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THE CONVERGENCE OF CIRCLE PACKINGS TO
THE RIEMANN MAPPING

BURT RODIN1 & DENNIS SULLIVAN2

1. Introduction. In his address,3 "The Finite Riemann Mapping Theorem",
Bill Thurston discussed his elementary approach to Andreev's theorem (see §2
below) and gave a provocative, constructive, geometric approach to the
Riemann mapping theorem (see §3). The method is quite beautiful and easy to
implement on a computer (see Appendix 2).

In this paper we prove Thurston's conjecture that his scheme converges to
the Riemann mapping. Our proof uses a compactness property of circle
packings, a length-area inequality for packings, and an approximate rigidity
result about large pieces of the regular hexagonal packing (§3 and Appendix

FIGURE 1.1. An approximate conformal mapping
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Our proof is nonconstructive at one point (the Hexagonal Packing Lemma)

and does not yield a definite rate of convergence. However, we believe the

method will work well in practice. There are two reasons for this belief. First,

Thurston's method of finding Andreev packings works very well in practice.

Secondly, two circle packings with the same combinatorial triangulation sug-

gest an appropriate model for an approximate conformal mapping (Figure

1.1).

We thank Bob Edwards, Mike Freedman, Troels Jorgensen, and Al Marden

for stimulating discussions.

2. Definitions and Preliminaries. Let R be a region in the plane or on the

2-sρhere. A circle packing in R is a collection of closed disks contained in R

and having disjoint interiors. The nerve of a circle packing is the embedded

1-complex whose vertices are the centers of the disks and whose edges are the

geodesic segments joining the centers of tangent disks and passing through the

point of tangency. In this paper we consider only those circle packings whose

nerve is the 1-skeleton of a triangulation of some open connected subset in the

plane or sphere. A circle packing of the sphere is one whose associated

triangulation is a triangulation of the sphere. Thus the interstices in a circle

packing of the sphere are circular cusp triangles. If one of the disks in a circle

packing of the sphere is the exterior of the unit disk then the remaining circles

are said to be a circle packing of the unit disk. Note that in the case of a circle

packing of the unit disk, the carrier of the associated triangulation is a proper

submanifold of the unit disk.

A finite sequence of circles from a circle packing is called a chain if each

circle except the last is tangent to its successor. The chain is a cycle if the first

and last circles are tangent.

Let c be a circle in a circle packing. The flower centered at c is the closed set

consisting of c and its interior, all circles tangent to c and their interiors, and

the interiors of all the triangular interstices formed by these circles (Figure 2.1).

We shall refer to the following statement as Andreev's theorem (Andreev

[1,2], Thurston [11; Chapter 13]): Any triangulation of the sphere is isomorphic

to the triangulation associated to some circle packing. The isomorphism can be

required to preserve the orientation of the sphere and then this circle packing is

unique up to M'όbius transformations.

A topological annulus A in the plane has a modulus mod A that can be

defined, without reference to conformal mapping, as the infimum of the

L2-norms of all Borel measurable functions p on the plane such that 1 <

/p(z)|dz\ along all degree one curves in A.
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FIGURE 2.1. A packing of the disk, its triangulation, and one of its flowers

An orientation preserving homeomorphism / between two plane domains is
called K-quasiconformal, 1 < K < oo, if

K^modA < modf(A) < KmodA

for every annulus A in the domain of /. Some basic facts are: (1) A -̂quasicon-
formality is a local property (Ahlfors [3, Theorem 1, p. 22], Lehto-Virtanen [7,
Theorem 9.1, p. 48]), and (2) a 1-quasiconformal map is conformal and
conversely ([3, Theorem 2, p. 23], [7, Theorem 5.1, p. 28]). We shall also make
use of the fact that simplicial homeomorphisms are AΓ-quasiconformal for K
depending only on the shapes of the triangles involved. To see this note that an
affine map is #-quasiconformal for a K depending only on the shapes of one
triangle and its image. For a piecewise affine homeomorphism use the fact [7,
Theorem 8.3, p. 45] that a homeomorphism of a domain which is X-quasicon-
formal on the complement of an analytic arc in the domain is actually
ΛT-quasiconformal in the entire domain. See [7, Theorem 7.2, p. 39] for the
equivalence of definitions using annuli and using quadrilaterals.

