
Nuclear Physics B 588 (2000) 436–450
www.elsevier.nl/locate/npe

Geometric cone surfaces and(2+ 1)-gravity
coupled to particles

Riccardo Benedettia,∗, Enore Guadagninib

a Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 2, I-56127, Pisa, Italy
b Dipartimento di Fisica, Università di Pisa, Via F. Buonarroti 2, I-56127, Pisa, Italy

Received 18 April 2000; revised 14 July 2000; accepted 24 July 2000

Abstract

We introduce the (2+ 1)-spacetimes with compact space of genusg > 0 and r gravitating
particles which arise by three kinds of construction called: (a) theMinkowskian suspensionof
flat or hyperbolic cone surfaces; (b) thedistinguished deformationof hyperbolic suspensions;
(c) thepatchworkingof suspensions. Similarly to the matter-free case, these spacetimes have nice
properties with respect to the canonical Cosmological Time Function. When the values of the masses
are sufficiently large and the cone points are suitably spaced, the distinguished deformations of
hyperbolic suspensions determine a relevant open subset of the full parameter space; this open subset
is homeomorphic toU×R6g−6+2r , whereU is a non empty open set of the Teichmüller spaceT rg . By
patchworking of suspensions one can produce examples of spacetimes which are not distinguished
deformations of any hyperbolic suspensions, although they have the same topology and same masses;
in fact, we will guess that they belong to different connected components of the parameter space.
 2000 Elsevier Science B.V. All rights reserved.

PACS:04.60.Kz
Keywords:Cone surfaces; Gravity coupled to particles

1. Introduction

Globally hyperbolic matter-free (2+ 1)-spacetimes with compact space of genusg > 1
and cosmological constantΛ = 0 have been fairly well understood. These spacetimes
can be arranged into classes with respect to the Teichmüller equivalence which is the
equivalence up to isometry isotopic to the identity. The resulting parameter space of these
universes can be identified with the cotangent bundle of the Teichmüller spaceTg , which is
homeomorphic toB6g−6×R6g−6, wheng > 2, whereBm denotes the openm-dimensional
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ball. Two methods are particularly useful to study matter-free spacetimes: thegeometric-
time-freeapproach, which eventually identifies each spacetime by itsgeometric holonomy
[9,19] and thecosmologicalapproach which is based on fibrations byconstant mean
curvaturespace-like surfaces [1,12]. Wheng > 2, the correspondence between these two
approaches is rather implicit. In [4] we have shown that the canonicalCosmological Time
Function(CTF), that is the length of time that the events have been in existence, provides a
very good cosmological resolution of the matter-free (2+1)-gravity. For instance, when
g > 2, the asymptotic states associated with the CTF recover and decouple the linear
Lorentz component and the translation part of the geometric holonomy; the orbit inTg of
the CTF is a real analytic curve connecting an interior point with a point of the Thurston’s
natural boundary ofTg ; the initial singularity can be accurately described in terms of the
degeneration of the geometry of the level surfaces of CTF (see Section 4 for more details).

It turns out that all matter-free spacetimes are obtained by means of two basic
constructions:

(i) TheMinkowskian suspensionof flat or hyperbolic surfaces;
(ii) A distinguished kind of deformation of the hyperbolic suspensions.

The starting point of this paper is the remark that the constructions (i) and (ii) can be
extended to the case of gravitating particles in(2+ 1) dimensions, as we are going to
briefly outline.

Let S =H2/G be a compact hyperbolic surface; let the hyperbolic planeH2 be realized
by the upper-hyperboloid embedded into the Minkowski spaceM2+1. SoG is a torsion-
free discrete subgroup ofSO+(2,1) which is isomorphic to the fundamental groupπ(S)
of S. What we call theMinkowskian suspensionM(S) of S is sometimes also called the
Lorentzian cone ofS or the Löbell spacetime based onS. In fact,M(S)= I+(0)/G, where
I+(0) is the chronological future of{0} inM2+1.M(S) is a flat spacetime containingS as
a Cauchy surface. Another equivalent way to defineM(S) is the following:S is endowed
with a Riemannian metricds2 of constant curvature−1; thenM(S) is isomorphic to
S×]0,∞[ with the metrict2 ds2 − dt2. Let S be now a hyperbolic surface with conical
singularities (see Section 2 for the precise definition); thoughS is not in general a quotient
of H2, the second description ofM(S) applies also to its regular partS′ and leads to a
spacetimeM(S) with gravitating particles corresponding to the cone points ofS. If S is a
flat torus there are actually two possible notions of Minkowskian suspension ofS, leading
to static or non-static flat spacetimes, respectively; again these notions can be suitably
extended in the framework of flat surfaces with conical singularities (see Section 3 for
more details about the suspensions).
Let us come to the deformations of hyperbolic suspensions. LetS = H2/G be as above.
A deformation ofM(S) is a flat spacetime of the formV =U/G′ where:

(1) G′ is a subgroup ofISO+(2,1), isomorphic toπ(S), havingG as linear Lorentz
part;

(2) U is a maximalG′-invariant simply connected domain inM2+1 on whichG′ acts
freely and properly discontinuously,V is diffeomorphic toM(S) and contains a
Cauchy surface diffeomorphic toS.



