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Abstract. We generalize Turaev’s definition of torsion invariants of pairs(M, ξ), whereM
is a 3-dimensional manifold andξ is an Euler structure onM (a non-singular vector field
up to homotopy relative to∂M and modifications supported in a ball contained in Int(M)).
Namely, we allowM to have arbitrary boundary andξ to have simple (convex and/or concave)
tangency circles to the boundary. We prove that Turaev’sH1(M)-equivariance formula holds
also in our generalized context. Using branched standard spines to encode vector fields we
show how to explicitly invert Turaev’s reconstruction map from combinatorial to smooth Eu-
ler structures, thus making the computation of torsions a more effective one. Euler structures
of the sort we consider naturally arise in the study of pseudo-Legendrian knots (i.e. knots
transversal to a given vector field), and hence of Legendrian knots in contact 3-manifolds.
We show that torsion, as an absolute invariant, contains a lifting to pseudo-Legendrian knots
of the classical Alexander invariant. We also precisely analyze the information carried by
torsion as a relative invariant of pseudo-Legendrian knots which are framed-isotopic.

0. Introduction

Reidemeister torsion is a classical yet very vital topic in 3-dimensional topology,
and it was recently used in a variety of important developments. To mention a few,
torsion is a fundamental ingredient of the Casson–Walker–Lescop invariants (see
e.g. [8]). Relations have been pointed out between torsion and hyperbolic geome-
try [13]. Turaev’s torsion of Euler structures [16] has been recognized by Turaev
himself ([17,18]) to have deep connections with the Seiberg–Witten invariants of
Spinc-structures on 3-manifolds, after the proof of Meng and Taubes [10] that a
suitable combination of these invariants can be identified with the classical Milnor
torsion.

0.1. Review of known results

Turaev’s theory [16] actually exists in all dimensions. We quickly review it before
proceeding.Asmooth Euler structure ξ on a compact oriented manifoldM, possibly
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with ∂M = ∅, is a non-singular vector field onM viewed up to arbitrary modifica-
tions supported in a closed ball contained in Int(M) and homotopy relative to∂M.
Orientability ofM is not strictly necessary, but we find it convenient to assume it.
Turaev only considers the case where the field is transversal to the boundary, so the
boundary components are “monochromatic” (black if the field points outwards, and
white if it points inwards). This implies the constraint thatχ(M,W) = 0, where
W is the white portion of∂M, but in [17] and [18] Turaev only focuses on the more
specialized case whereM is 3-dimensional and closed or bounded by black tori.
In all dimensions, the set Euls(M,W) of smooth Euler structures compatible with
(M,W) is an affine space overH1(M;Z). The two main ingredients of Turaev’s
theory are as follows. First, he defines a certain set of 1-chains, called the space
Eulc(M,W) of combinatorial Euler structures compatible with(M,W), he shows
that this is again affine overH1(M;Z), and he describes anH1(M;Z)-equivariant
bijection
 : Eulc(M,W)→ Euls(M,W) called thereconstruction map. Second,
for ξ ∈ Eulc(M,W) and for any representationϕ of π1(M) into the units of a suit-
able ring he defines a torsion invariantτϕ(M, ξ), or more generallyτϕ(M, ξ, h),
as explained below in Sect. 2, with values inK1()/(±1), whereK1()denotes the
Whitehead group of. This invariant satisfies theH1(M;Z)-equivariance formula

τϕ(M, ξ ′, h) = τϕ(M, ξ, h) · ϕ(ξ ′ − ξ) (1)

whereξ ′ − ξ ∈ H1(M;Z) andϕ is naturally induced byϕ. In additionτϕ(M, ξ)

is by definition a lifting of the classical Reidemeister torsion (see [11])τϕ(M,W) ∈
K1 () / (±ϕ (π1, (M))). For ξ ∈ Euls (M,W) one definesτϕ (M, ξ) as
τϕ(M,
−1(ξ)), and theH1(M;Z)-equivariance of the reconstruction map
 im-
plies that formula (1) holds also for smooth structures. We emphasize that the
definition of
 is based on an explicit geometric construction, but its bijectivity
is only established throughH1(M;Z)-equivariance. This makes the definition of
torsion for smooth structures somewhat implicit.

0.2. Aims of the paper

In [3] we have provided a combinatorial encoding of non-singular vector fields up
to homotopy (also called “combings”) in terms of branched standard spines, and
the initial aim of this paper was to use this encoding in order to find a geometric
description of the map
−1, and hence to turn the computation of Turaev’s torsion
into a more effective procedure. The use of branched standard spines naturally leads
to considering Euler structures on 3-manifoldsM (without restrictions on∂M)
with simple tangency circles to∂M of concave type (see Fig. 1 below). This type
of generalized Euler structure also arises in the study of a Legendrian knotK in a
contact structureξ , and more generally when one considers a “pseudo-Legendrian”
pair (v,K), consisting of a knotK transversal to a non-singular vector fieldv. A
pair(v,K) is viewed up to the natural relation of ‘pseudo-Legendrian isotopy’ (see
Sect. 5), and, taking the restriction ofv, it defines a concave Euler structure on the
exteriorE(K)ofK, with two parallel concave tangency lines on∂E(K)determined
by the framing induced byv on K. On the other hand it turns out that, to define
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torsion, the natural objects to deal with are Euler structures withconvex tangency
circles. It is a fortunate fact, peculiar of dimension 3, that there is a canonical way
to associate a convex field to anysimple (i.e. mixed concave and convex) one. This
allows to define torsion for all smooth simple Euler structures.

0.3. Summary – general theory

Let us now summarize the contents of this paper. In Sect. 1, extending Turaev’s
theory, we set the foundations of the theory of smooth and combinatorial Euler
structures in the context of structures with simple tangency to the boundary. In
particular we describe the obstruction to the existence of such a structure (Propo-
sition 1.1) and we describe the reconstruction map
 (Theorem 1.4). This part
follows the same scheme as [16] and relies on some technical results of Turaev.
Our main contribution here is the proof that there exists a natural transformation
of a simple structure into a convex one both at the smooth and at the combinatorial
level, and that these transformations actually correspond to each other under the
reconstruction map (Theorem 1.7). In Sect. 2 we introduce torsion and state the
equivariance property. In Sect. 3 we show that ifP is a branched standard spine
andξ is the Euler structure (with concave boundary tangency) carried byP , then
P allows to explicitly find a representative of
−1(ξ), namely the combinatorial
counterpart ofξ (Theorem 3.7). In Sect. 4 we carry out a specific computation of
torsion using the technology of Sect. 3.

0.4. Summary – pseudo-Legendrian knots

In Sects. 5 and 6 we concentrate on the application of the theory of torsion devel-
oped in Sects. 1 and 2 to pseudo-Legendrian knots. In Sect. 5 we analyze torsion as
anabsolute invariant, and we show in particular that, when the ambient manifold
is a homology sphere, torsion contains (in a suitable sense) a lifting to pseudo-
Legendrian knots of the classical Alexander invariant. In Sect. 6 we turn to the
information carried by torsion as arelative invariant, and we show that it is capa-
ble of distinguishing knots which are framed isotopic but not pseudo-Legendrian-
isotopic. A delicate point which emerges here is that, given pseudo-Legendrian
pairs (v0,K0) and (v1,K1) such that(v0, v1) are homotopic to each other and
(K0,K1) are framed-isotopic to each other, torsion does not provide in general
a single-valued relative invariant of(v0,K0) and(v1,K1), because the action of
a certain mapping class group (which depends on the framed isotopy class only)
must be taken into account. This phenomenon is carefully described in Sect. 6,
where we introduce and study the notion of ‘good’ framed knot, for which the
action is trivial. We show that many knots are good (for instance, all knots in a
homology sphere are good, and most knots with hyperbolic complement are good).
In the special case of knots in a homology sphere we also prove that the relative
torsion of two knots essentially coincides with the difference of their rotation num-
bers (Maslov indices), so torsion basically detects whether the knots are isotopic
through pseudo-Legendrian immersions. In the more general case of a good knot
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in a manifold which may not be a homology sphere, we analyze the effect on tor-
sion of the framed first Reidemeister move (which does not change the framing
but locally changes the winding number by±2). Combining this analysis with the
fact (proved in [4]) that framed isotopy is generated by pseudo-Legendrian isotopy
and the framed first Reidemeister move, we are able to give an interpretation of
torsion, as a relative invariant of knots, by means of a well-defined “relative wind-
ing number”. For homology spheres the relation between the winding number and
the Maslov index is clear, but we emphasize that the definition of relative winding
number works in more general situations.

Our results on good knots and the relative winding number allow to single
out several situations in which torsion actually can detect pseudo-Legendrian iso-
topy. For instance we can show the following:consider pseudo-Legendrian knots
(v0,K0) and (v1,K1) which are isotopic as framed knots. Assume that K0 is good
and that the meridian of K0 has infinite order in H1(E(K0);Z). Then the knots are
pseudo-Legendrian-isotopic if and only if they have trivial relative torsion invari-
ants.

In Sects. 1 and 3 proofs which are long and require the introduction of ideas
and techniques not used elsewhere are omitted. Section 7 contains all these proofs.

1. Euler structures

In this section we define smooth and combinatorial Euler structures and illustrate
their correspondence. We fix once and for ever a compact oriented 3-manifold
M, possibly with∂M = ∅. Using theHauptvermutung, we will always freely
intermingle the differentiable, piecewise linear and topological viewpoints. Home-
omorphisms will always respect orientations. All vector fields mentioned in this
paper will be non-singular unless the contrary is explicitly stated, and they will be
termed justfields for the sake of brevity.

1.1. Smooth and combinatorial Euler structures

We will call boundary pattern onM a partitionP = (W,B, V,C) of ∂M whereV
andC are finite unions of disjoint circles, and∂W = ∂B = V ∪C. In particular,W
andB are interiors of compact surfaces embedded in∂M. Even ifP can actually
be determined by less data,e.g. the pair(W, V ), we will find it convenient to
refer toP as a quadruple. Points ofW , B, V andC will be calledwhite, black,
convex andconcave respectively. We define the set ofsmooth Euler structures on
M compatible withP, denoted by Euls(M,P), as the set of equivalence classes of
fields onM which point insideM onW , point outsideM onB, and have simple
tangency to∂M of convex type alongV andconcave type alongC, as shown in a
cross-section in Fig. 1. Two such fields are equivalent if they are obtained from each
other by homotopy through fields of the same type and modifications supported into
closed interior balls (namely, replacements of a fieldv by another onev′ such that
v− v′ vanishes outside a ball contained in Int(M)). The following variation on the
Hopf–Poincaré theorem is established in Sect. 7:
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Fig. 1. Convex (left) and concave (right) tangency to the boundary

Proposition 1.1. Euls(M,P) is non-empty if and only if χ(W) = χ(M).

We remark here thatχ(W) = χ(W), χ(B) = χ(B), χ(V ) = χ(C) = 0 and
χ(W)+χ(B) = χ(∂M) = 2χ(M), so there are various ways to rewrite the relation
χ(W) = χ(M), the most intrinsic of which is actuallyχ(M)−(χ(W)−χ(C)) = 0
(see the discussion before Lemma 1.2 for the reason).

It is a standard fact of obstruction theory that, given fieldsv andv′ compatible
with a patternP on ∂M, the first obstruction tov′ being homotopic tov through
fields compatible withP is given by a homology classαs(v, v′) ∈ H1(M;Z).
The same theory also shows thatv andv′ represent the same Euler structureξ ∈
Euls(M,P) if and only ifαs(v, v′) = 0. It follows that ifξ andξ ′ in Euls(M,P) are
represented by fieldsv andv′ thenαs(ξ, ξ ′) is unambiguously defined asαs(v, v′).
Moreover

αs : Euls(M;P)× Euls(M;P)→ H1(M;Z)

gives to Euls(M;P) the structure of an affine space overH1(M;Z). All these facts
are carefully stated in Sect. 5 of [16] for the case whereC = V = ∅ and bothW
andB are unions of tori, but they extendverbatim to our situation. See also the
discussion in Sect. 6.2 of [3] for the case of closed manifolds.

A (finite) cellularizationC ofM is calledsuited toP if V ∪C is a subcomplex, so
W andB are unions of cells. Here and in the sequel by “cell” we will always mean
an open one. Let such aC be given. Forσ ∈ C define ind(σ ) = (−1)dim(σ ). We
define Eulc(M,P)C as the set of equivalence classes of integer singular 1-chainsz

in M such that

∂z =
∑

σ⊂M\(W∪V )

ind(σ ) · pσ (2)

wherepσ ∈ σ for all σ . Two chainsz and z′ with ∂z = ∑
ind(σ ) · pσ and

∂z′ = ∑
ind(σ ) ·p′σ are defined to be equivalent if there existδσ : ([0,1],0,1)→

(σ, pσ , p
′
σ ) such that

z− z′ +
∑

σ⊂M\(W∪V )

ind(σ ) · δσ

represents 0 inH1(M;Z). Elements of Eulc(M,P)C are calledcombinatorial
Euler structures relative toP and C, and their representatives are calledEuler
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chains. The definition implies that, forξ, ξ ′ ∈ Eulc(M,P)C , their differenceξ − ξ ′
can be defined as an elementαc(ξ, ξ ′) of H1(M;Z). SinceW = W ∪ V ∪ C and
C is closed, the total algebraic number of points appearing in the right-hand side
of (2) can be written as

χ(M)− χ(W \ C) = χ(M)− (χ(W)− χ(C)).

Considering thatχ(C) = 0 and thatM is connected, we easily get:

Lemma 1.2. Eulc(M,P)C is non-empty if and only if χ(W) = χ(M), and in this
case αc turns it into an affine space over H1(M;Z).

This discussion also explains why the most meaningful way to write the relation
χ(W) = χ(M) is χ(M) − (χ(W) − χ(C)) = 0. From now on we will always
assume that this relation holds. Turaev only considers the case whereV = C = ∅,
soW = W andB = B, and our relation takes the usual formχ(M,W) = 0. The
following result was established by Turaev in Section 3 of [16] in his setting, but
again the proof extends directly to our context, so we omit it. Only the first assertion
is hard. We state the other two because we will use them.