3. Thurston's Problem. In Thurston's address (loc. cit.), Open Problem No. 1
was the conjecture that the following scheme converges to the Riemann map.
As in Figure 1.1, almost fill a simply connected region R with small circles
from a regular hexagonal circle packing. Surround these circles by a Jordan
curve. Use Andreev's theorem to produce a combinatorially equivalent packing
of the unit disk—the unit circle corresponding to the Jordan curve. The
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correspondence between the circles of the two packings ought to approximate
the Riemann mapping.

4. Geometric Lemmas. The following three lemmas will be used in the proof
of the main theorem (§5).

Ring Lemma. There is a constant r depending only on n such that if n circles
surround the unit disk (i.e., they form a cycle externally tangent to the unit disk;
see Figure 4.1) then each circle has radius at least r.

FIGURE 4.1. Fifteen circles surround the unit circle

FIGURE 4.2. Chains of combinatorial lengths 13, 21, 31 separate c from 0

Proof. Fix n. There is a uniform lower bound for the radius of the largest
outer circle cx (namely, that which occurs when all n outer circles are equal). A
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circle c 2 adjacent to cλ also has a uniform lower bound for its radius because if

c2 were extremely small then a chain of n — 1 circles starting from c2 could

not escape from the crevasse between cλ and the unit circle. Repeat this

reasoning for the circle c3 adjacent to c2, and so on.

Length-Area Lemma. Let c be a circle in a circle packing in the unit disk. Let

Sλ, S2, - - - ,Sk be k disjoint chains which separate c from the origin and from a

point of the boundary of the disk. Denote the combinatorial lengths of these chains

by nl9 «2, ,nk (see Figure 4.2). Then

radius(c) < (n~λ

ι + n2

ι + + ^ 1 ) ~ 1 / 2 .

Proof. Suppose the chain Sj consists of circles of radius rj{. Then by the

Schwarz inequality

Let s/ = 2Σ, rjt be the geometric length of Sj. We obtain

Thus s = m i n l ^ , s2, ,sk} satisfies

s2 ^4(nϊι + n ~ 2

ι + ••• Λ ^ 1 ) " 1 .

Since s is greater than the diameter of c, the above inequality proves the

Lemma.

Hexagonal Packing Lemma. There is a sequence sn, decreasing to zero, with

the following property. Let c0 be a circle in a finite packing P of circles in the

plane and suppose the packing P around c0 is combinatorially equivalent to n

generations of the regular hexagonal circle packing about one of its circles. Then

the ratio of radii of any two circles in the flower around c differs from unity by less

than sn (see Figure 4.3).

Corollary. A circle packing in the plane with the hexagonal pattern is the

regular hexagonal packing.

Remark. The above corollary is actually used in the proof of the Hexagonal

Packing Lemma and arose in the Colorado Geometry Seminar with Thurston

in 1980. A proof is outlined in Appendix 1 below.

Proof of the Hexagonal Packing Lemma. Suppose that for each n = 1,2,

we have a circle packing Pn which is combinatorially equivalent to n genera-

tions of the regular hexagonal circle packing centered around the unit circle c0.
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FIGURE 4.3. Two generations: 1 - s2 < (radius c1)/(radius c2) < 1 + s2

Let us apply the Ring Lemma to the Pw's. It shows that the radii of circles of

generation k in Pk, Pk+V are uniformly bounded away from zero and

infinity. Therefore we can select a subsequence of the Pn's so that the

generation one circles converge geometrically. A further subsequence can be

selected so that the generation two circles converge geometrically, and so on.

In this way a limit infinite packing of a planar region is obtained. This

packing has the combinatorics of the regular hexagonal packing and the region

is an increasing sequence of disks and so is connected and simply connected.

If the lemma were false we could select the subsequences so that in the limit

packing one of the six circles around c 0 would have radius different from one.

This contradicts the uniqueness of packings in the plane with the pattern of the

hexagonal packing (see Appendix 1).

