dynamics of the convergence. Log-scale plot of the number of approximations
to the roots of pk(x) not yet converged after ν iterations (ν is on the x axis). On the left,
the case of k even, on the right the case k odd. After 4-5 steps of stagnation, the decrease is
almost exponential, with a slight slow-down for k odd.

The number of overall iterations grows almost linearly with k and is reported
in Figure 5. For the sake of clarity, the numerical values are also displayed in
Table 1 where we separated the odd values of k from the even values. It is
evident that the number of iterations grows almost linearly with k, the growth
for k even is slower than for k odd.

6 8 10 12 14 16 18 20 22 24
10

15

20

25

30

35
Iterations kind 8

k odd
k even

Figure 5: Plot of the number of iterations for different values of k, in double precision. Even
and odd values of k are displayed separately.

3.2.3 CPU time

Very informative graphs are shown in Figure 6 where, to the left, the CPU
time needed for completing the computation is displayed for the three different
precisions and for the values of k ranging from 7 to 24. In each plot, we have
separately reported the time needed for computing the Aberth correction, the
Newton correction, and for computing the minimum distance of each root from
the remaining ones. From this log-scale plot, the growth of the time seems linear
in n. On the other hand, the plots to the right show that the ratio of the CPU
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k 8 10 12 14 16 18 20 22 24

it 11 15 14 16 19 18 22 21 25

k 7 9 11 13 15 17 19 21 23

it 13 15 20 20 23 25 28 31 33

Table 1: Number of iterations of the E-A method, in kind 8, with the strategy of selection
of the initial approximations described in Section 2.3. Even and odd values of k are reported
separately.

time and the value of n = 2k − 1 grows moderately with k for the Aberth and
the Newton correction, and also for the computation of the distances. This is
in accordance with the O(n log2 n) estimate of the overall complexity.

Notice that, for the maximum value of n, i.e., more than 16 million, the
computation of the roots in double precision over a laptop takes just 950.7
seconds.

It is also interesting to observe that the overall time is dominated by the
computation of the Aberth correction. For the sake of completeness, in Table 2
we report the overall CPU time needed for the computation for different values
of k.

k 8 10 12 14 16 18 20 22 24

CPU 0.003 0.02 0.09 0.37 1.7 6.9 30.2 152.2 950.7

k 7 9 11 13 15 17 19 21 23

CPU 0.0007 0.03 0.05 0.21 0.96 4.4 20.9 96.3 459.3

Table 2: CPU time, in seconds, of the E-A method in kind 8, with the strategy of selection
of the initial approximations described in Section 2.3. Even and odd values of k are reported
separately.

3.2.4 Root distances and sep

The fact that most part of the roots are well separated and very few are clustered

is shown in Figure 7. This figure plots the vector d(k) = (d
(k)
i ) where d

(k)
i is the

distance of the ith root of pk(x) from the closest one, and the values d
(k)
i are

sorted in nondescending order. The case k = 22 is displayed together with a
zoom of the leftmost part. From these plots one can see that only few roots have
a small mutual distance and almost all of them have distance between 10−2 and
10−10. Here, the computation has been performed in kind 16, i.e., in quadruple
precision.

We may also estimate the minimum value of this set of distances, that is,

sepk := mini d
(k)
i , to figure out for which values of k this minimun gets smaller

than the machine precision. Figure 8 shows the plot of sepk, as a function of
k in logarithmic scale. From this graph, where we separate the cases of even /
odd k, it is clear the exponential decay of the function with respect to k. An
explicit asymptotic expression of sepk will be given in Section 4.
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Figure 6: To the left, CPU time for the three different values of the precision. For each value
of k (in the x axis) it is reported the time taken by the computation of the Aberth correction,
the Newton correction and the computation of the distances of the closest root, respectively.
To the right, the ratio between the CPU time and the degree n = 2k − 1 of the polynomial
for different values of k.
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Figure 7: Mimimum distance d
(k)
i from the root x

(k)
i of the other roots, for i = 1, . . . , n =

2k − 1 where k = 22. The computation is performed in quadruple precision.
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Figure 8: Mimimum distance of distinct roots for each value of k = 5, . . . , 24. Even and odd
values of k are displayed separately.
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Figure 9: CPU times in a server in kind 8. The jump in the overall time for k = 29 and
k = 30 is due to the fact that, due to lack of memory, FMM is split into 42 and 82 pieces,
respectively, that are treated separately.

