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Abstract

We consider maximal globally hyperbolic fl& + 1)-spacetimes with compact spagef genus
g > 1. For any spacetim¥ of this type, the length of time that the events have been in existeife is
defines a global time, called the cosmological time CTofwhich reveals deep intrinsic properties
of spacetime. In particular, the past/future asymptotic states of the cosmological time recover and
decouple the linear and the translational parts of #@&2, 1)-valued holonomy of the flat spacetime.
The initial singularity can be interpreted as an isometric action of the fundamental grsupnoé
suitable real tree. The initial singularity faithfully manifests itself as a lack of smoothness of the
embedding of the CT level surfaces into the spacetméhe cosmological time determines a real
analytic curve in the Teichmuller space of Riemann surfaces of genukich connects an interior
point (associated to the linear part of the holonomy) with a point on Thurston’s natural boundary
(associated to the initial singularity). 2001 Elsevier Science B.V. All rights reserved.

PACS:04.60.Kz
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1. Introduction

We shall be mainly concerned with maximal globally hyperbolic, matter-free spacetimes
M of topological typeS x R, whereS is a compact closed oriented surface of gegaiusl.
The (2 + 1)-dimensional Einstein equation with vanishing cosmological constant actually
implies thatM is (Riemann) flat.

After [9] and [26], a large amount of literature has grown up about(his 1)-gravity
topic, regarded as a useful toy-model for the higher-dimensional case. Two main kinds
of description have been experimented. A “cosmological” approach points to characterize
the spacetimes in terms of some distinguished global time; for instancetis¢gant mean
curvatureCMC time has been widely studied [3,17]. A “geometric” time-free approach
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eventually identifies each flat spacetime by means ofi$5(2, 1)-valued holonomy
[16,26]. With the exception of the case with toric spage=(1), there is not a clear
correspondence between the results obtained in these two approaches.

The aim of this paper is to show that this gap can be filled by using the canonical
Cosmological Time CT, that is “the length of time that the eventdfohave been in
existence” (see [2]). It turns out that this is a global time which reveals the fundamental
properties of spacetime. It is canonically defined by means of the very basic spacetime’s
structures: its casual structure and the Lorentz distance. The cosmologicat time
invariant under diffeomorphisms, therefore, the- a level surfacesS, provide a gauge-
invariant description of space evolution M. Both the intrinsic and extrinsic geometry
of the surfaces,, as well as their past/future asymptotic states, are intrinsic features of
spacetime. The asymptotic states are defined by the evolution of the observables associated
to the length of closed geodesic curves on the surffgeRemarkably, they recover and
decouple the linear and the translational parts of the holonomy. The study of the asymptotic
states also leads to understand the initial singularity (we will always assume that the space
is future expanding) and the way how the classical geometry degenerates, but does not
completely disappear. The initial singularity can be interpreted as the isometric action of
the fundamental group df on a suitable “real tree”. Differently to the case of the CMC
time (for instance), the level surfac§g of the CT are in general onlg-embedded into
the spacetima/. This lack of smoothness takes place on a “geodesic laminatio$, and
is a observable large scale manifestation of the intrinsic geometry of the initial singularity.
Thus the initial singularity admits two complementary descriptions: one, in terms of real
trees and, the second, in terms of geodesic laminations. The existence of a duality relation
between real trees and laminations was already known in the context of Thurston theory
of the boundary of the Teichmuller space. It is remarkable that Einstein the@2yol)-
gravity sheds new light on this subject and puts duality in concrete form.

In [6] we have also used the cosmological time in order to study certain interesting
families of (2 + 1)-spacetimes coupled to particles.

Our main purpose consists of elucidating the central role of the cosmological time and
its asymptotic states in the description of spacetimes. The cosmological time perspective
provides a new interpretation of several facts spread in the literature which are related to
Thurston work. More precisely, the present article is based on, and could be considered a
complement of, Mess'’s fundamental paper [16].

The importance of2 + 1)-gravity has been pointed out by several authors, see for in-
stance [8,9] and [26]; here we simply add a few comments. In general, the models which
have dynamical degrees of freedom associated with the spacetime geometry are of par-
ticular interest in physics. Indeed, gravitational interactions are supposed to be described
by general relativity in which the geometry of spacetime admits a nontrivial dynamical
evolution. A satisfactory knowledge of all the classical and quantum aspects of general rel-
ativity is still lacking; so, toy models which provide conceptual hints in this directions are
welcome. The matter-fre@ + 1)-gravity model with compact space is a remarkable ex-
ample of general relativistic theory because the complete classical solution [16] has been
produced. In this context, one can then find explicit answers to some open problems. In
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our article we have explored a few general topics which are related the problem of time in
classical gravity. The resulting conceptual hints that we have obtained are:

(i) a consistent correspondence between the “dynamical” and the “static” pictures of
spacetime exists, and has been explicitly produced in the model;

(ii) one can introduce a global canonical time which corresponds to the “age” of the
universe, this time codifies intrinsic features of spacetime by means of the associated
asymptotic states;

(iii) the asymptotic states are characterized by spectra of observables;

(iv) the geometric structure of the initial singularity gives rise to observable effects
which can be detected at later times;

(v) the space slices of any global time, which plays the role of the age of the universe,
are not necessarily smoothly embedded into spacetime.

2. Thecosmological time function

For the basic notions of Lorentzian geometry and causality we refer, for instance,
to [4,13]. Let N be any time oriented Lorentzian manifold of dimension- 1. The
cosmological time functigrt : N — (0, o], is defined as follows. Lef ~ (¢) be the set of
past-directed causal curvesinthat start a; € N, then

t(¢) =sup[L(c):c € C™ ()},
whereL(c) denotes the Lorentzian length of the curve

L(c)= /(proper— time).

7(g) can be interpreted as the length of time the evehtis been in existence M. For
example, ifV is the standard flat Minkowski spab&'*1, t is the constanto-valued func-
tion, so in this case it is not very interesting. In [2] (see also [25]) one studies the properties
of a manifoldN with regular cosmological time function. Recall thatis regular if:

(1) = (g) is finite valued for every € N;

(2) © — 0 along every past-directed inextensible causal curve.

The existence of a regular cosmological time function has strong consequences on the
structure ofN and of the constant-surfaces [2]. In particular whenis regulart : N —
(0, oo[ is a continuous function, which is twice differentiable almost everywhere, giving a
global time onN denoted by CT. Each level surface is a future Cauchy surface, so that
N is globally hyperbolic. For each € N there exists a future-directed time-like unit speed
geodesic ray, : (0, T(¢)] — N such that:

va(t@) =g,  t(r,®)=1.
The union of the past asymptotic end-points of these rays can be regarded as the initial
singularity of N.
The cosmological time function is not related to any specific choice of coordinadés in
it is “gauge-invariant” and so it represents an intrinsic feature of spacetime. Thus, when
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the cosmological time is regular, theconstant level surfaces and their properties have a
direct physical meaning as they are observables.