5. Convergence of circle packings to the Riemann mapping. Let R be a

simply connected bounded region in the plane with two distinguished points z 0

and zv For a sufficiently small ε > 0 consider the regular hexagonal packing

HE of the plane by circles of radius ε. Let c0 be a circle whose flower contains

z 0 . Form all chains c0, c1? ,ck of circles from Hε, starting with c0, such that

the flowers of the circles in the chain are contained in R. The circles which

appear in such chains are called inner circles. The set of inner circles is denoted
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The circles in Hε which are not inner circles but which are tangent to inner

circles will be called border circles. The set Bε of border circles can be cyclically

ordered to form a cycle called the border. It has the property that the linear

polygon obtained by joining the centers in order is a Jordan curve surrounding

the inner circles. The inner circles Iε and border circles Bε form a packing Cε

whose nerve is the 1-skeleton of a triangulation Tε.

Complete Tε to a topological triangulation Γε* of the sphere by adding a

vertex at oo plus disjoint (except for oo) Jordan arcs from oo to the centers of

the border circles.

By Andreev's theorem there is a circle packing of the sphere whose associ-

ated triangulation is isomorphic to Γε* by an isomorphism that preserves the

orientation of the sphere. This circle packing is unique up to Mόbius transfor-

mations. We partially normalize this packing so that the exterior of the unit

disk is the disk whose center corresponds to the vertex oo of Tε*. We then have

a correspondence c -> c' of circles c in Cε = Iε U Bε with circles cf in a circle

packing Cε of the unit disk. We further normalize the situation by a Mόbius

transformation fixing the unit disk so that c'Q is centered at the origin and c[,

where cλ is a circle whose flower contains z l 5 is centered on the positive real

axis.

The correspondence c -> c' of Cε -> Cε defines an approximate mapping of

R into the unit disk D in the following sense. Let z be any point in R. For ε

sufficiently small, z will be in the flower of some c in Iε. As ε -> 0 such a

flower will be surrounded by more and more generations of cycles in Iε.

Therefore, by the Length-Area Lemma and the divergence of the harmonic

series, the radius of cf shrinks to zero. Thus cr determines an approximate

position for the image of z.

Theorem. The isomorphism Cε -> Cε of circle packings determines an ap-

proximate mapping which, as ε -> 0, converges to a conformal homeomorphism

of R with the unit disk.

Proof. As described above, we have a circle packing Cε in R and an

isomorphic circle packing Cε of the unit disk D. The associated isomorphic

triangulations are denoted Tε and Tε. Let Rε, Dε be the carriers of Te, Tε and

let fε: Rε -> Dε be the simplicial map determined by the correspondence of

vertices of Tε and Tε. We may assume that fε is orientation preserving.

It is clear from the construction that Rε converges to R in the sense that R

is the union of the Rε and any compact subset of R is contained in all Rε with

sufficiently small positive ε (this is a special case of Caratheodory domain

convergence). It is also true that Dε converges to D in the same sense; this

follows from the Length-Area Lemma which shows that the radii of the border

circles of Cε tend uniformly to zero as ε -> 0 (each border circle is separated
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from the origin of D by many disjoint chains of combinatorial length < 6, 12,

18, ).

The Ring Lemma shows that the angles of the triangles in Tε are bounded

away from zero independently of ε. The Ring Lemma shows this directly for

the inner triangles of Tε. The proof of the Ring Lemma can also be applied to

border circles to show that the ratio of radii of a border circle to any adjacent

circle in Cε is bounded above. It is also bounded away from zero. Thus the

maps fε: Rε -> Dε are uniformly ΛΓ-quasiconformal since they map equilateral

triangles to triangles of uniformly bounded distortion.

Since the fε are iΓ-quasiconformal they are equicontinuous on compact

subsets of R (the same is true for the family f~ι on compact subsets of D).

This standard fact can be seen, for example, by observing that if z, z' vary in a

compact subset of R and \z — z'\ becomes arbitrarily small then \fε(z) — / ε (z ' ) |

cannot remain bounded away from zero for a sequence of ε -» 0. Indeed, one

can surround z, z' with annuli A of arbitrarily large modulus; hence fε(A) has

arbitrarily large modulus and surrounds / ε(z), / ε(z'). This is impossible if

/ ε (z), / ε(z') lie in a bounded region and their distance apart is bounded away

from zero.

