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A significant part of Thurston’s fundamental theory of measured laminations in 

surfaces is of a purely topological nature, not involving hyperbolic geometry. The 

aim of this paper is to derive much of this topological theory topologically, in as 

simple and direct a way as possible. Few if any of the results here are new, though 

some of the proofs may be. While the topological approach in dimension two has 

the virtue of economy, in one higher dimension it becomes a necessity, as the 

measured lamination space of a 3-manifold is, it seems, exclusively a topological 

object; see [6]. 

Here is a quick outline of the contents of the paper. Starting with the classical 

notion of curve systems on a compact surface M, we construct, via standard train 

tracks associated to a decomposition of M into pairs of pants, a polyhedron ML(M) 

whose “integer” points are exactly the isotopy classes of curve systems in M. (In 

the language of Dehn’s remarkably foresightful 1938 paper [4], these integer points 

are the “arithmetic field” of M.) The global structure of ML(M), as well as that of 

its projectivization PL(M), is then determined by a simple inductive argument. 

Next, the noninteger points of ML(M) are interpreted as measured laminations in 

M, and the piecewise linear structure of ML(M) is shown to be independent of the 

choice of standard tracks by studying the equivalent “functional” topology on 

ML(M) obtained by viewing measured laminations as length functionals on closed 

curves in M. This yields Thurston’s original definition of PL( M) as the completion 

of the projective curve systems in M. As an application, we deduce a weak form of 

Thurston’s structure theorem for diffeomorphisms of M in case aM # 0. Finally, 

we derive the basic relation between measured laminations in M and actions of 

v,M on [W-trees (by isometries): A measured lamination has a dual [W-tree with 
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rr,M-action, and a r,M-action on an R-tree can be pulled back (nonuniquely) to 

a measured lamination in M. 

The exposition here has inevitably a certain amount in common with earlier 

accounts, such as [12], [5], [7], [2] and [lo]. The reader should consult these for 

alternative viewpoints, and especially for the important application of PL(M) to 

compactifying the Teichmiiller space of M and for the full strength of Thurston’s 

structure theorem for diffeomorphisms of M. 

1. Curve systems 

The complex of curve systems 

Let M be a compact surface, possibly with boundary. By a curve system in M 
we mean a finite collection of disjointly embedded curves which are either: 

- circles not bounding disks in M and not isotopic to components of dM, or 

- arcs with endpoints of dM, not isotopic (rel endpoints) to arcs in dM. 

Let %3’(M) be the set of isotopy classes of curve systems in M. Identifying a 

nonempty curve system with any positive number of parallel copies of itself yields 

the set Y.Y(M) of projective isotopy classes of curve systems. 

Every curve system can be expressed uniquely in the form n,C,+ . . . + n,Ck where 

the Ci’s are connected, nonisotopic curve systems and niC, denotes ni parallel copies 

of C,, ni > 0. We can form a simplicial complex PS( M) whose k-simplices correspond 

bijectively with isotopy classes of such (k+ I)-tuples [C,,, . . . , C,]. The various 

faces of such a k-simplex are obtained by deleting C,‘s. 99’(M) is then identified 

with the set of points of PS( M) having rational, or equivalently integral, barycentric 

(projective) coordinates, namely, nOCO+. * . + n,Ck has coordinates n,[ C,] +. . . + 

nk[ C,]. For example, 2C0+3C, is the point on the edge [C,, C,] three-fifths of the 

way from C, to C,. 

Example 1. M is a pair of pants, i.e., S* minus three disks. Curve systems can 

contain only arcs in this case, and there are only six isotopy classes of such arcs: 

one joining each pair of boundary circles, and one joining each boundary circle to 

itself and separating the other two boundary circles. Thus PS(M) has six vertices, 

and these span four triangles as in Fig. 1, making PS(M) itself a 2-simplex. (We 

think of S* here as the one-point compactification of the plane of the page, with 

the three boundary circles of M shown.) 

Example 2. M is a once-punctured torus. Here circles and arcs are classified up to 

isotopy by their homology classes in H,(M, dM), which can be thought of more 

geometrically as slopes in Q u (00). One can work out that PS(M) has the form 

shown in Fig. 2(a). The edges [C,, C,] coming in radially from the rational points 

[C,,] of the perimeter of the square arise from a circle C, c M and an arc C, c M 

of the same slope. The rest of the interior of the square is filled up with 2-simplices 
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Fig. 1. 

[C,,, C,, C,], where CO, C,, C2 are arcs of three different slopes. Thus PS(M) 

consists of the whole square minus the irrational points of its boundary. 

