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0. INTRODUCTION 

THE initial motivation of this paper comes from a result of Segre [ 121 about the real lines on 
a real cubic surface. As it is well known a smooth complex cubic surface has exactly 27 
(complex) lines. In the real case this is not always true anymore. A smooth real cubic surface 
can have 27,15,7 or 3 real lines. This has been well known since the 19th century. The result 
of Segre we are alluding to is far less known and introduces a more subtle difference between 
the real and complex cases. Segre distinguishes two types of real straight lines (see below 
Section 6 for precise definitions) and shows that on a real cubic surface with 27 real lines 15 
are of one type and 12 of the other (in fact the result is more complete and gives the 
classification in all cases-see Theorem 6.2 below). Segre proved this result by studying the 
degeneration of non-singular cubic surfaces to the union of 3 planes and a special “graphi- 
cal” way of representing the occurring situations. 

Noting that the basic difference between the two types of lines is that their respective 
tubular neighbourhoods in the surface differ by a full twist in P3, our initial aim was to give 
a new interpretation and a new proof of this result in terms of the Pin- structure induced by 
the embedding of the surface in P3 (p3 taken with a fixed Spin structure). More precisely, we 
will show that the two type of lines distinguished by Segre are also differentiated at the 
homology level by the mod4 quadratic form canonically associated with the above Pin- 
structure. 

A further point of interest is that, assuming that the complexification X(C) c p’(C) of 
the surface X is also non-singular and that the surface is an M-surface, there is another Pin- 
structure, induced by the embedding of X(R) in X(@) (see [6]). This second form differs 
from the first by a “privileged” class in H’ (X, Z/2), a class which seems to deserve further 
investigations. We will explicitly compute this class for quadric and cubic surfaces. 

The work done for surfaces in P3 led us to study more generally immersions of surfaces 
in arbitrary orientable 3-manifolds. Using the theory of Spin and Pin- structures (see, for 
example, [lo] and the book [6]), we consider the problem of associating, as above, 
quadratic forms with immersions of surfaces in 3-manifolds. We have done this by refor- 
mulating results of Pinkall [ 111, where only the case of Iw3 is considered and results of Hass 
and Hughes [S] where the immersions of surfaces into arbitrary 3-manifolds is studied, but 
not in terms of quadratic forms. Following Pinkall we will also introduce the notion of 
immersed surfaces (an equivalence class of immersions-see Sections 4 and 10) and study 
the relationships between different equivalence relations on immersed surfaces (regular 
homotoppy, cobordism, equivalence of the Pin- structures) extending the results Pinkall 
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has obtained for BP. In Section 11 we apply the results of this analysis to compute the 
semi-group N,(M) of cobordism classes of immersed surfaces in an arbitrary orientable 
3-manifold M and prove that in fact it is a group. This is probably the main result of this 
paper. 

1. QUADRATIC FORMS MOD4 

For a reference on this part see, for example, [6, pp. 99-1011 or the Appendix of [l]. 
We will only recall the basic facts we are going to use and, where needed, sketch some 

proofs. 
Let V be Z/Zvector space with a non-degenerate symmetric bilinear form (.). We will 

say that q: V--P Z/4 is a quadratic form mod4 associated with (.) if for all x and Y in V we 

have 

9(x + Y) = 4(x) + 4(Y) + 2(X.Y) (1.1) 

where 2 is the only non-trivial morphism from Z/2 to Z/4. 
Such a triple (V, (.), q) will be called a quadratic space. We will say that two quadratic 

spaces (v,(.),q) and V”,(.),q’) are isometric or more briefly that two quadratic forms q and 
q’ are isometric if there exists an isomorphism I : V + v’ such that q’ = q 0 1 (note that by the 
definition this will ensure that the two bilinear forms are also isometric). 

We recall the following facts on such spaces. 
First note that q(0) = 0 and that q(x) E (x.x)mod2. 
If dim V = 1 and (.) is the only non-trivial bilinear form, then there are 2 associated 

quadratic forms, one q + for which q + (e) = 1 (where e is the generator of V) and the other q _ 
for which q_(e) = - 1. 

If dim V = 2 and the bilinear form is defined, in terms of a basis {ei, e2}, by the matrix 

0 1 ( 1 10 

then there are 4 associated quadratic forms: Qi is defined by Q1 (ei) = Q1(es) = 0 and 
Q1 (ei + ez) = 2, Qz is defined by Qz(el) = Q2(e2) = Qz(el + e2) = 2 and the other two are 
isometric to Q1 and correspond to permutations of e,, e2 and ei + e2. 

A quadratic space is said isotropic (or even) if for all x E V, (x,x) = 0, or equivalently 
q(x) E 0 mod 2. In such a case there exists an ordinary quadratic form 4: V + Z/2 such that 
q = 24 (2 being as before the morphism from Z/2 to Z/4). 

A quadratic space (V, (.), q) is called neutral if V contains a subspace H such that 
2dimH=dimVandq=OonH. 

Taking orthogonal sums induces a semi-group structure on the space of quadratic 
spaces and on the space of neutral quadratic spaces, since, obviously, the orthogonal sum of 
neutral spaces is again neutral. The quotient of these two semi-groups is actually a group 
and is called the Witt group of quadratic forms mod 4 and denoted WQ(Z/2,Z/4). We will 
say that two quadratic spaces, or two quadratic forms, are Witt equioalent if they represent 
the same class in the Witt group. 

To Witt equivalence is associated an important invariant that we define as follows. Let, 
for x in V, 

M4 
O(x) = exp 2 = i 

( > 
‘4(X) 
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and let 

The complex number A(q) is called the Arf-Brown invariant of q or of the quadratic space 

(V, (.)% 4). 

Remark 1.3. (i) If the quadratic space is isotropic, then, as noted above, q = 2q. In this 
case A(q) coincides with the usual Arf invariant of 4. 

(ii) Elementary computations show that 

l+i 
A(4+) = - 

&’ 
A(q-) = A@+), 4QJ = 1, A(Q,) = - 1. 

More generally one can show that A(q) = 1 if the form 4 is neutral. 

THEOREM 1.4. The map, A: (V,(.), q) H A(q), induces an isomorphism between the Witt 

group WQ(Z/2,2/4) and pE, the group of 8th roots of unity. 

Proof (Outline). Elementary computations show that 

0) 
(ii) 

(iii) 

We 

Ah, + q2) = A(qd*A(qz)- 
44 (where by 4q we mean q_Lqlq_Lq) is isometric to 4( -4). This implies in 
particular that 8q is always neutral. 
q+ _Lq _ is neutral and non-isotropic. As a consequence every quadratic form 4 is 
Witt equivalent to a non-isotropic one, namely q_Lq+_Lq_. 

also note the well-known fact that if (V, (.), q) is not isotropic then, there exists an 
orthogonal sum decomposition of V into spaces of dimension 1. From this, and (ii) and (iii) 
above, it is easy to prove that WQ(Z/2,2/4) is cyclic of order a divisor of 8 and generated 

by q+. 
To end the proof we only need to note, since, by (i), the map is a morphism, that 

&+) = (1 + i)l&’ is a primitive 8th root of unity. c 

Theorem 1.4 and its proof have some important consequences that we will use in the 
sequel. 

1.5. (i) Two spaces (VI, ( .)1, ql) and ( V2, (.), q2) are isometric if and only if the follow- 
ing conditions are satisfied: 

- dim VI = dim V2; 

- (.)i and ( .)2 are either both isotropic or both non-isotropic; 

- A(q,) = Ak2). 

Noteinparticularthatif(V1,(.),)and(V2,(.) ) 2 are equal, then q1 and q2 are isometric if 

and only if the Arf-Brown invariants are the same. Note also, that one can replace the 
second condition above by, 

- The mod 2 reductions of q1 and q2 are either both zero or both non-zero. 
(ii) A(q)4 = ( - l)dimY and hence A(q) determines dim Vmod 2. 

To end on quadratic forms mod 4, note that the fact that there are 2 if the dimension is 1 
and 4 if the dimension is 2 (and the bilinear form fixed of course) generalizes. We have the 
following lemma. 
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LEMMA 1.6. Zf V is a Z/2-vector space with a non-degenerate symmetric bilinear form (.) 
then there are 2dim ’ mod 4 quadratic forms associated with (.). If q is one, then the others are 
of the form 

q’(x) = q(x) + 2(u.x) = q(x) + 2Qx) 

for some u in V (respectively a linear form G on V). 

The proof is easy. 

2. SPIN STRUCTURES ON 3-MANIFOLDS AND PIN- STRUCTURES ON SURFACES 

The content of this section is again classical (we will use the paper of Kirby and Taylor 

[lo] and Kirby [9, Ch. IV] as basic references). 

To discuss the results we have to recall that the circle S’ has 2 Spin, structures. In 
particular, a SO,-bundle (which is necessarily trivial) on S’ has two Spin,-structures. One 
corresponds to the trivial double covering of S’ by two copies of S’ and the other to the 

double covering of S’ by S’. Following [9] we will call the first canonical (it corresponds to 
the unique trivialization of the Sol-bundle). 

An SOz-bundle on S’ also has 2 Spinz-structures. These are best interpreted in terms of 
framings. Consider a framing of the normal bundle to a circle in R3. Adding a tangent vector 
to the circle yields a framing of the restriction of the tangent bundle of lR3. Then one can 
describe the two Spin, structures as follows. One corresponds to framings that do not 
extend to framings of the restriction of the tangent bundle of R3 to the disk bounded by S’ 
(see Fig. 1) and the other to ones that do extend (see Fig. 2). 

Two framings correspond to the same Spin structure if they differ by an even number of 

turns along S1 (see, for example, [lo] or [9]). 

LEMMA 2.1. If 5 = tl @ t2 is a direct sum decomposition of bundles, then a Spin structure 
on two of the bundles determines a Spin structure on the third. 