A similar estimate holds for the relative value sepk, i.e., mini̸=j |ξi− ξj |/|ξi|.
This value is roughly 1

2 sepk.

3.3 Experiments on a server

We have repeated the experiments on a server with 24 processors Intel Xeon and
256 GB RAM. The code was compiled with gfortran v.9.4.0 under the Linux
system. We report the timings the errors, the number of iterations and the plot
of the number of non-converged approximations per iteration, that confirm the
behaviour pointed out in the previous section.

Due to lack of memory for the computation in kind 8, we had to split FMM
into q × q blocks for k ≥ 29. The value q = 4 was enough for k = 29, while we
had to set q = 8 for k = 30. In the case of kind 10 and kind 16, we had to apply
the split version of FMM already for k ≥ 27 and increase the value of q up to
16 for k = 30.

Table 3 reports the values of the cpu time for even values of k in the case
of kind 8 precision. Observe the large values for k = 30 due to the different
implementation of the FMM algorithm needed for the lack of memory. This
fact is more evident in Figure 9 where the overall CPU time together with the
time needed by Newton’s correction are reported graphically in log scale.

Table 4 reports the number of iterations needed for numerical convergence
in kind 8. The linear growth with respect to k is confirmed. Table 3 reports
the values of the error estimate δ, of (9), obtained in the execution in kind 8.
It is worth pointing out that the machine precision of 2.22E-16 is not enough
to separate some roots of pk(x) for k ≥ 28.

Figure 10 extends the plots of Figure 4 to the values 25 ≤ k ≤ 30. We may
see that the same pattern is repeated unchanged. We may also note that the
graph corresponding to the values of k that are multiple of 3 intersect the graps
corresponding to k − 1.
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Figure 10: Dynamics of the convergence. Log-scale plot of the number of approximations to
the roots of pk(x) not yet converged after ν iterations (ν is on the x axis). The computation
is performed on a server. Notice that the graphs have almost the same shape independently
of the value of k.

k 20 22 24 26 28 30

CPU 11.1 51.4 200.2 838 3832 169357

k 19 21 23 25 27 29

CPU 8.1 35.2 148 641 2734 65231

Table 3: CPU time, in seconds, of the E-A method in kind 8. The computation has been
performed on a server with 256 GB RAM.

k 20 22 24 26 28 30 19 21 23 25 27 29

it 22 21 25 25 29 29 28 31 33 38 39 41

Table 4: Number of iterations of the E-A method in kind 8. The computation has been
performed on a server with 256 GB RAM.

k 20 22 24 26 28 30

δ (kind 8) 4.58E-13 1.94E-12 3.57E-12 3.25E-11 6.75E-10 1.56E-08
δ (kind 10) 2.40E-16 1.94E-15 1.60E-15 1.40E-15 2.00E-14 7.04E-14

k 19 21 23 25 27 29

δ (kind 8) 1.15E-12 2.45E-12 1.98E-12 1.90E-12 1.56E-09 1.29E-8
δ (kind 10) 6.80E-16 8.45E-16 2.49E-15 6.63E-15 4.24E-15 2.48E-14

Table 5: Values of the errors δ, as defined in (9), for different values of k over a server with
256 GB RAM in kind 8, and in kind 10.
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k 19 20 21 22 23 24 25 26 27 28 29 30

iter 1 1 1 1 1 6 9 5 28 13 98 42

Table 6: Number of iterations needed to refine to kind 10 the approximations computed in
kind 8 by means of the E-A method.