Example 3. M is the closed nonorientable surface of Euler characteristic -1. View 

M as a once-punctured torus with antipodal boundary points identified to form a 

l-sided circle C c M. This identification can also be applied unambiguously (up to 

isotopy) to curve systems on the punctured torus, giving rise to a copy of Fig. 2(a) 

in PS( M). The rest of PS( M) consists of edges joining all the rational boundary 

points in Fig. 2(a) to the vertex [Cl, making PS( M) a dense subset of a pyramid 

(topologically, a 2-sphere). The circle C plays a distinguished role here: it is, up 

to isotopy, the only circle in M whose complement is orientable. 

Example 4. M is a once-punctured Klein bottle. this is similar to Example 2, but 

in some ways simpler. The complex PS( M) is as shown in Fig. 2(b), and completely 

fills up a square. 

Example 5. M is the twice-punctured projective plane. Viewing this as a square 

with corners deleted (the punctures) and antipodal boundary points identified, one 

has the picture in Fig. 3. 

Usually PS(M) is noncompact, being an infinite simplicial complex. But as in 

Examples 2, 3, and 4, PS(M) turns out to have a natural compactification PL(M) 

which is a finite polyhedron. The rest of this chapter will be aimed at studying this 

PL( M) from the viewpoint of curve systems. 

Train tracks 

A train truck TC M is a closed subset locally diffeomorphic to the model in Fig. 

4(a). That is, 7 is a compact submanifold meeting dM transversely, except at finitely 

many branching points in the interior of M where two arcs of T merge into one, 

all three arcs having a common tangent direction. We will usually assume train 

tracks are good, having none of the complementary regions listed in Fig. 5. 
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O/l 

(b) -1 

Fig. 2. 

A measure on a track r is an assignment of weights a, 20 to the components of 

the non-branchpoint locus of r, satisfying the branch equation (Y~ = Lyj + (Yk at each 

branch point as in Fig. 4(a). Such measures ((Y,, . . , a,) form a cone C(T) in R”, 

the intersection of the hyperplanes rri = LYE + (Ye with the quadrant [0, 00)“. A measure 

a! = (a,,. . . ) a,) E C(T) with each (Y, an integer determines a curve system S, c M 

by taking (Y~ parallel copies of the ith nonsingular arc of r and matching these arcs 
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\ 0 

Fig. 3. 

(a) 
Fig. 4. 

(b) 

together at branch points as in Fig. 4(b), using the branch equations LY~ = ‘Y~ + LYE. 

We say S, is carried by T. 

Lemma 1.1. If T is good and S, is carried by 7, then S, E %Y( M). 

Proof. Let N(T) be a fibered neighborhood of 7 as in Fig. 4(b), with fibers transverse 

to S,. Extend the tangent linefield of S, to a linefield on N(T) transverse to fibers 

and tangent to aIV( T) - aM. This linefield can be extended to a linefield on M having 

isolated singularities, and transverse to aM. For such linefields there is an index 

theory similar to the well-known theory for vector fields. Each isolated singularity 

is assigned an index, measuring how many times the linefield rotates as one goes 

around small circles enclosing the singularity; here, 180” counts as one rotation 

since the lines are not oriented. So for vector fields, the linefield index is twice the 

vectorfield index. For example, if one takes the foliation of the complex plane by 
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the lines with Im(z) constant and applies the transformation ZHZ*‘~ (or log(z) for 

k = 0), one obtains a foliation whose tangent linefield has index 2 - k at the singularity 

at the origin. 

The key fact about linefield index is that the sum of the indices at all the 

singularities is a topological invariant, namely, twice the Euler characteristic. It is 

not hard to check that the excluded regions in Fig. 5 are exactly those having 

nonnegative total index. In particular, we note that x(M) must be negative if M 

contains a nonempty good track. 

Fig. 5. 

Returning now to the linefield we constructed on M, suppose S, contains a circle 

bounding a disk in M. Then the total index in this disk is positive. The singularities 

of the linefield in this disk, however, have a negative sum since they determine the 

indices of the complementary regions of r in this disk, So S, can have no such 

circle component. Similarly, S, contains no circle or arc parallel to aM. ci 

Another useful consequence of linefield index theory is the fact that a subtrack 

of a good track is also good. 

Standard tracks 

We wish to construct a finite set of “standard” tracks which carry all curve systems 

on M. These standard tracks are not canonically defined, but depend on choosing 

disjoint circles S, , . . . , S, which split M into pairs of pants P, , . . . , P,, (n = -x(M) > 

0). Some S’s will be one-sided if M is nonorientable; let 5, denote the boundary 

of a Mobius band neighborhood of a one-sided S,. 

