(X,G)-VARIETÀ

1. Introduzione

In questa nota vogliamo formalizzare l'idea che una varietà liscia M può essere (a volte) munita di una struttura geometrica (in senso lato) che sia "localmente isomorfa" al modello basico di quella geometria. Lo faremo richiedendo che M sia munita di un atlante speciale a valori nel modello. Ci limiteremo al solito alla descrizione delle definizioni e costruzioni principali. Per maggiori approfondimenti si può consultare il libro [W.P. Thurston, Three-Dimensional Geometry and Topology, Vol. 1], il libro [R. Benedetti, C.Petronio, Lectures on hyperbolic geometry] e anche le note sulla geometria iperbolica reperibili nella homepage di B. Martelli presso il Dipartimento di Matematica.

2. Modelli

Un modello è costituito da una coppia (X,G) dove X è una n-varietà liscia connessa e semplicemente connessa, G è un sottogruppo del gruppo degli automorfismi differenziabili di X. Spesso X sarà orientata e allora possiamo lavorare anche con (X,G^+) dove G^+ indica il sottogruppo di G formato dai diffeomorfismi che preservano l'orientazione. Per semplicità richiediamo anche che X è una varietà analitica e G un gruppo di trasformazioni analitiche. In tal caso G verifica la proprietà della continuazione analitica, cioè se due elementi $g,g'\in G$ coincidono su un aperto connesso di X allora sono uguali su tutto X. Modelli interessanti sono per esempio:

- $(X,G)=(\mathbb{R}^n,\operatorname{Isom}(\mathbb{R}^n))$, questo è il modello della geometria euclidea. Sappiamo che $\operatorname{Isom}(\mathbb{R}^n)$) è il prodotto semidiretto $\mathbb{R}^n \rtimes O(n,\mathbb{R})$ sottogruppo del gruppo $\operatorname{Aff}(\mathbb{R}^n):=\mathbb{R}^n \rtimes GL(n,\mathbb{R})$ delle trasformazioni affini di \mathbb{R}^n .
- $(X,G)=(M^{n+1},\mathbb{R}^{n+1}\rtimes O(n,1,\mathbb{R}))$ cioè lo spazio di Minkowski su cui agisce il gruppo di Poincaré. Anche in questo caso G è un sottogruppo delle trasformazioni affini di \mathbb{R}^{n+1} . Questo è il modello della geometria Lorentziana "piatta".
- $(X,G) = (\mathbb{R}^n, Aff(\mathbb{R}^n))$. Questo è il modello della geometria affine.
- $(X,G) = (\mathbb{H}^2, \text{Isom}(\mathbb{H}^2))$. Questo è il modello della geometria iperbolica piana. Lavorando per esempio nel modello del semipiano π^+ , abbiamo realizzato che in questo caso G^+ è isomorfo a $PSL(2,\mathbb{R})$ e agisce sul semipiano considerato come un aperto nella sfera di Riemann

$$S^2 = P^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$$

come restrizioni di omografie, cioè di trasformazioni proiettive della retta proiettiva complessa. In effetti il gruppo delle trasformazioni proiettive di $S^2 = P^1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$ è $PSL(2,\mathbb{C})$, $PSL(2,\mathbb{R})$ è il sottogruppo delle traformazioni per le quali il semipiano è invariante.

- $(X,G)=(\mathbb{H}^n,\operatorname{Isom}(\mathbb{H}^n))$, cioè i modelli della geometria iperbolica in dimensione arbitraria.
- $(X,G) = (P^1(\mathbb{C}), PSL(2,\mathbb{C})).$

Si noti che solo in alcuni casi G è anche un gruppo di isometrie per una determinata metrica Riemanniana completa su X. In questi casi diremo che si tratta di un $modello\ metrico$.

3.
$$(X,G)$$
-Varietà

Fissato un modello (X, G), una n-varietà connessa M è una (X, G)-varietà se ammette un (X, G)atlante $\{(U, \phi_U)\}$, dove:

- (1) Gli U formano una famiglia \mathcal{F} di aperti di M che ricopre M. Se $U \in \mathcal{F}$ e U' è un aperto di M contenuto in U allora anche $U' \in \mathcal{F}$.
- (2) Per ogni $U, \phi_U : U \to W \subset X$ è un diffeomorfismo a valori in un aperto di X. Se $U' \subset U$ come sopra, allora anche $(U', \phi_U | U')$ appartiene all'atlante.
- (3) Se $U \cap U' \neq \emptyset$ allora per ogni componente connessa U_0 dell'intersezione, la restrizione di $\phi_{U'} \circ \phi_U^{-1}$ a $\phi_U(U_0)$ è uguale alla restrizione di un elemento $g \in G$, necessariamente unico per la proprietà della continuazione analitica.