See [9, Proposition 3, p. 371. 
For Pin- structures on surfaces the basic result we will need is the following proposi- 

tion. 

PROPOSITION 2.2. There is a canonical one to one correspondence between Pin- structures 
on a surface F and mod 4 quadratic forms on H 1 (F, Z/2) associated with the intersection form. 

See [lo, Theorem 3.21. 

To define a mod4 quadratic form associated with the intersection form (and hence 
a Pin- structure) it is in fact enough to define a function 4 that assigns an element in E/4 to 

Fig. 1. Fig. 2 
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each embedded disjoint union of circles in F subject to the following conditions (see [lo, 

Lemma 3.41.): 

2.3. (a) 4 is additive on disjoint unions; that is, if L1 and Lz are two embedded disjoint 

unions and L1LIL2 is again embedded, then d(L,LIL,) = (3(L,) + Q(L2). 
(b) If K1 and Kz are two circles that cross transversely at r points then replacing each 

crossing we get an embedded disjoint union L. We must have Q(L) = B(K,) + Q(K2) + 2r. 
(c) If K is an embedded circle that bounds a disk in F, then d(K) = 0. 

Note that to define 4 we only need to define it on embedded circles and extend it to 

disjoint unions by (a). 

3. THE PIN - STRUCTURE OF AN IMMERSED SURFACE IN A SPUN IMANIFOLD 

In this section we review results of Pinkall [ 1 l] and Hass and Hughes [S] and adapt 
them for further use. 

Let M be an orientable 3-manifold (smooth and without boundary) and let F be 
a surface (smooth, compact and without boundary but not necessarily orientable: for 
simplicity, we also assume that the surface is connected). We fix once and for all an 
orientation on M and when we speak of M we will mean M with this fixed orientation. As 
is well known M always admits a Spin structure. In general, there are more than one since 
there is a simply transitive action of H’(M,Z/2) on the space of Spin structures of M (cf. 
Remark 3.5). Let 0 be one. We will say that (M,O) is a spun manifold. 

Let f: F + M be an immersion. We are going to associate with f and 0, a Pin- 

structure, II,,,, on F. 
To do this let f*TM be the pull-back of the tangent space TM to M. Since M is oriented, 

the normal bundle N, to F in f*T, is isomorphic to the determinant bundle AF of T,, the 
tangent bundle to F. We then have an identification between f*TM and TF @ AF. 

The action 0 induces a Spin structure on f* TM. But by [lo, Lemma 1.7, p. 1871, there is 
a one to one correspondence between Spin structures on TF @ AF and Pin- structures on 
T, and hence on F. This defines II,,.. 

In order to get a better understanding of II,,. we are going to describe it in terms of 
a mod 4 quadratic form qr,e. 

Let K be an embedded circle in M. The action 0 allows us to select a class of even 
framings on K as follows: 0 induces a Spin structure on TMlr<. We have a direct sum 
decomposition TM~x. = NK~,,, @ TK. Take on TK the canonical Spin structure. Then by 
Lemma 2.1 we get a well-defined Spin structure on the normal bundle NKiM. We will call 
odd the class of framings associated with this structure. We will call euen the other class (so 
that, for example, the framing shown in Fig. 1 is even). 

Now let C be an embedded circle in F such that f;c is an embedding. Define &,o(C) to be 
the number mod4 of left half turns (positive half turns) which the normal bundle to 

F restricted to C, NFIMIC, does when moving along C with respect to any even framing (note 
that this does not depend on which way we move along C). 

LEMMA 3.1. The number 4 f,e(C) only depends on the class of C in Hi (F, Z/2). Moreover, 
the induced map q, ,@: H1 (F, Z/2) + Z/4 is a quadratic form mod4 associated with the 
intersection form. 

Since our construction is exactly the one which associates with a Pin- a quadratic form 
mod 4 (see Proposition 2.2), the proof of Lemma 3.1 is the same as the proof of Theorem 3.2 
of [lo] (see in particular the proof of Lemma 3.4). 
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LEMMA 3.2. For ajixed choice of 0, qf ,@ only depends on the regular homotopy class of J 

Pinkall [ 1 l] proved Lemma 3.2 in the special case M = lR3. Actually, it is quite easy to 
see that his proof extends to our general situation. The essential reason is that if TubK(F is 
a tubular neighbourhood of K in F, then gJ,e(K) only depends on the regular homotopy 
class off restricted to T&IF and this is easy to see. 

Let r be a homotopy class of maps from F into M and let Zmm&F,M) be the set of 
regular homotopy classes of immersions of F into M belonging to r (note that Imm<(F, M) is 
non-empty-see, for example, [S, Lemma 1.21). Also let _!& be the set of quadratic forms 
mod 4 on H, (F, Z/2) associated with the intersection form. 

By Lemmas 3.1 and 3.2 (and also Proposition 2.2) we have defined a map 

q8: Zmm&F, M) + .Z& z {Pin- structures on F}. (3.3) 

THEOREM 3.4. The map q8 defined in (3.3) is a bijection. 

This theorem is a unified formulation of the main results of Pinkall [ 1 l] and of Hass and 
Hughes [8]. Pinkall only considers the situation when M = Iw3 and proves that in this case 

the quadratic form only depends on the regular homotopy class of the immersion f and 
conversely that if qr,@ = q,,,8, then f and f’ are regularly homotopic. But for M = [w3 there 
is only one Spin structure (for a fixed orientation) and all immersions are homotopic to each 
other. Hence, for M = Iw3, Theorem 3.4 reduces to the result of Pinkall. 

The result of Hass and Hughes is reformulated in the following. 

Proof of Theorem 3.4 (Outline). For any simple closed curve C embedded in the surface 

F, Hass and Hughes introduce the notion of adding a kink along C (see [8, pp. 104 1051 for 
an explicit description). This changes the immersion fin a tubular neighbourhood of C but 
leaves it unchanged elsewhere; moreover, the new immersion g obtained in this fashion is in 
the same homotopy class as 5 It is quite easy, following the explicit description given in 

[S], to see that this operation corresponds to adding locally a full twist along all curves that 
intersect C transversely. 

Now the action of H’(F,Z/2) on Immr(F, M) can be described as follows. Let 
CE H’(F, Z/2), then fc is obtained from fO = f by adding a kink along C, where C is an 

embedded circle in F with dual class c in H’ (F, Z/2) such that J;c is an embedding. The main 
result of [S] is that this action is simply transitive or in other words the map c H fc is 
bijective. This is not an elementary result as the proof of the surjectivity uses in an essential 
way the Hirsh-Smale theorem (but one should note that in the special case of a connected 
surface punctured in a point there is an elementary and self-contained proof-see the 
appendix of [6, p. 1143). 

On the other hand, we have an action of H’(F, Z/2) on Z& defined by 

qJc() = q(a) + 2c(cr) = q(a) + 2(c*.a) (mod 4). 

By Lemma 1.6 this action is again simply transitive. 
Recalling the description of the quadratic forms in terms of half twists and the above 

discussion, it is easy to check that the two actions correspond and that the map q8 is 
a bijection. 0 

Remark 3.5. The map qr,e depends on 0 as follows: H’(M, Z/2) acts transitively on 
Spin(M) (the space of Spin structures). If 0’ differs from 0 by c E H’ (M, Z/2), then a framing 



SPIN AND PIN- STRUCTURES, IMMERSED AND EMBEDDED SURFACES 651 

of an embedded cricle K is @‘-even if and only if either K is O-even and c(K) = 0 or K is 

O-odd and c(K) is non-zero. Hence, for every a E H1 (F, Z/2), 

4.r,e@) = 4f,&) + 2!*(c)(a) (mod 4). 

We end this section with a few words on how to compute dfs,e (but see Section 7 for 
a further discussion). 

First we note that, for a general M, if K is an embedded circle and defines a trivial class 
in H1 (M, Z/2), then df,e(K), does not depend on the choice of the Spin structure 0. In this 
case 4r,e(K) is just the linking number mod 4 of K with the boundary aTub~,r of an 
embedded tubular neighbourhood of K in F (this is well defined since the class of K is 
trivial); see also [lo, p. 2091. 

If the class of K is not trivial the computation of b,,(K) is more complicated but in the 
case M = p3((w) we can give an intuitive way of computing this number. 

For this we will need to introduce some notations. Consider P3(R) as a compactification 
of [w3. As before, we assume we have fixed an orientation on P3(rW), and hence one on R3. 
Fix the Spin structure 0 on P3(R) such that q ,,8 = q+ (see Section l), where j is the 
canonical embedding of lP’(rW) in p3(R). In the sequel we will assume, if not specified 
explicitly otherwise, that this is the Spin structure we consider on p3(R). 

Now let TubKIF be a tubular neighbourhood of K in F embedded by 1: Let PO be the 
plane at infinity in P3, we may always assume, deforming f slightly if necessary, and that in 
some neighbourhood U of PO, TubKIF n U is contained in a plane P transverse to P,,. Now 
we can count the number of left half turns which the normal bundle to F, restricted to K, 
does when moving along K outside of U. We define &,o to be, this number + 1, taken as 

mod 4. 

Remark 3.6. Since H’(P3(lQ), Z/2) = Z/2, P3 has exactly, for a fixed orientation, two Spin 
structures, the second one corresponds to replacing q + by q _ in the above construction. But 
if h is the generator of H’(P3(rW), Z/2) then j*(h) is the class of a line in P’. Hence, if we had 
taken this other Spin structure on p3(rW) we would have added - 1 in place of + 1 (see 
Remark 3.5). 