We present now two basic examples of spacetime with regular cosmological time, which
shall be important throughout all the paper. To fix the notations, the standard Minkowski
spaceM?t1 is endowed with coordinates= (x1, x2, x%), so that the metric is given by
ds? = (dx1)2 + (dx?)2 — (dx©)2. M?t1 s oriented and time-oriented in the usual way.

Example 1. Consider the chronological future of the origire @21
I(0) = {x e M?: (x1)? + (x3)° = (x°)? <0, x°> 0}.

Its cosmological timez : /7(0) — (0, c0), is a smooth submersion; the constant-time
{r = a} surfaces are the (upper) hyperboloids

I(a) = {x e M?+1: (xl)z + (x2)2 — (xo)z = —a? x> O}.

Hencel(a) is a complete space of constant Gaussian curvature equalte?, and of
constant extrinsic mean curvaturgal The Lorentzian length of the time-like geodesic
arc connecting any e /1 (0) with 0 equalsz(p); 0 is the initial singularity. Note that
I(a) can be obtained frorf(1) by means of a dilatation iivi2+1 with constant factoe;
shortly we writel(a) = al(1). We shall denote b$Q(2, 1) the group of oriented Lorentz
transformations acting ob?*1 and bylSQ(2, 1) the Poincaré grousO' (2, 1) denotes
the subgroup ofSQ2,1) transformations which keep™(0) and eachl(a) invariant.
ISO™(2,1) is the corresponding subgroupl&Q(2, 1).

Example 2. Let us denote byt (1, 3) the chronological future iivI%+1 of the line{x! =
0
x” =0}

(1,3 = {x e M?*: (x1)? = (x%)? <0, x°> 0}.

The Lorentzian length of the time-like geodesic arc connecting jary (x1, x2, x0) €
It (1, 3) with ¢ = (0, x2, 0) equals the cosmological time p). The level surfaces are

1(1,3,a) = {x e M2t1: (xl)z — (xO)Z = —az, x0> O}

and have constant extrinsic mean curvature equdllf@a). Each surfacd(l, 3,a) is
isometric to the flat plan®?. To make this manifest, it is useful to consider the following
change of coordinates. L&I%t1 = {(u, y, t) € R?*1: ¢ > 0} be endowed with the metric
ds? = 12du? + dy2 — d72. Then,xl = tsh(u), x2 = v, x0 = tch(u), is an isometry
betweenI72t1 and 17 (1, 3). The level set{r = a} of I1?t1 goes isometrically onto
I(1, 3, a), so this is intrinsically flat. Note that the group of oriented isometrieg &f! is
generated by the translations parallel to the pldmes a}, and the rotation of anglte of
the (u, y) coordinates.

We are going to show that any maximal globally hyperbolic, matter-fize- 1)-
spacetimeM, with compact spac#, actually has regular cosmological time, and its initial
singularity can be accurately described.
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3. Flat (2 + 1)-spacetimes

A flat spacetime is, by definition, locally isometric to the Minkowski spadét.
We assume that our maximal hyperbolic flat spacetimes are time-oriented and future
expanding, and that these orientations locally agree with the usual orieEth The
spacetime structures ofi x R are regarded up to oriented isometry homotopic to the
identity.

3.1. Minkowskian suspensions

We introduce here the simplg&+ 1)-spacetimes with compact spatef genusg > 1.

Recall that the upper hyperboldidl) ¢ M?*1, mentioned in the previous section, is a
classical model for the hyperbolic plaHE (see [7] for this and other models); the Poincaré
disk is another model which can be obtained frixh) by means of the stereographic
projection shown in Fig. 1. We shall use the Poincaré model in Section 4.

Take any hyperbolic surfac& = H2/I" homeomorphic toS. I" is a subgroup of
SO (2, 1) which acts freely and properly discontinuously Bf = I(1). I(1) can be
identified with the universal covering dfandI” with the fundamental group;(S). I" can
be thought also as a group of isometries of the spaceting®) andM (F) =1+(0)/I" is
the required spacetime with compact space homeomorpHKidAt call it theMinkowskian
suspensiorof F. This construction is well-known; sometim@g(F) is also called the
Lorentzian cone oveF or the Lobell spacetime based éh /7 (0) can be regarded as the
universal covering oM (F). Let us now consider the cosmological timeMf F). The CT
of 17 (0) naturally induces the CT o/ (F). Indeed, each level surfacg of M (F) has
I(a) as universal covering; moreovesh, = F andS, = aF. In this case, the CT coincides
with the CMC time and each level surfadg smoothly embeds intd/ (F). The initial
singularity “trivially” consists of one point.

Notation.Let Y be any subset df(1), we shall denote b§’\ its “suspension” inf * (0)
which is defined by =, 0.0 @Y -

Fig. 1. The hyperbolic plane in the hyperboloid and disk models.



R. Benedetti, E. Guadagnini / Nuclear Physics B 613 (2001) 330-352 335

3.2. (24 1)-spacetimes as deformed Minkowskian suspensions

It has been shown in [16] that any maximal globally hyperbolic, future expanding flat
spacetimeM with compact space homeomorphic $o as above, can be regarded as a
“deformation” of some Minkowskian suspension (see also [26]). In #&d$ of the form
M =U(M)/I", where:

(1) The domairi/ (M) of M?*+1 is a convex set

UM)= {x e M?HL X0~ f(x)},

where f : {x® =0} — [0, ool is a convex function.

(2) I'’ is a subgroup ofSO" (2, 1) (also called théolonomygroup of M) acting freely
and properly discontinuously aii(M). HenceU (M) is the universal covering a# and
I'" is isomorphic tar1 (M) = 71(S).

(3) The “linear part”I” of I is a subgroup 080" (2, 1) which is isomorphic tor1 ()
and acts freely and properly discontinuouslyloh) = H?. This is a nontrivial fact which
follows from a result of Goldman [12]. Each elemetite I is of the formy’ =y +1(y),
wherey e I andt(y) € R® is a translations : I" — R3 is acocyclerepresenting an el-
ement of HL(I", R®). If 1, = A1, » € R*, thenU (M, differs from U (M) by: U(M) =
A~IU(My). Wheny is “small”, U(M,) is “close” to It (0) (M, is “close” to M (F), F =
H?/T).

Note thatl™’, whencel/ (M) andt, are defined up to inner automorphism80* (2, 1).

3.3. Spacetimes of simplicial type

In this section, we shall consider the flat spacetimes that can be obtained from
Minkowskian suspensions by means of particular deformations. These spacetimes will be
called of simplicial type the origin of this name is related to the material presented in
Section 4. Spacetimes of simplicial type are important because they are “dense” in the
set of all spacetimes; the shape of any spacetime and of its CT can be arbitrarily well
approximated by some spacetime of simplicial type (see Proposition 4.23). So, it is enough
to understand these examples in order to have a rather complete qualitative picture of our
general presentation. Moreover, all the statements of this paper can easily be checked in a
spacetime of simplicial type.

