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In this paper we provide a presentation for compact oriented 3-manifolds with 
non-empty boundary up to orientation-preserving homeomorphism via a calculus on 
suitable finite planar graphs with extra structure (decorated graphs). Closed manifolds 
are included in this representation by removing a 3-ball. 

Decorated graphs have an intrinsic geometric counterpart, as they are actually 
obtained by considering standard spines of the manifold and extra structure on them 
(decorated spines). The calculus on graphs is derived from the Matveev-Piergallini 
moves on standard spines ([2], [6], [7], [9]) which we re-examine and adapt to our 
setting (in particular in Section 1 we establish an oriented theory). 

A comparison with the presentation of closed 3-manifolds via surgery on framed 
links in S 3 and the corresponding Kirby calculus [3], [4] allows to single out peculiar- 
ities of our graphic calculus. If one represents links by generic projections there are 
formal analogies between the two presentations, in particular both are supported by 
quadrivalent planar graphs with simple normal crossings and both express the change 
of orientation on manifolds by a simple involution on the set of graphs. The main 
differences are that edge-colours are taken in Z for framed links and in Z3 for us, and 
that our calculus is generated by a finite number (in a strict sense) of local moves, while 
on one hand the band move of Kirby calculus is not local, and on the other hand the 
local general Kirby move depends on the arbitrarily large number of strands involved. 

The finiteness of our calculus can be exploited to construct polynomial invariants 
of spines and 3-manifolds in a way formally very close to the elementary definition of 
the Kauffman bracket invariant of framed links. For every choice of initial data (for 
which there is a wide freedom) the construction produces an ideal in a polynomial 
ring, explicitly given by a finite set of integral generators, and a process which to every 
decorated graph associates a polynomial. This polynomial is defined as a state sum 
which satisfies certain linear skein relations, and the class of the polynomial modulo the 
ideal is invariant under the calculus. This construction is widely discussed in [8], and 
non-triviality of the invariants produced is supported by the proof that Turaev-Viro 
invariants [11] appear in this framework, with a very simple choice of initial data. 

Our calculus has also been used in [1] for a formal algebraic treatment of Roberts' 
approach to the Turner-Walker theorem. 

For the reader's convenience we state the main result which we will establish. We 
confine ourselves here to the case of oriented manifolds, because the presentation is 
particularly easy to describe in this case, but a similar graphic presentation is provided 
below also for non-oriented manifolds. 

We start by introducing a few definitions. Consider a finite planar quadrivalent 
graph F with simple normal crossings, and assume that some vertices of F are marked. 
In the sequel given such a graph we will always call edges of F those obtained by ignoring 
the vertices which are not marked (in other words, edges are locally embedded segments 
with marked endpoints). Remark that edges might well not cover the graph. 
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Figure 1: These moves are called respectively R, h Pql and RIII 

Figure 2: These moves are called respectively R~I I and R~} I 

We define an o-graph to be  tim d a t u m  of: 

1. A fini te  p lanar  quadr iva lent  graph F wi th  some  marked  vertices,  where  F is edge- 
connec ted  in the  sense jus t  s ta ted  (in par t icu lar  the re  is at least one marked  
ver tex ,  and the  edges cover F); 

2. An  under -over  specif icat ion (as in t h e  usual pro jec t ions  of links) at each marked  
ver tex  of F; 

3. A colour chosen in ga a t t ached  to every  edge of F. 

We will a lways refer to F i tself  as an o-graph.  We will es tabl ish  the  following: 

T h e o r e m  0 .1 .  To every o-graph there corresponds an oriented compact connected 
three-dimensional manifold with non-empty boundary well-defined up to orientation- 
preserving homeomorphism. Moreover: 

1. Every such manifold is obtained from some o-graph with at least two marked 
vertices. 

2. There exists an orientation-preserving homeomorphism between the manifolds as- 
sociated to two o-graphs with at least two vertices if and only if the two o-graphs, 
regarded up to isotopies of the plane, are obtained from each other by a finite 
sequence of moves as shown in Figg. I to 4, and inverses of these moves. 

3. Let an oriented manifold be associated to an o-graph. The same manifold with 
the opposite orientation is associated to an o-graph obtained as follows from the 
original one: 

a. At  every marked vertex reverse the under-over specification. 

b. Change the colour of every edge to its inverse (in Za). 

] 
Figure  3: This move is called C. Here tile convention is that to a certain edge it is equivalent to 
attach a colour i or many eolours whose sum modulo 3 is i; in other words multiple colours can be 
summed up, and individual colours can be split into sums 
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Figure 4: This move is called MP. Same convention as above about sums of colours 

..,~ 

V 
Figure 5: Two descriptions of the neighbourhood of a vertex in a standard spine 

1 S t a n d a r d  spines  and or i enta t ion  

In this section we state a few facts about standard polyhedra and spines of 3-manifolds. 
Some of these facts were known, and we recall them with minor differences. On the 
other hand we could not find in the li terature the oriented version of this theory: we 
are going to establish it here. 

Throughout this work we operate in the PL category, without further explicit men- 
tion: the basic notions, including that of collapse which we will need, can be found 
in [10]. Manifolds will always be connected. A compact connected 2-dimensional poly- 
hedron P is called quasi-standard if each point in it has a neighbourhood homeomorphic 
either to a plane, or to the union of three half-planes with common boundary line, or to 
the infinite cone over the 1-skeleton of a tetrahedron with vertex the barycentre of the 
tetrahedron (for further reference we show in Fig. 5 such a set). The singular set S(P) 
and the set of vertices V(P) of a quasi-standard polyhedron are naturally defined. We 
say that  P is standard if the components of P \ S(P) are discs and the components of 
S(P) \ V(P) are segments. 