438 R. Benedetti, E. Guadagnini / Nuclear Physics B 588 (2000) 436–450

For a non trivial deformationU 6= I+(0), the initial singularity ofV is non trivial an so on.
It turns out (see [9] and also [4]) that any such a deformationV =M(S,F) is completely
determined by a suitable geometric objectF embedded intoS called ameasured geodesic
lamination. Measured geodesic laminations play a fundamental role in Thurston’s works
on the mapping class groups of surfaces and on the geometrization of 3-manifolds. It is a
rather sophisticated mathematical theory. A good introduction to this theory can be found
in [13]. Nevertheless the simplest measured geodesic laminations (calledmulticurves) are
really very elementary objects as they consist of disjoint simple closed geodesics ofS

endowed with positive real weights. Multicurves are very significant because a generic
geodesic lamination can be arbitrarily well approximated by multicurves. Moreover, the
deformationM(S,F) associated to a multicurveF can be described in a very elementary
way. For the purposes of this paper it will be enough to understand this simple situation.
If S has conical singularities we can use the geodesic laminations in its regular partS′ and
hence we have a corresponding notion of distinguished deformation of the Minkowskian
suspensionM(S) (see Section 4 for more details about the deformations).

When gravity is coupled to particles, an explicit construction of all possible spacetimes
has not been produced. We shall be concerned with compact spaces with a finite number of
massive particles and vanishing cosmological constant. ’t Hooft’s approach [8] describes
these spacetimes by means of the “linear” evolution of a special kind of Cauchy surfaces
which are tiled by spatial planar polygons. The extrinsic curvature is null in the interior
of each tile and it is singular along the edges; the evolution includes the changing of
tiling combinatorics under codified transition rules. Each Cauchy surface of this type is
intrinsically a flat surface with conical singularities. Some of these singularities correspond
to the intersection with the particle world-lines; the spacetime has a concentrated curvature
along these lines. The remaining singularities are 3-dimensionallyapparent singularities,
but the Gauss–Bonnet constraint implies that, in general, they cannot be avoided. Each
globally hyperbolic spacetime contains such a kind of Cauchy surface with, at least locally,
such a kind of evolution. However, it is not clear whether the evolution of a given surface
necessarily fills all the spacetime and how the evolutions of different surfaces in the same
spacetime are related each other. So, it seems hard to recover from this approach a clear
identification of the parameter space.

Another experimented approach (see [2,3,11]) is the classical ADM formalism with the
so called “instantaneous gauge”, that requires fibration by spatial Cauchy surfaces with
zero extrinsic curvature. This last requirement is technically very useful and permits to
analytically find solutions by means of classical and very elegant mathematical tools.
Unfortunately, it turns out that the only spacetimes with compact space covered by this
approach are the static ones that is, by using the terminology of the present paper, the static
Minkowskian suspensions of flat surfaces with conical singularities, that we shall describe
below.

The aim of this note is to describe the spacetimes with compact space of genusg > 0
andr gravitating particles that one can obtain by means of three kinds of construction:

(a) TheMinkowskian suspensionsof flat or hyperbolic surfaces with conical singulari-
ties;
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(b) Thedistinguished deformationsof hyperbolic suspensions (in strict analogy with
the matter-free case);

(c) Thepatchworkingof Minkowskian suspensions (this is peculiar of gravity coupled
with particles — see Section 5).

These spacetimes have very transparent structural properties and behave somewhat
similarly to the matter-free universes with respect to the CTF, its asymptotic states, the
initial singularity and so on. Moreover they form a rather wide class of spacetimes, so
that we can derive from them some non trivial information about the actual parameter
space. For example we will show that when the masses are big enough and the cone points
are suitably spaced, the distinguished deformations of hyperbolic suspensions determine
a relevant non empty open subset of the parameter space of the formU × R6g−6+2r ,
whereU is an open set of the Teichmüller spaceT rg ≈ B6g−6+2r . On the other hand, by
patchworking of suspensions, we will produce spacetimes with the same topology and
the same masses of certain hyperbolic suspensions but which are not equivalent to any
distinguished deformation of them. In fact we will guess that they belong to different
connected components of the parameter space. So gravity coupled to particles seems to
be much more flexible than pure gravity. In the last section we will state several related
questions and we will develop a few speculations.

2. Geometric surfaces with conical singularities

Cone points.The local models offlat or hyperbolicsurfaces with a conical singularity are
respectively given, in complex coordinate, by the metrics on{|z|< 1}:

ds2
(E,α) = α2 |z|2α−2 |dz|2 ,

ds2
(H,α) = α2[2/(1− |z|2α)]2 |z|2α−2 |dz|2,

where α > 0. These metrics are obtained by pull-back of the standard Euclidean or
Poincaré metrics on{|w| < 1} via the mapw = zα . In both cases theconcentrated
curvatureat the conical point with coordinatez = 0 is k = 2π(1− α), the cone angle
is 2πα. In order to have a genuine singularity,α 6= 1.

