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SIMPLICIAL MATTERS

This is a concise summary of some “simplicial” matters.

1. Preliminaries

Given any non empty set X, consider RX with the natural real vector space structure. For every
f ∈ RX , the support of f , S(f) := {x ∈ X; f(x) 6= 0}. Denote by F (X) the subspace of RX made
by the functions with finite support. We fix the inclusion X ⊂ F (X), by associating to every x ∈ X,
the function ex such that ex(x) = 1, S(ex) = {x}. The set of these functions, denoted BX , is the
standard basis of F (X) (ordered if X is equipped with a total order). For every Y ⊂ X, we fix the
inclusion F (Y ) ⊂ F (X), by extending every f ∈ F (Y ) in such a way S(f) is preserved. If Y is finite
and ordered then F (Y ) is canonically isomorphic to Rm, m being the cardinality of Y . If F ⊂ F (X)
is finite, it generates the affine subspace A(F) formed by the affine combinations of the points of F :

A(F) = {p =
∑
f∈F

aff ;
∑
f

af = 1} .

It is well known that for every f0 ∈ F ,

A(F) = f0 + TA(F)

where the tangent space TA(F) of A(F) does not depend on the choice of f0 and is the linear subspace
generated by the set of vectors {f − f0}f∈F . Set

dimA(F) = dimTA(F) .

The points of F are independent if dimA(F) = n− 1, where n is the cardinality of F .
Give F (X) the distance defined by:

d(f, g) = max
x∈X
|f(x)− g(x)| .

It induces a topology. For every F (Y ) ∼ Rm as above, the subspace topology is the standard euclidean
one. Then the topological space F (X) is union of finite dimensional euclidean spaces.

2. Simplices

We develop a parallel traitment either in an “abstract” or a “geometric” setting.
(Abstract simplices) For every n ≥ 0, the standard abstract n-simplex is the ordered set:

[n] := {0, 1, . . . , n} .
An abstract n-simplex is an ordered set S with n + 1 elements. For every n simplex S there is the
canonical labelling

lS : [n]→ S := [s0, . . . , sn]

where lS is the unique order preserving bijection. The support |S| is the “naked” set obtained by
forgetting the order.

(Geometric realization) The standard geometric realization of [n] is denoted ∆n and is obtained as

follows: In Rn+1 = R[n], consider the standard ordered basis B[n] = {e0, . . . , en}. Then the support

|∆n| = |σ[e0, . . . , en]| := {(t0, . . . , tn) ∈ R[n];
∑
j

tj = 1, tj ≥ 0, j = 0, . . . , n}

that is the subset of A(B[n]) made by the convex combinations of the points of B[n]. In fact |∆n| is the
convex hull of the points of B[n] which are called the vertices. ∆n is obtained by taking into account
the given order of the vertices. A geometric realization of an abstract n-simplex S = [s0, . . . , sn],
denoted σS = σ[s0, . . . , sn] is obtained by embedding it as a set of independent points into some
F (X), taking as |σ[s0, . . . , sn]| the convex hull of these points and finally taking into account the
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order of its vertices. The canonical labelling lS : [n]→ S “extends” to the canonical order preserving
parametrization

φσ : ∆n → σS

given by the restriction of the unique affine map

φ : A(B[n])→ A(S) ⊂ F (X)

such that φ(ej) = sj , j = 0, . . . , n. ∆n is called the standard n-simplex, while any σS as before is a
n-simplex.

2.1. Faces. Let σ = σS = σ[s0, . . . , sn] be a n-simplex in some F (X). For every j = 0, . . . , n, we can
define a (n−1)-simplex fjσ as follows: remove from S the vertex sj ; by means of the restricted order,
we get an ordered set Sj of n independent points in F (X), then we can define fjσ := σSj by applying
the above procedure. Notice that the canonical labelling function lSj : [n− 1]→ Sj verifies

lSj (i) = lS(i), i < j, lSj (i) = lS(i+ 1), i ≥ j .