We call P a standard spine of a compact 3-manifold M if P is a standard polyhedron 
and there exists an embedding i : P ---* int(.M) such that M collapses onto i(P). 
The following was established by Casler in [2] (see also [5] for a generalization to all 
dimensions): 

T h e o r e m  1.1. Every compact 3-manifold with non-empty boundary admits a standard 
spine. Two 3-manifolds with homeomorphic standard spines are homeomorphic. 

According to this result if P is a standard spine of a manifold M we are allowed 
to define M = M(P). tIowever M is not defined for all standard polyhedra (c[. 
Theorem 1.5 below). Tile following result was independently established by Matveev 
[6], [7] and Piegallini [9]. 
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Figure 6: The Matveev-Piergallini move 

/-----W--7 

Figure 7: Two "typical shapes" occurring in a standard polyhedron (the third shape is the disc) 

T h e o r e m  1.2. Every compact 3-manifold with non-empty boundary has a standard 
spine with at least two vertices. Standard spines with at least two vertices of homeo- 
morphic manifolds are obtained from each other by a finite sequence of moves as shown 
in Fig. 6, and inverses of it. 

We want to characterize standard polyhedra which are spines. Before stating the 
result (Theorem 1.5) we need a few preliminaries. 

A standard polyhedron can be canonically split into pieces of given shape. Namely, 
consider the objects shown in Fig. 7 and call them respectively ~ and fO. Remark that 

terminates with two triods while ~ terminates with four triods (a triod is formally 
defined as the cone over three points). The following fact is straight-forward: 

L e m m a  1.3. A standard polyhedron with n vertices can be obtaiTted in an essentially 
unique way from n copies of~7, 2n copies of ~ and some copies of the disc, by iden- 
tifying each terminal triod of the ~ 's with a terminal triod of the ~7 's, and then gluing 
the discs along the resulting boundary circles. 

In the sequel will denote by ~7 the discrete space containing three points. 

L e m m a  1.4. To every local embedding j : S 1 ---* S(P)  we can associate a ~-bundle on 
S 1 denoted by Bj as explained in Fig. 8. 

Proof of 1.4. We only need to remark that, thanks to the symmetries of a typical 
neighbourhood of a vertex, when j crosses a vertex the situation can always be realized 
as shown on the right-hand side of Fig. 8. 

The first part of the following result was established (in a different form) in [5] and 
quoted in the present form in [9]. We include the proof for completeness and because 
the machinery is used elsewhere. The second part is apparently new. 

T h e o r e m  1.5. Let P be a standard polyhedron. 

(A) P is a standard spine of a manifold if  and only if for each disc D of P \ S(P) ,  
if  j : S 1 ---* S (P)  describes how 9 is attached to S(P),  then the ~;-bundle Bj is 
trivial. 



A finite graphic calculus for 3-manifolds 295 

Figure 8: Definition of a q~-bundle on .~ associated to a local embedding j; the thick line is a portion 
of j and the little arrows define the projection of the bundle 

Figure 9: The thick pieces which glue up to give a neighbourhood of P 

(B} P is the standard spine of an orientable manifold if and only if for every embed- 
din# j : S ~ ---, S(P) the .'~-bundle Bj has 1 or 3 components. 

Proof of 1.5. (A) We start with the "only if" part. Let ff be a finite union of circles and 
7- be a finite union of triods such that P \ (,.7 U T)  is the splitting described in Lemma 
1.3. Let Di be the closure of the i-th disc component of P \ ( f f U T )  (i = 1, ..., d); D~ is a 
closed disc embedded in int(M); let Wi be a neighbourhood of Di in M homeomorphic 
to a ball. If Ck is a non-disc component of P \ (ff U 7") let Vk be a neighbourhood of it 
in M also homeomorphic to a ball. We can arrange things in such a way that W, f3 V~ 
and V~a VI Vk~ are either empty or a ball, according as D i n  Ck and Ck~ C3 Ck~ are empty 
or not, while W~ f3 I~Vi 2 is always empty. 

Now, operating within these balls, we can consistently thicken the Di's and the Ck's, 
to obtain solid pieces as shown in Fig. 9. By "consistently" we mean the following: 
remark first that the boundary of each solid piece in Fig. 9 is divided into portions 
which can be white, black or dotted, and a dotted portion can be either an annulus 
or a strip; then "consistently" means that the black portions are identified in pairs, 
every dotted strip is glued to two other dotted strips along the terminal segments, the 
strips glued together give annuli, and each of these annuli is identified to some dotted 
annulus (the lateral surface of some cylinder). 

Now fix i and let Di be contained in the component D of P \ S(P).  We can say 
what it means for the ~-bundle induced by the attaching function of D to be trivial: we 
abstractly glue the Ck's to OD;, with each Ck appearing as many times as the number 
of components of ,.7 N Ck, taking into account the identifications along 7-, as in Fig. 10. 
(Remark that ff  N Ck can have up to 6 components if C~ is homeomorphic to f13, up 
to 3 otherwise.) Then triviality is the condition that the thick lines close up to two 
circles (three including the boundary of the disc). 