1

Naturalmente X è una (X,G) varietà dove possiamo prendere l'atlante formato da tutti gli aperti di X muniti dell'inclusione in X. Date due (X,G)-varietà M e N, un (X,G)-morfismo è una applicazione differenziabile $f:M\to N$ tale che per ogni (U,ϕ_U) dell'atlante di M, U connesso tale che $f(U)\subset U'$ dove $(U',\psi_{U'})$ appartiene all'atlante di N, esiste $g\in G$ tale che la restrizione a $\phi_U(U)$ di $\phi_{U'}\circ\phi_U^{-1}$ coincide con la restrizione di g. Un (X,G)-isomorfismo è un (X,G)-morfismo che ammette un (X,G)-inverso. Si nota che per definizione ogni (X,G)-morfismo è localmente un (X,G)-isomorfismo.

4. Applicazioni sviluppanti e olonomia

Siano M una (X, G)-varietà e $p : \tilde{M} \to M$ un rivestimento universale (di punto base x_0 sottointeso); allora si può sollevare in modo canonico la (X, G)-struttura su \tilde{M} in modo tale che p diventa un (X, G)-morfismo. Inoltre $\operatorname{Aut}(\tilde{M}, p) \simeq \pi_1(M)$ diventa un gruppo di (X, G)-automorfismi.

Per definizione un'applicazione sviluppante è un (X,G)-morfismo $D: \tilde{M} \to X$. Vale

Proposizione 4.1. Per ogni elemento (U_0, ϕ_0) di un (X, G)-atlante di \tilde{M} , con U_0 connesso, esiste un' unica applicazione sviluppante $D: \tilde{M} \to X$ tale che $D|U_0 = \phi_0$.

Dim. (Cenni) L'unicità segue dalla proprietà della continuazione analitica. Per l'esistenza si applica il metodo della continuazione analitica lungo i cammini. Sia $y_0 \in U_0$; per ogni $y \in \tilde{M}$ si fissi un arco γ che connette y_0 con y. Per semplicità supponiamo che γ sia iniettivo così che possiamo confondere γ con la sua immagine in \tilde{M} . Ricopriamo γ con una catena di (X,G)-carte connesse (U_j,ϕ_j) $j=0,\ldots,k$, con intersezioni connesse, in modo tale che $y \in U_k$, $U_j \cap \gamma$ è un sottointervallo γ_j di γ , $\gamma_j \cap \gamma_{j+1}$ è un altro sottointervallo. Allora definiamo induttivamente $D|\gamma_j=(g_j\ldots g_1)^{-1}\phi_j|\gamma_j$, dove $g_i\in G$ corrisponde all'unica estensione di $\phi_i\circ\phi_{i-1}^{-1}$. In questo modo si definisce una funzione continua su γ e possiamo definire in particolare D(y). Si dimostra che fissato γ il risultato non dipende dalla scelta della catena di carte e che non dipende dalla scelta del cammino γ (qui si usa che \tilde{M} è semplicemente connesso).

Lemma 4.2. Se D e D' sono due applicazioni sviluppanti, allora esiste $g \in G$ tale che $D = g \circ D'$. Infatti possiamo prendere un aperto connesso abbastanza piccolo U tale che la restrizione a U di entrambe le sviluppanti sia una (X, G)-carta di \tilde{M} . Allora esiste $g \in G$ tale che $D|U = g \circ D|U'$. Per

la proprietà della continuazione analitica questo vale su tutto \tilde{M} .