From the equicontinuity on compacta it follows that the fε form a normal

family. From the Caratheodory domain convergence of Rε to R and of Dε to

D it follows that every limit function / is a ΛΓ-quasiconformal mapping of R

onto D with / ( z 0 ) = 0 and f(zx)> 0. That D D f(R) follows from /(z 0 ) = 0.

To see that D = f(R) pick w0 in D. Let G be a subdomain of D with O e G ,

w0 e G, and Z)ε z> G for all sufficiently small ε > 0. Consider the restrictions

of f~ι to G; denote them by gε. Choose ε(n) -> 0 4- such that fε(n)^> f and

gε(n) -* g uniformly on compacta. Now R =) g(G) because g(0) = z0. It fol-

lows from / e ( π ) (g e ( n ) (w 0 )) = w0, using the uniform convergence of fε(n) near

g(w0), that /(g(w 0)) = w0. Thus D = f(R). f is one-to-one since the roles of

R and D can be reversed.

The Hexagonal Packing Lemma shows that the simplicial mapping fε

restricted to a fixed compact subset of R maps equilateral triangles to triangles

of Tε that become arbitrarily close to equilateral as ε -* 0. Therefore any limit

function / of the /ε's will be 1-conformal and therefore conformal. Since

/ ( z 0 ) = 0 and f(zλ) > 0 we see that all limit functions are equal to the unique

Riemann mapping with this normalization.

Remarks. There are a number of questions about packings and conformal

mapping that are still open. Thurston's Open Problem No. 2 (loc. cit.)

concerned existence and uniqueness questions for infinite packings. The

Hexagonal Packing Lemma is a uniqueness result for infinite packings of given

combinatorial type (it can be generalized to give uniqueness for any pattern
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with a uniformly bounded number of edges at each vertex). It follows from the

proof of the Length-Area Lemma, using the spherical metric, that: If a simply

connected plane region is the carrier of an infinite circle packing, and if Σn^1

diverges, where nk is the number of circles in generation k from a fixed circle,

then the region must be the whole plane.

Let c -> c' be an approximate Riemann mapping function as in the Theo-

rem. Is it true that the function c -> radius(c')/radius(c) is an approximation

to the modulus of the derivative of the Riemann mapping function? A related

question is to estimate the sn of the Hexagonal Packing Lemma.

Appendix 1

THE UNIQUENESS OF THE REGULAR HEXAGONAL PACKING

We sketch the proof that the regular hexagonal circle packing of the plane is

the only packing of a simply connected planar region which has the hexagonal

pattern.

The simplicial map between the triangulation associated to the regular

hexagonal packing H and any other one H' with the same combinatorics is a

homeomorphism of the plane with the carrier of H\ and we may assume it is

orientation preserving. By the Ring Lemma this homeomorphism is a quasi-

conformal mapping. Therefore the carrier of Hf is also the plane.

This simplicial map can be modified to become a quasiconformal mapping

of the plane which sends the circles of H to the corresponding circles of H'.

Extend it to oo to become a quasiconformal map of the sphere and denote it

b y g

For each n consider the finite packings Hn and H'n consisting of the first n

generations around fixed base circles. Let Gn and G'n be the Schottky groups

generated by inversions in the circles of Hn and H'n respectively.

A fundamental domain for G'n on the sphere consists of the triangular

interstices of H'n together with the unbounded component of the complement

of the union of the circles in E'n. There is a similar picture for Gn. Now Gn and

G'n are geometrically finite groups which are quasiconformally conjugate

(Marden [8]). The map g provides a AΓ-quasiconformal mapping between the

Riemann surfaces of Gn and G'n. Thus by Maskit [9] there is a K-

quasiconformal conjugacy gn between Gn and G'n agreeing with g in the

unbounded component and conformal on the triangular interstices.

We take a limit of these gn to obtain a ΛΓ-quasiconformal conjugacy h

between G^ = UGn and G^ = UGrt' which is conformal on each triangle.