Let us return to the situation of a neighbourhood of P in M covered by nicely 
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Figure 10: Pieces glued around a disc 

) 

Figure 11: Within the box on the left the strands are joined in such a way that the bundle on -y ha~ 
1 or 3 components, and the global bundle has 2 components, hence within the box on the right the 
strands must be joined so that the bundle on ,~s has 2 components 

glued solid pieces as shown in Fig. O. We concentrate on the gluings involving the fixed 
disc Di. If we give each of the pieces an arbitrary orientation and consequently orient 
the black portions of their boundary (see Fig. 9) the following conditions are pairwise 
equivalent: 

1. The dotted strips (Fig. 9) glue up to a M6bius strip; 

2. An odd number of identifications between black portions preserve the orientation; 

3. The ~-bundle is non-trivial. 

Equivalences 1r and 2r are clear, and Not (1)~Not (3)  implies the proof of "only 
if" in part A. 

To establish "if" in part A, define a manifold M by gluing abstract solid pieces as 
in Fig. 9 as prescribed by the gluings in P ,  which can be done because of implication 
Not(3)=~Not(1) (the pieces are now abstract and not in M, but the setting is the same). 
The result is a manifold which has standard spine P.  

(B) Let P have the property that q2-bundles induced on embeddings have either 1 
or 3 components; we claim that the same property holds also for local embeddings. To 
see this, start with a local embedding j such that  B i has 2 components, and decompose 
j as aflTfl-l~, where 3' is constant or an embedding of S l and a,/~,  g are constant or 
local embeddings of [0, 1] in S(P) (see Fig. 11). The same figure also proves that if one 
cuts out/37j3 -1 the bundle still has 2 components,  and the conclusion follows because 
one eventually reaches a circle. 

Our claim is proved. We deduce from it that  P is the spine of a manifold: the 
if-bundle induced by the attaching function of a disc has a global section (a circle 
contained in the disc), so it cannot have 1 component; then it has 3 components, i.e. 
it is trivial. 

So we can prove equivalence in part B assuming in any case that P is the standard 
spine of a 3-manifold M.  We think of M as being built up from pieces as in Fig. 9. 
We recall that M is orientable if and only if there exists no loop j : [0,1] -* M such 
that  if the orientation is fixed at j(O) and consistently followed along j ,  the orientation 
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Figure 12: At every vertex the orientations along the four edges must be in this situation 

:,/\ : z / l \ . / \ . / \  : , / \  

Figure 13: A loop cut open at a vertex 

carried by j(1) does not match the original one. Of course it is equivalent to confine 
oneself to embeddings of S l in S(P). If one gives each non-cylindrical solid piece an 
arbitrary orientation and consequently orients the black portions of Fig, 9, the following 
statements for an embedding j : 5 '1 ~ S(P)  are pairwise equivalent: 

1. The loop j reverses the orientation (in the above sense); 

2. An odd number of tile identifications between black portions met along j preserve 
the orientation; 

3. The T-bundle B i over S 1 has two components. 

Equivalences 1r and 2r162 are obvious, while 1r implies the conclusion. 

We give now an intrinsic notion of orientation for a standard polyhedron. Fix P 
and S = S(P). Remark that incident to every edge of S there are three germs of disc. 
We define an orientation of P along the edge as the choice of a direction for the edge 
and of a cyclic order for the three germs of discs, where a simultaneous reversal of the 
edge-direction and the disc-order is supposed to define the same orientation. At every 
edge there are exactly two orientations. 

We define an orientation of P as the choice of an orientation of P along all the 
edges such that the compatibility condition shown in Fig. 12 holds at every vertex. Of 
course P admits either no orientation at all or exactly two. 

L e m m a  1.6. A standard polyhedron P admits an orientation if and only if the qg- 
bundle induced on every embedding of S 1 in S(P)  has either 1 or 3 components. 

Proof of 1.6. It is sufficient to show that if el, ..., ep are edges whose union is a circle 
then there exists a consistent orientation along them if and only if the ~-bundle on the 
circle does not have 2 components. Direct the ei's consecutively. If v is the first vertex 
of el then of course the bundle is trivial on el LI ... U ep \ {v}, and we can orient P 
along the ei's so that the compatibility holds at the vertices different from v. Looking 
at the definitions one has the situation of Fig. 13, and then it is easily seen that  the 
identification between the terminal triods preserves the cyclic order if and only if the 
resulting '~-bundle does not have 2 components, whence the conclusion. 
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Figure 14: The rule to orient a spine 

Figure 15: The oriented Matveev-Piergallini move 

C o r o l l a r y  1.7. P is orientable if and only if it is the spine of an orientable manifold. 

This corollary is readily deduced from Lemma 1.6 and Theorem 1.5. But we have 
actually more: there is a natural correspondence between orientations of the spine and 
orientations of the manifold. This is obtained as follows. Let M be a manifold with 
a fixed orientation w (we will denote it by M~'). Let P be a standard spine of M and 
p be a point of some edge e of S = S(P) and take a neighbourhood U of p in M and 
an orientation-preserving homeomorphism r : U ~ R 3. Define the orientation of P 
along e using r and the usual left-handed screw rule in R 3, as in Fig. 14. If u is the 
unique orientation of P extending this one along e, we set M '~ = Mn(PU).  Of course 
one has M n ( P  -~) = M -~'. Remark that  Fig. 14 also provides the inverse rule: given 
an orientation of P,  embed a neighbourhood of some point so that the situation is as 
in the  figure, then define this embedding to be orientation-preserving and extend the 
orientation to M. 

We define the oriented Matveev-Piergallini move on the set of oriented standard 
polyhedra in the natural way shown in Fig. 15 (this is a natural choice as there are 
points whose neighbourhood the move does not alter, and we require that the orienta- 
tion near them is preserved). The following result is an analogue of Theorem 1.2 for 
the case of oriented manifolds. 