This reflects in the following compatibility of the standard parametrizations:

φfjσ = φσ ◦ φfj∆n .

By using the standard relabelling of the vertices, the face operation can be iterated. Every (n−2)-face
can be obtained by removing two elements si and sj , i < j, from S. This can be eventually obtained
by two different iterations so that we have the relations:

fi(fjσ) = fj−1(fiσ), i < j.

By fully iterating, we get the faces of all dimensions d, 0 ≤ d ≤ n, σ being the unique n-face, the
vertices being the 0-faces. By setting

fj |σ| = |fjσ|

we define a notion of (iterated) faces at the level of supports.
In the abstract setting the most natural way to encode the d-faces of an n-simplex S = [s0, . . . , sn]
(incorporating the canonical labelling) is in some sense “opposite”, that is in terms of strictly increasing
maps [d]→ S, called d-cofaces. As above these are generated by iterating the n+1 (n−1)-cofaces dj :
[n− 1]→ S which miss the elements sj , j = 0, . . . n. Similarly as above we have the (“contravariant”)
relations formally expressed by

djdi = didj−1, i < j .

2.2. Orientations. Let S and S′ be abs n-simplices with the same support |S| = |S′|. We say that
S is co-oriented with S′ if l−1

S lS′ is an even permutation of the elements of [n]. This defines an
equivalence relation on the set of n-simplices sharing the same support, there are two equivalence
classes, each one is a combinatorial orientation of the support.
Let σ = σS = σ[s0, . . . , sn] be a n-simplex in some F (X). By definition an orientation on |σ| is
an orientation on the tangent spaces TA(S) of the affine space A(S) which contains |σ|. This last
orientation is defined as follows. Let V be a m-dimensional real vector spaces. If m = 0 then an
orientation is just a sign ±1. If m > 0, then let us say that an oriented basis B of V is co-oriented
with the basis B′ if detMBB′ > 0. This defines an equivalence relation on the set of oriented bases of
V (by Binet) with two equivalence classes, each one being an orientation on V . Then we can define
the combinatorial orientation ωσ of |σ|. If n = 0, we stipulate that it is the sign +1. If n > 0, it is the
class of the basis {s1 − s0, . . . , sn − s0} of TA(S). Notice that S and S′ induce the same orientation
on the common support if and only if for every geometric realizations σS and σS′ having the same
support |σ| (in some F (X)), they induce the same orientation on |σ|. The canonical parametrizations
preserve the orientations.
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2.3. Boundary orientation. For every n-simplex σ = σS (in some F (X)), the support boundary is
defined as

∂|σ| = ∪nj=0fj |σ| .

As a pair of topological subspaces in F (X), (|σ|, ∂|σ|) ∼ (Dn, Sn−1). The interior of |σ| := |σ| \ ∂|σ|.
|σ| has its own combinatorial orientation ωσ, while every (n− 1)-face fj |σ| is equipped with ωfjσ. We
want to define another orientation on each fj |σ| denoted by ∂jωσ and called the boundary orientation.
It is defined by means of the “first the outgoing normal convention”: up to a translation, we can
assume that |σ| ⊂ TA(S), fj |σ| is contained in a linear hyperplane L ⊂ TA(S), L divides TA(S) into
two half-spaces, one denoted by P does not intersect the interior of |σ|. Let η be a non zero vector
normal to L and pointing towards P . There is only one class [B] of bases of L such that for every B
in the class, η ⊕ B is a basis of TA(S) that represents the orientation ωσ. Then set

∂jωσ = [B] .

Then every fj |σ| has two orientations which might agree or not; we encode this by a sign ±1. This
convention is preferable to other possible ones because the following nice formula holds:

ωfjσ = (−1)j∂jωσ .