It is important to point out that for large values of k for which sepk is close
to (or even below) the machine precision 2.22E-16, the approximations provided
by the E-A iteration to the clustered roots in kind 8 cannot be effective starting
approximations for a subsequent refinement. Whereas, the approximations to
the well separated roots are generally inside the basin of attraction of Newton’s
iteration. This fact is evident if we look at the performance of the E-A method
applied in kind 10 to refine the approximations obtained in kind 8. In this
regard, Table 6 reports the number of iterations needed by this refinement stage.
While for k ≤ 23 only one step is sufficient to satisfy the stop condition (8) in
kind 10, for k > 23 we see that the number of iterations grows significantly.

A more detailed analysis shows that in the first iteration step, the number of
approximated roots is a large percentage of the total number. The subsequent
iteration steps are needed to separate the roots that are in clusters and concern
a small percentage of the overall number of the roots. For instance, for k = 28,
the number of approximated roots after the first step is 0.9994%. The remaining
27 iterations concern only the 0.0006% of the roots.

The evident increase of the number of steps, as k gets large, is due also to
the fact that the modification of the package fmmlib2d, that we have performed
in order to run the software in kind 10 and in kind 16, does not increase the
output precision that remains within 2.22E-16, i.e., in kind 8.

3.4 Other classes of polynomials

In order to verify that our strategy of selecting initial approximations to the
roots is effective in general, we considered other classes of polynomials defined
by a doubling recurrence. In particular we tested the polynomials in [34, Section
3.2] concerning periodic points of quadratic polynomials. More precisely, given
a complex number c, define pc(x) = x2 + c and Pk(x, c) = pc(x)

◦k − x where
pc(x)

◦k := pc(pc(· · · pc(x) · · · )), k times. Clearly, the polynomial Pk(x, c) has
degree n = 2k. In Figure 11, we report the number of roots left to compute at
each step of the iteration for Pk(x, 1) for several values of k. We may see that
the pattern is the same as in the case of Mandelbrot polynomials (compare with
Figures 4 and 10. That is, after a few steps of stagnation, the number of roots
left to compute has an exponential decrease.

Differently from Mandelbrot polynomials, in the case of P (x, 1) there is not
a different behaviour for k odd and k even. Observe also that the number of
iterations grows almost linearly with k = log2 n. The same behaviour holds for
other tested values of the parameter c.
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Figure 11: Log plot of the number of roots left to compute at step ν (ν is in the x axis) for
the class of polynomials Pk(x, c) for several values of k.

4 Experimental analysis

Let us denote η
(k)
j the jth real root of pk(x) with the ordering η

(k)
i < η

(k)
j for

i < j. In [15], the following expression of the leftmost real root of pk(x) has
been provided

η
(k)
1 = −2 +

3

2
π24−k−1 +O(km16−k),

for some positive integer m. Here, based on the high precision approximations
to the roots of pk(x), we generalize and make more accurate the above repre-

sentation by providing an explicit expression of the jth real root η
(k)
j of pk(x)

as a function of k and j, up to a term which is an O(k216−k). More precisely,
we experimentally show that

η
(k)
j = −2 + (2j − 1)2

3

2
π24−k−1 + j5k216−kγ

(k)
j , (10)

where γ
(k)
j is a function of j and k such that |γ(k)j | < 1.