T h e o r e m  1.8. I. To every oriented standard polyhedron P~ there corresponds an 
oriented compact manifold with non-empty boundary M ~ = .A4n(P~). 

2. For every such manifold M ~ there ezists an oriented standard polyhedron pu with 
at least two vertices such that M" = .Adn(P~). 

3. Let M~' = .Adn(P~), i = 1,2 where both P1 and P~ have at least two vertices. 
Then there ezists an orientation-preserving homeomorphism of M~ ~ onto M ~  
if and only if P~ and p~2 are obtained from each other by a finite sequence of 
oriented Matveev-Piergallini moves and inverses of it. 

Proof of 1.8. The first two assertions are readily deduced from Theorem 1.2, Theo- 
rem 1.5(B), Corollary 1.7 and the above construction. We prove the third assertion. 

Let p{a be obtained from p~,2 by only one oriented Matveev-Piergallini move. Then 
we know that M~ 't and M f  2 are homeomorphic, but maybe not as oriented manifolds. 
We think of P1 and P2 as embedded in the manifold, each inducing on the manifold 
an orientation as stated above. As we have remarked, in the oriented move there are 
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points  whose oriented neighbourhoods are unchanged, and then the two orientat ions 
on the  manifold must  be the same. The  case of more than one move is easily sett led. 

Now let M (  ~ ~ M~ '2 with orientat ion.  Then  P ~  and p~2 are obtained from each 
other  by unoriented moves. We can th ink  of these moves as taking place within the 
same oriented manifold, in such a way tha t  for every move there is a portion of the 
spine which is unchanged under it. We give the intermediate  spines the or ientat ion 
defined by their  embedding in the manifold. Then  all the Matveev-Piergallini  moves 
are oriented. 

2 D e c o r a t e d  s p i n e s  a n d  a g r a p h i c  
c a l c u l u s  for 3 - m a n i f o l d s :  g e n e r a l  case  

As shown in tile left-hand side of Fig. 5 a vertex of a s tandard polyhedron has a neigh- 
bourhood with a totally symmetr ic  description; to be precise such a neighbourhood has 
24 symmetr ies  (only 12 if there is an or ienta t ion and we want it to be preserved). How- 
ever it is sometimes useful to consider the  less symmetr ic  description of the  r ight -hand 
side of Fig. 5; for instance we have used it in Fig. 8 to define the ~-bundle  induced on 
a singular loop. We can view in abst ract  terms the loss of symmetry  at  a vertex as a 
decoration of the vertex. Roughly speaking a decoration at  a vertex is the choice of 
how to represent a neighbourhood of it as in the  r ight-hand side of Fig. 5. To specify 
this representat ion we must  say which of the six discs is "over" ( the opposite one will 
be "under")  and how the adjacent  four discs must  be arranged on the horizontal  plane. 

Let us be more formah We will denote by ~3o the subset of R 3 shown on the  right- 
hand  side of Fig. 5 (with the  fixed embedding  in R 3 suggested by the figure). Let P 
be a s tandard  polyhedron and let v be a vertex of P. We define a decoration of P at  v 
as a pair (D,w), where D is one of the six germs of discs at  v and w is an or ienta t ion 
for the  union 7r of the four germs of discs adjacent  to D (Tr is an open disc). 

Let P be decorated at v by (D,w).  Let ff be a homeomorphism of a neighbourhood 
of v in P onto ~0-  We say tha t  4~ is compat ible  with the decoration if q~(D) is the  upper  
vert ical  sheet of ~ 0  and 7r is mapped in an orientat ion-preserving way to the union  of 
the  four horizontal sheets. Of course every neighbourhood of a vertex contains a set 
homeomorphic  to ~00, and compatibi l i ty  with  the  decoration essentially determines  the 
homeomorphism (so the formal definition of decoration corresponds to the purpose it 
was meant  for). 

R e m a r k  2.1. At every vertex a s tandard  polyhedron admits  precisely 12 decorations. 

We define a decoration of a s tandard  polyhedron as the  choice of a decoration at 
every vertex. By definition a decoration of a s tandard  polyhedron allows us to "canon- 
ically" embed in R 3 neighbourhoods of tlle vertices. We consider now the problem of 
ex tending  these embeddings to a neighbourhood of the singular set, which na tura l ly  
leads to introducing a certain decorated planar  graph. This discussion is very informal,  
but  below we will provide precise s ta tements .  

Let P be decorated. We star t  with emheddings  of neighbourhoods of the  vertices 
compat ib le  with the decoration, pushed apar t  by horizontal translations.  Next,  we 
ex tend  the embedding to the  whole singular set  of P,  with the  requirement t h a t  the  
project ion on tile horizontal plane is generic. (Of course there  is some arbi t rar iness  in 
such an extension - -we  will take this into account.)  Now we extend the embedding  
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I 
Figure 16: How to loosen a crossing which is not marked 

across an edge: we will have triods arriving from both endpoints, and we only need to 
be careful and match them correctly in the middle. It might not be possible to do this in 
R 3 (we just  work with R 4 in this case). Of course we do not have uniqueness (we could 
give either triod a complete twist before connection) but if we find an intrinsic method 
to number the three branches of each triod by {1,2,3} we will have a well-defined 
permutat ion in Ga. Having found such a method our embedding will be essentially 
represented by a planar quadrivalent graph where some vertices are "fake", the others 
have some special decoration which allows us to recover the embedding~ and the edges 
have a colour in 63.  