4. IMMERSED AND EMBEDDED SURFACES IN A 3-MANIFOLD 

We will need to introduce quite a few notations and definitions. 
Following Pinkall [l l] we will say that two immersions of a surface, f and g, are 

equivalent if there exists a diffeomorphism rp of F such that g = f 0 cp. We will denote by [f] 
the class of f under this equivalence relation and call [f ] an immersed surface of type F in 
M (or simply an immersed surface if there is no ambiguity). An embedded surface is an 
immersed surface [f], with f an embedding. We will say that [f] and [g] are homotopic 
(resp. regularly homotopic) if f is homotopic (resp. regularly homotopic) to g 0 cp for some 
diffeomorphism cp. 

Again following Pinkall [l 1, Section 61, we introduce the following definition. 

Definition 4.1. Let [f] and [g] be two immersed surfaces in M of types Fl and F2, 
respectively ( F1 and F2 not necessarily of the same topological type or necessarily connec- 
ted). We will say that [f ] and [g] are cobordant immersed surfaces if there exist a 3-mani- 
fold X, having as boundary the disjoint union of Fl and F2, and an immersion 
h: X + M x [0, l] such that h is transverse to M x (0, l} and f x (0) = hi Fl and 
g x (1) = h[F,. 



658 R. Benedetti and R. Silhol 

Note that the above definition makes sense, i.e. only depends on the classes and not on 
the representatives f and g. This follows from the fact that if cp is a diffeomorphism of F and 
f an immersion of F, then f is cobordant to fo cp by means of the 3-manifold X obtained 
fromFx[O,1]andFx[1,2]bygluing,viacp~’,twocopiesofFx(l}. 

PROPOSITION 4.2. Two embedded surfaces [f ] and [g] are cobordant if and only if they 
have same class in H2(M, Z/2). In particular, two homotopic embedded surfaces of the same 
type are cobordant. 

Proof If [f] and [g] are cobordant then they clearly represent the same class. 
Let L be a line bundle on M associated with the class in H1 (M, Z/2) Poincart dual to the 

fundamental class of [f], In fact we can construct L with a section S such that S is 
transverse to the zero section Z of L and [f ] = S It\ Z. For [g] we can also find L’ and S’ 
with the same properties. If [g] is in the same class as [f] then L and L’ are isomorphic. 
Using this isomorphism we can in fact assume that L = L’. Consider the pullback L* of 
such a line bundle to M x [0, 11, via the natural projection onto M. For t E [0, l] small 
enough we can build a section R such that it coincides with S x {x} on M x [0, t], with 
S’ x {x} on M x [l - t, 11. The transverse intersection of R and Z* realizes the required 
cobordism. 0 

Let [f ] be an immersed surface in a spun manifold (M, 0). Clearly, the isometry class of 
the quadratic form qr,@ does not depend on the choice of the representative f; hence, with 
[f ] we can associate a well-defined eighth root of unity, the Arf-Brown invariant of qr,e. 
We will call this the Arf-Brown invariant of [f]. 

We will need to extend this notion to immersions of disjoint union of surfaces. This we 
do by defining, in this case, the invariant as the product of the invariants of the different 
components. 

PROPOSITION 4.3. Zf [f] and [g] are cobordant immersed surfaces, in a spun 3-mani$old 
M, then they have the same Arf-Brown invariant. In particular if they are of the same 
topological type, the quadratic forms qr,@ and q9,@ are isometric. 

Proof Let X and h : X + M x [0, l] be the 3-manifold and map realizing the cobordism 
and let t: M x [0, 11 --, [0, l] be the projection. Without loss of generality, we may assume 
that toh is a Morse function. Then considering all the possible accidents when passing 
through a critical point of t 0 h, one checks that the Arf-Brown invariant does not change 
(see [ll, pp. 432-4331). The last statement follows immediately from 1.5. 

A more conceptual argument using more deeply the fact that Witt-equivalence is the 
algebraic counterpart to cobordism would run as follows. 

If an immersed surface F is cobordant to zero, the quadratic form vanishes on the kernel 
of the morphism j, : Hi (F, Z/2) + H1(X, Z/2) (j :F G X) and the quadratic form is in fact 
neutral (cf. [6, pp. 109, 1111 and following). Hence, the Arf-Brown invariant is equal to 1. 

5. REVIEW OF SOME FACTS ON COMPLEX CUBIC SURFACES 

We recall here the classical facts about cubic surfaces that we will need in the sequel. 
There are many references for these and from the point of view we are going to use one can 
look, for example, at [7] or [S]. 
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A smooth, complex, cubic surface in P3 (C) is isomorphc to P2 (C) blown up in six points 

p1 , . . . , ps in general position, where by general position we mean that no three points are on 
a line and the six points are not on a conic. Conversely, any surface obtained in this way by 
blowing up P2 in six points in general position can be embedded in P3 as a smooth cubic 
surface (such an embedding is given by the anticanonical line bundle which here corres- 
ponds to the linear series of cubic curves passing through the six points). 

A cubic surface has 27 (complex) lines. These are 

5.1 

- the six exceptional lines E,, . . . , Es obtained by blowing up pl, . . . . p& 

- the 15 Diis pullback of the 15 lines passing through two of the pis; 

- the six C/s pullback of the six tonics passing through five of the p;s (i # j). 

If X is the cubic surface then, H2 (X, Z) 122” is generated by el, . . . , e6 and I where the els 
are the fundamental classes of the Eis and I is the class of the pullback of a general line in P2. 
In terms of these generators the classes of the 27 lines are the following: 

5.2 

~ the ei’s; 

- the classes 1 - ei - ej, i # j; 
- the classes 21- C,“=, eik, ik # ikv for k # k’. 

Note also that the class of a hyperplane section, or if one prefers the class of the 
anticanonical divisor, is -K = 31- 1 ei. 

In fact, the construction provides even more information since we also obtain the 
intersection form on H2(X, h) by noting that 

-(ei.ej)=Oifi#jand -lifi=j; 
- (ei. I) = 0; 
- (1.1) = 1. 

Recalling that the degree of a curve on X is just the intersection number of this curve 
with the hyperplane section, it is easy to prove that the 27 classes described in 5.2 are exactly 
those with self-intersection - 1 and degree 1 (hence lines). 

6. REAL CUBIC SURFACES AND THE RESULT OF SEGRE 

From the construction given in Section 5 it is easy to see that if we blow up six real 
points of P2 we obtain a real cubic surface. Moreover, such a surface will have 27 real lines. 

Of course, there are other ways to obtain real cubic surfaces. One can blow up four real 
points and a pair of complex conjugate points, or two real points and two pairs of complex 
conjugate points, etc. There is also an other way which yields a surface with two connected 
components (for a complete list of real cubic surfaces and a discussion of the different cases, 
see, for example, [13] or [3] or, of course, Segre [12]). In the following, for clarity, we will 
essentially concentrate on the real cubic surface with 27 real lines but the other cases can be 
described as follows. Let U, be the non-orientable topological surface with Euler character- 
istic 1 - k. Then for the real part X(lR) of a smooth real cubic surface X, we have the 
following possibilities, 
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6.1. X(W) is homeomorphic to 

(i) U6 and the surface has 27 real lines; 
(ii) U4 and the surface has 15 real lines; 

(iii) U2 and the surface has seven real lines; 
(iv) U,, z P2 and the surface has three real lines; 

(v) P2~S2 and the surface has again three real lines all contained in the component 
homeomorphic to P2. 

Now let X be a smooth real cubic surface and let D be one of its real lines. Let P be 
a plane in P3 containing D. Since the intersection of P with X must be of degree 3 we must 
have P n X = D u C where C is a conic (eventually degenerated). It is easy-to see that in fact 
P is tangent to X at the points of intersection of D and C and that conversely the tangent 
plane to X at a point XE D must contain D. This means that we have a pencil of tonics 
associated with D and that this pencil defines an involution on D (sending one point of 
intersection of C and D to the other). Obviously, such an involution is real (sends the real 
part to the real part). In particular, it restricts to an involution of D(R). But 
D(R) z F?‘(R) g S’ and there are two types of involutions on S’. One type has no fixed 
points and the other has two fixed points. Segre calls the line D elliptic in the first case and 
hyperbolic in the second. His result is the following theorem. 

THEOREM 6.2. (Segre [12]). 1fX is a smooth real cubic surface, then 

- 12 lines are elliptic and 15 hyperbolic if X is of type 6.1 (i); 
- six are elliptic and nine hyperbolic if X is of type 6.1 (ii); 
- two are elliptic and jive hyperbolic if X is of type 6.1 (iii); 
- all three are hyperbolic in cases 6.1 (iv) and (v). 

One should note that the first inerpretation of Theorem 6.2 that comes into mind, i.e. 
that in the first case the 12 elliptic lines correspond to El, . . . , E6 and the six Cjg and the 15 
hyperbolic lines to the Dij)s (see 5.1), is false (that is, this can be the case-see 8.1(i) and the 
construction in Section 8-but in general it is not so). To see why this is, assume that the 
above interpretation is correct. The lines El, E2, E3, Da5, Dd6 and D56 do not intersect and 
all have self-intersection - 1. Hence, we can blow them down and obtain P2. It we blow up 
again the six points we obtain the same surface, but now three of the six exceptional lines 
corresponding to these points are elliptic and three are hyperbolic. 

The proof of Theorem 6.2 given in [ 123 is very elegant but relies heavily on the geometry 
of the 27 lines and the fact that we are dealing with cubits. We are going to give another 
proof based on the construction of the mod 4 quadratic form associated with the embedding 
of the surface in P3. 

7. EMBEDDED SURFACES IN P3 

In the sequel, we will systematically use the fact that under Poincarb duality the mod 2 
cup-product corresponds to the mod 2 intersection. 

If M = P3 we also have the following well-known facts. 