As it is purely in combinatorial terms, the formula can be used to define a corresponding boundary
orientation in the abstract setting.
For every (n− 2)-face

fi(fjσ) = fj−1(fiσ), i < j

as above, it is not hard to verify that

∂iωfjσ = − ∂j−1ωfiσ .

3. Complexes

An abstract simplicial complex is a family (of arbitrary cardinality) S = {S} of abs simplices such
that whenever S ∈ S, and S′ is an ordered subset of S (with the restricted order), then also S′ ∈ S.
In other words S is closed w.r.t. the (images of) cofaces.
The standard geometric realization of an abs simplicial complex S is obtained as follows: let V = VS
be the set of vertices (i.e. of 0-simplices) in S. Consider F (V ), V ∼ BV as in the preliminaries. Then
every S in S corresponds to an ordered subset of the standard basis BV , hence to a geometric simplex
σS in F (V ). Then set

K = KS = {σS}S∈S .

It is easy to verify that this family of simplices in F (V ) verifies:

(1) If σ ∈ K, and τ is a (iterated) face of σ, then also τ ∈ K;
(2) If σ, τ ∈ K, then |σ| ∩ |τ | = |γ|, where γ is a (possibly empty) common (iterated) face of both

σ and τ .

By definition any family K = {σ} of simplices (in some F (X)) verifying the above properties is a
simplicial complex. If for every σ = σ[s0, . . . , sn], we consider its set of vertices vσ = [s0, . . . , sn] as an
ordered set, then we get an abs simplicial complex

SK = {vσ}σ∈K

called the vertex scheme of K. K is a geometric realization of SK . There is a canonical bijection
between the set of vertices of K and the set of vertices of the standard geometric realization of SK ,
which restricts to a bijection between the set of vertices of every σ and the set of vertices of vσ. Alike
the canonical parametrization, this extends to a unique affine isomorphism between |σ| and |vσ|. This
is an example of a simplicial isomorphism (see next subsection).
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3.1. Simplicial maps. Let S and T be abs simplicial complexes. A simplicial map from S to T
consists of a map

f : VS → VT

such that for every S in S, f(|S|) is equal to the support |T | of some T ∈ T . Notice that we do not
require that the restriction of f to |S| is bijective; f is a simplicial isomorphism if it is bijective (with
simplicial inverse).
If K and H are simplicial complexes, a simplicial map

f : K → H

is the geometric realization of a simplicial map

f̂ : SK → SH ;

for every f̂(|S|) = |T | as above, we extend f̂|S| : |S| → |T | to f : |σS | → |σT | by setting

f(
∑

tjsj) =
∑

tj f̂(sj)

for every convex combination of the points of |S|; notice in fact that even if there are repetitions in
the second term summation, nevertheless it is a convex combination of the points of |T |.
(Subcomplex-skeletons) In both settings, a subcomplex is a subfamily which is a simplicial complex
by itself. For example a simplex of the given complex with all its faces form a subcomplex. There
are some distinguished subcomplexes. Given K, for every n ≥ 0, Kn denotes the set of n-simplices
belonging to K. Then set

Kn = ∪nj=0Kj .

It is a subcomplex of K called its n-skeleton.
The restriction of a simplicial map to a subcomplex is a simplicial map.

(Simplicial complex categories) In this way we have defined two categories either abstract or geometric,
having as Objects the (abs) simplicial complexes and as Arrows the (abs) simplicial maps; the
equivalence are the simplicial isomorphisms. The verification that the composition is well defined
is easy. The standard geometric realization provides a covariant functor ⇒AG from the abs to the
geometric category. By associating to every geometric complex its vertex scheme, we define a functor
⇒GA. Clearly ⇒GA⇒AG equals the “identity abstract functor”. This holds for ⇒AG⇒GA “up to
simplicial isomorphisms”. These categories mainly are of combinatorial nature. We have not yet
considered the topological aspects of the story.