We will now formalize this construction. Since a graph defines a unique decorated 
standard polyhedron but the graph is not unique, it is convenient to start with graphs, 
show how they define standard polyhedra and then discuss non-uniqueness. Since 
we will use groups of permutations, we recall that  the symbol (il i2 " "  ik) denotes the 
function which maps ij to ij+~ and ik to il. We multiply two such symbols as functions, 
in the obvious way. For instance (12)(13) = (132). 

Let F be a finite connected quadrivalent graph embedded in R z with normal cross- 
ings. Recall that by graph we mean a finite 1-complex. Assume that  some vertices of 
F are marked, and define the edges of F as stated in the introduction by pretending 
that  unmarked vertices do not exist. 

We define an s-graph to be the datum of: 

1. A finite planar quadrivalent graph F with some marked crossings, where F is 
edge-connected (in the sense just stated); 

2. An under-over specification (as in the usual projections of links) at each marked 
vertex of F; 

3. A direction for every edge of F; 

4. A colour chosen in ~53 attached to every edge of F. 

We will actually refer to F itself as an s-graph. 
F r o m  an s - g r a p h  F to  a d e c o r a t e d  s t a n d a r d  p o l y h e d r o n :  f o r m a l  p r o c e d u r e .  

1. Embed R 2 in R 3 as R 2 x {0}, and for each vertex of F which is not marked choose 
an arbitrary way in R 3 to loosen it (there are two such ways, see Fig. 16). 

2. For each marked vertex v select a small neighbourhood where F is a cross, and 
fit on it a subset of R 3 as described in Fig. 17. We also use a planar notation 
which on one hand is readily deduced from the s-graph and on the other hand 
easily implies the 3-dimensional situation. 

3. For each edge we select a small segment which is far from all vertices and associate 
to it a subset of R 3 as described in Fig. 18. (Remark that for an end of an edge 
it is well-defined whether it is "over" or "under", so the definition makes sense.) 

4. The objects defined in 2 and 3 terminate with T's  which can be straight or upside- 
down. The choices we have made imply that  we can extend the T's across the 
edges excluding the little segments, as shown in Fig. 19, by allowing horizontal 
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/ - - ' -4" - '7  

Figure 17: For every marked vertex (left) we introduce a 3-dimensional object (centre) and a planar 
symbol for it (right) 

I I 

' t - - / - - - - 7  / - - - 4 7  . . . . . . . . .  I 

t I - / - 7  / - - 7  . . . . . . . . .  
. . . . . . . . . . . . . . . . .  

Figure 18: Depending on the four possible cases for tile endpoints of the edge (left) we introduce a 
3-dimensional object (centre) and a planar symbol for it (right) 

rotations and vertical translations (these are necessary if we meet a loosened 
crossing, as in Fig. 20). 

5. For each small segment we give a number  1, 2 or 3 to the three branches of each 
of the two T's involved as shown in Fig. 21. Remark that  this numbering depends 
on the direction of the edge and on whether  the T is straight or upside-down. We 
move the T across the little segment in such a way that  i on the right is joined to 
a(i) on the left. It is quite easy to see that  this can be done in R ~ if and only if 
sgn(a)  = +1; otherwise we just need to add one more dimension. Some examples 
are shown in Figg. 22 and 23. 

6. We have obtained a polyhedron in IR 3 or at worst in R 4 which has four types of 
points, three of them being tile same as in a quasi-standard polyhedron. Points 
of the fourth type have neighbourhoods homeomorphic to half-planes but not to 

1 

/ / ,  

Figure 19: An example of how to extend the T's across an edge 
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Figure 20: How to deal with a loosened vertex 

I I 
J " i O 

~_L_+_ _ 
l o t  

- - t  o I 

-t t- 

~ '  3 ~ ' ~ 7 1  

, d:-----~ 3 
,/, 42 

~ 2  ~ 2 - -  
~ 3  O 3 ~  

- - 1  3 ~  
~ 2  = 2 . . . . . . . . .  

- - 3  , ~  
. . . . . . . .  2 "  2 ~  

- - 3  3 ~  
. . . . . . . .  2 4 2 . . . . . . . .  

~ ,  0 , ~  

Figure  21: How to label tile branches of the T's and a symbolic planar description of the gluings to 
be performed (step 5) 

I I 
w 

2 2 

= 2  J ~ - - ~  ' '2  

3 3 

- -  = 2  , "  , -  . . . . . .  2 

I ,d ,42 3 ~ - - - - - - - - ~ ~ ,  

Figure  22: Two examples where everything takes place in the three-space 

1 [ 2 2 
. . e - - ~  . . . . . .  - ' 7 "  ' t 
I ~> I ~ /3 ~ . . . ~ C . . _ ~  

; __ -, /3 l 3 

I c~3) 3 - ~ 2  3.2 0 . . . . . . . .  21 

Figure  23: In these examples there are strips which cross each other without meeting, thanks to the 
fourth dimension not shown in the picture. A symbolic planar picture descrihing the situation is also 
provided 
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j a ~-I( j )  

F i g u r e  24: If i is one of {j,a-a{j)} then i' is the other one, while s'=sga(a).s 

I' I I I . 3 ; _ 2 , _ . 2 �9 

Figure 25: The two pairs (germ-of-edge,integer-near-it) give {(e,i),(e',i')}. The convention that when 
the direction of the edge is reversed the corresponding integer ./must be replaced by (la)(D; it is easily 
checked that with this convention the four situations shown cover all possibilities 

planes. The set of all points of the fourth type is a union of disjoint circles, and 
we attach a disc to each of them following the boundary. 