Start with a Minkowskian suspensiai(F). Assume that aveighted multi-curve€ on
F is given. L is the union of a finite number of disjoint simple closed geodesic# pn
each one endowed with a strictly positive real weighgoverns a specific deformation of
M (F) producing a required flat spacetime denotedMyF, £). A particular spacetime
deformation is associated to each componenLaofnd can be obtained by means of
an appropriate surgery operation in Minkowski space. As the deformations associated to
the components of act locally and independently from each other, we may assume for
simplicity that£ just consists of one componentwith weightr and lengths.
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3.3.1. Elementary deformation

In order to illustrate the deformation associated with one geodesiith weight r,
we shall now introduce a simple hyperbolic surfakg which can be understood as a
local model for the general surfade Let I'p be an infinite cyclic subgroup 80 (2, 1)
generated by an elemepg acting onl(1) as an isometry ofhyperbolic type(see, for
instance, [7] for the classification of the isometriesH). We can assume thap is
a Lorentz transformation corresponding to a boost alongxthdirection, so that the
go-invariant geodesic line of(1) is the linesp = I(1) N {x? = 0}. The hyperbolic surface
Fo =1(1)/I'p is homeomorphic to the noncompact annuitisc R and its area is not finite.
The image inFyp of the axis ofgg is a simple closed geodesiof a certain length; give it
the positive weight. So we dispose of a one-component weighted multi-cidiyyen Fo,
as illustrated in Fig. 2.

The suspensio (Fg) = I1T(0)/Ip is a flat spacetime. Let us now construdy =
M (Fo, Lo) which represents the deformation &f( Fp) associated to the weighted multi-
curveLo. We shall use the spacetimgs(0), 17 (1, 3) and 7%+ that we have introduced
in Section 2. The universal coveridg(Mp) of Mg will be the union of three domains of
M2t U(Mg) = AUBUC, whered = I7(0) N {x2 <0}, B=11(1,3)N{0<x?2<r},

C =C'+r(0,1,0)andC’ = I't(0)N{x2 > 0}. In our notationsC’ + r(0, 1, 0) denotes the
set of points inVI+1 which can be obtained froi’ by means of a translation of length
r along the unit vecto(0, 1, 0). It is important to note that the cosmological times of the
different piecesA, B andC fit well together; in fact, the CT level surfac8s of U (Mo) are

Sa=(al() N {x2<0}) U (1L, 3,0) N {0< x2 < 1))
U (al(1) N {x2 > 0} +r(0,1,0)). (1)

As shown in Fig. 3, each surfad c M2+! can be obtained by cutting the hyperboloid
I(a) alongaog (Which is the intersection of(a) with the {x2 = 0}-plane) and then by
inserting a band df(1, 3, a) of depthr.

The surfaces), are onlyC1-embedded intd@/ (Mo). The initial singularity ofU (Mo) is
the segmenip = {x1 =x2=00< x2 < r}.

Fig. 2. The surfacéy with the closed geodesic

N7 - N
-+ Y

Fig. 3. Level surfaces, of U(Mp).
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/

Fig. 4. Level surface oM.

Remark 3.1. We have the following characterization df. The interior points of this
segment make the subset @ (Mp) (boundary of the convex séf(Mp)) of the points
with exactly twonull supporting planes; the end-points make the subsétUaf/) with
more than two null supporting planes. Recall that a supporting planeaU (Mp) is a
planeP such thatc € P andU (Mp) N P =@. P is null if it contains some null-lines.

The coveringl (Mo) c M?*+1 is flat. To getMo, we only need to specify the action of
w1 =m1(Fo) EZ onU (Mp).

3.3.2. Action of the fundamental group

1 acts onA by the restriction of the action dfy on(1). The domainB corresponds
(via the isometry established in Section 2) B6 = {(u, y, 7) € [T 0< y <r}, so
that the action ofr; on B transported orB’ is just given by the translatiot, y, 7) —
(u+s,y,1). Finally, if « is the translatiorix?, x2, x%) — (x1, x2 + r, x% on M2+, then
the action ofr1 on C is just the conjugation ofp by «.

The CT of the coverind/(Mp) passes to the quotiey = U(Mop)/m1; each level
surface S, is only Cl-embedded intoMp, so that it is endowed with an induced
C1-Riemannian metric. This allows anyway to define the length of curves traced on the
surfaceS, and the derived length-space distance. Mlet A /71, 5= B/m1andC = C /1.
Then, S, N B is a flat annulus of depth and parallel geodesic boundary components
of lengthas; S; N (A UC) can be isometrically embedded intdp, and has geodesic
boundary curves of lengths. As shown in Fig. 45, can be obtained by cutting along
¢ and by inserting a annulus of depth

Remark 3.2. If g is an element ofSO" (2, 1) acting onX € M?*! asg(X) = 0X + w,
the transformed domaigU (Mp)) = Q(A U B U C) + w is, of course, an isometric copy
of the universal covering ifM21. The curver = Q(09) is a geodesic line df(1); o is the
intersection ofi(1) with a suitable hyperplane passing at the origiftvi#f 1. Let us denote
by ¢ the suspension af; then

0B = |J 16+,
1€[0.r]
wherev is the unitary (in the Minkowski norm) vector tangentlid), normal tos, and
pointing towardsQ (C’). We also denot& (B) = B(o, v, r). The shape of the CT level
surfaces ing(U (Mp)) is shown in Fig. 5. The initial singularity of (U (Mp)) is given by
the space-like segmerit= Q(Jo) + w.
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<7 - <7l

Fig. 5. Level surfaces of (U (Mp)).

3.3.3. Simplicial type deformation

My represents a local model of the deformatidh= M (F, £) we are interested in.
In fact, there exists a neighborhodd of B in Mg which embeds isometrically intd/,
respecting the cosmological time. Let us denoteW the image ofWW in M. Then
M\W' embeds isometrically into the Minkowskian suspenslétF), respecting again
the cosmological time.

We describe now the universal coveritigM) c M%*! and a cocycle: I — R3 which
leads toI"” c 1SO™(2,1) such thatM = U(M)/I"’. The inverse image of C F =
I(1)/I" into the coveringl(1) is an infinite and locally finite sef of disjoint complete
geodesic lines. Given any geodesige £, thenl = {o = y(00); y € I'}. Let L C I1(0)
be the suspension of the geodesic line<ofThe set]I(l)\L~ is the union of an infinite
number of connected components. Denotebyny such a component, and @its
suspension, which is a componentldf(O)\Z. Every R covers a componerfg of F\L;
more precisely, i’k is the subgroup of” which keepsR invariant, thenFr = R/ .

Now, fix one base compone®y and take in it one base poing. For eachy € I', let
y (xo) be the point inl(1) which is defined by the action gf on xg. The geodesic arc in
(1) connectingep with y (xg) crosses a finite number of lin¢s; } belonging tol. At each
crossing consider the unitary (in the normM£*1) vectory; tangent tal(1) and normal
to o;, pointing far fromxg. Then, the required cocycléy) € R3 is given by

t(y)= eri.