Geometric cone surfaces.It is convenient to adopt the formalism of geometric(X,G)-
manifolds (see, for instance, chapter B of [6]). Fix abasecompact oriented surfaceFg of
genusg > 0 and fixp1, . . . , pr points onFg . A marked geometric (i.e., flat or hyperbolic)
surface with conical singularities, of cone angles 2παi , i = 1, . . . , r, is a homeomorphism

φ :
(
Fg, {pi}

)→ (
S, {qi}

)
,

such thatS′ = S \ {qi} is a(X,G)-surface where(X,G)= (R2, Isom+(R2)) or (X,G)=
(H2, Isom+(H2)), respectively and its metric completion has a conical singularity of
cone angle 2παi at qi . Isom+(X) denotes the group of oriented isometries ofX. We
recall that a(X,G)-manifold is by definition endowed with an atlas{Ui,ψi}, where the
homeomorphismsψi :Ui→Wi ⊂X are such that each transition mapψi ◦ψ−1

j coincides
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with an element of the specified groupG of diffeomorphisms ofX on each connected
component of its domain of definition.

Gauss–Bonnet constraint.The classical Gauss–Bonnet formula leads to the following
relations.

Flat case:∑
i

ki = 2π
∑
i

(1− αi)= 2π(2− 2g) (Gauss–Bonnet equality).

Hyperbolic case:∑
i

ki = 2π
∑
i

(1− αi)= 2π(2− 2g)+Area(S),

whence:∑
i

(1− αi) > 2− 2g (Gauss–Bonnet inequality).

This implies, in any case, that wheng = 0, necessarilyr > 3, and we will make this
assumption by default. We say that

δ = (X, g, [α]r )=
(
X, g, (α1, . . . , αr )

)
,

(whereX=R2 orH2, g > 0 and theαi ’ satisfy the appropriate Gauss–Bonnet equality or
inequality), is avirtual typeof geometric surfaces with conical singularities. We denote
by Tδ the Teichmüller spaceof marked surfaces of typeδ regarded up toTeichmüller
equivalence. Two marked geometric surfaces of typeδ, φ1 andφ2 are equivalent iff there
exists an isometryf : (S1, {q1

i })→ (S2, {q2
i }) such thatφ−1

2 ◦ f ◦ φ1 is isotopic to the
identity ofFg relatively to{pi}.

When r > 0, the fundamental groupπ(F ′g), whereF ′g = Fg \ {pi}, is a non-Abelian
free group withs = 2g + r + 1 generators. For each[φ] ∈ Tδ, the associatedholonomy
representation

ρ[φ] : π(F ′g)→ Isom+(X)

is well defined up to conjugation.
The universal covering mapp :S∗ → S is, in a natural way, a local isometry so that

S∗ is homeomorphic toR2 and it is endowed with a geometric structure with conical
singularities.π(S) acts freely and properly discontinuously onS∗ andS = S∗/π(S). In
general a geometric surfaceS with conical singularities cannot be realized in the form
S = X/Γ whereΓ is a discrete subgroup (not necessarily torsion-free) of the group of
isometries ofX. When this is the case, the surface is called an orbifold.

Orbifolds. Geometric 2-dimensional compact orbifolds with only conical singularities
make a special class of surfaces we are concerned with. Such an orbifoldS is a quotient
X/Γ whereΓ is a group of isometries ofX acting properly discontinuously and such
that the set of points with non trivial stabilizer is made by isolated points. For a genuine
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orbifold this set is nonempty. Orbifolds might have an important role in the construction of
a quantum version of (2+ 1)-gravity. They are classified as follows (see [15,16]).

Proposition 2.1. A geometric cone surface is a genuine Euclidean orbifold iff it is of
one of the types(R2,0, (1/2,1/3,1/6)), (R2,0, (1/2,1/4,1/4)), (R2,0, (1/3,1/3,1/3)),
(R2,0, (1/2,1/2,1/2,1/2)). A geometric cone surface is a genuine hyperbolic orbifold
iff it is of a type(H2, g, [α]r ) satisfying the Gauss–Bonnet inequality and such that each
αi ∈ [α]r is of the formαi = 1/ni , ni ∈N∗.

Conformal structures. Associated to each geometric structure with conical singularities
there is a naturalconformal structure. First, it is clear that any atlas of the geometric
structure on the regular partS′ is actually a conformal atlas (use the Poincaré disk model
for H2, identifyR2 with C and recall that anyf ∈ Isom+(X) is also a biholomorphism).
Then, in order to get a conformal atlas on the whole surfaceS, we only need to add the
chart in complex coordinates around each conical singularity defined at the beginning of
the present section.

Let T rg be the classicalTeichmüller spaceof conformal structures onFg , relatively to

the marked points{pi}; T rg is homeomorphic to an open ballB6g−6+2r . For each virtual
typeδ = (X, g, [α]r ), if Tδ is non empty, there is a natural continuous map

ψδ :Tδ→ T rg ,

which is obtained by associating to each geometric cone surface of typeδ the conformal
structure described above. In the case of flat surfaces we eliminate simple rescalings by
normalizing the area to be equal to unity. Geometric surfaces with conical singularities
are classified by the following proposition, which shows that the configurations space of
geometric cone surfaces of a given type is isomorphic with the classical Teichmüller space
T rg .

Proposition 2.2. For any virtual typeδ, Tδ is non empty and the natural mapψδ is a
homeomorphism.

Sketch of proof. The flat case is due to Troyanov (see [17]). The orbifold case is treated
in [16]. Let us sketch the main steps of a proof in the general hyperbolic case.