7. We have obtained a standard polyhedron and an embedding in R 4 of a neighbour- 
hood of its singular part. Tile restriction of this embedding to a neighbourhood 
of a vertex, after an isotopy in R 3 which preserves the horizontal plane, is a 
homeomorphism with the set E defined at the beginning of the section. Hence 
we can choose the decoration of the vertex with which this homeomorphism is 
compatible. We have therefore a decorated standard polyhedron. 

L e m m a  2.2. I f  F is an s-graph the above-described procedure defines a unique deco- 
rated standard polyhedron D(F). Every decorated standard polyhedron arises like this. 

Proof of 2.2. Steps 2, 3 and 4 are unique up to isotopy in R 3 (or ~4); step 5 is not 
unique in R z (or R 4) because we can give complete twists, but the associated abstract 
object is unique; steps 6 and 7 are intrinsically defined; different choices in step 1 of 
course lead to the same abstract object. So the above construction defines a unique 
polyhedron, which is easily cheked to be standard. 

The last assertion follows fi'om tlle construction informally sketched above (start 
embedding near the vertices and extend). [ - ~  

We will denote by 79(F) the standard polyhedron obtained from D(F) by forgetting 
the decoration. Since we are interested in standard polyhedra as tools for studying 
3-manifolds, we state the following: 

P r o p o s i t i o n  2.3. Let F be an s-graph. Then 79(F) is the standard spine of a manifold 
if and only if the following holds: Pick a germ of edge e and i E {1,2, 3}, set s = +1 
and replace the triple {e, i, s} by {e', i', s'} alterr~atively as follows: 

1. e J is the germ of the other end of the same edge and i' ,s'  depend on the colour 
and direction of the edge, as described in Fig. 24. 

2. e' is one of the three other germs at the same vertex, s' = s and e',i' are given 
in the various possible cases by Fig. 25. 

Then the condition is that the first time we have {e, i ,s '}  then we also have s' = +1, 
and this should happen for every initial choice ore and i. 

Proof of 2.3. Using the procedure to recover T'(F) from F one sees quite easily that  
this is exactly the condition that the if-bundle over the boundary of every disc is trivial 
(see Theorem 1.5). [ - ~  



3 0 4  R .  B e n e d e t t i ,  C P e t r o n i o  

Figure 26: P r o o f  t h a t  R I  r e p r e s e n t s  a t w i s t  in  t h e  e m b e d d i n g  

I I - - 1  1 - -  - - 3  3 - -  I I 
. - - 2  '+ 2 - -  ~ 2  �9 2 ~ =  " 

- - ~ - - 2 "  2 . . . . . . . .  = - - 2  " 2 . . . . . . . . .  = - - -  
l o - - 3  o I - -  - -  a ( t 3 ) a - ' ( t 3 ) 3 - -  i(13)~.-z(iJ) 

Figure 27: R e v e r s i n g  t h e  d i r e c t i o n :  t w o  e x a m p l e s  

If "P(F) is the standard spine of a manifold we call this manifold A4(F). 
We will discuss in the rest of this section the conditions under which two s-graphs 

define homeomorphic manifolds. There will be two intermediate steps corresponding to 
the questions: When do two s-graphs define the same decorated standard polyhedron? 
When do two s-graphs define tile same standard polyhedron? The final result will be 
a set of moves with which one obtains from a given s-graph all and only the s-graphs 
defining the same manifold. In the next section we will deal with the case of oriented 
manifolds. 

First of all we look at s-graphs up to homeomorphisms of the plane isotopic to the 
identity, without comments. 

P r o p o s i t i o n  2.4. Given two s-graphs rl  and F2 there ezists a decoration-preserving 
homeomorphism of 29(F~) onto D(F2) if and only if F~ and F~ are obtained from each 
other by a finite sequence of the following moves: 

a. The "Reidemeister-type" moves RI, RII, Rim R~I! and R~'ix shown in Figg. 1 
and ~. (We refer to a combination of them and their inverses as an R-move.) 

b. The move U which consists in reversing the direction of an edge and changing its 
coto,,r from ,, to (13)o- ' (13).  

Proof of 2.4. On considering the above construction, we can easily see that R-moves 
exactly recover arbitrariness for tile embedding of a neighbourhood of the singular 
set (for an interpretation of RI as a twist, see Fig. 26). We also had arbitrariness in 
choosing the directions of the singular edges, and we can show that U describes the 
natural way to colour an edge after reversing the direction, which implies the conclusion 
at once. We must distinguish the cases according as the endpoints of the edge are over 
or under. Figure 27 refers to the cases where both the endpoints are over and where 
the first endpoint is over and the second one is under. The other cases are treated 
similarly. 



A finite graphic calculus for 3-manifolds :305 

+ [ - - 1  I 1 1 - -  
I ~ : ~, 2 "  2 2 = 2 . . . . . . . .  
] O  ~ 3 0 3  3 ~ 3 - -  

- - I  3 - -  

] > - -  2 �9 2 . . . . . . . . . .  
i a t  - -  3 oi: 1 - -  

- -  ] ~ 1  3 3 3 ~  
] ) l 2~ 2 ........ 2- 2 ........ 
i o  't 3 o I I ~ 1 ~  

Figure 28: An example of product. This picture shows that whatever geometric interpretation one 
chooses for the subdivision point (top and bottom) the result is the product-move (centre) 

Figure 29: The moves CI and CII 

(13) 
( 

R e m a r k  2.5. The mapping Ga 3 a ~ (13)a- ' (13)  E Ci3 interchanges (12) and (23) 
and leaves the other elements unchanged. 

