A NEW PROOF THAT Ω_3 IS ZERO

COLIN ROURKE

It is a fact that any closed orientable 3-manifold can be changed into S^3 by a finite number of elementary surgeries on embedded circles (which implies that Ω_3 , the 3-dimensional oriented cobordism group, is zero). Existing proofs of this fact either use a significant amount of algebraic topology (Thom [2]) or a lengthy calculation involving curves on a surface (Lickorish [1]). In this note, I shall give a short elementary proof which avoids both algebraic topology and calculation.

Suppose that S is an orientable surface of genus n, then $x = (x_1, x_2, ..., x_n)$ is said to be a *complete system of curves* on S provided that each x_i is a simple closed curve, the curves $\{x_i\}$ are pairwise disjoint and the union $\bigcup_i x_i$ does not separate S.

A Heegaard diagram S(x, y) is an orientable surface S with two complete systems x, y. The diagram determines a closed orientable 3-manifold M(x, y) obtained by attaching thickened 2-discs to $S \times I$: along the x_i on $S \times \{0\}$ and along the y_i on $S \times \{1\}$, and then filling in the resulting S^2 -boundaries with 3-balls. The resulting 3-manifold M has a specific handle presentation with one 0-handle, one 3-handle, n 1-handles and *n* 2-handles; the curves x, y are drawn on a level surface between the 1-handles and the 2-handles—the x being the b-spheres for the 1-handles and the y being the a-spheres for the 2-handles. Any handle presentation with one 0-handle and one 3-handle can be regarded as a Heegaard diagram in this way and it therefore follows from elementary results in handle theory that any orientable 3-manifold is given by some Heegaard diagram. Notice that if one of the x curves meets one of the y curves transversally in a single point then the corresponding handles are complementary and can be cancelled; therefore M has a Heegaard diagram of lower genus. (In fact the reduced diagram can be obtained explicitly by cutting out a neighbourhood in S of the two transverse curves, filling in the resulting circle boundary with a disc and completing any other curves, cut in the process, across the disc.)

I need the following observation.

LEMMA 1. Suppose that S(x, y) is a Heegaard diagram and that z is a third complete system of curves on S. Let $\chi(M, z)$ denote the result of performing surgery on M = M(x, y) using the curves z (with framings given by parallel curves in the surface S). Then $\chi(M, z)$ is homeomorphic to the connected sum

$$M(\mathbf{x},\mathbf{z}) \ \# \ M(\mathbf{y},\mathbf{z}).$$

Proof. Assume that the surgeries are performed at level $\{\frac{1}{2}\}$ in $S \times I$. Surgery on $z_i \times \{\frac{1}{2}\}$ is performed as follows. First, remove a neighbourhood of $z_i \times \{\frac{1}{2}\}$: this has the same effect as cutting $S \times I$ open at $S \times \{\frac{1}{2}\}$ near to z_i , and results in a new boundary torus $(\alpha_i \cup \beta_i) \times S^1$ when $\alpha_i \times S^1$ and $\beta_i \times S^1$ are annuli with common boundary in the two copies of $S \times \{\frac{1}{2}\}$, see Figure 1.

Received 19 December 1983.

¹⁹⁸⁰ Mathematics Subject Classification 57N10.

J. London Math. Soc. (2) 31 (1985) 373-376

Secondly, glue back a solid torus, namely $(\alpha_i \cup \beta_i) \times D^2$, where ∂D^2 is identified with S^1 .

Now let M_1, M_2 be the results of cutting M completely along $S \times \{\frac{1}{2}\}$ (where M_1 contains the lower half $S \times [0, \frac{1}{2}]$). Let

$$M_1^+ = M_1 \bigcup_i \alpha_i \times D^2, \quad M_2^+ = M_2 \bigcup_i \beta_i \times D^2.$$

Then M_1^+, M_2^+ are homeomorphic to M(x, z), M(y, z) respectively, with a 3-ball removed from each, and $\chi(M, z)$ is the union of M_1^+, M_2^+ along their common 2-sphere boundary.