As we have also a notion of face for the supports, we can define similarly a notion of complex of
simplicial supports. Clearly every simplicial complex K = {σ}, incorporates the complex of supports
||K|| = {|σ|}. On the other hand every complex of supports is induced by some simplicial complex;
for example we can give the set of vertices a total order and restrict it to the vertex set of every
simplex. We have also the intermediate notion of complex of oriented simplicial supports {|σ|, ω|σ|},
where every |σ| is equipped with an orientation. Every K as above incorporates also the complex of
supports endowed with the combinatorial orientations.

4. Topology

Let K be a simplicial complex in some F (X). We define the support

|K| = ∪σ∈K |σ| ⊂ F (X) .

As we have given F (X) a topology, the first naif idea would be to consider |K| with the subspace
topology. But this is not a good choice mainly because simplicial maps (even isomorphisms) are in
general not continuous. We have the family of inclusions

{iσ : |σ| → |K|} .
Every |σ| is a compact subset of some standard finite dimensional euclidean space, moreover two
different geometric realizations of some S are related by a very tame homeomorphism built by means
of two standard parametrizations. Then we give |K| the final topology w.r.t. such a family of maps,
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the finer topology such that every inclusion is continuous. Equivalenty, A ⊂ |K| is closed (open) if
and only if for every σ ∈ K, |σ| ∩A is closed (open) in |σ|. We have also the family of maps

{iσ ◦ φσ : ∆dimσ → |K|}

equivalently we take the final topology w.r.t. this family of maps.
We give a sparse list of properties of this topology.

• If K is finite then |K| ⊂ Rm for some m and in this case we have the usual subspace topology,
so that |K| is compact.

• In general the topology on |K| is finer than the subspace topology in F (X). For example
consider the simplicial complex in R2, made by the 1-simplices of the form σ[0, x] where x
belongs to the unitary circle S1. As a set |K| = D2, but 0 ∈ |K| has no any countable basis
of neighbourhoods.

• If L is a subcomplex of K, then |L| is a subspace of |K| and is closed.
• A map f : |K| → T , T being any topological space, is continuous if and only if every map
f ◦ iσ : |σ| → X is continuous.

• Simplicial maps f : K → H induce continuous maps |f | : |K| → |H|. A simplicial isomorphism
induces a homeomorphism.

• Points are closed in |K| and |K| is normal, hence Haussdorff.
• If L is a subcomplex of K then there is a open neighbourhood of |L| which retracts by

deformation to |L|. |K| is locally contractible (hence it has a nice universal covering which is
itself the support of a simplicial complex and the deck trasformations are simplicial).

Note. The last 3 items hold also in the more general setting of CW complexes and a proof
can be obtained by using so called ε-neighbourhoods of closed sets in |K|.

• A closed subset of |K| is compact if and only if it is contained in the support of a finite
subcomplex. One implication is obvious. As for the other, assume that A is compact and
denote by KA the subset of σ ∈ K such that the intersection between A and the interior of
σ is not empty. It is enough to show that KA is finite. In fact by the very definition of the
topology of |K| every subset of KA is closed; then KA itself is closed and inherits the discrete
topology. Hence it is compact as a closed subset of the compact set A, and it is finite as it is
discrete.

So far we have constructed a functor ⇒GT from the simplicial category of (geometric) simplicial com-
plexes and simplicial maps to the category TOP by associating to every K the topological space |K|
and to every simplicial map f , the corresponding |f | (also called simplicial) between the respective
supports. We note that simplicial homeomorphisms are very rigid (being governed by the combina-
torics at the level of the vertex shemes) while arbitrary homeomorphisms (even between topological
supports of simplicial complexes) are very flexible. For example the boundary of a triangle and the
boundary of a square cannot be simplicially homeomorphic in spite of the fact that they are apparently
homeomorphic. This suggests to look for an intermediate category which keeps some features of the
simplicial one but with more flexible morphisms.