(1) dim(Tδ)= dim(T rg ).
Let us outline first a way to construct all hyperbolic cone surfaces. Fix(Fg, {p1, . . . , pr })
as before. Astandard spineof F ′g is a 1-complexP embedded inF ′g , with only 3-valent
vertices, such thatF ′g is a regular neighbourhood ofP (F ′g retracts ontoP ). Associated to
such aP there is a dual (topological)ideal triangulationτP of F ′g , that is a “relaxed” (i.e.,
multiple and self adjacencies between triangles are allowed) triangulation ofFg , having
{p1, . . . , pr} as set of vertices. Ifv(P ) = |V (P)| denotes the number of vertices ofP
(i.e., the number of triangles ofτP ), e(P ) = |E(P)| the number of its edges (i.e., the
number of the edges of the dual triangulation), one has 3v(P ) = 2e(P ) so thate(P ) =
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6g− 6+ 3r. Clearly spines exist. Fix a spineP . For anyadmissiblemapf :E(P)→R+
(i.e., a map such that at each vertexv ∈ P the values off on the three edges emanating
from v satisfy thetriangular inequalities), we can construct a hyperbolic surface withr
conical singularities. This is obtained as a geometric realization of the dual triangulation
τP , by using hyperbolic triangles with edge lengths prescribed byf . Recall that each
hyperbolic triangle is determined by the edge lengths as well as by the interior angles,
and there are classical explicit formulas relating lengths and angles. It is not too hard to
see that varying the spine and the admissible function, one can realize all the hyperbolic
virtual types. On the other hand, any cone hyperbolic surface arises in this way. In fact
let (Fg,F ′g) ∼ (S,S′) be such a surface. Consider the subsetQ of S, such that for each
x ∈Q there existi 6= j such thatd(x,pi) = d(x,pj ). GenericallyQ is a standard spine
of S′; the interior of an edge ofQ consists of the points with exactly two equidistant
marked pointspi,pj , the same along the given edge. The “axis” of each edge, that is the
geodesic arc connectingpi andpj and passing from the point of the edge of minimal
distance from them, are the edges of a geometric realization on the dual triangulationτQ.
In generalQ is a spine, possibly with higher valency vertices; the same procedure produces
a dual ideal cellularization ofS′ by convex hyperbolic polyhedra and we eventually obtain
a geometric triangulation by subdividing without introducing new vertices. If a virtual type
δ is realized by an admissible mapf0 on E(P), the maps realizing the same type are
obtained by imposingr independent conditions. So one can deduce, at least, thatTδ is a
topological manifold of the right dimension 6g− 6+ 2r.

(2) The mapψδ is injective.
ConsiderH2 in the Poincaré disk modelD = {|z| < 1}, and lete2h|dz|2 be the standard
Poincaré distance. Realize a given elementσ of T rg by a smooth hyperbolic surface (with
marked points)S =D/Γ . Two hyperbolic surfaces with conical singularities of the same
type, both representingσ , are given by two metricse2(h+hi)|dz|2, i = 1,2, such that each
hi is aΓ -equivariant function onD, with the same kind of singularities over the marked
points ofS. It follows thath1−h2 is a real analyticΓ -equivariant function onD satisfying
the Liouville equation

∆(h1− h2)= e2h(e2h1 − e2h2
)
.

AsS is compacth1−h2 has maxima and minima. Either∆(h1−h2) > 0 near a maximum,
or∆(h1−h2)6 0 near a minimum. By the maximum principleh1−h2 is constant near the
minimum or the maximum and hence it is constant (and necessarily equal to 0) everywhere.

(3) Conclusion.
By the invariance of domaintheorem,ψδ is a homeomorphism onto a non empty open
subset ofT rg . To conclude it is enough to show that the image ofψδ is closed. This can
be done by studying the convergence of the conformal factors (see the above step), or by
arguing (via geometric considerations) that the image of a “diverging” sequence inTδ is
diverging inT rg . 2
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3. Minkowskian suspensions

Particle world-lines. Let us give, first, the local models of the line of universe of a
massive particle. They are obtained by “suspension” of the local models for geometric
cone surfaces. We can take indifferently, in coordinates(z, t),

dσ 2
(E,α) =−dt2+ ds2

(E,α),

or, assumingt > 0

dσ 2
(H,α) =−dt2+ t2 ds2

(H,α).

They are equivalentas local models, in the sense that any point(0, t1) in the first model
and any point(0, t2) in the second one have isometric neighbourhoods. They are not
equivalent as global spacetimes; for instance if we take the time orientation in accordance
with the t coordinate, the CTF of the first spacetime is degenerate, constant equal to∞,
while t is the CTF of the second one. We have a well defined cone angle 2πα along such
a universe line, which corresponds to a spacetime curvature concentrated along the line. In
accordance with [7,8], if we normalize the gravitational constant to beG= 1, themassof
the particle is related to the cone angle bym= (1/4)(1− α); in (2+ 1)-gravity there are
not physical constraints on the sign ofGm, so that an arbitrarily bigα is allowed.