Proposition 1.3. 1. If C′ is a subdivision of a cellularization C then there exists a
canonical H1(M;Z)-isomorphism Eulc(M,P)C → Eulc(M,P)C′ . In particu-
lar Eulc(M;Z) is canonically defined up to H1(M;Z)-isomorphism indepen-
dently of the cellularization.

2. If C is a cellularization of M suited to P and x0 ∈ M is an assigned point,
any element of Eulc(M,P) can be represented, with respect to C, as a sum∑

σ⊂M\(W∪V ) ind(σ ) · βσ with βσ : ([0,1],0,1)→ (M, x0, σ ).
3. If T is a triangulation of M suited to P , any element of Eulc(M,P) can be

represented, with respect to T , as a simplicial 1-chain in the first barycentric
subdivision of T .

A chain as in point 2 of this proposition will be later referred to as a (connected)
spider with head at x0. Our first main result, proved in Sect. 7, is the extension to
the case under consideration of Turaev’s correspondence between Eulc and Euls.

Theorem 1.4. There exists a canonical H1(M;Z)-equivariant isomorphism


 : Eulc(M,P)→ Euls(M,P).

The definition of
 is based on an explicit geometric construction, but its bijec-
tivity is only established throughH1(M;Z)-equivariance. As already mentioned in
the introduction, this makes in general a very difficult task to determine the inverse
of 
. One of the features of this paper is the description of
−1 in terms of the
encoding of fields by means of branched spines (Theorem 3.7). In this theorem we
will actually describe
−1 only in the special case whereP is concave, but we will
see in Remark 1.8 that there is an effective and geometric method to pass from a
general simple structure to a concave structure.

In view of Theorem 1.4, when no confusion risks to arise, we shortly write
Eul(M,P) for either Euls(M,P) or Eulc(M,P), andα for the map giving the
affineH1(M;Z)-structure on this space.
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Fig. 2. Turning a concave tangency circleγ into a convex one: the apparent singularity
in the cross-section is removed by adding a small bell-shaped field directed parallel toγ ,
i.e. orthogonal to the cross-section

1.2. Convex Euler structure associated to an arbitrary one

Let M andP = (W,B, V,C) be as in the definition of Eul(M,P). The pattern
θ(P) = (W,B, V ∪ C,∅) is a convex one canonically associated toP. We define
a map

!s : Euls(M,P)→ Euls(M, θ(P))

according to the following procedure:

1. For each componentγ of C, we orientγ as a component of the boundary of
B, which is oriented as a subset of the boundary ofM;

2. Nearγ we choose coordinates[−1,0]x × [−1,1]y × S1
t onM such that{0}×

[−1,1] × S1 ⊂ ∂M, andγ = {0} × {0} × S1 with orientation;
3. We choose a representativev of ξ such that each rectangle[−1,0]×[−1,1]×{t}

is a union of orbits ofv, and therefore appears as in Fig. 2-left;
4. Within each rectangle[−1,0] × [−1,1] × {t} we replacev by a singular field

w having a saddle point at(−1/2,0, t) and a tangency of convex type to
{0}×[−1,1]×{t} at(0,0, t), as in Fig. 2-centre; (of course it would be easy to
write explicit analytic expressions, but we do not think this would be of much
use);

5. We definev′(x, y, t) = w(x, y, t)+f (x, y) · (∂/∂t), wheref is a bell-shaped
function attaining its maximum 1 at(−1/2,0) and vanishing except very close
to this point (see Fig. 2-right).

Lemma 1.5. !s is well-defined, H1(M;Z)-equivariant, and bijective.

Proof of Lemma 1.5. The first two properties are easy and imply the third property.
The inverse of!s may actually be described by a direct procedure very similar to
the one used for!s, but we will not use it. ��

We define now a combinatorial version of!s. Consider a cellularizationC
suited toP, and denote byγ1, . . . , γn the 1-cells contained inC. We choose the
parameterizationsγj : (0,1)→ C so that they respect the natural orientation ofC

already discussed above, and we extend theγj to [0,1], without changing notation.
Now let z be an Euler chain relative toP such that the points ofC appearing in
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∂z are precisely theγj (0)’s (with positive sign), and theγj (1/2)’s (with negative
sign). Thenz−∑n

j=1 γj
∣∣[1/2,1] is an Euler chain relative toθ(P). Setting

!c([z]) =
z−

n∑
j=1

γj
∣∣[1/2,1]


we get a map!c : Eulc(M,P)→ Eulc(M, θ(P)).

Lemma 1.6. !c is well-defined, H1(M;Z)-equivariant, and bijective.

Proof of Lemma 1.6. Again, the first two properties are easy and imply the third
one. ��

In Sect. 7 we will see the following:

Theorem 1.7. If 
 is the reconstruction map of Theorem 1.4 then the following
diagram is commutative:

Eulc(M,P)
!c−→ Eulc(M, θ(P))


 ↓ ↓ 


Euls(M,P)
!s−→ Euls(M, θ(P)).

Using this result we will sometimes just write! : Eul(M,P)→ Eul(M, θ(P)).

Remark 1.8. In the previous pages we have concentrated on the transformation of
a simple field into a convex one, because we will later see that torsion is naturally
defined only for convex fields. However one could easily provide an explicit pro-
cedure (very similar to that described in Fig. 2) to turn a simple field into aconcave
one. As already mentioned, this is one of the ingredients of a general geometric
description of the map
−1. See Remark 3.9 for the complete recipe.

1.3. Pseudo-Legendrian knots

We spell out in this paragraph the fact, already mentioned in the introduction,
that Euler structures with concave boundary pattern naturally arise in the study of
pseudo-Legendrian knots. We actually refer here to the more general case oflinks
(rather than knots), but later, when analyzing torsion, we will restrict to knots only.
As above, fix a compact oriented manifoldM and a boundary patternP onM. The
boundary ofM may be empty or not. Ifv is a vector field onM andL is a link in
Int(M), we definedL to be pseudo-Legendrian in(M, v) if v is transversal toL.
We will also call(v, L) a pseudo-Legendrian pair. Having fixedP, we will only
consider fieldsv compatible withP.

For a link L in M we consider a closed tubular neighbourhoodU(L) of L

in M and we defineE(L) as the closure of the complement ofU(L). If F is
a framing onL we extend the boundary patternP previously fixed onM to a
boundary patternP(LF ) on E(L), by splitting ∂U(L) into a white and a black
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longitudinal annuli, the longitude being the one defined by the framingF . As a
direct application of Proposition 1.1 one sees that Eul(E(L),P(LF )) is non-empty
(assuming Eul(M,P) to be non-empty).

A convenient way to think ofP(LF ) is as follows. The framingF determines
a transversal vector field alongL. If we extend this field nearL and chooseU(L)

small enough then the pattern we see on∂U(L) is exactly as required. With this
picture in mind, it is clear that ifL is pseudo-Legendrian in(M, v), wherev is
compatible withP, then the restriction ofv to E(L) defines an element

ξ(v, L) ∈ Eul(E(L),P(L(v))).

Pseudo-Legendrianknots and their torsion invariants will be extensively studied in
Sections 5 and 6 (see also [4] for related facts).

2. Torsion of an Euler structure

In this section we define torsion. We set up the usual algebraic environment [11]
in which torsion can be defined, fixing a ring with unit, with the property that
if n andm are distinct positive integers thenn andm are not isomorphic as-
modules. TheWhitehead groupK1() is defined as theAbelianization of GL∞(),
andK1() is the quotient ofK1() under the action of−1 ∈ GL1() = ∗.

We will directly define torsion only for aconvex Euler structure, but the defini-
tion easily extends to any Euler structureξ with simple boundary tangency, taking
the torsion of the “convexified” structure!(ξ) discussed in Theorem 1.7. So, we
fix a manifoldM, aconvex boundary patternP = (W,B, V,∅) onM, a cellular-
izationC suited toP and a representationϕ : π1(M)→ ∗. We will denote byϕ
again the extensionZ[π1(M)] →  (a ring homomorphism).

We consider now the universal coverq : M̃ → M and the twisted chain complex
Cϕ∗ (M,W∪V ), where Cϕi (M,W∪V ) is defined as⊗ϕCcell

i (M̃, q−1(W∪V );Z),
and the boundary operator is induced from the ordinary boundary. The homology
of this complex is denoted byHϕ∗ (M,W ∪ V ) and called theϕ-twisted homology.
We assume that eachHϕ

i (M,W ∪ V ) is a free-module and fix a basishi .

Remark 2.1. 1. To have a completely formal definition ofHϕ∗ (M,W ∪ V ), one
should fix from the beginning a basepointx0 ∈ M for π1(M), and consider a
pointed universal cover, because such a cover, and the action ofπ1(M) on it, are
canonically defined only for pointed spaces.

2. To defineHϕ∗ (M,W ∪V ) we have used in an essential way the fact thatW ∪V =
W is closed, because the cellular theory of homology can only be employed in
the relative case for pairs(X, Y ) whereX is a complex andY is a subcomplex, so
it is closed as a subset. Namely, ifY is merely a union of cells andCcell

i (X, Y ;Z)

is defined as theZ-module generated byi-cells lying inX \ Y , the boundary
operator naturally defined onCcell∗ (X, Y ;Z) does not turn it into an algebraic
complex.

3. The-module Cϕi (M,W ∪ V ) is always a free one, and eachZ[π1(M)]-basis
of Ccell

i (M̃, q−1(W ∪ V );Z) determines a-basis of Cϕi (M,W ∪ V ).
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4. If we composeϕ with the projection∗ → K1() we get a homomorphism
of π1(M) into anAbelian group, so we get a homomorphismϕ : H1(M;Z)→
K1().

Now let ξ ∈ Eulc(M,P) and choose a representative ofξ as in point 2 of
Proposition 1.3, namely ∑

σ∈C, σ⊂M\(W∪V )

ind(σ ) · βσ

with βσ (0) = x0 for all σ , x0 being a fixed point ofM (such a representative was
above called a spider with head atx0). We choosẽx0 ∈ q−1(x0) and consider the
liftings β̃σ which start atx̃0. For σ ⊂ M \ (W ∪ V ) we select its preimagẽσ
which containsβ̃σ (1), and defineg(ξ) as the collection of all thesẽσ . Arranging
thei-dimensional elements ofg(ξ) in any order, by Remark 2.1(3) we get a-basis
gi (ξ) of Cϕ

i (M,W ∪V ). We consider a set̃hi of elements of Cϕi (M,W ∪V ) which
project to the fixed basishi of Hϕ

i (M,W ∪ V ).
Now note that, given a free-moduleLand two finite basesb = (bk),b′ = (b′k)

of M, the assumption made on guarantees thatb andb′ have the same number of
elements, so there exists an invertible square matrix(λh

k ) such thatb′k =
∑

h λh
kbh.

We will denote by[b′/b] the image of(λh
k ) in K1().

Proposition 2.2. Choose a set bi ⊂ Cϕ
i (M,W ∪ V ) such that ∂bi is a -basis of

∂(Cϕ
i (M,W ∪ V )). Then (∂bi+1) · h̃i · bi is a -basis of Cϕ

i (M,W ∪ V ), and

τϕ(M,P, ξ, h) = ±
3∏

i=0

[(
(∂bi+1) · h̃i · bi

) /
gi (ξ)

](−1)i+1

∈ K1()

is independent of all choices made. Moreover

τϕ(M,P, ξ ′, h) = τϕ(M,P, ξ, h) · ϕ(αc(ξ ′, ξ)). (3)

Proof of Proposition 2.2. The first assertion and independence of thebi ’s is purely
algebraic and classical, see [11]. Now note thatξ ∈ Eulc(M,P) was used to select
the basesgi (ξ). Thegi (ξ)’s are of course not uniquely determined themselves, but
we can show that different choices lead to the same value ofτϕ .

First of all, the arbitrary ordering in thegi (ξ)’s is inessential because torsion
is only regarded up to sign. Second, consider the effect of choosing a different
representative ofξ . This leads to a new familỹσ ′ of cells. If σ̃ ′ = a(σ ) · σ̃ , with
a(σ ) ∈ π1(M), anda(σ ) is the image ofa(σ ) in H1(M;Z), we automatically have∑

σ⊂M\W∪V
ind(σ ) · a(σ ) = 0 ∈ H1(M;Z),

which allows to conclude that also the representative chosen is inessential. The
choice of the liftingx̃0 can be shown to be inessential either in the spirit of Re-
mark 2.1(1), or by showing that a simultaneousa-translation of allσ̃ , for a ∈
π1(M), multiplies the torsion byϕ(a)χ(M)−χ(W∪V ) = 1.
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Formula (3) is readily established by choosing representatives
∑

ind(σ ) · βσ

and
∑

ind(σ ) · β ′σ of ξ andξ ′ such thatβ ′σ = βσ for all σ but one. ��
Since the above construction uses the cellularizationC in a way which may

appear to be essential, we add a subscriptC to the torsion we have defined. The next
result, which can be established following Turaev [16], shows that dependence on
C is actually inessential.

Proposition 2.3. Let C and C′ be cellularizations suited to P . Assume that C′ sub-
divides C, and consider the bijection S(C′,C) : Eulc(M,P)C → Eulc(M,P)C′ of
Proposition 1.3, and the canonical isomorphism j(C′,C) : H

ϕ∗ (M,W ∪ V )C →
H

ϕ∗ (M,W ∪ V )C′ . Then, with obvious meaning of symbols, we have:

τ
ϕ

C (M,P, ξ, h) = τ
ϕ

C′(M,P,S(C′,C)(ξ), j(C′,C)(h)).

It is maybe appropriate here to remark that the choice of a basish ofHϕ∗ (M,W∪
V ) and the definition ofτϕ(M,P, ξ, h) implicitly assume a description of the
universal cover ofM, which is typically not doable in practical cases. However, if
one starts from a representation ofπ1(M) into the units of acommutative ring ,
i.e. a representation which factors through one ofH1(M;Z), one can use from the
very beginning the maximal Abelian rather than the universal cover, which makes
computations more feasible.