5. The PL category

The Objects are the polytopes that is by definition topological spaces P which can be realized as
topological support of some simplicial complex K; in such a case P = |K| and sometimes one says
that |K| is a triangulation of P . The Arrows are the PL maps: a map

f : P → Q

between polytopes is PL if there exist triangulations P = |K|, Q = |H| such that f : |K| → |H| is
simplicial.

At present it is not so evident that this is a category that is it is not evident that the composition
of two PL maps is PL because at the intermediate polytope in a composition we might deal with
different triangulations. The key to solve this difficulty is the notion of subdivision.
A subdivision of a simplicial complex K is a complex H such that
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(1) For every σ ∈ H there is τ ∈ K such that |σ| ⊂ |τ |;
(2) For every τ ∈ K, |τ | is the union of a finite number of supports of simplices of H.

A consequence of these properties (in particular of the finiteness in (2)) is that |K| = |H| as topological
spaces. Here is the key fact:

If P = |K| = |K ′| are two triangulations of the polytope P , then there exists K” such that P = |K”|
and K” is a common subdivision of both K and K ′.

Let us sketch a proof. The family K ∩ K ′ of intersections between supports of simplices of K and
K ′ respectively is a “complex of convex cells” (in the sense that a complex of simplicial supports is a
complex of convex cells of a special type). In the realm of these more general complexes K ∩K ′ is a
common subdivision of both K and K ′. The idea is that we can triangulate K ∩K ′ to get a desidered
K”, moreover without adding new vertices. Let us give the set of vertices (i.e. of 0-cells) of K ∩K ′
a total order. We construct K” by induction on the dimension of the cells. The set of vertices is
untouched. Assume that we have triangulated the union of cells of dimension less than n. For every
n-cell C consider the smallest vertex vC of C. Then the simplices that triangulate C are of the form
σ[vC , v1, . . . , vs] where σ[v1, . . . , vs] is anyone of the already constructed simplices of dimension less
than n that are contained in the boundary of C and do not contain vC . The global order ensures the
coherence of the construction.

2

By using this key fact we see that the above definition of PL map is equivalent to

f : P → Q is PL if for every triangulations P = |K|, Q = |H|, there are subdivisions K ′ of K, H ′ of
H respectively such that f : |K ′| → |H ′| is simplicial.

Eventually one realizes that the composition of PL maps is PL and that being PL-homeomorphic is a
transitive relation on the class of polytopes.

5.1. On the product of simplicial complexes. The product K ×H of two simplicial complexes
is not a symplicial complex. Assuming for simplicity that the ordering of the simplex vertices is the
restriction of global vertex orders, then K ×H is a complex of convex cells with (lexicographically)
totally ordered vertices. Then we can adopt the above triangulation method without introducing
new vertices depicted above and get a simplicial complex denoted K � H. Note that |K � H| is in
general different from the topological product |K| × |H|, it has a finer topology; nevertheless these
two topologies share the same family of compact sets. We get the product topology if at least one
among K and H is finite.

5.2. Barycentric subdivision. This is a standard fundamental way to subdivide. For every simplex
σ = σ[s0, . . . , sn] its barycenter is the point

σ̂ :=
∑
j

1

n+ 1
sj .

Let K be a simplicial complex. The barycentric subdivision K(1) of K is obtained (as in the previous
sketch of proof) by induction on the dimension of the simplices. The 0-simplices of K are not subdi-
vided. Assume that we have subdivided the (n − 1)-skeleton Kn−1 of K. For every n-simplex σ of
K the simplices that subdivide it are of the form σ[σ̂, v1, . . . , vs] where σ[v1, . . . vs] is any simplex of

(Kn−1)(1) contained in ∂|σ|.
This subdivision has many interesting properties:

• K(1) only depends on the complex of symplicial supports associated to K.
• The vertex order of every simplex of K(1) is the restriction of a global order on its set of

vertices.
• Simplicial maps preserve the barycentric subdivision; precisely every simplicial map

f : K → H

induces in a canonical way a simplicial map

f (1) : K(1) → H(1) .
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• The barycentric subdivision can be iterated: K(n) := (K(n−1))(1).
• If K is finite, so that |K| is contained in some finite dimensional euclidean space Rm and is

endowed with the restriction of the euclidean distance, then

lim
n→∞

max
σ∈K(n)

δ(|σ|) = 0

where δ denotes the diameter. This last properties is intuitive, however an actual proof needs
some (elementary) extimations where it is important that we are using the barycenters.