7.1. (i) If F is a non-orientable embedded surface the intersection of F with a generic 
plane is non-zero (if not it could be embedded in rW3). Since the fundamental class of 
a generic plane generates H2(lP3,Z/2), the fundamental class of F is non-zero. 
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(ii) If we identify H 1 (P3, Z/2) with Z/2 the self-intersection of an embedded surface F in 
P3 is equal to the mod2 Euler characteristic of F. In particular, if F is orientable then its 

fundamental class is zero and if F is non-orientable its Euler characteristic is odd (by (i)). 

In particular, 7.1 implies, that two embedded surfaces F1 and F2 represent the same class 
in H,(lP3, Z/2) z Z/2 if, and only if, they are both orientable or both non-orientable. 
Applying Proposition 4.2 we find the following result. 

PROPOSITION 7.2. Two embedded surfaces [fJ and [fJ in P3 (R) of types FI and F2, 
respectively, are cobordant if and only if FI and F2 are either both orientable or both 
non-orientable. 

COROLLARY 7.3. Letf,g:F + P3(R) be two embeddings. Let 0 be a Spin structure on 
P3(R). Then qf,e and qe,e are isometric. 

Proof: By Proposition 7.2 the two embedded surfaces [f] and [g] are cobordant. 
Hence, qs,e and qe,e have same Arf-Brown invariant by Proposition 4.3. But by 1.5 this 
implies that the two forms are isometric. 0 

As in Section 3 we fix on p3(lR) the Spin structure 0 such that qj,o = q+ (see Section l), 
where j is the canonical embedding of P2([w) in P3@). 

COROLLARY 7.4. Let [f] be an embedded surface in P3 of type F. Let 0 be the Spin 
structure on P3 we have fixed above. Then 4f.e is isometric to 

sQ1 

(see Section 1 for notations) if F is orientable of genus g or isometric to 

if F is non-orientable of Euler characteristic 1 - 2h (recall that a non-orientable embedded 
surface in P3 always has odd Euler characteristic; see 7.1). 

Zf we consider the other Spin structure on P3 we only need to replace q+ by q_. 

Proof. By the same argument as in the proof of Corollary 7.3 all we need to prove is that 
for a given topological type F, we can find an embedding f such that qf,o is of the desired 
form. 

If F is orientable we can take the standard unknotted embedding of F in [w3 c P3. If F is 
non-orientable of Euler characteristic 1 - 2h we can realize the embedding by taking the 
connected sum of a surface F’ c R3 c P3 of genus h and the plane at infinity (this can easily 
be made into an embedding). Since connected sums correspond to orthogonal sums for 
quadratic forms, we obtain the desired form by taking the standard embedding for F’. 0 

8.THERESULTOFSEGREREVISITED 

We fix on lF’3(rW) the same Spin structure as above. Let X be a real and smooth cubic 
surface in P3 and let D be a line in X. Orient D([w) in some way. As we move along D([w) the 
tangent plane T,,,(xED(R)) turns in some direction. Since TX,, = TX+ for x and y in D, 
implies x = y or x = oy (where (T is the involution defined by the pencil of tonics; see 
Section 6), we note that the rotation of TX,, changes direction at a point x0 if and only if x0 
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is a fixed point of c. Hence, the tangent plane takes a full half turn between x and ox if D is 
elliptic and none if D is hyperbolic (see Section 6). 

From the remarks made in Section 3, it is easy to see that D is elliptic (resp. hyperbolic) if 
and only if q,,@(d) = - 1 (resp. qr,a(d) = + l), where f is the embedding of X in P3. 

From this remark we are going to prove that Theorem 6.2 of Segre is a consequence of 
Corollary 7.4. 

We will need to recall some facts on the relations between H2(X(C), Z) and H,(X(!R), Z/2) 
for rational surfaces. 

Let X be a complex rational surface (that is birationally equivalent to P2(@)-this is the 
case for cubic surfaces) defined over [w. For such surfaces we have a natural isomorphism 
(see [13,Ch. III]), 

H’(G,H,(X(@),Z)) = H,(X(‘%z/2), 

where G is the Galois group Gal(Q= / R). 

This isomorphism can be made quite explicit and described as follows. Recall that 
H’(G, H2(X(@), b)) is defined as the quotient of the anti-invariant part of H,(X(@), Z) under 
the action of G, modulo the image of (1 - S), where S is the generator of G. Denote by 
H,(X(@),Z)(l)’ the subgroup of anti-invariant elements of H2(X(@),Z) and let 

YEH~(X(C),Z)(~)‘. Since X is rational and hence the homology of X(C) is generated by 
algebraic cycles we can apply [ 13, Proposition I, (4.5)] ( we assume X([w) # 0) and represent 
y by an algebraic curve C defined over Iw (recall that since C is of real dimension 2, the 
restriction of complex conjugation to C reverses the orientation). The real part of C is of real 
dimension < 1. If dim C(!R) = 1 then C(W) defines a l-cycle in X([w). If dim C(W) < 1 or 
C([w) = 0 we associate with it the 0 l-cycle. By [13, Ch. III], the homology class of the 

l-cycle thus defined only depends on the homology class y. Hence, define cp(y) to be zero if 
dim C(W) < 1 and q(y) to be the class of C(W) if not. We have defined a morphism, 

This morphism is onto and its kernel is precisely the image of (1 - S) (see again [13, 
Ch. III]); hence, cp induces the desired isomorphism. This isomorphism has an additional 
property, namely if we consider the standard intersection form on H,(X(R),Z/2) and on 
H’(G, H2(X(@), h)) the bilinear form induced by the intersection form on X(@), then cp is an 
isometry. 

Let X be a cubic surface defined over R with 27 real lines. Let el, . . . , e6, I be the basis of 
H2(X(C),Z) defined in Section 5. It is easily seen that in this case H2(X(C),Z) is anti- 
invariant and that cp (el ), . . . , cp(e2), cp(l) form a basis of HI (X(R), Z/2). Now by Corollary 7.4 
the mod 4 quadratic form qf,e associated with the embedding of X(R) in P3(R) is isometric 
to 3Q, Iq+. Using the relations of Remarks 1.3 and 1.5 and the fact that the self-intersection 
of the ei’s and of I is odd, we find that we must be, up to permutation of the ei’s, in one of the 
following cases: 

8.1. 

(i) qf,a(&r)) = ... = 4~,&(c6)) = qf,&(O) = - 1. 

(ii) qf,a(@l)) = ... = e,&(e4)) = + 1, 
%,&(e5)) = %,@(&6)) = %,&(I)) = - l. 

(iii) qf,dded = ... = qf,&(ed) = - 1, 

qfdded) = ... = %,dde6)) = qf,&(l)) = + l. 

In fact, all cases can occur (see below). From this and the description of the lines given in 5.2 
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it is quite easy to see that we have qs,@(d) = - 1 for 12 lines and qf,e(d) = 1 for 15 lines. 

Explicitly, we find - 1 for 

- El to E6 and the six Cj’s in case 8.1(i); 
- E,, Es, C5, C6 and the eight Dii’S for which i or j = 5 or 6 but (i, j) # (5,6), in case 

8.l(ii); 
- El to Es, C4 to Cg, Dr2, Dr3, Dz3, Dd5, Dd6 and D56, in case 8.l(iii). 

The same method applies in the case the surface has less than 27 lines. We do the case 
when the surface has 15 first. It is obtained by blowing up four real points in II@ and a pair of 
complex conjugate points. One can take (cp(e,), . . . , (I, (q(I)) (where the ecs are the 

classes of the exceptional lines associated with the four real points) as a basis of 
H’(X(IW), h/2). Then again, by Corollary 7.4 the quadratic form qs,e must be isometric to 
2Q, I q+ . This means that, up to permutations of the ei)s, we have the following. 

8.2. 

(i) qf.&(ei)) = q~,&(ez)) = - 1, 

q/,&+3)) = e,&(eJ) = e,&cp(U) = + 1, 

or 

(ii) qf,e(cP(e,)) = 4f,0@&2)) = 4f,dcP(d) = + 4 

4f,dcP(ed) = qf,dcp(O) = - 1. 

From this an easy computation shows that in both cases we have q,,@(d) = - 1 for 
six lines and + 1 for nine. Explicitly, we find - 1 for El, E2, C3, C4, D12 and Da4 in case (i) and 
for E4, C4, D14, D24, D34 and D56 in case (ii) (recall that OS6 corresponds to the line passing 
through the two complex conjugate points and that its homology class in X(6!) is q(l)). 

Applying the same type of argument to the other cases one finds, with notations similar 
to above, 

- e,&(ei)) = qfdcp(e2)) = + 1, qf,dcp(O) = - 1 (or q~,dcP(ed = - 1 and 

qf,@(cp(e2)) = qr,s(cp(l)) = + 1) in the case the surface has seven real lines, 
- q/,@(cp(l)) = + 1 in the two cases when the surface has three lines, 

and it is again easy to find the result of Theorem 6.2 (note that in the last two cases all three 
lines have a non-trivial class; hence, the same class in HI (X(R), Z/2) = H/2). 

We have said above that the three situations described in 8.1 can occur. To see this recall 
that any set of six non-intersecting lines in X can be blown down to give back P2. The 
different possibilities for qf,e correspond exactly to base changes of H’(X(Q Z/2) that 
replace the eis by an other set of non-intersecting six lines. 

These three cases have an interesting interpretation in terms of the possible configura- 
tions of six points in the plane with respect to the tonics passing through five of them. As 
described in Segre [12, p. 911, there are three possibilities. The first corresponds to the case 
when each of the six points lie inside the conic passing through the other five (recall that 
a conic in P2(R) always has an inside and an outside, the outside being homeomorphic to 
a Mobius band), the second to the case when two are inside and four are outside and the last 
to the case when three are inside and three are outside. Recalling that the pencil of tonics 
associated with the line that is the pullback of a conic through five points is the pullback of 
the pencil of lines through the sixth, it is easy to check that these three cases correspond to 
the three cases of 8.1. 