I also need the following easy lemma.

LEMMA 2. Suppose that x, y are two non-separating curves on a surface S which meet transversally in a finite number of points. Let $|x \cap y|$ denote the number of points of intersection.

(a) If $|x \cap y| = 0$ (that is, $x \cap y = \emptyset$) then there is a third non-separating curve z which meets each of x and y transversally in a single point.

(b) If $|x \cap y| > 1$ there is a third non-separating curve z such that $|x \cap z| < |x \cap y|$ and $|y \cap z| < |x \cap y|$.

Proof. (a) Cut S along x and glue in discs D_1, D'_1 to get a new surface S'.

Subcase (a_1) , in which y separates S'. In this case D_1 , D'_1 must lie on opposite sides of y (or else y would separate S). Join corresponding points of D_1 and D'_1 by a simple path α crossing y once. Then α gives the required curve in S (Figure 2).

FIG. 2

Subcase (a₂), in which y does not separate S'. Cut S' along y and glue in discs D_2, D'_2 then join D_1 to D_2 by a simple arc α_1 and join the corresponding points of D'_1 , D'_2 by another arc α_2 not meeting α_1 . Then $\alpha_1 \cup \alpha_2$ gives the required curve in S (Figure 3).

(b) By choosing two points of $x \cap y$ which are adjacent in x we can find an arc α in x which meets y only at its end points A, B. Let β , γ be the two arcs of y joining A to B. Since y does not separate S, one of $\alpha \cup \beta$, $\alpha \cup \gamma$ does not separate S. Suppose, without loss of generality, that $\alpha \cup \beta$ does not separate S. Shift α off itself, starting by pushing in the β -direction at A. Complete by an arc close to β to get a simple closed curve which meets x in at least one fewer point and y in at most one point (Figure 4(a) or (b)).

Fig. 4

THEOREM. Any closed orientable 3-manifold can be reduced to S^3 by a finite number of surgeries on embedded curves.

Proof. Let M be a closed orientable 3-manifold and, without loss of generality, assume that M = M(x, y). Associate to the diagram S(x, y) two integers, namely

$$n = \operatorname{genus}(S)$$
 and $r = \min_{i, j} |x_i \cap y_j|$.

The theorem is proved by double induction on n and r. We assume, inductively, that the theorem is true for smaller n or for the same n and smaller r. The induction starts with n = 0, when M is already S^3 and there is nothing to prove. The induction step is as follows.

Case 1, in which r > 1. Without loss of generality, we assume that $r = |x_1 \cap y_1|$. By Lemma 2(b), choose a curve z_1 such that $|x_1 \cap z_1| < r$ and $|y_1 \cap z_1| < r$. Extend z_1 to a complete system z and apply Lemma 1:

$$\chi(M,z)\simeq M(x,z) \# M(y,z).$$

Each of the 3-manifolds on the right of the equation has diagram with the same n but smaller r. By induction, each can be reduced to S^3 by surgery and thus, by performing all three sets of surgeries, M can be reduced to S^3 by surgery.

Case 2, in which r = 0. In this case we use Lemma 2(a) to find z_1 meeting x_1, y_1 transversally in one point, and complete to z as before. Then M(x, z), M(y, z) each has a diagram containing a transverse pair of curves meeting in one point, and therefore, as remarked earlier, each has another diagram of smaller genus. Hence, by induction, each can be reduced to S^3 by surgery and it follows, as in case 1, that M can be reduced to S^3 by surgery.

Case 3, in which r = 1. In this case the diagram for M contains a transverse pair of curves and therefore M has a diagram of lower genus. Hence, by induction, M can be reduced to S^3 by surgery.

References

- 1. W. B. R. LICKORISH, 'A representation of orientable combinatorial 3-manifolds', Ann. of Math. 76 (1962) 531-540.
- 2. R. THOM, 'Quelques propriétés globales des variétés différentiables', Comm. Math. Helv. 28 (1954) 17-86.

Mathematics Institute University of Warwick Coventry CV4 7AL