Remark 2.4. Turaev [15] has shown that a homological orientation yields a sign-
refinement of torsion,i.e. a lifting fromK1() toK1(). This refinement extends
with minor modifications to our setting of boundary tangency. This sign-refinement,
in the closed and monochromatic case, is often an essential component of the theory
(for instance, it is crucial for the relation with the 3-dimensional Seiberg–Witten
invariants [17,18] and for the definition of the Casson invariant [8]), but we will
not address it in the present paper.

2.1. Computation of torsion via disconnected spiders

In this subsection we show that to determine the family of lifted cells necessary to
define torsion one can use representatives of Euler structures more general than the
(connected) spiders used above. This is a technical point which we will use below
to compute torsions using branched spines (Sect. 3).

We fix M, P, C andϕ as above, andξ ∈ Eulc(M,P). Let g(ξ) = {σ̃ } be the
family of liftings of the cells lying inM \ (W ∪ V ) determined by a connected
spider as explained above. Note that ifg′ = {σ̃ ′} is any other family of liftings we
haveσ̃ ′ = a(σ ) · σ̃ for somea(σ ) ∈ π1(M), and we can define

h(g′, g(ξ)) =
∑

σ⊂M\(W∪V )

ind(σ ) · a(σ ) ∈ H1(M;Z).
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Proposition 2.5. Assume there exists a partition C1 � · · · � Ck of the set of cells
lying in M \ (W ∪ V ), and let ξ ∈ Eulc(M,P) have a representative of the form

z =
k∑

j=1

 ∑
σ∈Cj \{σj }

ind(σ ) · γ (j)
σ


where σj ∈ Cj and γ

(j)
σ : ([0,1],0,1)→ (M, pσj , pσ ). Choose any lifting p̃σj of

pσj , lift γ (j)
σ to γ̃

(j)
σ starting from p̃σj , let σ̃ ′ be the lifting of σ containing γ̃

(j)
σ (1),

and let g′ be the family of all these liftings. Then h(g′, g(ξ)) = 0 ∈ H1(M;Z). In
particular g′ can be used to compute τϕ(M,P, ξ, h).

Proof of Proposition 2.5. Note first that the coefficient ofpσj in ∂z is exactly

−
∑

σ∈Cj \{σj }
ind(σ ).

On the other hand this coefficient must be equal to ind(σj ). Summing up we deduce
that

∑
σ∈Cj

ind(σ ) = 0.

Now choosex0 ∈ M andδ(j) : ([0,1],0,1) → (M, x0, pσj ). For σ ∈ Cj

define

βσ =
{
δ(j) if σ = σj

δ(j) · γ (j)
σ otherwise,

so thatβσ : ([0,1],0,1) → (M, x0, pσ ), whencew = ∑
σ⊂M\(W∪V ) βσ is an

Euler chain. Moreover:

w − z =
k∑

j=1

 ∑
σ∈Cj

ind(σ )

 · δ(j) = 0 ∈ H1(M;Z),

so [w] = ξ . Now choosẽx0 overx0, lift the δ(j) andβσ starting fromx̃0, and let
a(j) ∈ π1(M) be such that̃pσj = a(j) · δ̃(j)(1). Then

h(g′, g(ξ)) =
k∑

j=1

 ∑
σ∈Cj

ind(σ )

 · a(j) = 0 ∈ H1(M;Z),

and the proof is complete.��
The next result follows directly from the definition, but it is worth stating be-

cause it shows how torsions may be used to distinguish triples(M,P, ξ) from each
other.

Proposition 2.6. Letf : M → M ′ be a homeomorphism, consider ξ ∈ Eul(M,P),
ϕ : π1(M)→ ∗ and a -basis h of Hϕ∗ (M,W). Then

τϕ◦f−1∗ (M ′, f∗(P), f∗(ξ), f∗(h)) = τϕ(M,P, ξ, h).
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Fig. 3. Convention on screw-orientations, compatibility at vertices, and geometric interpre-
tation of branching

3. Branched spines and inversion of the reconstruction map

In this section we show how to geometrically invert the reconstruction map
,
and how to compute torsions starting from an encoding of vector fields based on
branched spines. Later in Sect. 4 we will provide an explicit example of computa-
tion. We first review the theory developed in [3]. See the beginning of Sect. 1 for our
conventions on manifolds, maps, and fields. (We remind the reader in particular that
our “fields” are non-singular by default.) In addition to the terminology introduced
there, we will need the notion oftraversing field on a manifoldM, defined as a
field whose orbits eventually intersect∂M transversely in both directions (in other
words, orbits are compact intervals).

3.1. Standard spines

A simple polyhedronP is a finite, connected, purely 2-dimensional polyhedron with
singularity of stable nature (triple lines and points where six non-singular compo-
nents meet; a regular neighbourhood of such a point is isomorphic to the cone
over the 1-skeleton of a tetrahedron). Such aP is calledstandard if all the compo-
nents of the natural stratification given by singularity are open cells. Depending on
dimension, we will call the componentsvertices, edges andregions.

A standard spine of a 3-manifoldM with ∂M �= ∅ is a standard polyhedron
P embedded in Int(M) so thatM collapses ontoP . Standard spines of oriented 3-
manifolds are characterized among standard polyhedra by the property of carrying
anorientation, defined (see Definition 2.1.1 in [3]) as a “screw-orientation” along
the edges (as in the left-hand-side of Fig. 3), with the constraint that when the
neighbourhood of a vertex is embedded in 3-space then the four initial portions
of edge at the vertex should carry screw-orientations which are compatible in 3-
space (as in the centre of Fig. 3). It is the starting point of the theory of standard
spines that every oriented 3-manifoldM with ∂M �= ∅ has an oriented standard
spine, and can be reconstructed (uniquely up to homeomorphism) from any of its
oriented standard spines. See [5] for the non-oriented version of this result and [2]
or Proposition 2.1.2 in [3] for the (slight) oriented refinement.
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���� ��P

P

P

Fig. 4. Manifold and field associated to a branched spine.

3.2. Branched spines

A branching on a standard spineP of an orientable manifoldM is a collection
of one orientation for each region ofP , such that no edge is induced the same
orientation three times. As explained in [3, §. 3.1] and illustrated in Fig. 3-right,
a branching can be used to consistently smoothen the singularity ofP so to turn
it into a branched surface, see [19] and also [6]. Namely, the embedding ofP can
be isotoped so that an oriented tangent plane is defined at each point, even along
the topological singularity, and all the regions are smoothly immersed inP in an
orientation-preserving way. A standard spineP with a certain branching will be
called abranched spine of M. We will never use specific notations for the extra
structures onP (i.e. the screw-orientation and the branching). These structures will
be viewed as parts ofP itself. The following result, proved as Theorem 4.1.9 in [3],
is the starting point of our constructions.

Proposition 3.1. To every branched spine P there corresponds a manifold M(P)

with non-empty boundary and a concave traversing field v(P ) on M(P). The pair
(M(P ), v(P )) is well-defined up to diffeomorphism. Moreover an embedding i of
P as a transversely oriented branched surface in Int(M(P )) is defined, and it has
the property that v(P ) is positively transversal to i(P ).

The topological construction which underlies this proposition is actually quite
simple, and it is illustrated in Fig. 4.

3.3. The encoding of combings via branched spines

Let v be a concave field on a manifoldM. We denote byS2
triv any sphere in∂M

which is split by the tangency line ofv to ∂M into two discs. Now, notice thatS2
triv

is also the boundary of the closed 3-ball with constant vertical field, denoted by
B3

triv . This shows that we can cap off everyS2
triv by attaching a copy ofB3

triv , getting
a non-singular vector field on the resulting manifold. This vector field is however
well-defined only up to homotopy.

We will denote by Comb the set of all pairs(M, v), whereM is a compact
oriented manifold andv is a concave field onM, viewed up to diffeomorphism of
M and homotopy ofv through concave fields. A class[M, v] ∈ Comb is called a
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combing on the diffeomorphism class of the manifoldM. Note that the boundary
pattern on∂M evolves isotopically during a homotopy ofv, so a pair(M,P),
viewed up to diffeomorphism ofM, can be associated to each[M, v] ∈ Comb.
In particular, Comb naturally splits as the disjoint union of subsets Comb(M,P),
consisting of combings onM compatible withP.

For a technical reason we actually rule out from Comb the set of those classes
[M, v] such that the corresponding boundary pattern contains components of the
typeS2

triv . This is actually not a serious restriction, because eachS2
triv component

can be capped off by aB3
triv as explained above, and the result is well-defined up to

homotopy. Note that we do accept pairs(M, v) with closedM, and pairs in which
v has no tangency at all to∂M.

Let us denote now byB the set of all branched spinesP (up to orientation-
preserving PL isomorphism) such that the boundary patternP(P )of v(P )onM(P)

contains only oneS2
triv . Such aP being given, we can cap offS2

triv by attaching a
copy of B3

triv , getting M̂(P ) endowed with a concave field̂v(P ), and the pair
(M̂(P ), v̂(P )) gives rise to a well-defined element of Comb, which we denote by
6(P ). The following is proved in [4]:

Theorem 3.2. The map 6 : B → Combis surjective.

This theorem generalizes the main achievement of [3,Theorems 1.4.1 and 5.2.1],
where it is proved in the special case of closedM. The assumption that∂M contains
noS2

triv component has a purely technical nature, and has been inserted here only to
make the statement simpler. The complete statement includes also the description
of a finite set of local moves on branched spines generating the equivalence relation
induced by6. We will not need the moves in this paper. The following geometric
interpretation of the theorem may however be of some interest.

Remark 3.3. In general, the dynamics of a field, even a concave one, can be com-
plicated, whereas the dynamics of a traversing field (in particular,B3

triv ) is simple.
Theorem 3.2 means that for any (complicated) concave field there exists a sphere
S2 which splits the field into two (simple) pieces: a standardB3

triv and a concave
traversing field.

Back to the case of our fixed manifoldM with boundary patternP, we note that
we have a projectionπs : Comb(M,P)→ Euls(M,P). Our aim is now to define,
using branched spines, another projectionπc : Comb(M,P)→ Eulc(M,P) such
thatπs = 
 ◦πc.

3.4. Spines and ideal triangulations

We remind the reader that anideal triangulation of a manifoldM with non-empty
boundary is a partitionT of Int(M) into open cells of dimensions 1, 2 and 3, induced
by a triangulationT ′ of the spaceQ(M), where:

1. Q(M) is obtained fromM by collapsing each component of∂M to a point;
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Fig. 5. Duality between standard spines and ideal triangulations

2. T ′ is a triangulation only in a loose sense, namely self-adjacencies and multiple
adjacencies of tetrahedra are allowed;

3. The vertices ofT ′ are precisely the points ofQ(M) which correspond to the
collapsed components of∂M.

It turns out (see for instance [9]) that there exists a natural bijection between standard
spines and ideal triangulations of a 3-manifold. Given an ideal triangulation, the
corresponding standard spine is just the 2-skeleton of the dual cellularization, as
illustrated in Figure 5. The inverse of this correspondence will be denoted byP �→
T (P ).

We can now give a dual interpretation, usingT (P ), of a branching onP . Since
the ambient manifold is oriented, an orientation for a region ofP is the same as an
orientation for the dual edge ofT (P ), and it turns out that a collection of orientations
on the edges ofT (P ) defines a branching if and only if on each tetrahedron of
T (P ) exactly one of the vertices is a sink and one is a source. Moreover, ifP has
a branching, the oriented edges ofT (P ) are precisely oriented orbits ofv(P ), and
the 2-faces are unions of such orbits.

Remark 3.4. It turns out that ifP is a branched spine, not only the edges, but also
the faces and the tetrahedra ofT (P ) have natural orientations. For tetrahedra, we
just restrict the orientation ofM(P). For faces, we first note that the edges ofP have
a natural orientation (the prevailing orientation induced by the incident regions).
Now, we orient a face ofT (P ) so that the algebraic intersection inM(P) with the
dual edge is positive.

3.5. Euler chain defined by a branched spine

We fix in this paragraph a standard spineP and consider its manifoldM = M(P).
We start by noting that the ideal triangulationT = T (P ) defined byP can be inter-
preted as a realization of Int(M) by face-pairings on a finite set of tetrahedra with
vertices removed. If, instead of removing vertices, we remove open conic neigh-
bourhoods of the vertices, thus gettingtruncated tetrahedra, after the face-pairings
we obtainM itself. This shows thatP determines a cellularizationT = T (P ) of
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Fig. 6. Truncated tetrahedra and subdivision of the triangles on the boundary

M with vertices only on∂M and 2-faces which are either triangles contained in
∂M or hexagons contained in Int(M), with edges contained alternatingly in∂M
and in Int(M).

Now assume thatP is branched and that∂M contains only oneS2
triv component,

soM̂ = M̂(P ) is defined, together with the concave boundary patternP̂ = P̂(P ) =
(W,B,∅, C) on M̂. Note thatM̂ can be thought of as the space obtained fromM

by contractingS2
triv to a point, so a projectionπ : M → M̂ is defined, andπ(T )

is a cellularization ofM̂. Next, we modifyπ(T ) by subdividing each triangle
on ∂M̂ into 3 “kites” (quadrilaterals having two “short” and two “long” edges)
as shown in Fig. 6. We do this to get a cellularization suited to the boundary
pattern: the tangency lineC is now a union of short edges of kites. The result is a
cellularizationT̂ = T̂ (P ) of M̂. Note again that̂T on ∂M̂ consists of kites, with
long edges coming from tetrahedra and short edges coming from subdivision. Note
also thatT̂ has exactly one vertexx0 in Int(M̂), and that the cells contained in
Int(M̂), exceptx0, are the duals to the cells of the natural cellularizationU = U(P )

of P . Foru ∈ U we denote bŷu its dual and bypu = pû the point whereu andû
intersect, called thecentre of both.

We will now use the field̂v = v̂(P ) to construct a combinatorial Euler chain
on M̂ with respect toT̂ . It is actually convenient to consider, instead ofv̂, the
field v = π(v), which coincides witĥv except nearx0, where it has a (removable)
singularity. Foru ∈ U we denote byβu the arc obtained by integratingv(P ) in the
positive direction, starting frompu, until the boundary or the singularity is reached.
We define:

s(P ) =
∑
u∈U

ind(u) · βu.