Note that if y1(x0) andy2(xo) belong to the same componeR} thenz(y1) = 1 (y2),
whence alse(R) = ¢(y) for anyy such thaty (xo) € R, is well definedU (M) is tiled by
tiles of two types: (i) R + w”, (i) * B(o, v, r) + w”, for some translation vectap € R3.
More precisely, the tiles of the first type make the open subsgt(#1)

R=|J{R+1(®)}.
R

Each lines ¢ £ is in the boundary of two region8,, R, and we assume tha&, is
closer toxg than R,.. Setv, the unitary (in the norm oM?2*+1) vector tangent td(1)
and normal tar, pointing towardsr/, . The two regionsR, + 7 (R,) andR,, + 1(R.,) are
connected by the tile of the second tyBé&, v,, r) + (R, ), SO that

UMN\R = | (B(o.v5.7) +1(Ry)).

oel

Note that each tile has its own CT; all the cosmological times fit well together and define
the CT of U (M) which passes to the quotiemt.
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Remark 3.3. The construction ofM (F) and of M(F, L) can be performed for any
hyperbolic surfacé’, not necessarily compact nor of finite area. Similarly, by starting from
anylocally finite family of weighted geodesic lines 1), the simplicial deformation that
we have just described produces a globally hyperbolic spacetime structBre>oR with

a regular cosmological time.

Remark 3.4. WhenF is compact, every regioR (defined above) is bounded bfinitely
many lines ofZ. In fact, asF is compact, every e I' with y # 1 is of hyperbolic type [7].
Consequently, for any € £ and for everyy € I' with y (o) # o, o andy (o) are “ultra-
parallel”. This means that the hyperbolic distance satisfiesy (o)) > 0; moreovergs
and y (o) have a common orthogonal geodesic line. Suppose now that a r&gisn
bounded by finitely many lines ifl. In this caseR contains a band of infinite diameter,
bounded by two half-lines containedh As F is compactH? is tiled by tiles of the form

y (D), whereD is a fundamental domain far of finite diameter. So, one (at least) tile
y (D) must be contained ir. But clearlyy (D) N /:‘;é @ and this contradicts the fact that
R is a region ofH?\ L.

The same conclusion holdsifis of finite area. IfF is of infinite area, we can eventually
have different behaviours. For instance, in the exam‘pieabove,fg just consists of
one component which divideé&? into two regions. Other examples will be presented in
Subsection 4.1.

4. The cosmological time of (2 + 1)-spacetimes

In this section we describe the main properties of the CT for an arbitrary spacetime
We adopt the notations of the previous sections; in particitais assumed to be an
expanding matter-free spacetime of topological typg R with compact surfaces of
genusg > 1. The validity of the following statements can be quite easily checked for
spacetimes of simplicial type. We shall try to point out the main ideas; we postpone a
commentary on the proofs, with references to the existing literature.

Proposition 4.1. The cosmological time functiorn;,: M — (0, oo[, is surjective and
regular, so that it defines a global time dd. It lifts to a regular cosmological time on
the coveringt : U(M) — (0, oo[. Each level surfacd, of U(M) maps ontaS, of M and
is its universal covering. In other words, the actionmf(S) on U (M) restricts to a free,
properly discontinuous isometric action 8p such thats, = S, /71(S). EachS, (S,) is a
future Cauchy surface.

4.1. Initial singularity—external view

Let us give a description of the initial singularity &f as it appears “from the exterior”
point of view, that is, from the Minkowski space in which the universal coveting/) is
placed. In Subsection 4.5 we shall show how the initial singularity can also be characterized
in terms of the observables associated with the CT asymptotic states.
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Let us first give a definition.

Definition 4.2. An R-tree (also called &eal treg is a metric spacé7, d) such that for
each couple of pointg # g € 7 there exists aniquearc in7 with p andg as end-points
and this arc is isometric to the inter@l, d(p, ¢)] C R. This arc is called aegmenbf 7
and is denotefp, ¢].

Remark 4.3. The so-calledsimplicial treesare the simplest examples of real trees.

A simplicial tree is a real tree covered by a countable familyelgmentarysegments,

called the “edges” of the tree, in such a way th@j: whenever two edges intersect, then
they just have one common endpoithh) the edge-lengths take values irfiaite set of

strictly positive numbers. Any endpoint of any edge is called a “vertex” of the tree. The
distance is the natural length-space distance. Note that a simplicial tree is not necessarily
locally finite; in other words, vertices of infinite “valence” may occur. In general, a real tree

is more complicated than a simplicial tree because one might find, for instance, a segment
containing a Cantor set made by the endpoints of other segments.

Proposition 4.4. For any p € U(M) c M?t1 there is a unique time-like geodesic arc
a(p) contained inU (M), which starts atp and is directed in the past gf, such that the
Lorentzian length ofi(p) equalst (p). The other end-point af(p), denoted by (p), be-
longs to the boundar§U (M) of U(M) in M?*L. If p andg are identified inM by the ac-
tion of 71(S), so area(p) anda(g). The union of the initial pointg = {i(p); p € U(M)}

is anR-tree. More precisely, each segment/ofs a rectifiable space-like curve i/ (M)
with its own length. There is a natural isometric action of the fundamental graug)
on7. The quotient spac& M) = 7 /1(S) can be thought as the initial singularity &1.

Remark 4.5. We have already encountered several examples of spaces of th&ferm
X/nl(S) for some action ofr; on X: for instance,F = H2/I', M =UM)/T"’, S, =
Sa/I“’. Now, the initial singularity of spacetime also is a quotigi ) = 7 /71(S). Instead
of the bare topological quotient space, it is more interesting to conXiderdowed with
the action ofr;.

Remark 4.6. When M is of simplicial type, the corresponding real tréeis actually a
simplicial real tree. This justifies the name we have given to these special spacetimes. In
this case, the set of edgesbfconsists of the union of the space-like segments which form
the initial singularity of the different tiles of the foriB(o, v, , r) + t (R,) (See Section 3).

The points of7 can also be characterized by the properties discussed in Remark 3.1.
A homeomorphic (not isometric) copy @f can easily be embedded int@l). Select one
point in each region of(1)\ £ and consider the set made by the union of all these points.
Connect two points of this set by a geodesic segmeifitlofif and only if they belong to
adjacent regions. In this way we get the required tree. This tree is manifestly “dud” of

in fact, the regions of(1)\ Z correspond to the vertices @fand the lines of> correspond

to the edges of . We shall return on this duality in Section 4.3. Note that, as demonstrated
in Remark 3.4, all the vertices @f are of infinite valence.
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4.1.1. Examples of real trees

A hyperbolic surfaceF = H?/I" is represented in Fig. & is of infinite area and is
homeomorphic to a torus with one puncture; two simple closed geodesitd: on F are
depicted. The geodesiccuts openF into a compact surface and an infinite area annulus.
By using the Poincaré disk model, a fundamental domaii oh H? is also shown in
Fig. 6. This domain is delimited by four pair-wise ultra-parallel geodesic lines. The inverse
images ofc anda are represented on this domain. The first two terms of a sequence of
partial tilings of H?, made by a finite number of copies of the fundamental domain, are
shown in Fig. 7. The first partial tiling just contains one fundamental domain. The second
is made by the union of & 4 =5 copies of the fundamental domain. The next partial
tiling of this sequence, which is not shown in the figure, contairs4l+ 12 = 17 tiles,
and so on. For each partial tiling f2 one can determine a corresponding partial lifting
of the curves: anda. Fig. 8 shows the first two partial lifting& of ¢ and the structure
of the associated partial dual trees. In the limit of the complete infinite tiling%fthe
complete lifting ofc contains an infinite number of geodesics and the associated real tree
is infinite. In this case[?\¢ has exactly one component with infinitely many boundary
lines (the associated vertex of the dual tree has infinite valence), whereas all the remaining
components have one boundary line. The first three partial liftihgé a are shown in
Fig. 9; the corresponding partial dual trees are also represented. Note that these figures are
just evocative, as they are not geometrically exact.