Spacetimes with gravitating particles.A marked globally hyperbolic spacetime (coupled
to massive particles) of type

δ = (g, [α]r)= (g, (α1, . . . , αr )
)

is an homeomorphism

φ :
(
Fg ×R, {pi} ×R

)→ (M,Li),

such thatM ′ =M\{Li} is an oriented and time-oriented globally hyperbolic flat Lorentzian
3-manifold (i.e., aM2+1, Isom+(M2+1)-manifold, whereM2+1 is the standard Minkowski
space) and each point ofLi has a neighbourhood isometric to the above local models,
with cone angle 2παi . It is convenient to restrict toGeroch marking, that is we stipulate
that the surfacesφ(Fg × {t}) are Cauchy surfaces. As usual we work up to Teichmüller
equivalence and we denote byT GR

δ the corresponding Teichmüller space for a given
type. We shall consider maximal spacetimes. IdentifyingFg with Fg × {0}, we have the
holonomy representation

ρ[φ] :π(F ′g)→ Isom+(M2+1).

We also make the usual assumption that the linear part of the holonomy takes values in
SO+(2,1), the group of time-orientation preserving Lorentz transformations.

Minkowskian suspensions of geometric cone surfaces.These are peculiar spacetimes
such thatM ′ is a(Y,G(Y ))-manifold, for suitably chosen open subsetsY of M2+1,G(Y)
being the group of orientation preserving Minkowskian isometries keepingY invariant. As
Y we will take:

YE =M2+1
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with metric(dx1)2+ (dx2)2− (dx3)2, and thought fibred by the planes{x3= a}.
YH =

{
x ∈M2+1:

(
x1)2+ (x2)2− (x3)2< 0, x3> 0

}
thought fibred by the surfaces{

x ∈M2+1:
(
x1)2+ (x2)2− (x3)2=−a2, x3> 0

}
finally

YT =
{
x ∈M2+1:

(
x1)2− (x3)2< 0, x3> 0

}
thought fibred by the surfaces{

x ∈M2+1:
(
x1)2− (x3)2=−a2, x3> 0

}
.

Note thatYH is the chronological future of the point{0} and thatYT is the chronological
future of the line{x1= x3= 0}. In both cases the square-root ofa2 is the CTF.

By the change of coordinatesx1 = τsh(u), x2 = y, x3 = τch(u), we see thatYT is
isometric toP = {(u, y, τ ) ∈ R2+1: τ > 0}, with metric τ2du2 + dy2 − dτ2, andP is
fibred by the level planes of the CTFτ .

EachY∗ is oriented and time-oriented in the usual way.
The groupG(Y∗) is ISO(2,1) andSO+(2,1) for YE andYH , respectively; forYT it is

more convenient to considerG(P) which is generated by translations parallel to the level
planes ofτ and by the rotation of angleπ around theτ -axis. Note that the foliations of
these planes by vertical and horizontal lines areG(P)-invariant.

If S is a flat cone surface of type(R2, g, [α]r ), its Minkowskian suspensionM(S) is the
obviously associated spacetime of type(g, [α]r ) such thatM ′(S), that is the complement
of the particle world-lines inM(S), is a (YE,G(YE))-manifold with holonomy equal to
the holonomy ofS′. If S′ has the flat metricds2,M ′(S) is isometric toS′ ×R with metric
ds2− dt2. M(S) is fibred by parallel copies ofS. The CTF degenerates as it is constant
equal to∞. These are calledstatic Minkowskian suspensions.

If S is a hyperbolic cone surface of type(H2, g, [α]r ), its Minkowskian suspension
M(S) is the obviously associated spacetime of type(g, [α]r ) such thatM ′(S), that is
the complement of the particle world-lines inM(S), is a (YH ,G(YH ))-manifold with
holonomy equal to the holonomy ofS′. If S′ has the metricds2 of constant curvature−1,
M ′(S) is isometric toS′×]0,∞[ with metric t2ds2− dt2. M(S) is fibred by conformally
rescaled copies ofS; these surfaces are the level surfacesSa of the CTF, in particular one
hasS = S1; out of the particles, these surfacesSa have constant mean curvature 1/a and
constant intrinsic curvature equal to−1/a2. The initial singularity consists of one point.

These suspensions are particularly nice whenS is an orbifold (and the matter-free
spacetimes are particular cases); if the orbifoldS = X/Γ , Γ acts isometrically also on
the correspondingY∗, andM(S)= Y∗/Γ .

The parameter space ofYE - or YH -suspensions of a given type coincides, tautologically,
with the parameter space of the suspended geometric cone surfaces (see the previous
section).

The YT -Minkowskian suspensions involve the special flat cone surfacesS given by
themeromorphic quadratic differentialswith at most simple poles on Riemann surfaces.
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The flat structures on the regular partS′ of these cone surfaces have the peculiarity to
be defined by atlas which have only translations or the rotation by angleπ as transition
maps. So theYT -Minkowskian suspensionM(S) is the natural spacetime such thatM ′(S)
is a (P,G(P))-manifold with holonomy equal to the holonomy ofS′. In fact each such
a suspension is determined by a couple(F, q), whereF is a Riemann surface andq is a
quadratic differential. That is, it is determined not only by the cone surface, but also by the
horizontal and vertical measured foliations of the quadratic differential. We have already
studied such spacetimes in [5] where we have shown how they “materialize” the classical
Teichmüller flow. See also [4] for a description of the CTF. In fact in [5] we considered
only holomorphic quadratic differentials, but everything runs verbatim if one allows also
simple poles. Recall that in this way one can realize all the types with 2παi = niπ, ni > 1,
satisfying the Gauss–Bonnet equality, with four exceptions (see [10]). Moreover, for any
given realizable type, one knows the degrees of freedom (see [18]): ifµ(a) denotes the
number of cone points of cone anglea, then the degrees of freedom are