(We remind the reader that ind(u) = (−1)dim(u).) Our aim is now to use this chain
s(P ) to define a combinatorial Euler structure, and then show that the smooth com-
panion of this structure is indeed the structure represented byv̂(P ). Note however
that∂s(P ) contains, besides the centres of the cells in Int(M), only the centres of
the cells ofπ(T ) which lieentirely in B, butB is not a union of cells ofπ(T ): this
is precisely the reason why we have subdividedπ(T ) into T̂ . So we will need to
add something tos(P ).

If p is a vertex ofπ(T ) contained inB, we define its star St(p) as the sum
of the straight segments going fromp to the centres of all the kites containingp,
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Fig. 7. The star St(p) centred at a vertexp contained inB and the bi-arrow Ba(σ ) based at
the midpoint of an edgeσ contained inB

minus the sum of the straight segments going fromp to the centres of all the long
edges containingp. If σ is an edge ofπ(T ) contained inB we define its bi-arrow
Ba(σ ) as the sum of the two straight segments going from the centrepσ of σ to the
centres of the two short kite-edges containingpσ . A star and a bi-arrow are shown
in Fig. 7. We define:

s′(P ) = s(P )+
∑

p∈π(T )(0), p∈B
St(p)+

∑
σ∈π(T̂ )(1), σ⊂B

Ba(σ ).

Lemma 3.5. s′(P ) defines an element of Eulc(M̂, θ(P̂)).

Proof of Lemma 3.5. Recall thatθ(P̂) = (W,B,C,∅), i.e. the concave lineC is
turned into a convex one. So by definition we have to show that∂s′(P ) contains,
with the right sign, the centres of all cells of̂T except those ofW ∪ C.

It will be convenient to analyze first the natural lifting ofs(P ) to M, denoted
by s̃(P ) = ∑

u∈U ind(u) · β̃u with obvious meaning of symbols. So

∂s̃(P ) =
∑
u∈U

−ind(u) · β̃u(0)+
∑
u∈U

ind(u) · β̃u(1). (4)

Since the cellularizationT of M is dual toU , the first half of (4) gives the
centres of the cells contained in Int(M), with right sign. One easily sees that the
second half gives exactly the centres of the cells (ofT ) contained inB, also with
right sign.

When we project tôM and consider∂s(P ), the first half of (4) again provides
(with right sign) the centres of the all cells contained in Int(M̂), except the special
vertexx0 obtained by collapsingS2

triv . We can further split the points of the second
half of (4) into those which lie onS2

triv and those which do not. The points of
the first type project tox0, and the resulting coefficient ofx0 is χ(B ∩ S2

triv), but
B∩S2

triv is an open 2-disc, so the coefficient is 1. (We are here using the very special
property of dimension 2 thatχ can be computed using a finite cellularization of an
open manifold, because the boundary of the closure hasχ = 0.) The points of the
second type faithfully project tôM, giving the centres of the simplices contained in
B of the triangulationπ(T )

∣∣
∂M̂

. HoweverT̂ on∂M̂ is a subdivision ofπ(T ), and
this is the reason why we have added the stars and the bi-arrows tos(P ) getting
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s′(P ). The following computation of the coefficients in∂s′(P ) of the centres of the
cells ofT̂ contained inB concludes the proof.

0. Cells of dimension 0 are listed as follows:
(a) Centres of triangles ofπ(T ), which receive coefficient+1 from ∂s(P );
(b) Midpoints of edges ofπ(T ), which receive coefficient−1 from∂s(P ) and

+2 from the bi-arrows they determine;
(c) Vertices ofπ(T ), which receive+1 from∂s(P ) and (algebraically) 0 from

the star they determine;
1. Cells of dimension 1 are:

(a) Short edges of kites, whose midpoints receive−1 from the bi-arrows;
(b) Long edges of kites, whose midpoints receive−1 from the stars;

2. Cells of dimension 2 are kites, and their centres receive+1 from the stars. ��

Now we denote byγj : (0,1) → C, for j = 1, . . . , n, orientation-preserving
parameterizations of the 1-cells ofT̂ contained inC, and we extend theγj to [0,1],
without changing notation. We define

s′′(P ) = s′(P )+
n∑

j=1

γj
∣∣[1/2,1].

Lemma 3.6. s′′(P ) defines an element of Eulc(M̂, P̂), and

[s′(P )] = !c([s′′(P )]) ∈ Eulc(M̂, θ(P̂)).

Proof of Lemma 3.6. At the level of representatives, the second assertion is a direct
consequence of the definition of!c, and it implies the first assertion.��

We defer to Sect. 7 the proof of the next result, which shows that the map
P �→ [s′′(P )] ∈ Eulc(M̂, P̂) allows, using branched spines, to explicitly find the
inverse of the reconstruction map
 of Theorem 1.4.

Theorem 3.7. 
([s′′(P )]) = [̂v(P )] ∈ Euls(M̂, P̂).

Recall now that we have defined torsions directly only for convex patterns,
and we have extended the definition to concave patterns via the map!. As a
consequence of Lemma 3.6 and Theorem 3.7, and by direct inspection ofs′(P ),
we have the following result which summarizes our investigations on the relation
between spines, Euler structures, and torsion:

Theorem 3.8. IfP is a branched spine which represents a manifold M̂ with concave
boundary pattern P̂ = (W,B,∅, C) in the sense of Theorem 3.2, then for any
representation ϕ : π1(M)→ ∗ and any -basis h of Hϕ∗ (M̂,W ∪C), the torsion
τϕ(M̂, P̂, [̂v(M)], h) can be computed using (in the sense of Proposition 2.5) the
lifting to the universal cover of M̂ of the chain s′(P ) defined above. In particular,
s′(P ) can be used directly, without replacing it by a connected spider.

In the next section we will illustrate an explicit example of torsion computation
carried out using the last assertion of the previous result.
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Remark 3.9. We can now be more explicit about how to compute the torsion of an
Euler structureξ represented by a given smooth vector fieldŵ onM̂. The first step
is to turn ŵ into a concave field̂v, in the spirit of Remark 1.8. Now we need a
branched spineP of v̂, and we only need to note that the proof of Theorem 3.2
given in [4] has a constructive nature. The construction ofs′(P ) starting fromP

is of course an effective one, and the previous theorem shows thats′(P ) allows to
compute the torsion of the originalξ .

We mention here that in [1] we have developed a different extension of Turaev’s
theory of torsion, by considering combed manifolds with completely arbitrary con-
figurations on the boundary. The torsion defined in [1] coincides with Turaev’s one
(and hence with that considered in the present paper) only when the manifold is
closed. One point worth remarking is that in [1] the proof that torsion is well-defined
andH1-equivariant is completely self-contained,i.e. it does not depend on Turaev’s
sophisticated results on subdivisions of cellularizations. Instead, it is based on a
combinatorial analysis of the elementary catastrophes associated to the moves of
the calculus of branched spines.

4. An example of torsion computation

As an example of application of Theorem 3.8, we are going to work out in this
section a specific computation of torsion. The example is simple enough to be
treated by hand, but the method we describe extends to the general case. The
present section may be skipped by the readers mainly interested in applications of
torsion to pseudo-Legendrian knots.

4.1. Boundary operators

To actually apply Theorem 3.8 in order to compute torsion starting from a branched
spineP , besides describing the universal (or maximalAbelian) cover ofM̂ = M̂(P )

and determining the preferred liftings of the cells in̂M \ (W ∪ C), one needs to
compute the boundary operators in the twisted chain complex Cϕ∗ (M,W ∪ C).
These operators are of course twisted liftings of the corresponding operators in the
cellular chain complex of(M̂,W ∪C), with respect tôT . We briefly describe here
the form of the latter operators. Recall first thatT̂ consists of a special vertexx0,
the kites (with their vertices and edges) on̂M, and the duals of the cells ofP . On
∂M̂ the situation is easily described, so we consider the internal cells.

1. If R is a region ofP , the ends of its dual edgêR are eitherx0 or vertices of∂M̂
contained only in long edges of kites.

2. If e is an edge ofP then∂ê is given byR̂1+ R̂2− R̂0 plus 3 long edges of kites,
wherer0, r1, r2 are the regions incident toe, numbered so thatr1 andr2 induce
one the same orientation. Herer0, r1, r2 need not be different from each other.
The 3 long edges of kites must be given an appropriate sign, and some of them
may actually be collapsed to the pointx0. Note that we have only 3 kite-edges,
out of the 6 which geometrically appear on∂ê, because the other 3 are white.
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Fig. 8. The abalone, and a C1 knot on it

3. If v is a vertex ofP then∂v̂ is given byê1 + ê2 − ê3 − ê4 plus 6 kites, where
e1, e2 are the edges which (with respect to the natural orientation) are leavingv,
ande3, e4 are those which are reaching it. Again, there could be repetitions in
theei ’s. The kites all have coefficient+1, and again some of them may actually
be collapsed tox0. As above, we have only 6 kites because the other 6 are white.

4.2. Simplified cellularization

To define the cellularization̂T (P ) associated to a spine we have decided to subdi-
vide all the triangles ofπ(T ) on∂M̂ into 3 kites, but when doing actual computa-
tions this is not necessary and impractical. The only triangles which we really need
to subdivide are those intersected byC, because we need the cellularization to be
suited to the pattern. If we consider the 4 triangles corresponding to the ends of a
certain tetrahedron, and in each of them we count the number of black kites and the
number of white kites, we get respectively(3,0), (2,1), (1,2), (0,3). So, the first
and last triangles do not have to be subdivided, and the other two can be subdivided
using one segment only. Summing up, for each vertex ofP we only need to add
two segments on the boundary. Before projectingM(P) to M̂(P ) one sees that the
number of cells, with respect toT (P ), is increased in all dimensions 0, 1 and 2 by
twice the number of vertices ofP . When projecting tôM(P) the cells lying inS2

triv
get collapsed tox0.

4.3. The example

Figure 8 shows a neighbourhood of the singular set of the so-called abalone, a
branched standard spine ofS3, which we denote byA. Note thatA has one vertex,
two edges and two regions. The figure on the left is easier to understand, but it
does not represent the genuine embedding ofA in S3, which is instead shown
in the centre (hint: compute linking numbers). On the right we show (using the
easier picture) a knotK on A. Of courseK is transversal to the fieldv carried
by A, so (v,K) is a pseudo-Legendrian pair (see the end of Sect. 1). Moreover,
using the genuine picture ofA, one sees thatK is actually trivial inS3, and its
framing is+1. So the knot exteriorE(K) is a solid torus, with an induced Euler
structureξ , and the white annulusW ⊂ ∂E(K) is a longitudinal one. Let us now
take the representationϕ : π1(E(K)) → Q(Z[t±1]) which maps the generator
to t (here, as usual,Q stands for the field of fractions). It is not hard to see that
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Fig. 9. How to dig a tunnel in a spine

Fig. 10. Truncated ideal triangulation of the knot exterior

H
ϕ∗ (E(K),W) = 0, so we can computeτϕ(E(K), ξ). We describe the method to

be followed, skipping several details and all explicit formulae.

4.4. Spine of a knot complement

We first note that a branched standard spineP of E(K) can be easily constructed
by digging a tunnel throughA alongK, as suggested by Fig. 9. By construction the
field carried byP onE(K) is precisely the restriction toE(K) of the original field
v carried by the abalone onS3. NowP is easily recognized to have 5 vertices (de-
notedv1, . . . , v5), 10 edges (denotede0, . . . , e9) and 6 regions (denotedr1, . . . r6).
Figure 10 shows the truncated ideal triangulation dual toP . In the figure the hat
denotes duality as usual. We have written−êi instead ofêi whenêi lies onv̂j but
the natural orientation of̂ei is not induced by the orientation ofv̂j . The lettersS
andT refer to the boundary sphere and torus respectively (S should actually be
collapsed to one pointx0, but the picture is easier to understand before collapse).
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Recall that the algebraic complex of which we must compute the torsion has one
generator for each cell in the cellularization ofE(K) arising fromP , excluding the
white cells and the tangency circles on the boundary. From Fig. 10 we can see how
many such cells there will be in each dimension, namely 3 in dimension 0 (x0 and
two vertices onT ), 14 in dimension 1 (thêri ’s and 8 edges onT ), 16 in dimension
2 (the êi ’s and the 6 black kites onT ) and 5 in dimension 3 (thêvi ’s). We can
also easily describe the 1-chains′(P ) which will be used to find the preferred cell
liftings: besides the orbits of the field there are only one star and one bi-arrow; the
support ofs′(P ) has 3 connected components (one spider with 19 legs and head at
x0, the star union the second half ofr̂2, and the bi-arrow union a segment contained
in ê3).

To actually determine the preferred liftings we need an effective description
of the lifting of the cellularization to the universal coverẼ(K) → E(K). Since
π1(E(K)) = Z, each cellc will have liftings c̃(n) for n ∈ Z, wherec̃(n) is then-th
translate of̃c(0). The choice of̃c(0) itself is of course arbitrary, but to understand the
cover we must express the∂c̃(0)’s in terms of the other̃d(n)’s. To do this we start
with a lifting x̃0 of the basepointx0 and we lift the other cells one after each other,
taking into account the relations inπ1(E(K)) and making sure that the union of
cells already lifted is always connected. When a cellc is reached for the first time,
its lifting is chosen arbitrarily and declared to bec̃(0), but its boundary will involve
in generald̃(n)’s with n �= 0. Once the lifted cellularization is known, it is a simple
matter to determine preferred cell liftings: since the support ofs′(P ) consists of 3
spiders, we only need to choose liftings of the 3 heads and then lift the legs.

Carrying out the computations we have explicitly found the algebraic complex
with coefficients inQ(Z[t±1]), and the preferred generators of the 4 moduli ap-
pearing. Then, using Maple, we have checked that indeed the complex is acyclic,
and we have computed its torsion as follows:

τϕ(E(K), ξ) = ±t−1. (5)

5. Torsion of pseudo-Legendrian knots and the Alexander invariant

In this section and in the next one we apply the general theory we have developed to
the study of pseudo-Legendrian (and hence of Legendrian) knots. We fix a compact
oriented manifoldM and a boundary patternP onM. The boundary ofM may be
empty or not. Recall that ifv is a vector field onM andK is a knot in Int(M), we
have definedK to be pseudo-Legendrian in(M, v) if v is transversal toK. We will
also call(v,K) a pseudo-Legendrian pair. Having fixedP, we will only consider
fieldsv compatible withP. Some of the results we will establish hold also for links,
but we will stick to knots for the sake of simplicity. First, we need to spell out the
equivalence relation on pseudo-Legendrian pairs which we consider.