Remark 4.7. TheR-trees and the associateg(S)-actions which occur in Proposition 4.4

are not arbitrary (see [20] p. 32). In fact, one can prove thatli{8)-action isminimal

with small edge-stabilizershis means that there is no nonempty strictly subtree which
is invariant for this action, and that, for each segment in the tree, the subgreupSHf
which keeps the segmentinvariantis virtually Abelian. We shortly say that a real tree which
admits such a kind ot (S)-action, isgeometric

Fig. 6. Two simple curves off = HZ/F.

(R

Fig. 7. Partial tilings ofF = HZ2.
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Fig. 8. Partial and dual trees.

Fig. 9. Partiali and dual trees.

4.2. Intrinsic and extrinsic geometry of the constant CT surfaces

In order to describe the geometric properties of the surfaces of constant cosmological
time, it is natural to introduce the notion of geodesic lamination.

Definition 4.8. Let G be a surface endowed with@-Riemannian metric. As usual, this
induces a length-space distance @rand the notion of geodesic arc (line) makes sense.
A geodesic laminatiof G is a closed subset of G, also called the support of the
lamination, which is the disjoint union of complete and simple geodesics, also called the
leaves of the lamination. “Complete” means that we dispose of arc-length parametrization
defined on the whole real lin&; “simple” means that the geodesic has no self-normal
crossing inG. In other words, each leaf is either a simple closed geodesic or a simple
geodesic which is an isometric copy Bf embedded inG. WhenG is compact, such a
noncompact leaf is not a closed subsegof

Remark 4.9. A finite union of disjoint simple closed geodesics is calleduti-curveand

is the simplest example of geodesic lamination. We have already introduced multi-curves
in Section 3.3. A generic geodesic laminati&hcan be more complicated than a multi-
curve; in fact, ife is an arc embedded i@ which is transverse to the leaveskof typically

a\K is a Cantor set.

Proposition 4.10. For everya € (0, ool:

(1) S, is the graph of a positive convex function defined on the plafie- 0} in M2+,
(2) S, is only Cl-embedded int@/ (M), so that it carries an induced-Riemannian
metric. S, is geodesically complete and for eaph# g € S., there is a unique geodesic

arc connectingy andgq.
(3) The locusl, at which the embedding 6f into U(M) is no longerC? is a geodesic
lamination ofS,. L, is in fact the pull-back of a geodesic laminatifp of S,.
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Remark 4.11. If M is the spacetime of simplicial type which corresponds to the weighted
multi-curve £ on the surface, thenL, is just made by the boundary components of the
flat annular components embedded ifo which are associated to the componentg of

The content of the last remark generalizes as follows. Recallith@t) acts asl” on
eachl(a). For everya € (0, oo[, let us consider the map

Pa: Sa — I(a)

defined as followsp, (x) is the unique point ofi(a) such that the tangent plane
at x is parallel to the tangent plane @) at p,(x). This map is well-defined, surjective
and r1(S)-equivariant. By taking the union of the,’s we get ar1(S)-equivariant map
p.U(M) — I7(0), respecting the CT. This induces a map M — M (F) respecting the
CT.

Proposition 4.12.

(1) There exists a geodesic laminatidh on F = I(1)/I", which lifts to a geodesic
lamination Z on I(1), such that, for every, one hasp,(L,) = aF and any leaf ofL,
is isometrically mapped onto a leaf aff. That is, the union otoa(lfa)'s covers the
suspensiotF of F.

(2) F is the disjoint union of two sublaminations

F=LUF,

where/ is the maximal multi-curve sublamination &t Note that eitheiZ or 7' may be
empty. Then

@ p embedy(M)\p—l(f) isometrically intol *(0) respecting the CTT

(b) p embedSJ(M)\p—l(E) continuously intd T (0) respecting the CT.

(3) The setp~1(Z) is the union of components of the typés, vy, r) + w, So that
(pH~Y(L) N S, is the disjoint union of flat annular components%f like in the case of a
spacetime of simplicial type.

We have an immediate corollary concerning the intrinsic and extrinsic geometry of the
constant CT surfaces.

Corollary 4.13. W, = S,\L, is an open dense set §f. Each component d¥, is either
isometric to an open set @fa) or is a flat band which embeds inf¢l, 3, a), and projects
onto an annulus of,. Flat annuli do occur only if is nonempty.

4.3. CT duality

To sum up, two geometric structures are naturally associated to the spadétithe
real tree7 (the initial singularity) and the geodesic laminatighon F =1(1)/I" which
reflects the lack of smoothness of the embedding},afto M. We have already noted that
for a spacetime of simplicial type these two objects are “dual” to each other. Here we want
to strengthen and generalize this point.
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If £ is nonempty, we extend the laminati@n on S, to a laminationL/,, by foliating
the flat annular regions of, by closed geodesics parallel to the boundary components. As
usuallyL!, denotes the lifted lamination t§,. The above map, sendsl/, ontoaF.

We have a natural continuous surjective mapfa — 7 which associates tothe initial
point on the arei(x). So7’ = {ia_l(x)}xeT is a partition ofS, by closed subsets1(S)
acts also ory” and, clearlyj, induces anri-equivariant identification betweeff and7 .

Proposition 4.14. For everya, each closed sdf of the partition7” of Sa is:

(1) either the closure of a component©A L, :
(2) or a leaf of the foliation of some band componenL§fwhich projects onto a flat
annular region ofS,,.

We describe how the distandeon the real tree/” can be encoded, in dual terms, by
equipping the geodesic laminatiofs F, with suitabletransverse invariant measures

Definition 4.15. A measured geodesic laminatiam F is a couple(F, u), whereF is
a geodesic lamination and is atransverse invariant measurghich consists of &orel
measurew; on each embedded intervaE [0, 1] in F, transverse to the leaves #fsuch
that

(1) the support oft; coincides withF N J;

(2) if J,J’ are arcs, homotopic through arcs which are transverse to the leayes of
keeping the endpoints either on the same leaf or in the same connected components of
F\F,thenu,;(J)=pu ;(J". (F, p) lifts to (57', 1) which ismrq-equivariant.