The two forms of 8.2 can also be interpreted in terms of configurations of four points 
with respect to tonics. Choosing the two complex points to be the cyclic points at infinity we 

TOP 34/3-L 
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can describe this in terms of circles passing through three points. In the first case, two of the 
real points are interior to the circle passing through the three others and two are exterior; in 
the second, three are exterior and one is interior. 

The preceding discussion may lead to some confusion. It shows how the expression of 
the form q/,8 depends on the choice of six points in P2 but the form itself is of course the 
same. For cubic surfaces we have an even stronger result. 

PROPOSITION 8.3. For a real cubic surface X in P3, the mod4 quadratic form associated 
with the embedding of X(R) in P3(R) is independent of the choice of the algebraic embedding. 

Proof: The result follows from the fact that the embedding of X in P3 itself is canonical. 
More precisely, it is associated with the anti-canonical class, and two embeddings of X in P3 
differ by an automorphism of P3. Since an automorphism of P3 does not change the type, 
elliptic or hyperbolic, of a line in X we have the result. 0 

On the other hand, one should beware that for a general surface the forms depends on 

the embedding (but not its isometry class of course). 

9. RELATIONS WITH THE QUADRATIC FORM OF ROHLIN 

If a cubic surface X has 27 real lines then it is well known that X is an M-surface (that is 
C dim Hi(X(@), Z/2) = 1 dim Hi(X(rW), E/2)). For such surfaces, Guillou and Marin, general- 
izing results of Rohlin, have also constructed a quadratic form mod4. That this is not the 
same as the quadratic form we have computed is easily seen by comparing the Arf-Brown 
invariants. In the case of the cubic with 27 real lines our form has Arf-Brown invariant 
equal to 1 (considered as an element of h/8) while the Rohlin form has invariant 
- 5 z 3 (mod 8) (see [6, p. 981). 

In fact, we can describe the Rohlin form in the following way. Let pl, . . . , p6 be the six 
points in general position in p*(R). Let E,, . . . , E6 be the corresponding real lines in X(aB) 

and fl, . . . , fs their classes in H,(X(IW), Z/2). Since blowing up is the same as taking 
a connected sum with P*(c) with reversed orientation, we see that we have qR(fi) = - 1. On 

the other hand, if we let h be the class of the pullback in X ([w) of a general line in lP*(Iw) then 
qR(h) is the same as for a line in p*(R) 4 P*(c); hence equal to 1. An easy computation 
shows then, that we have qR(d) = - 1 for all 27 lines in X(lR). One should note that the class 

h above is not canonical, i.e. depends on the choice of the six points (or if one prefers, the 
choice of the six non-intersecting lines), but it is easy to check that the description of qR we 
have given is independent of this choice. 

On the other hand, the description of qf,e depends on this choice and we must make 
things independent. For this we first consider not h but the canonical class. To do this, let 
K be the canonical class on X(@), then it is well known that for the canonical class (mod 2) 
k on X(lR) we have k = q(K) (see Section 8 for the definition of cp). We have K = 1 ei - 31 
on X(@) and hence k = q(l) + C q(ei) = h + C 1;: on X(Iw). Second we note that if dl, . . , d6 
are the classes of six non-intersecting elliptic lines, that is (dip dj) = 6ij and q/,e(di) = - 1, 
then 1 di is independent of the choice of the dis. To see this recall that the 12 elliptic lines 
form a double six (see [12] or the computations made above) and that they split into exactly 
two subsets of six non-intersecting lines. From this, the assertion reduces to a trivial 
computation. We can now state the following proposition. 
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PROPOSITION 9.1. Let X be a real cubic surface with 27 real lines. Let qf,e be the quadratic 
form associated with the embedding of X(W) in P3(rW) and let qR be the Rohlin form. Let 

d 1, . . . , d6 be the classes of six non-intersecting lines such that q/,e(di) = - 1 for each i and let 

k be the canonical class. Then 

qRtX) = qf,dx) + 2 ((k+jld+x) 
where (, ) is the intersection form on X([w). 

Proof: The choice of the di’s essentially means that we are in the situation described in 
8.1 (i). In this case the assertion of Proposition 9.1 is trivial to check. 

Another case in which we can compare the two forms is the case of X = P’ x [Fp’ 
embedded in P3 as the surface defined by x2 + y2 - z2 - w2 = 0. Let e1 (resp. e2) be the 
classofP1x{y,)(resp.{x,}xP’)inH,(X([W),2/2)andchoosef:X~P3tosendP1x{y,} 
(resp. (x0} x P’) to the 1’ me defined by y + z = 0 and x - w = 0 (resp. y - z = 0 and 
x - w = 0). By the remarks made in Section 3 we see that qJ,@(e,) = 2, qf,e(e2) = 0 and, of 
course qf,@(eI + e2) = 0. On the other hand, for the Rohlin form we have qR(el) = 
qR(e2) = 0 and qR(el + e2) = 2. In other words, 

in this case. 
(IR(x) = qf,f&) + 2(e2? x> 

0 

Remark 9.2. The Rohlin form exists in a somewhat more general situation than just 
M-surfaces and exists for surfaces in which X(Iw) is characteristic (see [6]). This is the case 
for the cubic surface with two real connected components. Such a surface is obtained by 
taking a rational ruled surface with real part homeomorphic to two spheres and blowing up 
a point on one of the spheres (see [13, VI (5.4.5)]). From this description we see that the 
Rohlin form on this surface is q- and hence again different from our form. 

10. IMMERSED AND EMBEDDED SURFACES IN A SPUN 3MANIFOLD (CONTINUED) 

In Section 4 we have introduced various equivalence relations between immersed 
surfaces, homotopy, regular homotopy, cobordism and the relation defined by the 
Arf-Brown invariant. To be able to compare these with more ease, we introduce some 
notations. Let [f ] and [g] be two immersed surfaces in a spun 3-manifold (M, 0). We will 
write [f] -E [g], where E = h, r, c or q to mean that 

(i) [f ] and [g] are homotopic if E = h; 
(ii) [f ] and [g] are regularly homotopic if E = r; 

(iii) [f ] and [g] are cobordant if E = c; 
(iv) qf,e and qs,s are isometric if E = q. 

We will only use this last notation if [f ] and [g] are of the same topological type (this is the 
only case where it makes sense). Note that if the two forms are isometric, then the isometry 
is realized by a diffeomorphism of the surface, since the intersection form is respected. 

Since for the remainder of this section we will be working with a fixed spun 3-manifold 
(M,O), we will write qs in place of q,,+ Also for the remainder of this section we will be 
working with a fixed surface F. In particular, all immersed surfaces will be of the same 
topological type. 

We have shown above the following implications. 
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10.1. 

Cfl WI Cd = fCf1 -h Cd and Cfl NC Cd) => {Cfl -h Cd and Cfl w4 Cd). 

We are going to see that in general these implications cannot be reversed. 
Let us fix, as usual, an homotopy class 5 of maps from F to M. If f and g are immersions 

belonging to 5 we know from [8] (see (3.4)), that there exists a circle C embedded in F such 
that g, up to regular homotopy, is obtained from f by adding a kink along C. Unfortunately, 
for an immersed surface [f] the notion of adding a kink to [f] along C is not well defined, 
since a diffeomorphism cp will change C. To circumvent this difficulty we proceed as follows. 
Let K be a curve, embedded in M and lying in [f], i.e. in the image of f for any 
representative f (note that for any representative, fit is an embedding). We will say that [g] 
is obtained from [f] by adding a kink along K if there exist representatives f and g such 
that g is obtained from f by adding a kink along C = f-‘(K). Note that if g is obtained 
from f by adding a kink along C, then g 0 cp is obtained from f 0 cp by adding a kink along 

@i(C) = (fVV(K). 
We are going to analyse under which conditions on K we have [f] wE [g]. 
Let f be an immersion and denote by y the class of C = f-‘(K) in Hl (F, Z/2). From the 

definition of q,-, we see that, although y depends on J qr(y) only depends on [f] and not on 
the choice of the representative $ We will use the notation 

4r.f l(K) 

to denote this number. 

PROPOSITION 10.2. [f] -S [g] if and only ij- q&C) = 0. 

Proof: Let f and g be such that g is obtained from f by adding a kink along 
C = f-‘(K). We have, by the proof of Theorem 3.4, that 

q&) = q&) + 2(7.x) 

where y is the class of C. 
On the other hand, 

4s(Y + x) = q&) + 4/(Y) + 2(Y.X). 

Since, obviously, 

;i 
Q(Y+X) = 1 i4f(‘), 

X 

combining these two relations we find that 

A(q,) = ( -i)*“‘A(ql) = ( -i)q[fl(K)A(qf). 

Hence the proposition by 1.5. q 

LEMMA 10.3. Zf[f] -C [g], then q&K) = 0 (K as above) and the class seHl(M,Z/2) 
of K in M is 0. 

Proof: We recall a notion due to Hass and Hughes [8]. Let C, be the locus of 
non-injectivity of 1: We may assume, staying in the same regular homotopy class that f (C,) 
is formed by double curves with eventually isolated triple points in the image off (such an 
immersion is called generic). Call 6,. ,,., E H 1 (M, Z/2) the class off (C,). This only depends on 
the class [f ] and is a regular homotopy invariant. 
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Now adding a kink along f - ’ (K) makes K a double curve in the image. Hence, we have 

6 g,M = d,,hf + 6. 

On the other hand, if [f] and [g] are cobordant, with cobordism map h: X + 
M x [0, l] we can define, in a way similar to the above, the locus of non-injectivity & of 
h and consider I@,,) as a 2-chain in M x [0, 1). The boundary of this 2-chain is by 
construction f(Z,) + g(C,). Hence, f(IZ,) and g(IZg) have same class in Hr(M x 
[0, 1],2/2) = H r (M, Z/2) and 6 = 0. 0 

We note that we have in fact proved that if [f] wC [g], then f(Z,) and g(C,) are 
homologous as boundaries of h(C,). For later use we state this formally. 