Let v0, v1 be compatible withP and letK0,K1 be pseudo-Legendrian in
(M, v0) and (M, v1) respectively. We define(v0,K0) to bepseudo-Legendrian-
isotopic to (v1,K1) if there exist a homotopy(vt )t∈[0,1] through fields compatible
with P and an isotopy(Kt )t∈[0,1] such thatKt is transversal tovt for all t . If v0 = v1



36 R. Benedetti, C. Petronio

thenK0 andK1 are calledstrongly pseudo-Legendrian-isotopic if the homotopy
(vt ) can be chosen to be constant.

Remark 5.1. Of course strong pseudo-Legendrian isotopy implies pseudo- Legen-
drian isotopy. The latter relation is the natural one to consider on pseudo-Legendrian
pairs(v,K), while the former is natural for pseudo-Legendrian knots in a fixed
(M, v). A classical Legendrian isotopy of a Legendrian knot in a contact struc-
ture ξ is a strong pseudo-Legendrian isotopy with respect to any vector fieldv

orthogonal toξ . See [4] for further discussion on these notions.

Before proceeding recall that ifK is pseudo-Legendrian in(M, v) thenv turns
K into a framed knot, which we denote byK(v), and the framed-isotopy class of
K(v) is of course invariant under pseudo-Legendrian isotopy. We also know that,
given a boundary patternP onM, we have a well-defined patternP(K(v))onE(K).
Moreover, ifv is compatible withP, then the restriction ofv to E(K) defines an
element

ξ(v,K) ∈ Eul(E(K),P(K(v))),

so the theory of torsion applies. In the rest of this section we will discuss torsion
as anabsolute invariant of(v,K), showing in particular that in a homology sphere
it lifts the classical Alexander invariant ofK. The relation between torsion and the
Alexander invariant is however more complicated than in Turaev’s situation ([15]
and [16]), because here two different algebraic complexes will be involved at the
same time. In the next section we will discuss the extent to which torsion can be
employed as a relative invariant,i.e. as an obstruction to pseudo-Legendrian isotopy
of pairs(v0,K0) and(v1,K1).

For the sake of simplicity we only consider, in the present section and in the
next one, representations of the fundamental group obtained from representations
of the first homology group.

5.1. Turaev’s lifting of Milnor torsion

Let us first recall again in what sense Turaev’s torsion lifts the classical one. Let
M be a manifold which is closed or bounded by tori, and take a representation
ϕ : H1(M;Z) → ∗, where is as usual. The classical theory [11] allows to
define an invariant

τϕ(M) ∈ K1()
/
(±ϕ(H1(M;Z))),

usually stipulated to be 1 if theϕ-twisted homology ofM does not vanish,i.e., using
the above notation, if the complexCϕ∗ (M) =  ⊗ϕ Ccell∗ (M̃;Z) is not acyclic,
whereM̃ → M is the maximal Abelian cover. Whenξ is an Euler structure on
M with monochromatic boundary components, Turaev [16] shows that his torsion
τϕ(M, ξ) ∈ K1() is a lifting of τϕ(M) with respect to the obvious projection of
K1()/± ϕ(H1(M;Z) ontoK1().

In the special case where is the field of fractions obtained from the group ring
of H1(M;Z) modulo torsion, andϕ : H1(M;Z) →  is the natural projection,
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the invariantτϕ(M) is called Milnor torsion, and its sign-refinement provided by
Turaev in [15] has been shown to be equivalent to the classical Alexander invariant.
So Turaev’s torsion for Euler structures contains a lifting of theAlexander invariant.
We will discuss in the rest of this subsection the extent to what the same holds when
the Euler structure arises from a pseudo-Legendrian knot. What we will say applies
to any allowed representationϕ : H1(M;Z) → , but we keep in mind that the
relation with theAlexander invariant emerges for a special choice ofϕ and. Since
we will also drop the condition that the involved complexes be acyclic, we note
that torsion is only defined when the resulting homology is free. This is not true in
general, but it is for instance when is a field.

5.2. Torsion of a knot complement

Let us restrict to the case of a closed manifoldM, and let us consider a pseudo-
Legendrian pair(v,K) in M and a representationϕ : H1(E(K);Z)→  as usual.
We would like to interpret the torsion of the Euler structureξ(v,K) onE(K) with
respect toϕ as a lifting ofτϕ(E(K)), but a difficulty immediately emerges, because
the algebraic complexes used to compute these torsions do not coincide.

To be more specific, let us first spell out how the torsion ofξ(v,K) is defined.
Let P(K(v)) = (B,W,∅, C) be the boundary pattern defined onE(K). Then we
defineτϕ(M, v,K, h) as τϕ(M, θ(P(K(v))),!(ξ(v,K)), h). More specifically,
τϕ(M, v,K, h) is the torsion of the complexCϕ∗ (E(K),W), whereW is the (open)
white annulus on∂E(K), as above the maximal Abelian cover ofE(K) is used to
define the complex, the preferred cell lifting is obtained using an Euler chain for
the convexified structure!(ξ(v,K)), andh is a basis of the twisted homology of
E(K) relative toW .

Now, τϕ(E(K)) is the torsion ofCϕ∗ (E(K)), and this complex can be radically
different from the previous one. For instance, whenM is a homology sphere, the
absolute complex is always acyclic, while the complex relative toW , which depends
only on the framed knotK(v), in general is not. We will see how to overcome this
difficulty using the fundamental multiplicativity properties of torsion.

5.3. How to turn a torus into black

We will describe in this paragraph two explicit methods for modifyingξ(v,K)

to an Euler structureβ(v,K) such that∂E(K) becomes monochromatic black.
These methods are respectively a geometric and an algebraic one. The fact that
they actually lead to the same result is true but not very important, so we will omit
the proof. Both methods involve the choice of an orientation ofK. The first method
is explained in a cross-section in Fig. 11. The cross-section is transversal toK,
and the apparent singularity of the modified field is removed by summing a field
parallel toK and supported near the singularity (cf. Fig. 2, where a similar method
was used).

To describe the algebraic construction ofβ, recall that ifz is a 1-chain repre-
sentingξ(v,K) then∂z contains, with the appropriate sign, the centres of all cells
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Fig. 11. Black field on a knot complement

Fig. 12. A 1-chain on the annulusW

in E(K) \W . Knowing the subdivision rule for Euler chains (Proposition 1.3) we
can also assume that the cellularization onW has a particularly simple shape. We
assume it consists of rectangles as in Fig. 12 (left), where we also show a 1-chain
zW having the property that∂zW contains the centres of all cells inW . We can now
defineβ(v,K) as the Euler structure carried byz + zW . The boundary ofE(K)

is completely black with respect to this structure, because∂(z + zW ) contains the
centres of all cells ofE(K).

One easily sees from both our descriptions ofβ that it is canonically defined and
H1-equivariant. Since we will need these properties, we spell out their meaning,
starting from an oriented framed knotKF rather than a pseudo-Legendrian knot.
Let (W,B,∅, C) be the concave boundary pattern determined byF onE(K): then
β : Eul(E(K), (W,B,∅, C)) → Eul(E(K), (∅, ∂E(K),∅,∅)) is well-defined
(depending onKF only) andH1(E(K);Z)-equivariant.

Remark 5.2. If −K denotes the same knotK with reversed orientation then

α(β(v,K), β(v,−K)) = [λ] ∈ H1(E(K);Z)

whereλ is the longitude on∂E(K) determined by the framingK(v).

A geometric interpretation of the chainrW entering in the second description of
β is possible and used below. We have mentioned that a theory of Euler structures
exists in all dimensions. While the casen ≥ 4 requires some technicalities, the
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reader can easily work out the casen = 2 using the casen = 3 treated in the present
paper. And one readily sees thatzW is just an Euler chain of the inward-pointing
Reeb fieldrW onW shown in Fig. 12 (right). MoreoverrW can be canonically turned
into an outward-pointing field!(rW ), which of course is the outward-pointing Reeb
field (but the core spins in the opposite direction). So a torsionτψ(W,!(rW )) can
be computed (possibly with a basis of the twisted homology added to the data).

5.4. Knot torsion as a lifting of Milnor’s torsion

Let as above(v,K) be pseudo-Legendrian and letϕ : H1(E(K);Z) →  be a
representation. Ifi : W → E(K) is the inclusion, we setϕW = ϕ ◦ i∗. Considering
the twisted homology of the pair(E(K),W) we get an exact sequence

H =
(
· · · −→ H

ϕW

i (W) −→ H
ϕ
i (E(K)) −→ H

ϕ
i (E(K),W)

−→ H
ϕW

i−1(W) −→ · · ·
)
.

We choose basesh, h′, andh′′ respectively forHϕ∗ (E(K);W), Hϕ∗ (E(K)) and
H

ϕW∗ (W), so we can computeτϕ(M, v,K, h), τϕ(E(K), β(v,K), h′) and
τϕW (W,!(rW ), h′′). In addition we can computeτ(H, h, h′, h′′). The following
result is a refinement of Theorem 3.2 in [11], and a proof can be given imitating
the argument given in [17] (where a special case of the result is established).

Proposition 5.3. The following equality holds:

τϕ(E(K), β(v,K), h′)
= τϕ(M, v,K, h) · τϕW (W,!(rW ), h′′) · τ(H, h, h′, h′′). (6)

The following remarks and corollary of the previous proposition eventually explain
in what sense our torsion can be viewed as a lifting of the classical torsion (in
particular, Milnor torsion and the Alexander invariant).

Remark 5.4. In equation (6) the termτϕ(E(K), β(v,K), h′) is one of Turaev’s
torsion, so it is indeed a lifting of the classical torsion. The termτϕ(M, v,K, h)
is the torsion for pseudo-Legendrian knots introduced in this paper, while
τϕW (W,!(rW ), h′′) andτ(H, h, h′, h′′) can be viewed as normalizing terms. One
can for instance choose homology bases so thatτ(H, h, h′, h′′) = 1, and note
thatτϕW (W,!(rW ), h′′) depends only on the framed knotK(v), not on the Euler
structure.

Remark 5.5. The factorτϕW (W,!(rW ), h′′)may be understood quite easily. Denot-
ing by 1 the generator ofH1(W ;Z), the result only depends onϕW(1). If ϕW(1) = 1
then theϕW -twisted homology ofW is not twisted at all, so it is non-zero and free,
and we can chooseh′′ so thatτϕW (W,!(rW ), h′′) = 1. On the contrary, ifϕW(1)−1
is invertible, then theϕW -twisted homology is zero, andτϕW (W,!(rW )) is com-
puted to be(ϕW (1) − 1)−1. In the intermediate cases whereϕW(1) − 1 is neither
zero nor a unit, which can only occur when is not a field,τϕW (W,!(rW )) is
likely not to be defined.
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We can further specialize the understanding ofτϕW (W,!(rW ), h′′) whenM

is a homology sphere andϕ : H1(E(K);Z) →  is the representation which
gives the Milnor torsion. In this case we recall that = Q(Z[t±1]), the generator
of H1(E(K);Z) is mapped tot by ϕ, andH

ϕ∗ (E(K)) = 0. It follows that the
generator ofH1(W ;Z) is mapped totn by ϕW , wheren ∈ Z is the framing ofK.
So the complexCϕW∗ (W) is only acyclic whenn �= 0. If indeedn �= 0 then the
torsion ofCϕW∗ (W) is computed to be(tn − 1)−1, and from the exact sequence we
deduce thatHϕ∗ (E(K),W) = 0. If insteadn = 0 thenHϕW∗ (W) is non-zero, and
canonically isomorphic toHϕ∗ (E(K),W). We deduce the following result which
summarizes the relations between our torsion and the Alexander invariant:

Corollary 5.6. Let (v,K) be a pseudo-Legendrian pair in a homology sphere M ,
and let n ∈ Z be the framing on K defined by v.

• If n �= 0 then

τϕ(E(K), β(v,K)) = τϕ(M, v,K) · (tn − 1)−1;

• If n = 0 and we choose the same basis h for HϕW∗ (W) and H
ϕ∗ (E(K),W) under

their natural isomorphism, then

τϕ(E(K), β(v,K)) = τϕ(M, v,K, h) · τϕW (W,!(rW ), h).

6. Torsion as a relative invariant of knots

We study in this section how torsion can be employed to distinguish pseudo-
Legendrian knots from each other. We first show that as a relative invariant torsion
is only well-defined as a multi-valued function, the ambiguity being given by the
action of a suitable group. Then we concentrate on the knots (called ‘good’ below)
for which this action is trivial, and we interpret the relative information carried by
torsion as a relative winding numbers.

6.1. Group action on Euler structures

Consider a knotK and a self-diffeomorphismf of E(K) which is the identity near
∂E(K). Thenf extends to a self-diffeomorphism̂f ofM, wheref̂

∣∣
U(K)

= idU(K).

We defineG(K) as the group of all suchf ’s with the property that̂f is isotopic
to the identity onM. Elements ofG(K) are regarded up to isotopy relative to
∂E(K). If F is a framing onK then the pull-forward of vector fields induces an
action ofG(K) on Eul(E(K),P(K(v))). We will now see that an obstruction to
pseudo-Legendrian isotopy can be expressed in terms of this group action.

Let (v0,K0) and(v1,K1) be pseudo-Legendrian pairs inM, and assume that
K

(v0)
0 is framed-isotopic toK(v1)

1 under a diffeomorphismf relative to∂M. Using
the restriction off and the pull-back of vector fields we get a bijection

f ∗ : Eul(E(K1),P(K
(v1)
1 ))→ Eul(E(K0),P(K

(v0)
0 )).
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Proposition 6.1. Under the current assumptions, if (v0,K0) and (v1,K1) are
pseudo-Legendrian-isotopic to each other then f ∗(ξ(v1,K1)) belongs to the
G(K0)-orbit of ξ(v0,K0) in Eul(E(K0),P(K

(v0)
0 )).