Remark 4.16. The simplest measured geodesic laminations afre the weighted multi-
curves.

Let J be an arc inl(1) transverse to the leaves &f The mapp,, lifts J to an arcJ’
in S, transverse to the Ieavesf)j. On the other hand, by means of the ngghe distance
d on 7T lifts to a measurgi;, on J’ which finally gives us the requiredr{-equivariant)
transverse measure dn

One can invert the above construction and associate to each measured geodesic
lamination(F, w) of the hyperbolic surfac& a suitable geometriR-tree.

4.3.1. From geodesic laminations to real trees
Take the measured laminatigft, 1) of the surface’. F is in general the disjoint union
of two sublaminations

F=LUF

where L is the maximal weighted multi-curve sublamination/ef Note that eithei or

F’ may be emptyF\F consists of a finite number of connected components, the metric
completion of any such a component is isometric to a compact hyperbolic surface with
geodesic polygonal boundary.4fis nonempty, let us consider the spacetime of simplicial
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type associated tg, and letF’ be ther = 1 level surface of this spacetime. Let us denote

by 7’ the lamination onF’ which coincides withF outside the flat annuli of’ and is
defined ag.] above on these annuli. f is empty, setF’ = F. The measured lamination

(F, u) “extends” to a measured laminati@#”, ") on F’. The flat annular components

are foliated by closed geodesics parallel to the boundary components. These annuli are
endowed with a plain transverse measure of total mass equal to the corresponding annulus
depth. Take the universal coverirfd of F’ with the lifted (r1-equivariant) measured
geodesic lamination?”, ). Now define a partition of”’ by closed subsets in the very
same way we have defined above the partifidrof S1, with respect to the Iaminatiofl/l.

Call again this partitiory’. We can give it a distancéwhich makes it afR-tree. If E and

E’ are the closure of two components of the complement of the lamination, take two points
x andx’ in these closed sets such that the geodesic segmerif of F’ is transverse to

the leaves of the lamination. By integration, the transverse measure induces a distance on
the subset of " made by the closed sets intersectingx’]. In fact, by the “invariance” of

the measure, this distance does not depend on the se@mefit Finally one verifies that

in this way one can actually define a distance between any two poiffts and that the
resulting(7’, d) is a geometric real tree.

Remark 4.17. Clearly, weighted multi-curves on the surfaéedually correspond to
geometric simplicial real trees; the spacetimes of simplicial type do materialize this duality.

4.4. Reconstruction o¥f = U (M) /T’

Starting from(F = 1(1)/I", T) or, equivalently, from(F = 1(1)/I, (¥, 1)), one can
reconstruct a cocycle whenceM = U(M)/I"'. This generalizes what we have done for
a spacetime of simplicial type in Subsection 3.3.

With the notations introduced at the end of the previous subsection, comﬁde}/)
on F’. To recover a cocycle do as follows: fix one base point; on F' out from the
support of the lamination. Letp be its image orF”. If o is aloop inF’ based orpg, which
represents an elemefat] of 7 (F’, po), lift it to the oriented are* in F’ which starts at
pgs up to homotopy we can assume thdtis transverse to the leaves of the lamination.
Let f be any continuou®3-valued function orr* which coincides with the unit normal
to the leaves of the lamination, tangent&é, and oriented in agreement witt*. Now
we can integratgf alongos™* by using the transverse measure getting a vegfer]). By
varying[o], one gets such a cocyadle

4.5. CT asymptotic states

The above discussion tells us that any spacetiie= U(M)/I"" is completely
determined by the linear part of its holonomyI™’ (or equivalently by the surfacgé =
I(1)/I') and by its initial singularityi(M) = 7 /m1(S). The aim of this subsection is to
recover these geometric objects from the “internal point of view” by “working inside the
spacetime”. More precisely, we would like to show thiiatand7 can be interpreted as
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the future and pasisymptotic statefor the geometry of the CT level surfaces. To this
aim we shall consider the observables defined by the lengths of the curves on the CT level
surfaces. It is convenient to introduce the concepWlafked Spectrunassociated with a
metric spaceX, d) which is endowed with an actianof the surface’s fundamental group
m1(S), so thatX = 35/:11(8). Whenever we shall refer t&, we shall actually refer to the
triple (X, d, «) (see Remark 4.5).

Let us denote by the set of conjugation classessef(S)\{1} which coincide with the
homotopy classes of noncontractible continuous myapst — S. Each marked spectrum
is a point of the functional spac(&>g)c, endowed with the natural product topology. The
Marked Spectrumy of X (denoted also byy), is defined as follows: for any=[y] € C,

y €m1(S), y #1,

sx(c) = inf d(p,a, (p)).
peX

The spectrum is “marked” because one takes track of the map in addition to its image.
WhenX = F or S,, sx(c) is just the length of a closed geodesic curve (not necessarily

simple; that is, self-crossings could possibly occur)iwhich minimizes the length among

the curves in that homotopy class. For this reason, in such asagecalled theMarked

Length Spectrurand is denoted b . WhenX =7, sy can be expressed, in dual terms,

as theMarked Measure Spectruof the corresponding measured geodesic lamination

on F; usually this is denotedr. I-(c) is just the minimal transverse measure realized

by the curves in that homotopy class. WHEns simplicial, that is wherf is a weighted

multi-curveL of F, I (c) is easily expressed in terms of theometric intersection number

(this also justifies the notation): assume that all the weights are equal to 1 (that is the length

of all edges of7 is equal to 1); then it is easy to see that(c) is just the minimum

number of intersection points betwe&nand any curve belonging toand transverse to

the components of the lamination. For arbitrary weights one just takes multiples of the

contribution of each component gf

Remark 4.18. Instead of the whol€&, one could prefer to use the subset C of isotopy
classes ofsimpleclosed curve ir§, and take the corresponding (restricted) marked spectra.
The discussion should proceed without any substantial modification.

4.5.1. On the boundary of the Teichmiiller space

It is convenient, at this stage, to recall the fundamental facts about the role that the
marked spectra play in the study of the Teichmuller space and in Thurston’s theory of its
natural boundary. Let us denote By the Teichmiiller space of the hyperbolic structures
on S up to isometry isotopic to the identity. It is well-known (see [7,11,23]) that the map

[:T, — (R>0)¢

defined byl(F = H?/I") = I, realizes a meaningful embedding Bf onto a subset of
(R>O)C homeomorphic to the finite-dimensional open Bt —6. We shall identify7,
with I(T,). In fact T, is in a natural way a real analytic submanifold(@‘>0)c.



R. Benedetti, E. Guadagnini / Nuclear Physics B 613 (2001) 330-352 347

Fix any such a hyperbolic structut€ € 7T, on S. Let us denote byMGL(F) the
set of measured geodesic laminations BnLet us denote byG7 (S) the set of all
m1(S)-geometricR-trees (Remark 4.7). At the end of Subsection 4.3, we have outlined
a construction which associates to edlk MGL(F) a dualR-tree sayA(F) € G7 (S).
Note that this construction did not use the fact thavas associated to a spacetime

Proposition 4.19. A: MGL(F) — G7(S) is a bijection, that is it can be naturally
inverted. For eachr > 0, A(rF) = rA(F); here we take either the-multiple of the
measure or the-multiple of the distance. We can shortly say that fespects the positive
rays”.