LEMMA 10.4. If [f] wE [g] then 6,,, = 8g,M. 

PROPOSITION 10.5. Assume that q&K) = 0 and that K represents 1 gn,(M). Then [f] 
and [g] are regularly homotopic. 

COROLLARY 10.6. Zfn,(M) z Hr(M, Z/2) then 

Cfil -r cJ-21 * CfJ -h Chl and C.fJ wc Chl. 

Proof By Lemma 10.3, [fr] -C [f2] implies that 6 = 0 (6 the class of K in H,(M, Z/2)). 
Since x,(M) g H,(M, Z/2), K represents 1 E nl(M) and we can apply Propo- 
sition 10.5. 0 

Proof of Proposition 10.5. As usual choose f and g such that g is obtained from f by 
adding a kink along C = f - l(K). Let cp be a Dehn twist along C and let y be the class of 
C in H,(F, Z/2). Since q*(a) = a + (y.a)y, it is easy to check that the hypothesis qr(Y) = 0 
implies 

4s = 4,“cp*. 

On the other hand, from the construction of qf (see Section 3) it is easy to see that 

and hence 

Now, by Theorem 3.4, if g and fo cp are homotopic they are regularly homotopic and so 
are [f] and [g]. Hence, we only need to show that g and fo cp are homotopic, or 
equivalently that f and f 0 cp are homotopic. To prove this last statement, let T be a tubular 
neighbourhood of C in F and h : T + D, D a disk in M, realizing the homotopy to a point of 
fit. Now f and focp are homotopic to maps f’ and f” such that 

- f’ and f" coincide outside T (since 40 is a Dehn twist). 
- f iT and f i> factor through h. 

Since the disk is contractible, f’ and f” are homotopic relatively to F \ T and this ends the 
proof. 0 

PROPOSITION 10.7. [f] wC [g] if, and only if, q&K) = 0 and the class 6 of K in 
H 1 (M, E/2) is zero. 
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Proof: The “only if” part has been proved in Lemma 10.3. 
Let us prove the “if” part. 
Let A be a collar of K in G =f(F) c M. Then A defines a framing of NklM (take an 

inward pointing vector in A and then complete) and the hypothesis qr f I (K) = 0 implies that 
this is an even framing. 

By a result of Kneser (see, for example, the book [6, pp. 56-721) the fact that 6 = 0 
implies that K bounds a surface S (not necessarily orientable) embedded in M. By [lo, 

Theorem 4.31, the framing defined by a collar of K in S defines again an even framing. 
Since both framings are even we may assume, performing, if necessary, a rolling-up in 

a tubular neighbourhood U of K in M (see [2]) that S is transverse to G along K and meets 
G transversely outside of a tubular neighbourhood U. 

Now consider a Morse function 

r:S+[O,l] 

having a unique maximum such that r-r (0) = K. 
Since r has a unique maximum we can find a E [0, l] such that a is not a critical value 

and r-l(~) = k is homotopic to zero in M. 
Following the level lines of r between 0 and tl we can deform (F, f; K) into (fi, f;: I?). We 

can even make this deformation transverse and this yields a cobordism between f : F + M 
and f F^ + M. We can do the same with g and find a cobordism between g and 4 : F^ + M. 

Between two consecutive critical values of I we can extend the isotopy between the level 
lines to an ambient isotopy of M. At a critical point the analysis is essentially local and we 
can follow the argument of Pinkall [ll, pp. 432-4331) and conclude that q?(k) = 
qr(K) = 0 (in fact one can check this directly by noting that the typical situation is the one 
described in Fig. 3). 

But now i is obtained from f^ by adding a kink along Z?. By Proposition 10.5 this means 
that f is regular homotopic to 6 and hence cobordant. This proves the result. 0 

Examples 10.8. We are now going to give simple examples showing that the implica- 
tions of 10.1 cannot be reversed in general (see also Section 12 for other examples). 

Consider M = S’ x T2 (where T2 is a compact, connected surface of genus 2). 
Let C be the circle shown in Fig. 4. 
Fix a Spin structure 0 on M such that if f is the inclusion of the torus S’ x C, then 

qf,e({x) x C) = 0 and qf,e(S’ x (~1) = 0. 

Fig. 3. 

Fig. 4. 
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Let g1 be obtained from f by adding a kink along {x> x C. By Proposition 10.7 they are 
cobordant. On the other hand, since the mod2 homology class of (x) x C in S’ x C is not 
zero, g1 and f are not regularly homotopic by Theorem 3.4. Now we note that since 
f, : 7t1 (S’ x C) -+ n1 (M) is injective and 7~~ (S’ x C) is abelian the only diffeomorphism cp of 
the torus such that (fi cp)* = f, must be the identity. But g1 and f are homotopic, hence 
gr, = f, and [f] and [gr] cannot be regularly homotopic. 

Let g2 be obtained from f by adding a kink along S’ x {y>. Then [f] -4 [gZ] but they 
are not cobordant. 

Propositions 10.2 and 10.5 suggest the following question. Assume that f and g are 
cobordant (hence g is obtained by adding a kink to f along a circle C such that q,-(C) = 0 
and [(C,fic)] = 0~Hr(M,2/2)). Iff,([C]) # 1 in nl(M) when can we conclude that fand 
g are regularly homotopic? 

One should expect that they are not in general regularly homotopic and this turns out to 
be the case, but there are exceptions. Before turning to these, however, we want to give some 
additional necessary conditions. 

For simplicity, we will limit the following discussion to the cases of the torus. The 
general case can be treated along the same lines but is more involved and yields more cases. 

We fix some notations. For the remainder of this section, F will denote a torus, M an 
orientable 3-manifold with a fixed Spin structure, f: F -+ M an immersion and C an 
oriented circle in F such that ftc is an embedding. We want to compare f and the immersion 
g obtained from f by adding a kink along C. By Proposition 10.2 we know that f and g will 
not be regularly homotopic if q,-(C) # 0. So we assume throughout that q,(C) = 0. 

Let a be the class of C in H 1 (F, Z). By assumption on C we have qs (a) = 0 (where here we 
write a for its reduction mod 2) and we can find a basis (a, p) of H1 (F, Z) such that q/(j) = 0 
also. 

If f and g are regularly homotopic, then there exists cp~Difl(F) such that 

-_I0 cp, g (and hence f) are homotopic. 

On the other hand, 

- 4s = qf‘p 

where p is the Dehn twist along C, such that, 

- p*(a) = a; 

-P,(B) = a + 0. 

Setting Q = (pop-r we get 

- 4/ = 4f‘& 
- f 0 R and f 0 p- 1 are homotopic. 

Let A be the matrix of 

with respect to the basis (a, fl). 
Since qf = qf o n, we must have either 

mod 2 (10.9a) 
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mod 2. (10.9b) 

Moreover, as fo R and fo p- ’ are homotopic, we have the following. 

10.10 

(i) (fo Q,(a) = f, (a); 
(ii) (foQ,(B) =A( -a + P). 

Relations 10.9 and 10.10 show that, if f and g are regularly homotopic, f,(a) and f,(b) 
must satisfy some non-trivial relations. In particular, if the subgroup G of HI (M, Z) 

generated by the images of a and /I is isomorphic to H, then taking reduction mod 2 shows 
that we must have f,(a) - 0 mod 2 in G, identified with Z. But in this case f and g can be 
regular homotopic as is shown by the following example. 

Let, as before, F be a torus and (a, p) be a basis of HI (F, Z). Let A4 = S’ x T,, where T2 is 
a surface of genus two. Let C be the curve indicated in Fig. 4, x0 a point in S’ and 
I- = {x0} x C. The class of I- in HI (M, 2’) is zero but its class in 7cn, (M) generates an infinite 
cyclic subgroup. Let U be a tubular neighbourhood of r in M and let y (resp. 6) be 
a longitude (resp. meridian) on 8U E S’ x S’. 

Let f : F + t3U be a diffeomorphism such that 

f,(a) = 2~ + 6, f*(B) = 37 + 6 

that we consider as an immersion of F in M. For a fixed Spin structure on M we can always 
choose y and 6 in M in such a way that qs(oz) = q,(b) = 0. 

Now let g be obtained from f by adding a kink along a curve representing f,(a). We 
have g,(a) = 0 and qJ/?) = 2. On the other hand, if $~llif(F) is such that $*(a) = a and 
$,(p) = 3a - B, then f is homotopic to f 0 $ and qg = qf_ $. By Theorem 3.4 we conclude 
that f and g are regular homotopic. 

In the case G is finite we also have similar obstructions and in this case also, the surfaces 
can be regular homotopic when the obstructions are lifted. Here is an example. Let again 
F be a torus and let M be the lens space obtained by the surgery with coefficient 6 on the 
trivial knot in S3. We have x1(M) 2 Z/6. Let K be a circle, embedded in M and generating 
xl(M). Let as above y and 6 be a longitude and a meridian on the boundary of a tubular 
neighbourhood of K and let f be an immersion associated with a diffeomorphism that maps 
a to 2y + 6 and /? to 3y + 6. Letting $ ED@(F) be such that $.+(a) = a and $,(b) = 3a + /3, 
we can conclude as in the previous case. 

11. THE COBORDISM GROUP OF IMMERSED SURFACES 

The set of cobordism classes of immersed surfaces in a 3-manifold carries a natural 
semi-group structure induced by the action of taking disjoint unions. We will call this 
semi-group N2 (M). 

Remark 11.1. The action of taking immersed connected sums, denoted #, is also well 
defined up to cobordism and in fact induces the same semi-group structure on N2(M). We 
will make frequent use of this fact by considering in many places connected sums in place of 
disjoint unions. On the other hand, one should beware that it is not well defined up to 
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regular homotopy and not even up to homotopy, since there are infinitely many non- 
homotopic connected sums of parallel copies of F in F + S’. 