Proof of Proposition 6.1. By assumptionK0,K1 andv0, v1 embed in continuous
families (Kt )t∈[0,1] and (vt )t∈[0,1], wherevt is transversal toKt for all t . Now
(K

(vt )
t )t∈[0,1] is a framed-isotopy, so there exists a continuous family(gt )t∈[0,1] of

diffeomorphisms ofM fixed on∂M and such thatg0 = idM andgt (K
(v0)
0 ) = K

(vt )
t .

So we get a map

[0,1] " t �→ α(ξ(v0,K0), g
∗
t (ξ(vt , Kt ))) ∈ H1(E(K0);Z).

SinceH1(E(K0);Z) is discrete and the map is continuous, we deduce that the map
is identically 0. Sog∗1(ξ(v1,K1)) = ξ(v0,K0). Now

f ∗(ξ(v1,K1)) = (f ∗ ◦ (g1)∗ ◦ g∗1)(ξ(v1,K1)) = (f−1 ◦ g1)∗(ξ(v0,K0))

and the conclusion follows becausef−1 ◦ g1 defines an element ofG(K0). ��
The groupG(K) is in general rather difficult to understand (see [7]), so we

introduce a special terminology for the case where its action can be neglected. We
will say that a framed knotKF isgood if G(K)acts trivially on Eul(E(K),P(KF )).
If KF is good for all framingsF , we will say thatK itself is good. The following
are easy examples of good knots:

• M is S3 andK is the trivial knot;
• M is a lens spaceL(p, q) andK is the core of one of the handlebodies of a

genus-one Heegaard splitting ofM.

The reason is that in both casesE(K) is a solid torus, and we know that an au-
tomorphism of the solid torus which is the identity on the boundary is isotopic to
the identity relatively to the boundary, soG(K) is trivial. The next three results
show that on one handG(K) is very seldom trivial, but on the other hand many
knots are good. We will give proofs in the sequel, after introducing some extra nota-
tion. In the statements, by “E(K) is hyperbolic” we mean “Int(E(K)) is complete,
finite-volume hyperbolic”.

Proposition 6.2. If M is closed and E(K) is hyperbolic then G(K) is non-trivial.

Theorem 6.3. If M is closed, E(K) is hyperbolic and either Out(π1(E(K))) is
trivial or H1(E(K);Z) is torsion-free then K is good.

Theorem 6.4. If M is a homology sphere then every knot in M is good.

The next result, which follows directly from Proposition 6.1, the definition of
goodness, and Proposition 2.6, shows that for good knots torsion can be used as an
obstruction to pseudo-Legendrian isotopy (and hence to strong pseudo-Legendrian
isotopy).
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Proposition 6.5. Let (v0,K0) and (v1,K1) be pseudo-Legendrian pairs in M , and
assume that K(v0)

0 is framed-isotopic to K
(v1)
1 under a diffeomorphism f relative to

∂M . Suppose thatK(v0)
0 is good, and that for some representationϕ : π1(E(K0))→

 and some -basis h of Hϕ∗ (E(K0),W(P(K
(v0)
0 ))) we have

τϕ(E(K0),P(K
(v0)
0 ), ξ(v0,K0), h)

�= τϕ ◦ f−1∗ (E(K1),P(K
(v1)
1 ), ξ(v1,K1), f∗(h)). (7)

Then (v0,K0) and (v1,K1) are not pseudo-Legendrian-isotopic.

Remark 6.6. 1. The right-hand side of equation (7) actually equals

τϕ(E(K0),P(K
(v0)
0 ), f ∗(ξ(v1,K1)), h)

= ϕ(α(v0, f
∗(v1)) · τϕ(E(K0),P(K

(v0)
0 ), ξ(v0,K0), h).

This shows that the most torsion can capture as a relative invariant of(v0,K0)

and(v1,K1) is α(v0, f
∗(v1)). We will show below that in some cases torsion

indeed allows to determineα(v0, f
∗(v1)) completely.

2. By definition of goodness the homology classα(v0, f
∗(v1)) just considered is

actually independent off . We will denote it byα((v0,K0), (v1,K1)).
3. For non-good knots the relative invariant is an orbit of the action ofG(K0). So

an obstruction in terms of torsion could be given also for non-good knots, but
the statement would become awkward, and we have refrained from giving it.

4. If equation (7) holds for some basish then it holds for any basis.

To conclude this paragraph we note that using the technology of Turaev [16],
one can actually see that the action on Euler structures of an automorphism is
invariant underhomotopy (not only isotopy) relative to the boundary. We will not
use this fact.

6.2. Good knots

We introduce now some notation needed for the proofs of Proposition 6.2 and
Theorem 6.3 (for Theorem 6.4 we will use a different approach, see below). Recall
that (M,P) is fixed for the whole section. We temporarily fix also a framed knot
KF in M, a regular neighbourhoodU of K, and we denote byT the boundary
torus ofU . OnT we consider 1-periodic coordinates(x, y) such thatx �→ (x,0)
is a meridian ofU andy �→ (0, y) is a longitude compatible withF . We denote a
collar ofT in E(K) byV and parametrizeV asT ×[0,1], whereT = T ×{0}. We
consider on[0,1] a coordinates. Forp, q ∈ Z we define automorphismsD(p,q) of
E(K) as follows. EachD(p,q) is supported inV , and onV , using the coordinates
just described, it is given by

D(p,q)(x, y, s) = (x + p · s, y + q · s, s).
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We will call such a map aDehn twist. It is easy to verify that the extension ofD(p,q)

to M is isotopic to the identity ofM. Note thatD(p,q) is actually not smooth on
T × {1}, but we can consider some smoothing and identifyD(p,q) to an element of
G(K), because the equivalence class is independent of the smoothing.

Proof of Proposition 6.2. We show thatD(p,q) is non-trivial inG(K) for all (p, q) �=
(0,0). Fix the basepointa0 = (0,0) ∈ T for the fundamental groups ofT and
E(K). ThenD(p,q) acts onπ1(E(K), a0) as the conjugation byi∗(p, q), where
i : T → E(K) is the inclusion and(p, q) ∈ Z × Z = π1(T , a0). If D(p,q) is
trivial in G(K), i.e. it is isotopic to the identity relatively to∂E(K), in particular
it acts trivially onπ1(E(K), a0). This implies thati∗(p, q) is in the centre of
π1(E(K), a0). Now it follows from hyperbolicity that this centre is trivial andi∗ is
injective, whence the conclusion.��

The proof of Theorem 6.3 will rely on properties of hyperbolic manifolds and
on the following fact, which we consider to be quite remarkable (note that the 2-
dimensional analogue, which may be stated quite easily, is false). Remark that the
result applies in particular to Dehn twists.

Proposition 6.7. If [f ] ∈ G(K) and f is supported in the collar V of ∂U then [f ]
acts trivially on Eul(E(K),P(KF )).

Proof of Proposition 6.7. Consider a vector fieldv on E(K) compatible with
P(KF ). Sincev andf∗(v) differ only onV , their difference belongs to the image
of H1(V ;Z) in H1(E(K);Z). So we may as well assume thatE(K) = V , i.e. M
is the solid torusU ∪ V .

By contradiction, letξ ∈ Eul(V ,P(KF )) be such thatα(ξ, (D(p,q))∗(ξ)) is
non-zero inH1(V ;Z), so it is given byk · [γ ] for somek ∈ Z\{0} and some simple
closed curveγ onT ×{1} ⊂ ∂V . Let us now take another simple closed curveδ on
T ×{1}which intersectsγ transversely at one point. Let us defineN as the manifold
obtained by attaching the solid torus toV alongT × {1}, in such a way that the
meridian of the solid torus gets identified withδ. Note thatN is again a solid torus
and that the homology class ofγ in H1(N;Z) ∼= Z is a generator. Now we can
apply Proposition 1.1 to extendξ to an Euler structureξN onN . Moreover we can
extendf to an automorphismg of N which is the identity on∂N = T × {0}. Now
by constructionα(ξN, g∗(ξN)) equalsk · [γ ] in H1(N;Z) ∼= Z, so it is non-zero.
But g is isotopic to the identity ofN relatively to the boundary ofN , so we have a
contradiction. ��

For the proof of Theorem 6.3 we will also need the following easy fact.

Lemma 6.8. Let f be an automorphism of M relative to ∂M , and consider the
induced automorphisms of H1(M;Z) and Eul(M,P), both denoted by f∗. Then:

α(f∗(ξ0), f∗(ξ1)) = f∗(α(ξ0, ξ1)), ∀ξ0, ξ1 ∈ Eul(M,P).

Proof of Theorem 6.3. Consider[f ] ∈ G(K). It follows from the work of Jo-
hansson (see [7]) that, under the assumption thatE(K) is hyperbolic, the group
generated by Dehn twists has finite index in the mapping class group ofE(K)

relative to the boundary. More precisely, the quotient group can be identified to a
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subgroup of Out(π1(E(K)), which is finite as a consequence of Mostow’s rigidity.
If Out(π1(E(K)) is trivial then[f ] is equivalent to a Dehn twist, sof acts trivially
on Eul(E(K),P(KF )) by Proposition 6.7.

We are left to deal with the case whereH1(E(K);Z) is torsion-free. By
Johansson’s result, there exists an integern such thatf n acts trivially on
Eul(E(K),P(KF )). Consider nowξ ∈ Eul(E(K),P(KF )), and setα =
α(ξ, f∗(ξ)). We must show thatα = 0. We denote bŷα the image ofα in
H1(M;Z), and byf̂ the extension off to M. Sincef̂ is isotopic to the iden-
tity, we havef̂∗(̂α) = α̂. If we take an oriented 1-manifolda representingα and
disjoint from ∂U(K), this means that there exists an oriented surfaceE in M

such that∂E = a ∪ (−f (a)). Up to isotopy we can assume thatE intersects
∂U(K) transversely in a union of circles. This shows thatf∗(α) = α + k · µ,
whereµ is the meridian ofT . Note thatf∗(µ) = µ, so for all integersm we have
f m∗ (α) = α +m · k · µ. Now, using Lemma 6.8, we have:

0= α(ξ, f n∗ (ξ) =
n−1∑
m=0

α(f m∗ (ξ), f m+1∗ (ξ))

=
n−1∑
m=0

f m∗ (α(ξ, f∗(ξ))) =
n−1∑
m=0

f m∗ (α) =
n−1∑
m=0

(α +m · k · µ)

= n · α + n(n− 1)

2
· k · µ.

This shows that 2· α+ (n− 1) · k ·µ is a torsion element ofH1(E(K);Z), so it is
null by assumption. So(1− n) · k · µ = 2 · α. If we applyf∗ to both sides of this
equality we get(1− n) · k · f∗(µ) = 2 · f∗(α). Using the equality again and the
relationsf∗(µ) = µ andf∗(α) = α + k · µ we get

(1− n) · k · µ = 2 · α + 2 · k · µ = (1− n) · k · µ+ 2 · k · µ.

Thereforek · µ is a torsion element, and hence null. But 2· α = (1− n) · k · µ, so
alsoα is null. ��

6.3. Rotation number, and goodness of knots in homology spheres

We will show in this paragraph that in a homology sphere the rotation number
of a pseudo-Legendrian knot can be (defined and) expressed in terms of an Euler
structure on its exterior. This will lead us to a simple interpretation of torsion as a
relative invariant of knots, and it will allow us to show that in a homology sphere
all knots are good (Theorem 6.4).

To begin, we note that the notion of rotation number, classically defined in the
contact case, actually extends to the situation we are considering. Since we will
need this definition, we recall it. LetM be a homology sphere, letv be a field on
M and letK be an oriented pseudo-Legendrian knot in(M, v). Take a plane field
η transversal tov and tangent toK, and a Seifert surfaceS for K. Up to isotopy of
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S we can assume thatη is tangent toS only at isolated points. Then rotv(K) is the
sum of a contribution for each of these tangency pointsp. Define o(p) to be+1
if ηp = TpS and−1 if ηp = −TpS. If p ∈ ∂S = K thenp contributes just with
o(p). If p ∈ Int(S) we can consider nearp a section ofη∩T S which vanishes atp
only, and denote by i(p) its index. Thenp contributes to rotv(K) with o(p) · i(p).

It is quite easy to see that the resulting number is indeed independent from
η andS. Moreover rotv(K) is unchanged under homotopies ofv relative toK,
and local modifications away fromK, so we can actually define rotξ (K) where
ξ = ξ(v,K) ∈ Eul(E(K),P(K(v)).

Proposition 6.9. Let M be a homology sphere, let v be a field on M and let K0
and K1 be oriented pseudo-Legendrian knots in (M, v). Assume that there exists a
framed-isotopy f which maps K

(v)
1 to K

(v)
0 . Identify H1(E(K0);Z) to Z using a

meridian. Then:

rotv(K1) = rotv(K0)+ 2α(f∗(ξ(v,K1)), ξ(v,K0)).

Proof of Proposition 6.9. LetK := K0, v0 := v andv1 := f∗(v). Note thatv0 and
v1 coincide alongK. Of course rotv(K1) = rotv1(K). We are left to show that

rotv1(K) = rotv0(K)+ 2α(ξ(v1,K)), ξ(v0,K)).

We can now homotopev0 andv1 away fromK until they differ only in the neighbour-
hoodW(L) of an oriented linkL, and within this neighbourhood they differ exactly
by a “Pontrjagin move”, as defined for instance in [3]. Namely,v0 runs parallel toL
in W(L), while v1 runs opposite toL onL and has non-positive radial component
onW(L) (see below for a picture). Note thatL representsα(ξ(v1,K)), ξ(v0,K)).