Another nice application of the barycentric subdivision is the following important simplicial approxi-
mation theorem in finite dimensional PL geometry

Let f : |K| → |H| be a continuous map between triangulated compact polytopes. Then there are an

iterated barycentric subdivision K(n) of K and a simplicial map g : |K(n)| → |H| which is homotopic
to f .

Here is a sketch of proof. For every simplex σ in a finite simplicial simplex say T , its open star St(σ)
is the union of the interior of the simplices of T which contains σ. Hence it is an open set. The open
stars of the vertices of T form an open covering of |T |. If the intersection of open stars of some set
of vertices of T is non empty, then those vertices are vertices of a simplex τ of T and the intersection
of the vertex stars is the open star of τ . Now, let U be the open covering of |H| made by the open
stars of its vertices. As f is continuous, then U ′ = f−1(U) is a open covering of |K|. |K| is a compact
metric space as it is endowed with the restriction of the euclidean metric on some Rm. Let ε > 0 be a
Lebesgue number for U ′. Let n big enough in such a way that every simplex of K(n) has diameter less
than ε/2. Then the open star of every vertex v of K(n) has diameter less than ε. It follows that there
is a vertex g(v) of H such that f(St(v)) ⊂ St(g(v)). We want to show that g : VK(n) → VH defined

so far is simplicial. If σ is a simplex of K(n), and if x ∈ St(σ) then f(x) belongs to the intersection
of the images f(St(v)) where v varies among the vertices of σ; hence the intersection of the open
stars St(g(v))’s is non empty and finally the g(v)’s are vertices of a simplex H. So we can define the

continuous simplicial map g : |K(n)| → |H| which extends the above abs simplicial map. Finally we

note that for every x ∈ |K(n)| both f(x) and g(x) belongs to a same simplex of H and we define a
homotopy by the convex combination tg(x) + (1− t)f(x), t ∈ [0, 1].

2

This has the following corollary:

Let f : X → Y be a continuous map and assume that X (Y ) is homeomorphic to a compact polytope
P (Q). Assume also that dimP < dimQ. Then f is homotopic to a continuous map g : X → Y
which is not surjective (in fact the image complement is open and dense in Y ).

By elementary linear algebra if g : P → Q is PL then it has the desidered properties. We reduce to

this case by applying the above approximation theorem to f̂ : P → Q, f̂ = p ◦ f ◦ h where h : P → X
and p : Y → Q are homeomorphisms.

2

By applying this corollary to continuous maps Sm → Sn, 1 ≤ m < n, we derive that

πm(Sn) = 0 .

6. ∆-complexes

We want to extend the notion of simplicial complex. Here is a few motivating examples: two simple
compact arcs with common pair of endpoints can be naturally ‘triangulated’ by means of two 1-
simplices, but this is not a simplicial complex; if we glue together two edges of a triangle we get a sort
of ‘triangulation’ of the cone over S1 but again it is not a simplicial complex; a similar generalized
triangulation of the torus S1 × S1 is obtained from the ordinary triangulation of a square by two
2-simplices and one diagonal 1-simplices , by gluing together the pair of opposite sides. It is natural
to look for a more general notion of complex which would cover such a kind of examples. The way
we will do it would sound a bit esoteric but it opens the door towards a wide new territory. We will
limit to a quick glance to this matter.
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6.1. The category ∆. It has as Objects the standard abstract simplices [n] for every n ≥ 0. The
Arrows are the coface maps, that is the strictly increasing maps [s] → [n]. By varying n they are
generated by the maps dj : [n − 1] → [n] which miss the point j ∈ [n], j = 0, . . . , n. As already
remarked they verify the relations

djdi = didj−1, i < j .