Thus we have a new quasiconformal homeomorphism h which sends circles in
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Hn to corresponding circles in H'n, which is conformal in the triangular

interstices, and which conjugates Gn to G'n. Thus h is conformal on all of the

sphere except the limit sets of these groups. If we knew these had measure zero

we could conclude that h was conformal everywhere and hence a Euclidean

similarity.

Without knowing this we can reach the same conclusion by appealing to two

theorems from Sullivan [10; Theorems I and IV]. These theorems together give:

// the ^-dimensional fundamental domain of a discrete group G of conformal

transformations of the 2-sphere intersects the limit set of G in a set of measure

zero, then any quasiconformal homeomorphism conjugating G to another discrete

group is already conformal on the entire sphere if it is conformal off the limit set.

In our case the fundamental domain in the 3-ball is obtained by removing the

half spaces determined by the disks of the packing. This convex set intersects

the limit set in a countable set.

Appendix 2

THURSTON'S ALGORITHM FOR CALCULATING THE ANDREEV REALIZATION

The theorem in §5 shows that the problem of approximating the Riemann

map of a region reduces to constructing a circle packing with a prescribed

pattern. Thurston has presented the following elegant algorithm for accom-

plishing this (the higher genus case is treated in [11] pages 13.44 ff.).

Let T be an imbedded triangulation of the extended plane. We may assume

that infinity is an interior point of one of the faces. We shall construct a circle

packing in the nonextended plane whose nerve is isomorphic to the 1-skeleton

of T.

Let υv υ2, v3 denote the vertices of the face which contains infinity. Denote

the remaining vertices of T by υ4, υ5, 9υn. In the realization of T by means

of a circle packing, the radius of the circle whose center corresponds to υt is

denoted r, ; the circles whose centers correspond to υl9 υ2, υ3 are normalized to

have radius 1. The values of r4, r5, •• ,rΛ will be found by successive

approximation (see Figure A2.1).

Let (rkι, rk2, ,rkn), a. vector of positive real numbers with rkl = rk2 = rk3

= 1, be the kίh approximation to ( r υ r2, ,rn). To each triangle in T there is

associated, by means of (rkv rk2, ,rkn), a Euclidean triangle as follows: if

the vertices of the triangle are υm(1), υm(2), υm(3) then the associated Euclidean

triangle has sides of lengths rkm{l) + rkm{2)9 rkm{l) + rkm(3), rkm(2) + rkm(3y In

order to obtain the (k + l)-st approximation ( r ( Λ + 1 ) 1 , r{k+l)2, ,r(k+1)n)
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FIGURE A2.1

from the kth approximation one first defines the curvature of (rkι, rk2, ,rkn)

at the vertex £>,(/ ̂  4) to be 2π — Σy = 1 0(y), where the 0(y)'s are the angles at

υi in the Euclidean triangles which (rkl9 ,rkn) associates to those triangles of

T belonging to the star of vr The curvature of (rkι, 9rkn) at v((i > 4) is a

monotonically increasing function of rki. For / > 4 define r^k+l)i to be the

unique positive number which makes the curvature of (rkι, 9rkn) at υt

vanish, where r'kj = rkj for j Φ i and r'ki = r(k+l)i. Define r ( Λ + 1 ) / = 1 for

/ = 1,2,3. This determines the (k 4- l)-st approximation. Since the change in

rki primarily affects the curvature at υi and has relatively little effect on the

curvatures at other vertices, this process would be expected to converge fairly

rapidly.

Suppose the process converges to (r l 9 ,rn), a vector of positive numbers

with rx = r2 = r3 = 1 and such that the curvature of (rl9 ,rn) at each υt

(i > 4) is zero. It is then fairly clear that the Euclidean triangles associated to

the triangles in T other than (υv υ2, v3) by (rl9 ,rw) can be laid flat in the

plane, with their interiors disjoint, so that edges identified in T actually

coincide in the plane. They induce an embedded triangulation of a triangle of

sides 2,2,2. The 1-skeleton of this triangulation is isomorphic to T and it is the

nerve of the packing of circles of radii 1,1,1, r4, ,rn with centers where the

points corresponding to the vertices υl9 - — 9υn ot T have been placed.
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