2g+
∑

µ(a)+ (ε − 3)/2,

whereε =−1 iff there is at least one cone angle with oddni , and it is equal to 1 otherwise.
For example, when the type contains onlyni = 3 (this corresponds to holomorphic
quadratic differentials with simple zeros), the dimension of the corresponding space of
YT -suspensions is 6g− 6.

The only orbifolds which produce such a kind of suspension are the orbifolds of type
(R2,0, (1/2,1/2,1/2,1/2)). They are obtained by the natural identification of the edges
of two copies of a same “fundamental” Euclidean rectangle. The corresponding groups
Γ are generated by two orthogonal translations and the rotation of angleπ . Groups that
determine the sameYE -suspension (up to equivalence), do determine in general different
YT -suspensions; in fact if we look at these groups acting onP , the horizontal and vertical
foliations on eachτ -level plane induce different foliations on the CTF level surfaces of the
two suspensions.

4. Distinguished deformations of hyperbolic suspensions

As already mentioned in the introduction, all matter-free flat spacetimes with space
of genusg > 2 can be obtained by deformation of Minkowskian suspensions of smooth
hyperbolic surfacesS. Each deformationM(S,F) is governed by a measured geodesic
laminationF on S. We refer to [13] for an introduction to the general theory of geodesic
laminations. For simplicity, we shall be concerned only with the case in whichF is a
multicurve, which is the simplest example of measured geodesic lamination. Multicurves
are dense in the space of laminations, that is by making the multicurve “complicated”
enough, we can fairly well approximate the shape of any spacetime; moreover the
deformations associated to multicurves can be described in an elementary way.

Assume for a while thatS = H2/Γ is a smooth compact hyperbolic surface.
A multicurve F consists of a finite union of disjoint simple geodesics endowed with
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positive weights. Assume, for simplicity, that there is one single geodesicσ , with weight
s and lengthr. Consider the quotientA′(s, r) of B ′(s, r) = {(u, y, τ ) ∈ P ; 06 y 6 s}
by the group generated by the translation(u, y, τ )→ (u+ r, y, τ ). Actually it is better to
consider the isometric quotientA(s, r) of B(s, r)⊂ YT , obtained via the explicit change of
coordinates given in Section 3. Then, in order to constructM(S,F), cut-openM(S) along
the suspension ofσ and insertA(s, r) in the natural way.M(S,F) is, by construction,
fibred by C1-embedded space-like surfaces made by the union of pieces of constant
negative curvature and flat annuli; these surfaces are the level surfacesSa = {τ = a} of
the CTFτ .
M(S) itself can be considered as a limit case of this procedure by takings = 0. In such

a case the level surfacesSa are perfectly smoothly embedded and the initial singularity of
M(S) consists of one single point. In fact the lack of smoothness of the embedding ofSa is
a “dual” large scale manifestation of the non trivial initial singularity ofM(S,F). We shall
now elaborate on this point. Consider the universal coveringq :M(S,F)∗ →M(S,F); τ
lifts to the CTFτ ∗ of M(S,F)∗ and each level surfaceS∗a is the universal covering of the
correspondingSa . Consider also the universal covering mapp :H2→ S. SetΣ = p−1(σ );
Σ consists of infinitely many disjoint complete geodesic lines ofH2, called the leaves
of Σ . One can define the so-calleddual metric tree(T , d) of Σ . T embeds inH2 as
follows: the vertices ofT are obtained by choosing, in aΓ -invariant way, one point in
each connected component ofH2 \Σ . Two vertices are connected by a geodesic edge iff
the corresponding components are adjacent. The distanced is the length-space distance
obtained by imposing that each edge ofT , which crosses once one leaf ofΣ , has length
equal tos. (T , d) is endowed with a natural non trivial isometric action ofπ(S). In a similar
way (T , d) can beπ(S)-equivariantly embedded in each level surfaceS∗a ; Σ is replaced by
infinitely many disjoint flat bands of thickness equal tos. Whena→∞, (1/a)S∗a converge
to the hyperbolic planeH2 and the actions ofπ(S) on (1/a)S∗a converge to the action of
Γ onH2. Whena→ 0 the actions ofπ(S) on S∗a “degenerate” to the action ofπ(S) on
T (more details can be found in [4]). Note that in this caseT is a locally finite simplicial
tree, but this is no longer true in the general case where a more complicated kind of dual
real treesdoes occur. This complication is related to the fact that the typical intersection of
a transverse interval with a generic geodesic lamination is a Cantor set.

If S is now a hyperbolic cone surface, the construction of the deformationM(S,F)
of M(S) can be repeated if we take a multicurve or more generally a measured geodesic
laminationF with compact support in the regular partS′; S∗ plays the role ofH2. The
resulting spacetimeM(S,F) has the same type ofM(S) because the modifications occur
far from the cone points.