6.2. A categorial reformulation of symplicial complexes. Let K be a symplicial complex. Let
us recall that Kn denotes the set of n-simplices of K. By means of the (n− 1)-faces of the simplices
in Kn, we define maps

fj : Kn → Kn−1

verifying the relations

fifj = fj−1fi, i < j.

Then by associating to every [n] the set Kn, and to every dj the map fj , we actually define a
contravariant functor fK from the category ∆ to the category SET.
The topological realization |fK | of this functor, homeomorphic to |K|, is defined as follows:

Take the topological space

K̃ := qn(Kn × |∆n|)
where “q” denotes the disjoint union, every |∆n| has the usual topology and every set Kn is endowed
with the discrete topology. Consider the equivalence relations ∼ on this space generated by the
identifications

(σ, q) ∼ (fjσ, p)

where p ∈ |∆n|, q ∈ |∆n+1|, σ ∈ Kn+1, q = φfj∆n+1(p). Finally

|fK | := K̃/ ∼ .

6.3. ∆-complex. By definition, a ∆-complex is any contravariant functor f from the category ∆ and
the category SET. Its topological realization |f| is formally defined as above. This covers a wider
range of complexes than the simplicial ones. The simple motivating examples at the beginning of this
section are ∆-complexes.

After all, the topological space X = |f| can be equivalently described in the following way which could
be taken as a definition of a ∆-complex over X and which is suited for practical topological use. There
is a natural family of maps

{ψσ : |∆d(σ)| → X}
such that whenever ψσ belongs to the family, then also ψσ ◦ φfj∆d(σ) does it. This family can be

interpreted as a unique map defined on K̃ with values in X. This verifies the following properties:
(1) The restriction to the interior of every simplex is injective;
(2) Every x ∈ X is contained in the image of the interior of one simplex.

Then we give X the final topology with respect to this family of maps, that is the quotient topology
if we consider them as a unique map. In this way the restriction to the interior of any simplex is a
homeomorphism onto its image.
Simplicial complexes are characterized among general ∆-complexes by the properties that the restric-
tion to every entire |σ| is a homeomorphism onto its image and that they are completely determined
by the combinatorial behaviour of the vertex shemes.

(∆-barycentric subdivision) By using the last description of a ∆-complex, we see that the barycentric
subdivision makes sense also for ∆-complexes. One can see that

The second barycentric subdivision of a ∆-complex is a simplicial complex.

Then ∆-complexes can be considered also as a more efficient way (that is by possibly using less
simplices) than simplicial complexes to ‘triangulate’ the same class of topological spaces.
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6.4. On ∆-maps. Once we have defined a ∆-simplex as a functor, then a ‘map’ from f to f′ ‘must’
be a natural transformations T of functors, that is a rule which assigns to every object [n] of the
category ∆ a map T[n] : f([n]) → f′([n]) such that for every arrow f : [m] → [n] in ∆, T[m] and T[n]

form a suitable commutative square with f(f) and f′(f). However this is quite restrictive:

A simplicial map which includes some dimension decreasing collapse cannot be recovered as a natural
transformations of the corresponding functors.

On the oder hand we see that

• Simplicial isomorphisms or more generally simplicial covering maps can be recovered as natural
transformations of the corresponding functors

• every ∆-maps beetween ∆-complexes induces a simplicial map between the respective second
barycentric subdivisions.