Proposition 4.20. Consider the maps,: MGL(F) — (R>0)€ ands : GT(S) — (R>0)C,
obtained by taking the corresponding marked spectra. Thern o A and is injective. The
image in(]R>0)c is a positive cone based on the origin and positive rays go onto positive
rays, in a obvious sense. MoreovEy,and the imagém(/) are disjoint subsets GHR>O)C.

Remark 4.21. These spectra representthe actual “physical” observables in our discussion.
The last two propositions specify the meaning of the duality between laminations and real
trees. As the spectra coincide, they reveal the same physical content.

Similarly to T,, we identify MGL(F) and GT (S) with the image Int/) C (R>O)C,
endowed with the subspace topology.

SetPt(MGL(F)) =PH(GT(S)) =P (m(I)) the projective quotient space, obtained
by identifying to one point each positive ray in (m\{0}. Similarly 7, U P*(Im(7)) has
a natural quotient topology.

Proposition 4.22. The pair (T, 3T,) = (T, U P (Im(1)), P+ (Im(I))) is homeomorphic
to the pair (B%6, §6s=7) where B%~6 is the closed ball and®~" is its boundary
sphere. The natural action ofi, of the mapping class groupfod, of S extends to an
action on the compactificatioﬁg. This is called the Thurston’s natural compactification
andaT, is thenatural boundargf the Teichmdiller space.

We can state precisely how the simplicial trees are dense, as we claimed in Section 3.
Let us denote&s7 (S) the subset 0§ 7 (S) made by the simplicial real trees.

Proposition 4.23. S7(S) is dense irg7 (S) in the induced topology b(\)R)o)C.

Remark 4.24. In this remark we collect a few technical complements concerning the
marked spectra and the geometric meaning of spectra convergence.

(1) The natural compactification @}, is formally similar to the natural compactification
of H? in the hyperboloid modél(1) wheresS2 is obtained by adding tf(1) the endpoints
of the rays of the future light cone.
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(2) Let F, be a sequence iffi, considered as a sequence of actionsafS) on H2.

The meaning of the compactification is the following; up to passing to a subsequence (still
denoted byF;,), one of the following situations occur: for every C,

(@) Ir,(c) = IRy (c), for someFg € T.

(b) There exist a geometric real trédec G7 (S) and a positive sequeneg — 0, such
thate,lF, (c) — s7(c). This is also called the Morgan—Shalen convergence of the sequence
of actions. This can be reformulated in a similar, equivalent, dual way as the convergence
(up to positive multiples) of a sequence of marked length spectra of hyperbolic structures
on S to the marked measure spectrum of a measured geodesic lamination on lzefiecd
Fo.

(3) The convergence of marked spectra has a deep geometric content. This can be
expressed in terms of the Gromov convergence. Given two metric sggebsand(Y’, d’)
ande > 0, ane-relationisaseR C Y x Y’ (i.e., a relation between the two spaces) such
that:

(a) the two projections ok to Y andY’ are both surjective;

(b) if (y,), (z,2") e Rthen|d(y,z) —d(y', 2| <e.

Let G be agroup, anfiG x ¥, — Y, },>1 be a sequence of isometric actiongbbn the
metric space¥,,. We say thatG x Y, — Y,) — (G x Yo — Yp) in the sense of Gromov,
if for every compact subsdty C Yo, for everye > 0 and for every finite subset of G,
if n is big enough, there are compact subgétsc Y, ande-relationsk,, betweenk,, and
Ko which are P-equivariant this means that: ik € Ko, g € P, g(x) € Ko, xn, yu € K,
and(x, x,), (g(x), yn) € Ry, thend,, (g(x,), yn) < €.

It turns out that in casé&:) above we actually have the convergence in the Gromov sense
of the sequence of actions Bif to an interior point off,. In case(b), the Morgan—Shalen
convergence is equivalent to the Gromov convergence for the sequence of actigHg on

(4) Note thatG7 (S) is defined by using only the topology 6f(its fundamental group
indeed) while in order to adopt the dual view point we have to fix (in an arbitrary way) a
base hyperbolic surfack € T,. In fact, the dual view point can be developed by using
the marked measure spectra of the measured (singular) foliatiorss (orstead of the
measured geodesic laminations &), which only depend on the differential structure of
S (see [11]). On the other hand, let us considgras a space of complex holomorphic
structures onS (thanks to the classical Uniformization Theorem). By fixing any such
structureFp, one can realize such a spectrum as the measure spectrum of the horizontal
measured foliation of a unique quadratic differenéabn Fp. These “rigidifications” (via
geodesic laminations or quadratic differentials) of softer objects (the measured foliations)
is reminiscent of the role of Hodge theory with respect to De Rham Cohomology.

4.5.2. CT asymptotic states as limit spectra
After this somewhat long but necessary digression, let us come back to the CT
asymptotic states.

Proposition 4.25. (a) lim,—ols, =s7; (b) liMm,se0ls,/a =1F.
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Remark 4.26. This means, in particular, thatin a far CT future the spacetime looks like the
Minkowskian suspensioM (F). In order to detect the dual effect of the initial singularity

on the embedding of, into M, for large value of the cosmological time one needs to
increase the accuracy in the measurement of geometric quantities. Nevertheless, this effect
is, in principle, observable for any finite valueof the CT.

Proposition 4.27. For everya € (0, oo, Is,/a belongs toT, e (]R>0)C. Hence, the
cosmological time determines a cupvg : (0, co[— T,. This is a real analytic curve which
connectsF e T, with the point on the natural boundafy'] € a7, (here[.] denotes the
projective clask

Remark 4.28. Consider a spacetime of simplicial type. To prove Proposition 4.25 in
this case, one has to note that the depth of the annular regions is constant of) each
Whena — 0, the contribution (to the length of any curve 8x) of the part contained in

the nonannular components becomes negligible, the length of the annuli boundaries goes
linearly to zero, so that only the transverse crossing of the annuli becomes dominant. When
a — oo, the annuli depth goes to zero because of the rescaling/byahd the length
spectrum converge to the spectrumfof The general case follows by using the density
stated in Proposition 4.23. Concerning Proposition 4.27, in the special case of a spacetime
of simplicial type, the curve iff is just given by the Fenchel-Nielsen flow obtained by
“twisting” the hyperbolic surfacé along the closed geodesic of the multi-curve (see [23]
and also [7]).

4.6. A commentary on the proofs

The identification between cocycles of a spacetitfe with measured geodesic
laminations onF = 1(1)/I" is due to Mess [16]. In fact one can find other examples of
such a construction of “cocycles” from measured laminations in the contest of Thurston’s
theory of “bending” or “earthquakes” (see for instance [10]).