Given a hyperbolic typeδ = (g, [α]r ), we denote byD(δ) the subset ofT GR
δ which is

determined by the distinguished deformations of Minkowskian suspensions of hyperbolic
cone surface of typeδ. Of course, a suspension is meant as the trivial deformation of
itself and there is a natural projectionp :D(δ)→ Tδ , obtained by associatingM(S) and
henceS toM(S,F). The following proposition gives partial information onD(δ). We will
use some notations introduced in Section 2. The set of hyperbolic “(g, r)-types” can be
identified with an open set ofRr .
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Proposition 4.1.
(1) For each hyperbolic typeδ there is an open( possibly empty) maximal subsetUδ of

Tδ such thatp−1(Uδ)⊂D(δ) is homeomorphic toUδ ×R6g−6+2r (andp becomes
the natural projection onto the first factor).

(2) For each(g, r) there is a maximal non empty open subsetW(g,r) of the space of
(g, r)-types, such that for eachδ ∈W(g,r), Uδ is non empty.

(3) For anyδ,

12g− 12+ 4r > dimD(δ)> 6g− 6+ 2r.

(4) If Uδ is non empty, thenUδ ×R6g−6+2r is an open subset ofT GR
δ .

Sketch of proof. By using the result of Section 2, the first statement is equivalent to
show that the space of measured geodesic laminations with compact support onS′, for
a given hyperbolic cone surfaceS in U (for a suitableU ), is homeomorphic toR6g−6+2r .
This fact is known in the “limit” case when eachαi = 0, that is whenS′ is a complete
finite area hyperbolic surface withr cusps (see [14]). Let us denote byHT rg (which is
homeomorphic toT rg ) the Teichmüller space of such hyperbolic surfaces withr cusps
and fix one surfaceF . It is known that each geodesic lamination with compact support
on F has support contained inF ′′ obtained by removing fromF all the horocycles of
length< 1 around all the cusp points (see [14, p. 72]). It turns out that any hyperbolic cone
surfaceS which is “geometrically” close toF has, up to homeomorphism, the same space
of measured geodesic laminations with compact support onS′ asF . The crucial fact is that
if S is close enough to a cuspedF , each isotopy class of essential (i.e., non contractible nor
contractible to one cone point) simple closed curves onS′ is represented by a simple closed
geodesic inS′ of shortest length. “S geometrically close toF ” means that, by removing
suitable small “round” disks with centres at the cone points ofS, we findS′′ which is bi-
Lipschitz homeomorphic toF ′′, by a homeomorphism close to an isometry. It follows that
for any fixed compact subsetK of HT rg there is an open subsetUK (possibly empty) of
Tδ, which satisfies the first statement of the proposition.

To prove the second statement, it is enough to show that, for any fixedF as before, there
are cone surfacesS close toF in the above sense. Fix a geodesic ideal triangulationT of
F (i.e., a “relaxed” triangulation ofF by ideal hyperbolic triangles). For each 0< a < 1
consider the horocycles of lengtha around the cusps ofF . Associate to each edge of the
triangulation the length of the subarc determined by the horocycles. Consider the cone
surfaceS obtained accordingly with the construction after Proposition 2.2, by using the
sameT as topological ideal triangulation ofF ′g and those lengths as edge-lengths. Ifa is
small enough,S is close toF . S is not close enough to a cuspedF when, at a qualitative
level, the masses are not big enough or the particles are too close each other on a given
level surface of the CTF of the corresponding Minkowskian suspension. In such a case
the basic trouble consists in the fact that the shortest length representative of an essential
isotopy class of simple closed curves onS′ might be a broken geodesic passing through
some cone points or even it might not exist as a simple curve.

The third statement is clear from the above discussion.
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To achieve the last statement it is enough to show thatT GR
δ is of dimension 12g− 12+

4r; we are going to argue it without any assumption on the spacetime typeδ = (g, [α]r ).
The degrees of freedom ofT GR

δ . Fix a marked spacetimeM of type δ and a relati-
vely compact globally hyperbolic open neighbourhoodU of the Cauchy surface image
of Fg × {0}. Let ρ :π(F ′g)→ ISO+(2,1) be its holonomy. Asπ(F ′g) is a free group,
a deformation ofρ is simply obtained by modifyingρ on a set of 2g − 2 + r + 1
free generators. If a deformationρ′ is small enough, then, by the stability property of
holonomies,ρ′ is still the holonomy of a spacetime structure on the interior ofU , with r
gravitating particles. So, as the holonomy is defined only up to conjugation, the dimension
of the set of all these spacetimes “close” toM is 12g − 12+ 6r. In order to impose
that the spacetimes have the specific cone angles prescribed byδ, we have to impose 2r
(that is(6− d)r, whered is the dimension of the conjugation orbit of a “rotation”) more
independent conditions, and we finally get the required number of degrees of freedom
12g− 12+ 4r. 2

5. Patchworking of Minkowskian suspensions

A simple variation of the construction of the distinguished modification of hyperbolic
suspensions, based on multicurves, that we have described in the previous section, will
produce interesting new examples of spacetimes.