Let us choose now a Seifert surfaceS for K and a Riemannian metric onM,
and defineηi = v⊥i , for i = 0,1. Sinceη0

∣∣
K
= η1

∣∣
K

, the contributions alongK
to rotv0(K) and rotv1(K) are the same. Up to isotopingS we may assume thatL is
transversal but never orthogonal toS. At the points whereη0 is tangent toS alsoη1
is tangent toS, and the contributions are the same. So rotv1(K)− rotv0(K) is given
by the sum of the contributions of the tangency points ofη1 to S within W(L).
We will show that each point ofL ∩ S gives rise to exactly two tangency points,
which both contribute with+1 or −1 according to the sign of the intersection
of L and S at the point. This will show that rotv1(K) − rotv0(K) is twice the
algebraic intersection ofL andS. This algebraic intersection is exactly the value of
[L] = α(ξ(v1,K)), ξ(v0,K)) as a multiple of[m], so the local analysis atL ∩ S

will imply the desired conclusion.
For the sake of simplicity we only examine a positive intersection point ofL

andS. This is done in a cross-section in Fig. 13, which shows the local effect of the
Pontrjagin move. Both the fields have a rotational symmetry aroundL, suggested
in the figure. The two tangency points which arise with the move are a positive
focus (on the right) and a negative saddle (on the left), so the local contribution is
indeed+2, and the proof is complete.��
Remark 6.10. The definition of rotation number and Proposition 6.9 easily extend
to the case of manifolds which are not homology spheres, by restricting to homo-
logically trivial knots and choosing a relative homology class in the exterior.
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Fig. 13. Effect of the Pontrjagin move

We can now prove that in a homology sphere all knots are good.

Proof of Theorem 6.4. Consider[f ] ∈ G(K), a framingF on K and ξ ∈
Eul(E(K),P(KF )). We must show thatf∗(ξ) = ξ . Let ξ = [v] and denote
by v̂ the obvious extension ofv to M. As above, let̂f be the extension off to M.
During the proof of Proposition 6.9 we have shown that

rotf̂∗ (̂v)(K)− rot̂v(K) = 2α(f∗(v), v).

But rotf̂∗ (̂v)(K) is actually equal to rot̂v(K), becausêf is the identity nearK.
Thereforef∗(v) andv differ by a torsion element ofH1(E(K);Z) ∼= Z, so they
are equal. By definitionf∗(ξ) = [f∗(v)] andξ = [v], and the proof is complete.
��

Theorems 6.3 and 6.4 provide a partial answer to the problem of determining
which knots are good. The general problem does not appear to be straight-forward,
and we leave it for further investigation. We will only show below an example of
knot which is not good.

6.4. Curls and the winding number

We show in this paragraph the relation between the relative invariantα((v0,K0),
(v1,K1)) of two pseudo-Legendrian knots (when this invariant is well-defined) and
a relative analogue of the winding number (the invariant which allows to distinguish
framed-isotopic planar link diagrams which are not equivalent under the second and
third of Reidemeister’s moves, see [14]).

Consider the local modification of pseudo-Legendrian pairs which is shown in
Fig. 14. Here we consider a fieldv on a manifoldM and a portion ofM on whichv
can be identified to the vertical field inR3; we consider oriented knotsK0 andK±1
which are transversal tov and differ only within the chosen portion ofM, as shown
in the figure. We say that the two pseudo-Legendrian knots differ for a positive or
a negative double curl. We state now a result proved in [4].

Proposition 6.11. Let (v0,K0) and (v1,K1) be pseudo-Legendrian in M , assume
that v0 and v1 are homotopic fields, and that K

(v0)
0 and K

(v1)
1 are isotopic as

framed knots. Then (v0,K0) and (v1,K1) become pseudo-Legendrian-isotopic up
to addition of a finite number of positive or negative double curls.
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Fig. 14. Knots which differ for a positive or a negative double curl

Fig. 15. Differently curled tubes in the vertical field.

We show now the effect onα((v0,K0), (v1,K1)) of a double curl.

Proposition 6.12. With the notations of Fig. 14 choose the positive meridian m of
K0, as also shown in the figure. Let f be an isotopy which maps K

(v)
±1 to K

(v)
0 and

is supported in a tubular neighbourhood of K0. Then:

α(ξ(v,K0), f∗(ξ(v,K±1))) = ±[m] ∈ H1(E(K0);Z).

Proof of Proposition 6.12. Let us first note thatα(ξ(v,K0), f∗(ξ(v,K+1))), which
we must show to be+[m], is independent off by Proposition 6.7. Note also that
this comparison class can be factorized through the inclusion of a collar of∂E(K)

in M, and on this collar certainly it is an integer multiple of[m], sayk · [m].
Moreoverk is independent of the ambient manifold(M, v) and of the knotK. By
symmetry, we will also have thatα(ξ(v,K0), f∗(ξ(v,K−1))) = −k · [m]. So we
can takeM to beS3. In particular,[m] has infinite order. Using either the classical
machinery of obstruction theory or the techniques developed in [4], one can see
that there exists another pseudo-Legendrian knotK ′ in (S3, v), framed isotopic to
K, such thatα(ξ(v,K), ξ(v,K ′)) = [m], where by simplicity we are omitting the
framed-isotopies necessary to compare these classes. Using Proposition 6.11 we
know that, up to pseudo-Legendrian isotopy,K ′ differs fromK only for a finite
number of transformations of the formK �→ K1 or K �→ K−1. This shows that
[m] is a multiple ofk · [m], sok = ±1.

To check that actuallyk = +1, instead of comparing a “straight” knot with one
with two curls, we compare two knots with one curl, chosen so that the framing is
the same but the (local) winding number is different. This is of course equivalent.
The two knots are shown in Fig. 15 as thick tubes, together with one specific orbit
of the field they are immersed in. The resulting pattern on the boundary of the tubes
is also outlined. To compare the curls we isotope the tubes to the same straight tube,
and we show how the boundary patterns and the orbits of the field are transformed
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Fig. 16. Straightened curls

under this isotopy. This is done in Fig. 16. Also from this very partial picture it is
quite evident that the resulting fields wind in opposite directions around the tube,
in accordance with the sign rule stated in the proposition.��

Remark 6.13. In the above proof we have referred to Proposition 6.11, but with
a little care one could actually use only Trace’s [14] well-known version of this
proposition forplanar knot diagrams. For instance, one could chooseK andK ′
to be represented by diagrams on the “smaller” disc of the abalone (the branched
spine ofS3 used in the example of Sect. 4).

Proposition 6.11 shows that framed-isotopic non-pseudo-Legendrian-isotopic
knots differ at most by double curls. The next result will imply that, under certain
additional assumptions, the converse holds,i.e framed-isotopic knots which differ
by double curls are not pseudo-Legendrian-isotopic.

Proposition 6.14. Let (v,K0) be a pseudo-Legendrian pair in M , and denote by
[m] ∈ H1(E(K0);Z) the homology class of the meridian of U(K0). Assume either
that K(v)

0 is good and [m] �= 0 or that E(K0) is hyperbolic and [m] has infinite
order. Let K+1 be a knot obtained from K0 as in Fig. 14. Then (v,K0) and (v,K+1)

are not pseudo-Legendrian-isotopic.

Proof of Proposition 6.14. By contradiction, using Propositions 6.1 and 6.12, we
would get elementsξ0, ξ1 of Eul(E(K0),P(K

(v)
0 ) such thatα(ξ0, ξ1) = [m] and

ξ1 = f∗(ξ0) for some[f ] ∈ G(K0). If K
(v)
0 is good and[m] �= 0 this is a

contradiction. Assume now thatE(K0) is hyperbolic and[m] has infinite order.
Sincef∗([m]) = [m], using Lemma 6.8 we easily see thatα(ξ0, f

k∗ (ξ0)) = k · [m]
for all k. Proposition 6.7 and the result of Johansson already used in the proof of
Theorem 6.3 now imply thatf k acts trivially on Eul(E(K0),P(K

(v)
0 ) for somek,

whence the contradiction.��
Back to the situation considered in Proposition 6.11 of pseudo-Legendrian pairs

(v0,K0) and(v1,K1) with v0 homotopic tov1 andK(v0)
0 framed-isotopic toK(v1)

1 ,
one would be tempted to define an invariant w((v0,K0), (v1,K1)) ∈ Z as the
algebraic number of double curls which one has to add to(v0,K0) to make it
pseudo-Legendrian-isotopic to(v1,K1). However to define this algebraic number
we need a (coherent) orientation onK0 andK1, and the sign changes if we change
orientation. As a second attempt one could then try to define as an invariant the
product w((v0,K0), (v1,K1)) · [m0] ∈ H1(E(K0);Z), wherem0 is the meridian
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of K0. This product is now independent of the orientation, but again it is not well-
defined in general. However Propositions 6.11 and 6.12 easily imply the following
results:

Corollary 6.15. If K(v0)
0 is good, so α((v0,K0), (v1,K1)) is well-defined, then

α((v0,K0), (v1,K1)) = w((v0,K0), (v1,K1)) · [m0] ∈ H1(E(K0);Z).

In particular, the invariant on the right-hand side is also well-defined.

Corollary 6.16. If K(v0)
0 is good and [m0] has infinite order in H1(E(K0);Z) then

w((v0,K0), (v1,K1)) ∈ Z is a well-defined relative invariant of oriented pseudo-
Legendrian pairs, which we call the relative winding number.

Remark 6.17. Let M be a homology sphere with a fieldv, and letK0 andK±1 be
related as in Fig. 14. Then, using Propositions 6.9 and 6.12, we deduce that

rotv(K±1)− rotv(K0) = ±2. (8)

On the other hand one could prove formula (8) directly forM = S3 and deduce an
alternative proof of Proposition 6.12 using Proposition 6.9 only.

The next proposition implies, in particular, the result stated at the end of the
introduction.

Proposition 6.18. Under the assumptions of Proposition 6.11, assume that K(v0)
0

is good and that [m0] has infinite order in H1(E(K0);Z). The following facts are
pairwise equivalent:

1. The relative winding number of (v0,K0) and (v1,K1) vanishes;
2. All relative torsion invariants of (v0,K0) and (v1,K1) are trivial;
3. (v0,K0) and (v1,K1) are pseudo-Legendrian-isotopic.

Proof of Proposition 6.18. Equivalence of (6.18) and (6.18) comes from the previous
discussion and from the fact that a positive double curl and a negative double
curl cancel via pseudo-Legendrian isotopy. To show that (6.18) and (6.18) are
equivalent we only need to consider torsion with respect to a representationϕ :
H1(E(K0);Z)→  such thatϕ([m0]) has infinite order. ��

Corollary 6.19. Under the assumptions of Proposition 6.11, assume that M is a
homology sphere. Then the facts (1), (2), and (3) of Proposition 6.18 are also
equivalent to the following:

4. (v0,K0) and (v1,K1) have the same rotation number.

Proof of Corollary 6.19. Equivalence of (6.18) and (6.19) comes from the previous
discussion and Proposition 6.12.��

Since in a homology sphere two pseudo-Legendrian knots which are homotopic
through pseudo-Legendrian immersions certainly have the same Maslov index, the
previous corollary seems to suggest that all torsion can capture in a homology sphere
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is the homotopy class through immersions. We believe that it would be interesting
to check if also for a general manifoldM, under the assumptions of Corollary 6.15,
homotopy through pseudo-Legendrian immersions implies w((v0,K0), (v1,K1)) ·
[m0] = 0. We conclude by informing the reader that in [4] we have discussed the
extent to which the category of pseudo-Legendrian knots can be represented by the
category of genuine Legendrian knots in overtwisted contact structures.

6.5. Non-good knots

As another application of Proposition 6.12, we can show that there exist knots which
are not good. ConsiderS2× [0,1] with vector field parallel to the[0,1] factor. Let
K0 be the equator ofS2×{1/2}, and letK1 be obtained fromK0 by the modification
described in Fig. 14. Using Proposition 6.12, if we choose a framed-isotopyg of
K

(v)
1 ontoK

(v)
0 supported inU(K0), we have

α(ξ(v,K0), (g
∣∣
E(K1)

)∗(ξ(v,K1))) = [m],
where[m] is a generator ofH1(E(K0);Z) ∼= Z. On the other hand,K1 is strongly
pseudo-Legendrian-isotopic toK0 in (M, v) (the winding number only exists onR2,
not onS2). So there exists an isotopyh of K(v)

1 ontoK(v)
0 through links transversal

to v, and we have

α(ξ(v,K0), (h
∣∣
E(K1)

)∗(ξ(v,K1))) = 0.

This implies that(h ◦ g−1)
∣∣
E(K0)

acts non-trivially onξ(v,K0) ∈ Eul(E(K0),

P(K
(v)
0 )).

7. Main proofs

In this section we provide the proofs which we have omitted in Sects. 1 and 3. We
will always refer to the statements for notation.

Proof of Proposition 1.1. Let us first recall the classical Hopf–Poincaré theorem,
according to which ifv is a vector field with isolated singularities on a manifoldM,
v is transverse to∂M and points outwardsM (i.e. ∂M is black), then the sum of the
indices of all singularities isχ(M). For the proof of this fact, and for the definitions
of the notions involved, we address the reader to [12]. Assume now thatv has
isolated singularities and on∂M it is compatible with a patternP = (W,B, V,C).
We claim that ifC is a cellularization ofM suited toP we have:∑

x∈Sing(v)

indx(v) = χ(M)−
∑

σ∈C, σ⊂W∪V
ind(σ ). (9)

This formula is enough to prove the statement: if a non-singular fieldv compatible
with P exists then the left-hand side of (9) vanishes, and the right-hand side of (9)
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Fig. 17. Extension of the field to the collared manifold: dimension 2

Fig. 18. Extension of the field toσ × [0,1] for σ ⊂ V and forσ ⊂ C.

equals the obstruction of the statement. On the other hand, if the obstruction van-
ishes, then one can first consider a singular field compatible withP, then group up
the singularities in a ball, and remove them.

To prove (9) we consider the manifoldM ′ obtained by attaching a collar∂M ×
[0,1] toM along∂M = ∂M ×{0}. Of courseM ′ ∼= M. We will now extendv to a
field v′ onM ′ with the property thatv′ points outwards on∂M ′, and in∂M× (0,1)
the fieldv′ has exactly one singularity for each cellσ ⊂ W ∪V , with index ind(σ ).
An application of the classical Hopf–Poincaré theorem then implies the conclusion.
The construction ofv′ is done cell by cell. We first show how the construction goes
in dimension 2, see Fig. 17.