It is well known that Nz(R3) is a group (the inverse is obtained by taking the reflection 
through a plane). As a by-product of our next result we are going to see that this is also the 
case for arbitrary orientable 3-manifolds M. But first let us fix some notations. 

By Proposition 4.3, the Arf-Brown invariant of an immersed surface [f] only depends 
on its cobordism class. Hence, we can speak of the Arf-Brown invariant Ax of an element 
X in N,(M). Pinkall [l l] uses this construction to give a new proof of the result of Brown 
[4] that N,([w3) z Z/8. For commodity we will identify pa with Z/S and consider Ax as an 
element of Z/8. 

Recall the notation 6,,, E H1(M, Z/2) introduced in the proof of Lemma 10.3. By 
Lemma 10.4 a,,, is a cobordism invariant, and for X E N2 (M) we can define 6, as 6,,, for 
a representative f of X. 

If f : F + M and g : G + M are cobordant, then (F,f) and (G,g) represent the same 
homology class in Hz(A4,Z/2) and we can speak of Hx EH~(M,Z/~). 

Finally, we will consider on 

T(M) = H, (M, Z/2) x Hz(M, Z/2) x Z/8, 

the following twisted group structure: 

(6, H, A) + (8, H’, A’) = (6 + 6’ + H. H’, H + H’, A + A’) 

where H. H’ is the intersection product in Hz. 

THEOREM 11.2. The map tj: N2(M) -+ T(M) dejined by 

$(X) = (6x, Hx, Ax) 

is an isomorphism. In particular N,(M) is a group. 

Proof We first note that for R3 the map establishes an isomorphism Nz(lR3) z Z/8 (see 
[ll]). This implies that N2(M) contains a subgroup C(M), isomorphic to Z/8, of immersed 
surfaces in a coordinate chart of M. Also, N,(M) contains the subset E(M) of classes of 
embedded surfaces. 

Let us prove that $ is onto. Let (6, H, A)E T(M). Represent H by an element FEE(M). 
Represent 6 by an embedded curve K in M. Consider a tubular neighbourhood of K in 
M and let T be its boundary torus. Add a kink along a longitude K’ of T to obtain an 
immersed surface [f : T -+ M]. By construction, H,,, = 0 and hence the intersection [f] . F 
is zero. If A,,, + A, = B, take SE C(M) such that As = A - B. Clearly, since S lies in 
a coordinate chart, we also have ([f] + F). S = 0. But this means that I& [f] + F + S) = 
(6, H, A) as desired. 

We will need the following lemma. 

LEMMA 11.3. Every XE N2(M) can be represented by a sum F + S + [f], FEE(M), 
SE C(M) and [f ] as above. Moreover, we can choose the decomposition in such a way that 
qrfl(K’) = 0 hence so that A,,, = 0. 

Let us show that the above lemma implies that $ is injective. Let X1 = Fl + S1 + [fi] 
and X2 = F2 + S2 + [f2] be two decompositions as in Lemma 11.3 and assume that 

$(X1) = $(X,). By construction Hxi = HFi so HF, = HF2 and F1 and F2 are cobordant by 
Proposition 4.2 and AF, = AF, by Proposition 4.3. We also have by construction Atfil = 0; 
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hence, As, = As,. Since S1 and S2 are in a chart the result of Pinkall mentioned above 
implies that S1 and Sz are cobordant. 

Now, [fi] + [J is cobordant to the connected sum [fi]#[fi] and this surface is 
obtained from the surface T1 # T2 by adding kinks along disjoint longitudes K; and K; such 
that qT, # T,(KI) = qT, (ICI) = 0. Let y be a simple curve in T1 # Tz representing K; + K; mod 

2. Then [fi] # [fi] is cobordant to the surface obtained from T, # T, by adding a kink 

along Y. But now Y = bt,,r + &J~I = 0 and qr, # TV (Y) = qTIXT2(K;) + qr, # r,(K;) = 0. BY 
Proposition 10.7 this implies that [fr ] # [fi] is cobordant to the bounding surface Tl # T2; 
hence to 0. Applying this to two copies of [fi ] we see that [fi ] is its own inverse. Then 

applying to VII and IX1 we conclude that [fr ] = [ fi] . 

Proof of Lemma 11.3. Let X be a generic immersion. We will proceed in several steps. 

Step 1: X = X’ + C where C E C(M) and X’ has no triple points. 

Let B and B be the two versions of the Boy surface in a coordinate chart of M. Let x be 
a triple point of X. By taking the connected sum of X and B or of X and B (depending on the 
nature of the triple point) we can eliminate by regular homotopy the triple point x and the 
triple point of B (or of B). On the other hand, B + B is cobordant to 0; hence, 
X = (X # B) + B (resp. X = (X # B) + B) and (X # B) (resp. (X # B)) has one triple point 
less than X. Repeating the operation for each triple point we obtain the claim. 

Let X be without triple points. Then, in particular, the locus of double points of X is the 
disjoint union of simple (i.e. non-self-intersecting) double curves. Let K be one of these. 
A tubular neighbourhood of K in X can be considered as bundle with fibre isomorphic to 
((x, y) 1 xy = 0,x2 + y2 < 1). We can count the number, mod 4, of quarter turns this 
configuration does when moving along K. Denote by t(K) this number (as is easily seen this 
characterizes the bundle). 

Step 2: Let K, and K2 be two disjoint simple double curves in X. Then we can replace 
X by a surface X’ where K, and Kz are replaced by a single simple double curve K such that 

t(K) = t(K,) + /(K,). 
Consider the situation described in Fig. 5. Make two holes in each configuration (as 

indicated in Fig. 6), then add a handle connecting PI and P3 and a second handle 
connecting Pz and P4 as indicated in Fig. 7. 

Fig. 5. 
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Fig. 6. 

Fig. I. 

Note that the handle connecting PI and P3 (resp. Pz and P4) does not intersect P2 nor P4 
(resp. PI nor P3) except at two points of K, and two points of Kz. Call Ha the union of these 
two handles. Adding extra handles if necessary and passing Ha “through” these handles, we 
may assume that Ha has no further intersections with X’. In particular, we have not added 
double curves or triple points. 

This proves the claim. 
Before starting our next step we need to introduce some notations. 
Let Fl be an immersion in a coordinate chart of M of the Klein bottle such that the locus 

of double points of F1 is a simple double curve K1, unknotted in M such that /(K,) = 2. Let 
& be an immersed surface in a chart of M such that & = Fl + F and F1 7s cobordant to 
zero. 

Let F2 be the immersion of the torus in a chart of M obtained by adding a kink to 
a standard embedding T of the torus along a curve Kz such that qT(K,) = 2. Let 
& = F2 + F’, f2 cobordant to 0. 

Step 3: Applying Step 1 we may assume that X = X’ + C, C E C(M) and X’ without 
triple points. Applying Step 2 we may assume that the locus of double points of X’ is 
a simple and connected double curve K. 
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Assume that e(K) = 2. Then applying Step 2 to X’ to F1 we obtain X = X” + C’, 
C’ E C(M) and e(K’) = 0, where K’ is the double curve of X”. 

Assume that e(K) = 0 but that qx(K) = 2. Then applying again Step 2 to X’ and FZ we 

obtain X = X” + C’, C’E C(M) and 1(X’) = 0 and qxrr(K’) = 0, where K’ is the double 
curve of X”. 

Step 4: Let X = X’ + C, C E C(M) and X’ without triple points and locus of double 
points a simple connected curve K such that both f(K) and qxr(K) are zero. Then 
X = F + S + [f], F, S and [f] satisfying conditions of Lemma 11.3. 

For this we perform a “Rohlin surgery” along K which, in each fibre, makes the 

replacement shown in Fig. 8. 
In such a way we isolate the double line K in a torus immersed in a tubular neighbour- 

hood of the knot K, so that X’ is replaced by the union of such an immersion and an 
embedded surface. Since qx(K) = 0 this is again true in the new surface, hence the claim. 

Combining steps 3 and 4 we see that the lemma is proved if l(K) = 0 mod 2. 

Fig. 8 

z= l/4 z = l/2 z=l 

Fig. 9. 
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Fig. 10. 

Step 5: It remains to consider the case e(K) = 1 mod 2. For this we need to introduce 
the surfaces F3 and F3. To construct these we consider the surface fibred over - 1 6 z < 1 

with fibres as shown in Fig. 9. 
We can complete this into an immersion in R3 of a surface of Euler characteristic - 1 by 

bounding the simple curve c in the fibre above z = 1 by a disk D and identifying the two 
figure 8’s of fibres above z = - 1 and z = 1 (without twisting). This is F3. We obtain F3 from 
F3 by taking the mirror image of F3, so that F3 + F3 is cobordant to zero. Note that F3 has 
a single triple point contained in the intersection of the simple double curve 
K3 = (0) x [ - 1, l] and the figure 8 contained in the disk D. Moreover /(K,) = 1. 

Let X = X’ + C as before and assume that for the simple connected double curve K of 
X’ we have t’(K) = 1. Applying Step 2 to X’ and F3 we obtain X = X” + C’, C’ E C(M), X” 
with a simple double curve K’ such that t(K’) = 2. On K’ we have a single triple point 
situated as before in the intersection with the figure 8 in the disk D. Now we can perform 
a surgery similar to the one made in Step 4 and isolating the double curve in the immersion 
of a Klein bottle. Moreover, in the disk D we see the passage as shown in Fig. 10. 