Fissata una sviluppante D, per ogni $f \in \operatorname{Aut}(\tilde{M}, p), D \circ f$ è un'altra sviluppante. Allora esiste $h_D(f) \in G$ tale che per ogni $y \in \tilde{M}$ (equivarianza):

$$D(f(y)) = h_D(f)(D(y)).$$

Si verifica facilmente che

$$h_D: \operatorname{Aut}(\tilde{M},p) \to G$$

è un omomorfismo detto l'olonomia relativa alla sviluppante D. Se $D=g\circ D'$, allora

$$h_{D'} = gh_Dg^{-1}$$

cioè le olonomie relative a due applicazioni sviluppanti sono $rappresentazioni \ coniugate$ di $\operatorname{Aut}(\tilde{M},p) \simeq \pi_1(M)$ nel gruppo di struttura G del modello. Quindi la classe di coniugazione $[h_D]$ è un invariante (detto l'olonomia) della (X,G)-varietà M.

5. Completezza

Per definizione una (X,G)-varietà M è detta completa se le applicazioni sviluppanti sono (X,G)-isomorfismi. Fissata una tale sviluppante $D: \tilde{M} \to X$, risulta che:

- (1) L'olonomia h_D è iniettiva con immagine un sottogruppo Γ di G.
- (2) Il quoziente X/Γ è una (X,G)-varietà che ha come rivestimento universale la proiezione

$$\pi: X \to X/\Gamma$$
.

(3) Esiste un (X,G)-isomorfismo naturale $d:M\to X/\Gamma$ tale che $d\circ p=\pi\circ D.$

5.1. (X,G)-completezza e completezza metrica. Supponiamo che il modello (X,G) sia metrico, cioè G è un gruppo di isometrie per una determinata metrica Riemanniana ds^2 su X completa (questo significa che la distanza indotta dalla metrica su X è completa e questo è equivalente al fatto che la metrica ds^2 è geodeticamente completa). Data una (X,G)-varietà M,ds^2 si trasporta su M e \tilde{M} in modo che $D:\tilde{M}\to X$ e $p:\tilde{M}\to M$ sono localmente delle isometrie. Poiché ogni successione di Cauchy è definitivamente in una palla di raggio arbitrariamente piccolo, segue che M è metricamente completo se e solo se \tilde{M} lo è. Risulta che in questo caso le due nozioni di completezza coincidono.

Proposizione 5.1. $M \stackrel{.}{e} (X, G)$ -completa se e solo se $\stackrel{.}{e}$ metricamente completa.

Dim. (Cenni) Una implicazione è evidente. Infatti se D è un (X, G)-isomorfismo allora è una isometria e quindi \tilde{M} è metricamente completo perché X lo è per ipotesi. Per dimostrare l'altra implicazione basta verificare (perché?) che D verifica la seguente proprietà di sollevamento unico dei cammini:

Per ogni $y \in \tilde{M}$, per ogni cammino γ in X tale che $\gamma(0) = D(y)$, esiste un unico cammino $\tilde{\gamma}$ in \tilde{M} tale che $\tilde{\gamma}(0) = y$, $D \circ \tilde{\gamma} = \gamma$.

Per verificare questa proprietà, si osserva che poiché D è un isomorfismo locale esiste $t_0>0$ in I tale che il sollevamento unico di γ esite sull'intervallo $[0,t_0]\subset I$. Posto $\bar t$ l'estremo superiore di tali t_0 , basta dimostrare che in effetti è un massimo. Ne segue infatti che allora $\bar t=1$, perché se fosse <1, ancora usando il fatto che D è un isomorfismo locale, potremmo prolungare il sollevamento ancora un po' contro la definizione stessa di $\bar t$. E' un massimo perché se t_n è una successione crescente tale che $t_n\to \bar t$, allora $\tilde\gamma(t_n)$ è una successione di Chauchy in $\tilde M$, quindi converge ad un valore s (perché $\tilde M$ è completo) e possiamo porre $\tilde\gamma(\bar t)=s$. Si tratta di una successione di Cauchy perché se non lo fosse $\tilde\gamma$ avrebbe lunghezza infinita, ma questo è assurdo perché, essendo p0 una isometria locale, la sua lunghezza è minorata dalla lunghezza di γ che è finita.

In particolare se M è compatta e (X,G) è metrico, allora M è una (X,G)-varietà completa, dunque è il quoziente $M=X/\Gamma$, dove Γ è un sottogruppo di G. Per esempio questo vale se S è una superficie iperbolica (cioè munita di una $(\mathbb{H}^2, \text{Isom}(\mathbb{H}^2))$ compatta.