For the 3-dimensional case, we choose a cellularizationC of special type.
Namely, we require thatC∣∣

∂M
on a neighbourhood ofC ∪ V consists of rect-

angles, and each rectangle has exactly one edge onV ∪ C. We describe now the
extension ofv′ first onσ × [0,1] for σ ∈ C∣∣

∂M
and dim(σ ) ≤ 1. Whenσ is not

contained inC ∪ V the rules are exactly the same as in the 2-dimensional case,
see Fig. 17. Whenσ ⊂ C ∪ V the rules are given in Fig. 18. Concerning the rule
whenσ is an edge contained inV , note thatv′ is only tangent toσ × [0,1] on
σ × [1/2,1], and Fig. 18-left shows how it is constructed. To give a precise rule
onσ × [0,1/2] we choose local coordinates[−1,1]x × [−1,1]y on∂M such that
[−1,0)× [−1,1] ⊂ W , (0,1] × [−1,1] ⊂ B andσ = {0} × [−1,1] ⊂ V . Then
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Fig. 19. Extension of the field nearpσ × [0,1] for dim(σ ) = 2

Fig. 20. Computation of the index of a singularity

we define:

v′(0, y, t) = cos(π · t) · ∂

∂x
+ sin(−π · y) · ∂

∂y
+ sin(−2π · t) · ∂

∂t
.

For dim(σ ) = 2 we note thatv′ is already defined on(∂σ ) × [0,1]. We next
definev′ nearpσ × [0,1], wherepσ is the centre ofσ , as shown in Fig. 19.
Now in σ × [0,1], at all heightst ∈ [0,1], we extendv′ radially frompσ to ∂σ ,
using convex combinations. The fact that such a radial extension is indeed possible
without introducing further singularities is a direct consequence of the previous
choices, and the precise way the extension is made is actually immaterial.

The verification that indices of singularities ofv′ are as required is now a routine
matter. We only do this in the hardest case, namely atpσ × {1/2} for σ ⊂ V and
dim(σ ) = 1. Using the coordinates already introduced above and Figs. 18 and 19,
we see thatv′ is a positive multiple of∂/∂t near(0,0,1/2) only at points of the
form (0,0,1/2 + t) for small t > 0. Moreover the fieldv′ can be written as
v′(x, y,1/2+ t) = (x,−y, t) for t > 0 (compare with the cross-sections shown
in Fig. 20). Taking the normalized fieldv′/‖v′‖ and(0,0,1) as a regular value, we
readily see that the index is−1, as required. ��
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Fig. 21. The fundamental singular fieldwS on a 2-simplex

Proof of Theorem 1.4. Our proof follows the scheme given by Turaev in [16], with
some technical simplifications and some extra difficulties due to the tangency cir-
cles. We first recall that it is possible to associate to any smooth triangulationS of a
manifoldN a singular vector fieldwS onN called thefundamental field of S. This
field has the property of having one singularity of index ind(σ ) = (−1)dim(σ ) at the
barycentre of each simplexσ of S. QualitativelywS can be defined by the require-
ments that: (1) each simplex is a union of orbits; (2) the singularities are exactly the
barycentres of the simplices; (3) barycentres of higher dimensional simplices are
more attractive that those of lower dimensional simplices. More precisely, each or-
bit (asymptotically) goes from a barycentrepσ to a barycentrepσ ′ , whereσ ⊂ σ ′.
See Fig. 21 for a description ofwS on a 2-simplex ofS and [16], page 642, for an
explicit formula in barycentric coordinates.

Let us consider now a triangulationT of M, and let us choose a representative
z of the givenξ ∈ Eulc(M,P) as in Proposition 1.3(3). We consider now the
manifoldM ′ obtained by attaching∂M × [0,∞) to M along∂M = ∂M × {0}.
Note thatM ′ ∼= Int(M). MoreoverT extends to a “triangulation”T ′ of M ′, where
onM×[0,∞) we have simplices with exactly one ideal vertex, obtained by taking
cones over the simplices in∂M and then removing the cone vertex. Even ifT ′ is
not strictly speaking a triangulation, the construction ofwT ′ makes sense, because
the missing vertex at infinity would be a repulsive singularity anyway. We arrange
things in such a way that ifσ ⊂ ∂M then the singularity inσ × (0,∞) is at height
1, so it ispσ × {1}.

We will define now a smooth functionh : ∂M → (0,∞) and setMh =
M ∪ {(x, t) ∈ ∂M × [0,∞) : t ≤ h(x)}, in such a way thatwT ′ is non-singular
on ∂Mh, and, modulo the natural homeomorphismM ∼= Mh, it induces on∂Mh

the desired boundary patternP. Later we will show how to usez to remove the
singularities ofwT ′ onMh.

To define the functionh we consider a (very thin) left half-collarL of V on∂M

and a right half-collarR ofC. Here “left” and “right” refer to the natural orientations
of ∂M and ofV andC. Note thatL ⊂ B andR ⊂ W . Now we seth

∣∣
B\L ≡ 1/2,

andh
∣∣
W\R ≡ 2. Figures 22 and 23 respectively show that away fromV ∪C indeed

the pattern ofwT ′ on ∂Mh is as required. Now we identifyL to V × [−1,0] and
R to C × [0,1], and we defineh(x, s) = f (s) for (x, s) ∈ V × [−1,0] and
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Fig. 22. Whereh = 1/2 the field points outwards

Fig. 23. Whereh = 2 the field points inwards

h(x, s) = f (s − 1) for (x, s) ∈ C × [0,1], wheref : [−1,0] → [1/2,2] is a
smooth monotonic function with all the derivatives vanishing at−1 and 0. Instead
of describingf explicitly we picture it and show that also nearV ∪ C the pattern
is as required. This is done nearV andC respectively in Figg. 24 and 25. In both
pictures we have only considered a special configuration for the triangulation on
∂M, and we have refrained from picturing the orbits of the field in the 3-dimensional
figure. Instead, we have separately shown the orbits on the vertical simplices on
which the value ofh changes.

The conclusion is now exactly as in Turaev’s argument (Section 6.6 of [16]),
so we only give a sketch. The chosen representativez of ξ ∈ Eulc(M,P) can be
described as an integer linear combination of orbits ofwT ′ , which we can describe
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Fig. 24. OnV the field has convex tangency

as segments[pσ , pσ ′ ] with σ ⊂ σ ′. Now we consider the chain

z′ = z−
∑

σ⊂W∪V
ind(σ ) · pσ × [0,1]. (10)

By definition ofh we have thatz′ is a 1-chain inMh, and∂z′ consists exactly of
the singularities ofwT ′ contained inMh, each with its index. For each segments

which appears inz′ we first modifywT ′ to a field which is “constant” on a tube
T arounds, and then we modify the field again withinT , in a way which depends
on the coefficient ofs in z′. The resulting field has the same singularities aswT ′ ,
but one checks that these singularities can be removed by a further modification
supported within small balls centred at the singular points. We define
(ξ) to be the
class in Euls(M,P) of this final field. Turaev’s proof that
 is indeed well-defined
andH1(M;Z)-equivariant applies without essential modifications.��

Remark 7.1. In the previous proof we have defined
 using triangulations, in order
to apply directly Turaev’s technical results (in particular, invariance under subdivi-
sion). However the geometric construction makes sense also for cellularizationsC
more general than triangulations, the key point being the possibility of defining a
field wC satisfying the same properties as the field defined for triangulations. This
is certainly true, for instance, for cellularizationsC of M induced by realizations of
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Fig. 25. OnC the field has concave tangency

M by face-pairings on a finite number of polyhedra, assuming that the projection
of each polyhedron toM is smooth.

Proof of Theorem 1.7. For the reader’s convenience, we first outline the scheme of
the proof:

1. By identifyingM to a collared copy of itself, we choose a representativez of the
givenξ ∈ Eulc(M,P) such that the extra terms added to define!c(ξ) cancel
with terms already appearing inz.

2. We apply Remark 7.1 and choose a cellularization ofM in which it is particularly
easy to construct
(ξ) and
(!c(ξ)) using the representatives obtained above,
and to show that!s(
(ξ)) = 
(!c(ξ)).

We consider a cellularizationC of M satisfying the same assumptions on∂M

as those considered in the proof of Proposition 1.1, namelyC ∪ V is surrounded
on both sides by a row of rectangular tiles. We denote byγ1, . . . , γn the arcs inC,
oriented asC.

Let us consider a representativez relative toC of the givenξ ∈ Eulc(M,P). We
construct a new copyM1 of M by attaching∂M×[−1,0] toM along∂M = ∂M×
{−1}, and we extendC toC1 by taking the product cellularization on∂M×[−1,0].
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Fig. 26. Local difference nearC betweenz′ (left) andz′θ (right)

We define a new chain as

z1 = z+
∑
σ⊂B

ind(σ ) · pσ × [−1/2,0] −
∑

σ⊂W∪V
ind(σ ) · pσ × [−1,−1/2]

+
n∑

j=1

(
γj

∣∣[1/2,1] × {−1/2} − γj
∣∣[1/2,1] × {0}

)
.

Note thatz1 is an Euler chain inM1 with respect toC1. Consider the natural
homeomorphismf : M → M1 and the class

a = αc(f∗(ξ), [z1]) ∈ H1(M1;Z)

which may or not be zero. Since the inclusion ofM into M1 is an isomorphism at
theH1-level,a can be represented by a 1-chain inM, soz1 can be replaced by a
new Euler chainz2 such that[z2] = f∗(ξ) andz2 differs fromz1 only onM.

RenamingM1 byM andz2 by z we have found a representativez of ξ such that
z = zθ +∑n

j=1 γj
∣∣[1/2,1], wherezθ is a sum of simplices contained inB ∪ Int M.

Note that of course!c(ξ) = [zθ ]. To conclude the proof we will now apply the
reconstruction map usingz andzθ , thus getting
(ξ) and
(!c(ξ)), and then we
will analyze the smooth convexification!s(
(ξ)) to show that it actually coincides
with 
(!c(ξ)). By construction!s(
(ξ)) and
(!c(ξ)) only differ nearC, so
we concentrate on one component ofC and show that the desired equality holds
near it.

To understand
(ξ) and
(!c(ξ)) we follow the steps of the proof of The-
orem 1.4 applied toz andzθ respectively. The first step consists in choosing the
height functionh (respectively,hθ ) and replacing the chainz (respectively,zθ ) by
a chainz′ (respectively,z′θ ) as in formula (10). This is done in Fig. 26 where only
the difference between the chains is shown.

The next step is to modify the fundamental fieldwC of the cellularization on
a neighbourhood of the support ofz′ andz′θ , to get representatives of
(ξ) and

(!c(ξ)) on the modified versions ofM calledMh andMhθ respectively. This is
done in Figs. 27 and 28 respectively, where, for the sake of simplicity, the field is
only shown onC × [0,∞), where the essential modification takes place.

To conclude our description of
(ξ) and
(!c(ξ)) we must now bring the
modified manifoldsMh andMhθ back to the originalM. This is done in Figs. 29
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Fig. 27. Construction of
(ξ) onC × [0,∞). On the left we showwC and the zones where
it must be modified, on the right we show the desingularized field.

Fig. 28. Construction of
(!c(ξ)) onC × [0,∞)

Fig. 29. A cross-section of a representative of
(ξ).

Fig. 30. A cross-section of a representative of
(!c(ξ)).
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Fig. 31. Smooth convexification and homotopy with the smoothening of the combinatorial
convexification

and 30 respectively, where a cross-section transversal toC is shown; in Fig. 30 the
field is parallel to the cross-section,i.e. its C-component vanishes, and the same
holds in Fig. 29 except near the apparent singularity, where the field has a positive
C-component.

Now that
(ξ)and
(!c(ξ))have been described completely, we can construct
!s(
(ξ)) and show it equals
(!c(ξ)). This is done in Fig. 31, which shows: (1)
The representative of
(ξ) described above; (2) The representative of!s(
(ξ))

constructed as in Fig. 2; (3) An alternative representative of!s(
(ξ)), obtained by
adding a positiveC-component to the field in the whole region encircled by a thick
dashed line; (4) The representative of
(!c(ξ)) obtained above. The fields shown
in (3) and (4) are nowhere opposite to each other, so they are homotopic, and the
proof is complete. ��

Proof of Theorem 3.7. We fixP and sets′′ = s′′(P ), v̂ = v̂(P ). Using Remark 7.1
we see that the construction of
([s′′]) explained in the proof of Theorem 1.4 can be
directly applied to the cellularization̂T = T̂ (P ) of M̂. Recall that this construction
requires identifyingM̂ to a collared copy of itself, and extendings′′ to a chains′′′
whose boundary consists precisely of the singularities of the fundamental fieldw =
wT̂ of the cellularization̂T . (Heres′′ plays the role ofz in the proof of Theorem 1.4,
ands′′′ plays the role ofz′.)A representative of
([s′′]) is then obtained by applying
to w a certain desingularization procedure. This desingularization is supported in
a neighborhood ofs′′′, and one can easily check that each connected component
of the support ofs′′′ is actually contractible, so its regular neighbourhood is a
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Fig. 32. The fieldv̂ on a hexagon

Fig. 33. The fieldw and the trace ofS on a hexagon

ball. Since we already know that such a desingularization is indeed possible, and
by definition an Euler structure is unaffected by a modification within a ball, the
conclusion is readily deduced from the following claim:the set of points where w is
antipodal to v̂ is contained in the support of s′′′. We will show our claim neglecting
the contraction ofS2

triv which mapsM ontoM̂. (The desired result actually holds
at the level ofM, and it easily implies the result for̂M.)

To prove the claim, we denote the support ofs′′′ byS and note that the cells dual
to those ofP are unions of orbits of bothw andv̂. Therefore we can analyze cells
separately. We do this explicitly only for 2-dimensional cells, leaving to the reader
the other cases. In Fig. 32 we describev̂. In the left-hand side of Fig. 33 we describe
w on the collared hexagon. In the right-hand side of the same figure we only show
the singularities ofw on the hexagon brought back to its original position, and the
intersection ofS with the hexagon. In this figure the 7 short segments come from
s′′′ − s′′; the other bits ofS have been labeled by ‘Or’, ‘St’, ‘Ba’ or ‘He’ to indicate
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that they come from orbits of̂v, stars, bi-arrows or half-edges. Since indeedw and
v̂ are only antipodal onS, the proof is complete. ��
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