In order to provide the numerical evidence of this representation, we com-
puted the roots of pk(x) in quadruple precision, extracted the real roots, and
refined them in Matlab by means of the Advanpix multiprecision Toolbox using
512 decimal digits. Let us denote the high precision approximations obtained

this way by η̂
(k)
j for j = 1, . . . , n

(k)
r , where n

(k)
r is the number of real roots of

pk(x). Then we computed the values of

γ̂
(k)
j :=

1

j5k216−k
(η̂

(k)
j + 2− (2j − 1)2

3

2
π24−k−1), j = 1, . . . , n(k)

r , (11)

and for each value of k ≤ 28, we verified that |γ̂(k)j | < 1. Observe that γ̂
(k)
j is a

computed approximation of the value γ
(k)
j that appears in (10).
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Figure 12: Plot of the function ψk = maxj |γ̂
(k)
j | as a function of k. In red, the case of k

odd, in blue, the case k even. Both graphs have a slightly decreasing behavior.

To have a more clear understanding of the behaviour of γ̂
(k)
j , we considered

the function ψk = maxj |γ̂(k)j |. The plot reported in Figure 12 shows that |γ̂(k)j |
is bounded from above by 1. Moreover, ψk seems to have a slightly decreasing

behavior. This means that the larger is k, the smaller |γ̂(k)j |.
It must be said that the representation (11) is asymptotically meaningful for

those indices j such that the coefficient of γ
(k)
j , that is, j5k24−2k converges to

zero for k → ∞ asymptotically faster than the term 3
8π

2(2j−1)24−k so that we
may look at the rightmost term as the remainder of the expansion. One may
easily verify that this happens for j ≤ 2αk for any 0 < α < 2

3 provided that the

experimental guess |γ(k)j | ≤ 1 is valid.

The function γ̂
(k)
j , as function of j, has some interesting properties. If we

limit the variable j in the range [1, 2
k+1
2 ], then the function γ̂

(k)
j shows a fractal

structure. This is shown in Figure 13 where the graphs of |γ̂(k1)
j | and |γ̂(k2)

j |, as
functions of j, are plotted for two different values k1 < k2 of k, that is k1 = 10,

k2 = 11, and k1 = 12, k2 = 13 over the interval I = [1, 2⌊
k2+1

2 ⌋]. It turns out

that the graph of γ̂
(k1)
j almost overlaps the graph of γ̂

(k2)
j in the first half of the

domain I. A look of what happens outside I is taken in Figure 14 where the

wider interval I ′ = [1, 21+⌊ k2+1
2 ⌋], having double width, is considered. We may

see that outside I the functions differ much, also in terms of shape of the graph.

The fractal structure of γ̂
(k)
j appears also from Figure 15 where we plotted

the graph of γ̂
(k)
j for several values of k. Notice also that the graph of γ̂

(k)
j

has almost the same shape independently of the value of k up to scalings and
dilations.

As a consequence of this analysis we are able to provide an explicit expres-

sion for sepk = mini ̸=j |ξ(k)i − ξ
(k)
j |. In fact, experimentally, we verified that

this minimum is taken on pairs of real roots. More precisely, if k is even, the

minimum is given by η
(k)
i − η

(k)
i−1 for i = 2, while if k is odd then the minimum

is taken for i = m+ 1 for m = 2
k−1
2 .
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Figure 13: Log-scale plot of the function |γ̂(k)j | for different values of k and for j in the

range [1, 2⌊
k+1
2

⌋]. On the left the values k2 = 11 in blue, and k1 = 10 in red. On the right
the values k2 = 13 in blue and k1 = 12 in red. The red graph almost overlaps the left half of
the blue graph. Notice that the shape of the graph is almost the same independently of the
value of k.
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Figure 14: Log-scale plot of the function |γ̂(k)j | for different values of k and for j in the wider

range [1, 21+⌊ k+1
2

⌋]. On the left the values k2 = 11 in blue, and k1 = 10 in red. On the right
the values k2 = 13 in blue and k1 = 12 in red. The red graph does not overlap the blue graph
in the extended interval.
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Figure 15: Plot of γ̂
(k)
j as function of j from 1 to 2⌊

k+1
2

⌋ for several values of k. On the left,
the case of k even, on the right the case of k odd. We may appreciate the fractal structure of
this graph and the boundedness in modulus.
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Figure 16: Values of |ϵk| for k even and odd, from equations (13) and (14), respectively,
concerning the computed values of sepk.

k 24 25 26 27 28 29 30

rsep 5.3E-14 2.6E-14 3.3E-15 1.6E-15 2.1E-16 1.0E-16 1.3E-17

Table 7: Values of rsepk for different values of k. The values that are below the machine
precision 2.22E-16 are reported in bold.