The possible presence of collapses is the key difficulty. A way to overcome it is to enlarge the category
∆ to the category ∆̂ which has the same objects but allows as arrows increasing but not necessarily
strictly increasing maps [m] → [n]. Thus we have to add to the coface generators dj , also ‘codegen-
eracy’ maps sj : [n + 1] → [n] which sends both j and j + 1 to j. By definition a simplicial set is a

contravariant functor from ∆̂ to SET. Every ∆-complex can be canonically completed to a simplicial
sets (by adding to the maps fj all possible ‘degeneracy’ maps); arbitrary simplicial maps can be in-
corporated into natural transformations of simplicial sets. This is the beginning of an extremely rich
and complex theory firstly aimed to build a performant combinatorial homotopy theory and which
has wide ramifications in a lot of fields including algebraic geometry. All this is beyond the aims and
the possibilities of the present note. To our aims ordinary simplicial maps or possibly some ∆-maps
will suffice. To uniformise the terminology, sometimes a ∆-complex is called a ∆-set.

7. The ∆-K(G,1)

Given any group G, a K(G, 1) is a path-connected topological space X such that the fundamental
group π1(X) ∼ G, while πn(X) = 0 for every n > 0. For every G, we are going to construct in a
canonical way a ∆-set whose topological realization is a K(G, 1).

If in the above functorial definition we replace the category SET by any subcategory like GROUP,
RING, etc., we get the notion of ∆-group (simplicial group) etc.

For every group G consider the following ∆-group: associate to the object [n] the product group G[n];
every element of this product can be encoded as ∆[g0, . . . , gn] i.e. by labelling the ordered vertices of

∆n by the (n + 1)-uples (g0, . . . , gn) ∈ G[n]. Every face fj∆
n determines in a natural way a group

homorphism

fj : G[n])→ G[n−1] ;

then we complete the functor by associating to every elementary coface dj the map fj .

There is an underlying ∆-set, and we denote by E(G) its topological realization. We claim that

(1) E(G) is contractible to the point ∆[u] corresponding to u = 1G;

(2) The natural action of G on every G[n] by left multiplication:

(g, (g0, . . . , gn))→ (gg0, . . . , ggn)

determines a natural self-transformation of the fuctor, hence and action on E(G) by a ∆-
isomorphism; this action is free and properly discontinuous.

As for (1), every ∆(g0, . . . , gn) is a face of ∆(u, g0, . . . , gn); this last retracts to its distinguished vertex
u by the canonical cone structure based on the opposite face. These local retractions are compatible
because they restrict to the faces; then it gives us a global retraction of E(G). Notice that this
retraction moves [u] around the loop ∆[u, u], hence E(G) is contractible but it does not retract by
deformation onto ∆[u].
As for (2) it is clear that the action is free. Recall that “properly discontinuous” means that for every
compact subset A of E(G), the set of g ∈ G such that gA∩A 6= ∅ is finite. In our situation this holds
because G acts by ∆-maps and every compact set is contained in the support of a finite subcomplex.
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If B(G) denotes the quotient space of the above action, by generals fact about covering maps we have
that the projection

pG : E(G)→ B(G)

is a universal covering map (with contractible universal covering spaces) and π1(B(G)) ∼ G. Moreover
it follows from the construction that:

• B(G) itself is a ∆-set, pG is a ∆-map;
• the ∆-trasformations of E(G) given by the action coincide with the covering trasformations;
• as E(G) is contractible, then πn(B(G)) = 0 for every n > 0.

Thus we have constructed the canonical ∆-K(G,1).

The construction is functorial: every group homomorphism

φ : G→ H

induces in a canonical way a covariant natural transformation Tφ of the corresponding ∆-groups and
eventually a ∆-map

δφ : B(G)→ B(H) .

Thus we have constructed a covariant functor from the category GROUP to the category of ∆-sets
and ∆-maps. By composing with the functor from the second category to TOP we have also a functor
GROUP⇒TOP. Every topological invariant can be lifted to an invariant for groups. This is a way
to start a geometric/topological group theory.