Measured geodesic laminations emerged in the original Thurston’s approach to the
natural compactification of, [21-23]. See also [11] for the alternative approach by
using the measured foliations (see Remark 4.24 (4)). For the claim about the quadratic
differentials in Remark 4.24 (4)) see [14]. The dual approach via real trees is due to
Morgan—Shalen [18,19]. This approach does apply to more general, higher-dimensional
situations. The monography [20] contains a rather exhaustive introduction to this matter
and we mostly refer to it (and to its bibliography) for all the details. In particular one can
find in [20] a complete proof of the duality (see Proposition 4.19 and Proposition 4.20). The
delicate point is just the inversion of the mapwe have described above. The geometric
interpretation of the Morgan—Shalen convergence (see Remark 4.24 (3)) is due to Paulin
and Bestvina (cf. the bibliography of [20]).

It is an amazing fact that the spacetimes “materialize” this subtle duality in the way we
have seen. Note also that, in the spacetime setting, the choice of the base hyperbolic surface
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F (see Remark 4.24 (4)) is fixed by the linear part of the holonomyfothat is by its
future asymptotic state.

Concerning Proposition 4.27, the Fenchel-Nielsen flow generalizes to the earthquake
flow (one uses again the density 4.23) with initial darg ) which has real analytic
orbits [15,24].

5. Complements

In this section we add a few comments about the flat spacetimes with compact space
of genusg = 1, and about the spacetimes with negative cosmological constant. Finally we
discuss a conjecture relating the CT and the CMC time.

5.1. Toric spacdg = 1)

The case in which the surfac& is a torus is a particular example of the so-
called Teichmdller spacetimewhich we have analysed in [5]. So we simply remind
the main points. Each nonstatic spacetime determines a gur(& oo[ — 77, y(a) =
(w(a), w(a)), whereT; is the cotangent bundle of the Teichmuller spagef conformal
structures on the torus up to isomorphism isotopic to the identity. Let us recall’thsit
isometric with the Poincaré disk. The cotangent vectofs) at the pointw(a) € Ty is
a gquadratic differential on a Riemann surface representi@g. It is not hard to verify
that y is just the complete orbit of the Teichmdiller flow with initial data(1), (1))
(see [1,5]). In particular, the projection ¢f onto 71 is a complete geodesic connecting
two boundary points. These points can also be interpreted in terms of marked spectra. Let
us denote by{ and byV the horizontal and vertical measured foliationsuafl). Then:
lim,—ocls,/a =1 and lim,_ols, = Iy.

5.2. Spacetime with negative cosmological constant

The above discussion on CT for flat spacetimes (i.e., with cosmological corstaf
can be adapted to the case of negativevhich we normalize to bet = —1. We denote
by X2*+1 the Universal anti-de-Sitter spacetime of dimensien2 Each spacetime is now
locally isometric toX2+1. The role played byt (0) in the flat case, is played now by
the diamond-shaped domaln(2) (see [13] p. 132) isometric tB2 x (—/2, 7r/2) with
metric, in coordinatesy?®, y2, 1), ds? = (co€1)hy — dt?, whereh, is the usual Poincaré
hyperbolic metric on the open dis#.

5.2.1. Anti-de-Sitter suspensions

If F =H?/I" is a hyperbolic surface of genys> 1, thenI" isometrically acts also
on D(2) and D(F) = D(2)/I" is the anti-de-Sitter suspension Bf Up to a translation,
the functionr gives the CT and it has many qualitative properties similar to the CT of the
Minkowskian suspensions, but we have now both an initial and a final singularity, both
reduced to one point. In a senge(F) can be obtained by the Minkowskian suspension
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M (F) by a procedure ofvarping and doubling D(F) and M (F) have the same initial
singularity; the future asymptotic state &f(F) “becomes” the level surface of the CT

on D(F) where the expansion ends and the collapsing begins. Also the anti-de-Sitter
analogous of T (1, 3) is easy to figure out.

5.2.2. Deforming anti-de-Sitter suspensions

We want to generalize the above “warping and doubling” construction. Met
U(M)/I"" as in the former flat-spacetime discussidii,= I" +¢(I"). F =1(1)/T" as
usually. Fort € (—n/2,0), t € (0, 00), setr = —(r/2)e~". Denoteh(a) the spatial metric
on S,. On the manifoldF x (—m/2,0) consider the metrie/s2 = co(r)h(r)/12 —
dr?, getting a spacetim@’(M). Similarly, take M~ and —D'(M~), where M~ =
UM™)/-TI'", —I'" =T —(I'), =D'(M™) is obtained fromD’(M~) by reversing the
time and the orientation. Finally, SB{M) = D' (M) U—D’'(M ™), by gluing the two pieces
atr = 0. D(M) is locally anti-de-Sitter; up to a translatiangives the CT. The asymptotic
state forr - —m /2 (i.e., the initial singularity) is equal to the initial singularity &f.
The final singularity { — 7 /2) coincides with the initial singularity o#/~. The future
asymptotic states off and M~ “glue” at the level surfacgr = 0} of the CT where the
expansion ends and the collapse begins. The orldit(@f) in T, is given by the union of
two earthquake rays associateda(pointing to the future) and té/ ~ (towards the past);
note that the qualitative behaviour is similar to what we have remarkegsot. D(M) is
the quotient of a domai (2),;  X2+1, which is a “deformation” of the diamond-shaped
domainD(2). Also in this case the spacetimes with simplicial asymptotic singularities are
significant and particularly simple to be understood.

5.3. CT versus CMC

Assume again that the spagés of genusg > 1, and that the spacetimes are flat. Given
any global time on a spacetimdé = U(M)/I"’, the asymptotic behaviour of the geometry
of the corresponding level surfaces reflects in general a property of the specific time and
not of the spacetime. On the other hand, we have seen that the asymptotic states of the
cosmological time are intrinsic features of the spacetime. In this sense, we can say that a
global time is “good” when it has the same asymptotic states of the CT. The CMC time,
p say, is a widely studied global time. A natural question is whether a good global
time. We conjecture that this is the case. Let us denot@pshe{p = a} level surfaces of
the CMC time.

Conjectureb.1. (a) iMoo lw, = s7; (0) liMmy—olw,/a =IF.

There are some strong evidences supporting the conjecture; in particular by [3] we know
that:

(1) p is a global time function with image the interv@, 4+-oo).
(2) If y:(0, 00) — T, is anyp-orbitin T, (hereT, is intended as a space of conformal
structures) then:
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(i) The lim,_ oy exists inTy.
(i) y is proper, that is it goes out from any compact sef' gfroughly it “goes taco”.

Anideato prove the conjecture, should be to confine égchetween two barriers made
by CT-level surfaces,, S,», in such a way that’ anda” depend nicely om and, when
a— oo ora— 0,8, andS,» become more and more “geometrically” close to each other.
In a recent conversation, L. Andersson confirmed that this should actually work at least for
a spacetime with simplicial initial singularity. A similar conjecture can be formulated in
the anti-de-Sitter context.
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