From now on we will consider s-graphs up to moves R and U, i.e. we will view two 
s-graphs equivalent under them just as two different ways to draw the same object. 
With this convention an s-graph "is" a decorated standard polyhedron. Now, to discuss 
when 79(F1) = 79(F2), we must see what is the effect on the s-graph of a change in the 
decoration of a vertex. This will result in the definition of new moves for s-graphs. 

For the purpose of introducing these moves, we slightly extend the situation, by 
allowing the edges to be subdivided into finitely many subarcs, each with a direction 
and a colour. We introduce a product-move as follows: given two consecutive subarcs 
of an edge, we apply U (if necessary) to have them consecutively directed. Let the first 
suharc be decorated by cr and the second one by r; the effect of the product-move is to 
remove the subdivision point between the arcs, direct the resulting arc in the obvious 
way and give it the colour a t .  To check that  this definition is completely natural see 
the example of Fig. 28. 

The moves we need, named CI and 12ii as they take place in the neighbourhood 
of a crossing, exploit the extension of the class of s-graphs which allows subdivisions. 
~,Ve think of the directions and colours of the edges involved as drawn outside the 
neighbourhood, so we do not deal with them. Both moves consist in adding four 
subdivision points near the vertex, joining these points to the vertex but not in the 
original way and then giving a certain direction and colour to the four arcs thus defined. 
The explicit description is given in Fig. 29; we will always tacitly assume that  they 
nmst be followed by product-moves so that subdivisions disappear. 

Remark that the move CII is unambiguosly defined at every vertex, while there are 
two ways to apply Cz: in fact before the move the figure is symmetric under rotation 
through angle zr, and after the move it is not. One could specify how to apply the 
move by stating which branch must be over both before and after the move. 
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I -J i  / 
---~.~..... 1 _._--~/-7-x____/~_~ 

3~2 I 

I(J23)(~23{J23) 
(123) (1231 

f (123) 

Figure 30: Explanation of the move CI 

I 

I - l i t  

{13) 

- - 2 2 1 ~  I (IJ) (13) 

Figure 31: Explanation of the move CII 

P r o p o s i t i o n  2.6. l fFl ,  F~ are s-graphs (regarded up to isotopy and moves R and U), 
'P(F1) and 'P(F2) are homeomorphic if artd only if FI and F2 are obtained from each 
other by a finite sequence of moves Cx aTLd Cn. 

Proof of 2.6. By Proposition 2.4 we must discuss how the decoration of a standard 
polyhedron can be changed. Figures 30 and 31 show that both the moves describe a 
modification of the embedding of a neighbourhood of a vertex, i.e. a modification of 
the decoration at the vertex. 

For the conclusion of tile proof it is sufficient to check that the two changes of 
decoration induced by CI and CIx generate all 12 possible decorations at a vertex. To 
see this it is sufficient to describe the situation in a more intrinsic way. We recall that 
an abstract decoration is the choice of a germ of disc and an orientation for the union 
of the four discs which are adjacent to it. Then the cffect of CI! on the decoration is 
of course just to reverse the orientation. 

For Ch fix a decoration (D12,w) and denote by eh. . . ,e4 the germs of edges so 
that (el, ea, e2, e4) are positively arranged with respect to w, and Dij is the germ of 
disc containing el O ej (see Fig. 32). Then ttle effect of the two ways to apply CI is 
to replace (D12,w) by (D~a,w') or (D13,w"), where w' extends WIDe4 and w" extends 

WtD23. It. is therefore evident that we can obtain all 12 decorations. [ ~  

R e m a r k  2.7. By repeated composition of moves Cx and CIt at every vertex exactly 
12 different situation can be produced. This is obvious if one thinks of the intrinsic 
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~ / 
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Figure 32: Lettering conventions used to describe the effect of CI 

~ . ~  (123) 

r ; --_ 

I 1 
Figure 33: The move MP 

situation of decorated standard polyhedra (cf. the proof of 2.6), but it is also not hard 
to prove it directly. 

P ropos i t ion  2.8. The move MP defined in Fig. 33 translates for s-graphs the Matveev- 
Pieryallini move for an edge which has both the endpoints over and colour id. Moreover 
up to moves R, CI and CII every edge becomes like this. 

Proof of 2.8. The first assertion is proved by Figg. 34 and 35. The second assertion is 
easily deduced using Remark 2.7. 

As a consequence of Theorems 1.1 and 1.2, Propositions 2.4, 2.6 and 2.8 we have: 

T h e o r e m  2.9. For every compact 3-manifold M with non-empty boundary there ezists 
an s-graph F with M = .hi(F). lfF1 and F2 are s-graphs with at least two vertices such 
that A4(F1) and AJ(P2) are deft,ted (see Proposition e.3), then .M(F~) and A4(F~) are 
homeomorphic if and only if F1 and F2 are obtained from each other by a sequence of 
moves R, U, CI, CII, MP al, d inverses of them. 

3 A graphic  calculus  for or iented  3 -mani fo lds  

In this section we specialize the construction of the previous one for oriented standard 
polyhedra, i.e. for standard spines of oriented manifolds. We first characterize the 
s-graphs which correspond to orientable manifolds. 

b." ...."..~ _..." .J V "  l... "%..'..~ L/  

Figure 34: A representation of the Matveev-Piergallini move on polyhedra 
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. ) ' "  . . . . . . . . . . . . .  . "  .":  . . . . . . . . . . .  ; 2  
~', 3 

Figure 35: This shows the effect of the Matveev-Piergallini move on a neighbourhood of the singular 
part. The planar representation is immediately translated to the move MP 

P r o p o s i t i o n  3.1. Let F be an s-graph. Then T'(F) is orientable if and only ff the 
product of the signs of colours along any simple loop is +1.  