LetM(S,F) be as in the previous section. Assume that we have a finite union of simple
closed geodesic onS′ which aredisjoint fromF . For simplicity, assume that there is a
single geodesicσ of length a. Let (F, q) be a Riemann surface with a meromorphic
quadratic differentialq , with at most simple poles. LetM(F,q) be the corresponding
YT -Minkowskian suspension (see Section 3). Assume that theq-horizontal foliation on
F contains a simple closed leafc of lengtha. Then we can construct new spacetimes as
follows: cut-openM(S,F) along the suspension ofσ andM(F,q) along the suspension
of c; then glue, pairwise, pieces ofM(S,F) with pieces ofM(F,q) along isometric
boundary components in the natural way. Note that there is, in general, a finite number
of possible combinations, and the resulting Lorentz manifolds may be not connected, so
we can take each connected component as a new spacetime. CallM([S,F , σ ], [F,q, c])
any spacetime obtained in this way. By construction, it is fibred by space-like surfaces
(made by rescaled pieces ofS and by “stretched” pieces ofF ) which actually are the
level surfaces of the CTF ofM([S,F , σ ], [F,q, c]). Note also that the construction can be
iterated, starting from suitableM([S,F , σ ], [F,q, c]); so one can produce a wide class of
new examples. Thispatchworkingis peculiar of spacetimes with gravitating particles; in
fact if we formally apply it to matter-free spacetimes we get nothing else than distinguished
deformations of hyperbolic suspensions.

In particular, let us use as(F, q) the orbifolds of type(
R2,0,4[1/2])= (R2,0, (1/2,1/2,1/2,1/2)

)
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with the horizontal and vertical foliations ofq (with 4 simple poles) parallel to the edges
of the “fundamental” rectangle. It is not hard to construct by the patchworking procedure
types of the formδ = (g, [α]r ) = (g, [α]r ′ ∪ 2h[1/2]), 2h + r ′ = r, which were also
realizable by Minkowskian suspension of some hyperbolic cone surface. On the other
hand, these new spacetimes do not belong toD(δ) because, for instance, the level surfaces
of the respective CTF are not isometric as they have cone points of cone angleπ with
no isometric neighbourhoods. Other differences manifest themselves by studying the past
asymptotic states of the respective CTF. By small perturbation of the holonomy of these
examples one could produce examples out ofD(δ′) for any[α]′r close to[α]r .

6. Final questions and considerations

We are going to conclude with some questions, problems and, sometimes, with a guess
about them.

(1) Is T GR
δ connected?

The answer could depend on the type. We guess that the above examples not belonging
toD(δ), actually do not even belong to the same connected component of any element of
D(δ).

(2) Does any spacetime satisfy the Gauss–Bonnet constraint
∑
(1− αi)> 2− 2g?

We guess that by suitable small perturbations of the holonomy of static Minkowskian
suspensions (which satisfy the Gauss–Bonnetequality) one could obtain spacetimes with∑
i (1− αi) < 2− 2g .
We note that all the examples of spacetime that we have produced starting from non

static Minkowskian suspensions have the following property:
Each particle line of universe has a neighbourhood isometric to the set of points of

spatial distance< bt , for some positiveb, from thet-axis in the model{(z, t), |z| < 1,
t > 0} with metricdσ 2

(H,α) (see Section 3).
(3) Does the same property hold for any spacetime with tame — see [4] — CTF with

values onto(0,∞)?
It would be interesting to find, if any, examples where the linear functionbt must be

replaced by some positive functionf (t) going faster to 0 whent→ 0.
(4) Find an intrinsic characterization of hyperbolic cone surfaces belonging toUδ .
One expects that it could be expressed in terms of inequalities involving the cone angle,

the genus and the distances between the cone points.
(5) DescribeW(g,r). In particular, doesm(g, r) exist, with1> m(g, r) > 0, such that

for anyδ ∈W(g,r) and for any massmi associated toδ, one hasmi >m(g, r)?
For example, beside the “rigid” case(g, r)= (0,3), the very peculiar case(g, r)= (0,4)

hasW(0,4) which coincides with the whole space of(0,4)-types; moreover, for each type
δ ∈W(0,4), Uδ coincides withTδ, so thatD(δ)= Tδ×R2. On the other hand, we guess, for
example, that for each(0, r), r > 4, the last question has negative answer.

(6) IsD(δ) always of dimension> 6g− 6+ 2r?
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Here one is asking whether there are always non trivial distinguished deformations. We
guess that wheng > 2 and the masses are all positive, thenD(δ) contains at leastTδ ×
R6g−6; in other words one expects that there is at least the same “amount” of distinguished
deformations of the matter-free case of the same genus.

(7) LetC be any closed subset ofUδ . Isp−1(C)⊂ Uδ ×R6g−6+2r closed inT GR
δ ?

Finally, we note that in several instances of the present paper we have seen how very
natural perturbations of a given spacetimedo not preserve the type(see for instance
the constructions of Section 2 or the argument at the end of Section 4). This would
suggest that the study of (2+ 1)-gravity (coupled to particles) “type by type”, or even
“space-genus by space-genus”, could be misleading. Spacetimes should be considered “all
together” and it becomes quite demanding to figure out the structure of the corresponding
(infinite dimensional) parameter space. We guess that Grothendieck theory of “Teichmüller
Towers” could play an important role.
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