By further applications of Step 4 we can eliminate the double curves cl and c2. Adding F3 
to this construction we have obtained X = F + S + [h] where [h] is an immersion of 
a Klein bottle in a tubular neighbourhood of K’. But in this case, although we still have 

a triple point, we can apply Step 3 and again Step 4 to obtain a decomposition satisfying the 
conditions of the lemma. If 6’(K) = 3 we can do the same construction replacing F3 by F3. 
This proves Lemma 11.3 and that $ is bijective. Since II/ is obviously a morphism this ends 

the proof of Theorem 11.2 0 

Remark 11.4. The difference between the cases t(K) - 0 mod 2 and l(K) = 1 mod 2 is 
that in the decomposition F + S + [f], F + [f] h as no triple point in the first case 
whereas F + [f] carries one in the second. The difference comes from the mod 2 intersec- 
tion number (6,. H,) in M. 

12. COMPLEMENTS ON IMMERSED SURFACES IN P3 

We first note that in the case of P3 we have the following application of the results of 
Sections 4 and 10. 



676 R. Benedetti and R. Silhol 

PROPOSITION 12.1. (i) Two homotopic and cobordant immersed surfaces in P3 are 
regularly homotopic. 

(ii) Two embedded surfaces in P3 are regularly homotopic if and only if they are 
homotopic. 

Proof: (i) is just a special case of Corollary 10.6 and by Proposition 4.2; (i) implies 

(ii). 0 

We also note that in the case of P3, Theorem 11.2 yields the following theorem. 

THEOREM 12.2. Nz(p3) is isomorphic to E/4 x ZJS. 

All we need to note is that the twisted group structure is Z/4 x Z/8. 
As a last application of our methods we are going to show that one can select a finite set 

of elementary immersed surfaces in P3 such that every immersed surface can be realized as 
the connected sum of elementary ones, generalizing what is done in [l l] for R3. Here is a list 

of elementary immersed surfaces in P3. 

12.3. 

(i) T is the standard embedded torus in an affine part of P3. 
(ii) T’ is the non-trivial immersion of the standard torus in an affine part of P3. This is 

obtained from T by adding a kink along tl + p, where (tl, /?} is a standard basis of 
H1 (T, Z/2) such that q(a) = q(p) = 0. 

(iii) B and B’ are the two Boy immersions of P2 in an affine part of P3. 
(iv) T* is an embedding of the standard torus and f*(h) is non-trivial (h being the 

generator of H’ (P3, Z/2)). 
(v) T*’ is obtained from T* by adding a kink along c1 + b, where {rx, p} is again 

a standard basis of H1(T*,Z/2) with q(a) = 0 and q(8) = 0. 
(vi) T *” is obtained from T* by adding a kink along a, q(a) = 0 and a non-trivial in 

H,(p3, Z/2) (note that this means that /? is dual to f*(h) in T*). 
(vii) B* is the standard embedding of P2 in P3. 
(viii) B *’ is obtained from B* by adding a kink along the non-trivial element of 

H I (B *, W’). 

PROPOSITION 12.4. Every immersed surface in P3 is regular homotopic to an immersed 
connected sum of surfaces in the above list. 

Proof: First recall the well-known lemma. 

LEMMA 12.5. (i) Two maps f; g: F + P3 are homotopic if and only if f *(h) = g*(h) where 
h is the generator of H1 (p3, Z/2); 

(ii) For every c E H’(F, Z/2) there exists an f such that f*(h) = c. 

Proof: Here is a quick proof H’ (F, Z/2) classifies, up to isomorphism, the line bundles 
on F. In other words, there is a one to one correspondence between H’(F, Z/2) and 
[F, BocI,], via f % f *(co), w being the first Stiefel-Whitney class of the universal line 
bundle. On the other hand, one can prove directly that every line bundle on F carries 
a classifying map f : F + P3. If f and g are two such maps, any homotopy between f and g, 
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eventually regarded as maps into P”, with n big enough, can be “projected” onto P3. Hence, 

the assertions by the naturality of the Stiefel-Whitney class. 0 

As a first consequence of Lemma 12.5(i) we note that, in the case of P3 we do not have 
the problem mentioned in Remark 11.1, and we can speak of the homotopy class, and hence 
of the regular homotopy class, of an immersed connected sum. 

Proof of Proposition 12.4 (continued). Let f : F + P3 be an immersed surface. 
First assume that f*(h) = 0. This case is easy (and in fact contained in [ll]). We note 

that the quadratic forms corresponding to T, T’, B and B’ are, respectively, Qr, Qz, q+ and 
q _. By considering a suitable immersed connected sum of these components we can find an 
immersion g of F with quadratic form qs isometric to qf. Let cp be a diffeomorphism of 

F such that qs 0 ‘p* = qa. Since 

cp*(f*(w) = cp*(o) = 0 = g*m, 

f 0 cp and g are homotopic and we can apply Theorem 3.4. 
If f *(h) # 0, let y be dual to f*(h). 
If (y . y) = 1 we have an orthogonal sum decomposition (y)lH of H1 (F, Z/2). To this 

decomposition corresponds a connected sum decomposition P2 #F’ of F. Depending on 
whether q/(y) = 1 or - 1 there also corresponds a decomposition q+lq’ or q-_Lq’ of qf, 

Proceeding as above, by taking connected sums of components of the form T, T’, B or 
B’, we can find an immersion g’ of F’ such that qef is isometric to q’. Let cp; be the 
corresponding isometry of H, (F’, E/2) = H. We can extend this to an automorphism ‘p* of 
H1(F, Z/2) by letting q,(y) = y. Since rp, lifts to a diffeomorphism of F we find that [f] is 
homotopic to B* # [g’] (resp. B*‘# [g’]) and hence regularly homotopic, since by construc- 
tion qr 0 cp = q + Iq’ (resp. q _ Iq’). 

If (y. y) = 0 there are two possibilities, either there exists y’, such that (y. y’) = 1, 
(y’. y’) = 0 and an orthogonal sum decomposition, 

H,(F,Z/2) = I-IH, 

where I is the subspace generated by y and y’, or there is an orthogonal sum decomposition, 

Hi (F, Z/2) = EIH, 

where the restriction of the intersection form to H is even, E is generated by {e1,e2}, 
(ei.ej) = 6, (the Kronecker symbol) and y = e, + e2. 

The first corresponds to a connected sum decomposition {torus} #F’ and the second to 
{Klein bottle} # F’. 

Replacing B* and B*’ by T*, T*’ or T*” (resp. B*#B*, B*#B*’ or B*‘#B*‘), 
depending on whether the restriction of qr to I (resp. E) is Q1 with qf(y) = 0, Qz or Q1 with 
q,-(y) = 2 (resp. 2q +, q + Iq _ or 2q _), we can proceed essentially in the same way as in the 

case (y.y) = 1. cl 

Remarks and examples 12.6. (i) Clearly, the embedded surfaces T and T* are cobordant 
but not homotopic. 

(ii) The immersed surfaces B* #B’ and B*’ # B are homotopic and q-equivalent but not 
regularly homotopic. The reason for this is that, if we call f the first immersion and g the 
second, the automorphism such that qs 0 cp* = qs will exchange the standard generators of 
H,. But since f*(h) = g*(h), f 0 cp and g will not be homotopic. In fact, f 0 cp and g are not 
even cobordant, since +/;p, = 0 while 8g,Fa # 0 (see Lemma 10.4). 



678 R. Benedetti and R. Silhol 

Acknowledgements-While finishing this paper the first author benefited from the hospitality of 1’Institut Fourier 
in Grenoble and would like to thank this institute. The authors would also like to thank J.-Y. MBrindol for 
pointing out the result of Segre and the referee for his very pertinent remarks and suggestions that enabled us to 
significantly improve the paper. 

REFERENCES 

1. J. BARGE, J. LANNES, F. LATOUR and P. VOGEL: A-sphtres, Ann. Scient. ENS 4 (1974), 463-506. 
2. R. BENEDETTI and A. MARIN: Dtchirures de vari&s de dimension trois et la conjecture de Nash de rationalitt 

en dimension trois, Commentarii Math. Helvetici 67 (1993), 514-545. 
3. R. BENEDETTI and J.-J. RISLER: Real algebraic and semi-algebraic sets, Hermann, Paris (1990). 
4. E. H. BROWN: Generalizations of the Kervaire invariant, Ann. Mach. 95 (1972), 368-383. 
5. P. GRIFFITHS and J. HARRIS: Principles of Algebraic Geometry, Wiley, New York (1978). 
6. L. GUILLOU and A. MARIN: Une extension d’un thtortme de Rohlin sur la signature, in A la Recherche de la 

Topologie perdue, L. Guillou and A. Marin, Eds, BirkSuser, Boston, (1986) pp. 97-118. 
7. R. HARTSHORNE: Algebraic geometry, Springer, Berlin, Heidelberg, New York (1977). 
8. J. HASS and J. HUGHES: Immersions of surfaces in 3-manifolds, Topology 24 (1985), 97-112. 
9. R. C. KIRBY: The topology of 4-manifolds, SLNM 1374, Springer, Berlin, Heidelberg, New York (1989). 

10. R. C. KIRBY and L. R. TAYLOR: Pin structures on low-dimensional manifolds, in Geometry of low-dimensional 
manifolds, Vol. 2, S. K. Donaldson and C. D. Thomas, Eds, Cambridge University Press, Cambridge (1989), pp. 
177-241. 

11. U. PINKALL: Regular homotopy classes of immersed surfaces, Topology 24 (1985), 421-434. 
12. B. SEGRE: 7’he non-singular cubic surfaces, Clarendon Press, Oxford (1942). 
13. R. SILHOL: Real algebraic-surfaces, SLNM 1392, Springer, Berlin, Heidelberg, New York (1989). 

Universitci di Pisa 

Dipartimento Di Matematica 

Via F. Buonarroti, 2 

56100 Pisa, Italy 

Universitk Montpellier II 

Dtpartement de Mathtmatiques 

URA CNRS 1407 

Place E. Bataillon 

34095 Montpellier Cedex 5, France 