Proof of 3.1. If one looks at the definition of the  T-bundle  over a circle which is a union 
of edges, one easily sees tha t  each edge with negative sign induces a t ransposi t ion in 
the  fibres, while an edge with positive sign induces a rotat ion.  Therefore, the  bundle  
has  two components  if and only if the  product  of the signs is - 1 ,  and the  conclusion 
follows from Theorem 1.5(B). 

We have s ta ted this result as it could be useful when dealing with manifolds which 
are not a priori orientable. However we will show now tha t  oriented manifolds admit  a 
s impler  representat ion.  As in the  previous section we s tar t  with an intrinsic definition 
of decorat ion and then we derive the g raph  representat ion.  

Let (D,w) be a decoration for a s t andard  polyhedron P at a vertex v and denote 
as usual by 7r the  union of the germs of discs adjacent  to D. Let e be an edge of D, 
and  direct e towards v. Let D' be the  germ of disc on 7r on the right of e and D" the  
germ of disc on r on the left of e ( the notions of "right" and "left" involve w and the 
direct ion of e). Now let P be oriented: we say the  decoration is compatible  with the 
or ienta t ion  of P at  v if the direction of ex and the cyclic order D ~ D' ~ D" ---* D 
define the  positive or ientat ion of P along el. It is not hard  to check t ha t  this is a 
na tu ra l  choice. 

R e m a r k  3.2.  Given an oriented s tandard  polyhedron exactly 6 decorations at each 
ver tex are compat ible  with the orientat ion.  

P r o p o s i t i o n  3.3.  Let [" be an s-graph and let "D(F) be the decorated standard poly- 
hedron defined in Proposition 2.,~. There exists an orientation compatible with the 
decoration at each vertex if an ouly if  all the colours in F have sign +1. Such an 
orientation, if  any, is unique. 

Proof of 3.3. We recall tha t  F defines an embedding  in R 3 of a neighbourhood of each 
vertex,  and the decoration is defined using these embeddings.  Define the  or ientat ion 
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I I ~___.__,.'K . . . .  i 

I I _ . .  

Figure 36: The reflection in the horizontal plane replaces a eolour by its inverse 

near every vertex so that compatibility is respected. Consider an edge: it is not hard 
to see that  the orientations near its endpoints match along the edge if and only if the 
colour the edge bears has sign +1, and the conclusion easily follows. [ - ~  

Recalling Remark 2.5 we have that for s-graphs as described in Proposition 3.3 the 
direction of the edges is actually dispensable, and the colours belong to the subgroup 
of Go generated by (1 2 3), which is isomorphic to Z3. Hence if we define an o-graph 
as an s-graph where are edges are not directed and the colours are taken in Z3 rather 
than in G3 (see the introduction for a self-contained definition) using Proposition 2.4 
we have: 

P r o p o s i t i o n  3.4. Decorated oriented standard polghedra with decoration compatible 
with the orientation correspond bijectivelg to o-graphs up to isotopy a~zd moves R. 

As for s-graphs, from now on we consider o-graphs up to isotopy and moves R. 
Given an o-graph we denote by ;oh(F) the oriented standard polyhedron defined by I' 
in which the decoration is forgotten. 

P r o p o s i t i o n  3.5. Given o-graphs F1 and F~ there exists an orientation-preserving 
homeomorphism of PA(F~) onto 7~a(F2) if and only if Fx and F~ are obtained from 
each other by a finite sequence of applications of the move C defined in Fig. 3. 

Proof of 3.5. Tile move C is just the translation of CI in the language of o-graphs. As 
in the proof of Proposition 2.6 we only need to check that C generates the changes of 
decoration compatible with the orientation. This can be left to the reader. 13.~1 

R e m a r k  3.6. There are two ways to apply the move C at every vertex, and exactly 6 
different situations can be produced by repeated applications. 

P r o p o s i t i o n  3.7. If  F is an o-graph and P~ = "P^(F) then P-~  = ~'^(F') ,  where 
F' is obtained from F by reversing the under-over specification at marked vertices and 
replacing each colour by its inverse in Z3. 

Proof of 3.7. F defines an orientation-preserving embedding in R 3 of a neighbourhood 
of the singular part of P. We prove that replacing F by F' corresponds to composing 
the embedding with the reflection of IR 3 in the horizontal plane. Of course the effect 
of the reflection on a vertex is to exchange under-arc and over-arc, while we show___~ 
an example in Fig. 36 that the effect on colours is inversion in Z3. 

Now, we have the move MP which is readily translated in the language of o-graphs, 
as shown in Fig. 4 of the introduction. We denote it by MP again. 
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Propos i t ion  3.8. The move MP translates for o-graphs the oriented Matveev-Piergal- 
lini move for an edge which has both the endpoints over and colour O. Moreover up to 
moves R and C every edge becomes like this. 

Proof of 3.8. Recalling Proposition 2.8 the first assertion is obvious, and the second 
one is readily checked using Remark 3.6. 

We have eventually established the main result stated in the introduction. In fact 
Theorem 0.1 summarizes Theorems 1.1 and 1.2 and Propositions 3.4, 3.5, 3.7 and 3.8. 
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