Combining this fact with (10) we find that

η
(k)
j+1 − η

(k)
j = 3jπ24−k + k216−k((j + 1)5γ

(k)
j+1 − j5γ

(k)
j ). (12)

This expression provides the following tight estimate of sepk for k even:

sepk = 3π24−k + ϵk, |ϵk| ≤ 33k216−k. k even. (13)

On the other hand, for k odd, equation (12) is not helpful since for j = m the
two terms in (12) have the same order of magnitude and their sum is much less
than the first term.

However, from the experimental analysis we deduce that

sepk =
3

2
π24−k + ϵk, |ϵk| ≤ θk28−k, k odd, (14)

for a constant θ > 0.
The estimates given in equations (13) and (14) are confirmed by the graph

reported in Figure 16 where the differences |s̃epk − 3π24−k| for k even, and

|̃sepk − 3
2π

24−k| for k odd are shown in log scale; here, we denoted s̃epk the
value of sepk obtained from the approximated roots.

As a consequence of this analysis, we may estimate the value of the floating
point precision needed in order to separate the roots of pk(x), for the different
values of k. In this regard, Table 7 reports, for k ranging from 24 to 30, the

values rsepk = mini ̸=j |ξ(k)i − ξ
(k)
j |/|ξj | of the relative sep. The values which are

below the standard machine precision are displayed in bold.
From this table, we realize that the standard 8-byte representation of floating

point numbers is not enough to solve Mandelbrot polynomials of degree greater
than or equal to 28, while the 10-byte representation is enough.
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5 Conclusions

In this paper, we have analyzed the problem of numerically computing the
roots of Mandelbrot polynomials of degree n = 2k − 1. An algorithm based
on the Ehrlich-Aberth iterations and on the Fast Multipoint Method, relying
on a suitable strategy of selecting initial approximations has been introduced
and implemented in Fortran 95. The cost of performing a single iteration is
O(n log n) arithmetic operations (ops). The implementation allows to run the
program in double, extended and quadruple precision. From the numerical
experiments, the strategy of choice of the initial approximations has revealed
very effective since, in practice, the numerical convergence occurs in O(log n)
steps so that the overall cost is O(n log2 n) ops.

In practice, polynomials up to degree n = 224 − 1 have been solved in rea-
sonable time over a laptop with 16 GB RAM, and up to degree 230 − 1 over
a server with 256 GB RAM. For k = 30 the Fast Multipole Method has been
modified in order to overcome the lack of memory.

The certified approximations to the roots of pk(x), computed in quadruple
precision, allowed to provide explicit expressions of the real roots, up to an
asymptotic term, which generalize the expression given in [15] for the root of
largest modulus. The minimum distance of the roots has been explicitly given
up to an asymptotic term. This expression allowed to determine a bound to the
degree of pk(x) over which higher precision is needed to separate the roots.

A fractal behavior of a function involved in the explicit expression of the
real roots has been observed.

The implementation given in Fortran 95 can be easily modified to deal with
sequences of polynomials qk(x) defined by a doubling recurrence where the roots
of qk(x) are close, in some sense, to the roots of qk−1(x).

We have adjusted the package fmmlib2d of [18] to the case of kind 10 and
kind 16 but without improving the output precision. An open issue concerns the
design and implementation of a specific and more effective version of FMM par-
ticularly taylored for computing the Aberth correction in extended and quadru-
ple precision. We believe that this is possible by relying on the Cauchy matrix
technology and on the hierarchical semiseparable matrix structure [8], [27].
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