Consider an arbitrary curve system SE %Y’( M). Isotope S to minimize the number 

of intersection points with the splitting circles S,. Then S is the disjoint union of 

systems S’ and S”, where S’ consists of circles parallel to the S’s, and S” meets 

each Pi in a curve system in %‘U(Pj). Each system S”n p, is carried by one of the 

four basic tracks in Fig. 6 (compare Example 1). To reassemble S” across a two-sided 

Si, we must allow for possible twisting along Si. A track which achieves this is 

obtained by inserting one of the two “connectors ” in Fig. 7(a), which contain S, as 

a subset. For one-sided S, no nontrivial twisting along S, is possible, so the connector 

in Fig. 7(b) suffices to carry S” if S” meets S, in this case. 

In this way we form 2’4” tracks in M, t being the number of two-sided S,‘s. All 

of these tracks, together with their various subtracks, we call standard tracks. (Note 

that the four basic tracks in Fig. 6 have a total of 15 subtracks, one for each edge 

and vertex of Fig. 1.) These standard tracks suffice to carry S” and also the 
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a 

b) 

b) 

Fig. 6. 

Fig. 7. 

(b) 

components of S’ parallel to two-sided S’s, To carry circles of S’ parallel to one-sided 

S,‘s, we enlarge our definition of standard to include tracks TV S, where r is a 

standard track disoint from the one-sided splitting circle S;. Thus we obtain finitely 

many standard tracks carrying all curve systems on M. 

Observe that the maximal standard tracks have complementary regions all of 

linefield index -1, so these tracks are good. By an earlier remark, this implies that 

all standard tracks are good. 

The polyhedra ML(M) and PL( M) 

Each standard track r has its cone C(T) of measures, whose faces are identifiable 

with the cones C(T’) associated to the subtracks 7’~ 7. Making all such iden- 

tifications, there results a polyhedron ML(M). Projectivizing this construction by 

deleting 0 E ML(M) (corresponding to the empty curve system) and factoring out 
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by scalar multiplication, one obtains a finite polyhedron PL(M), with a decomposi- 

tion into convex linear cells, the projectivized cones C(T). Note that the simplices 

of PS(M) embed linearly into cells of PL(M), namely, [C,, . . , C,] embeds in the 

projectivization of C(T) for T a standard track carrying C,u * . . u C,. 

For example, if M is a pair of pants then ML(M) can be identified with the first 

octant of R3, with coordinates (a, b, c) in Fig. 6, and PL( M) = PS( M), the subdivided 

2-simplex in Fig. 1. 

Let ML(M)= denote the points of ML(M) having integer coordinates. 

Proposition 1.2. The map ML(M)= + %‘Y( M) is a bijection. 

It follows that the rational (equivalently, integral) points of PL(M) correspond 

bijectively with 9Y( M). These rational points are dense in PL( M) since the branch 

equations which define the cones C(7) have integer coefficients, implying that 

rational points are dense in C(T). 

Proof. It remains to show injectivity. We will do this using intersection numbers. If 

y is any loop in M, not necessarily embedded, let i, : %Y”( M) + [0, 00) be the function 

which assigns to a curve system S the minimum number of intersection points of 

S with loops homotopic to y. 

Lemma 1.3. For y transverse to S, i,(S) = IS n yI ifSno arc of y - S can be homotoped 

rel its endpoints into S. 

Proof. Suppose there is a homotopy F: S’ x Z + M of y = F 1 S’ x (0) which decreases 

the number of intersection points with S. We may assume F is transverse to S, so 

F-‘(S) is a one-dimensional submanifold of S’ x Z containing, by hypothesis, at 

least one arc with both endpoints on S’ x (0). An innermost such arc cuts off from 

S’ x Z a half-disk, and restricting F to this half-disk gives a homotopy of an arc of 

y-S rel endpoints into S. 0 

From this lemma it follows incidentally that if y is an embedded loop, then i,,(S) 

is also the minimum number of intersection points of S with embedded loops 

isotopic to y. 

Injectivity in Proposition 1.2 follows immediately from the following lemma. 

Lemma 1.4. There existjinitely many embedded loops ym in M such that any two curve 

systems corresponding to distinct points of ML( M)z are distinguished by their intersec- 

tion numbers with one of the y,,,‘s. 

Proof. For a start, we take for ym’s all the boundary curves of the pairs of pants 

Pj, i.e., the components of dM, the two-sided S’s, and the 5,‘s associated to one-sided 

S,‘s. Intersection numbers with these y,,,‘s are given by the three boundary weights 

a, b, c of each of the basic tracks in Fig. 6, by Lemma 1.3. 
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Next consider a two-sided S,. We shall choose two more curves y,,, such that 

intersection numbers with these two curves detect the “twist parameters” e, and e2 

in Fig. 7(a). There are two subcases, according to whether the two “sides” of S, 

belong to the same or different 4’s. One of the two choices for y,,, is shown in Fig. 

8(a). We are interested in how the twist parameter e, affects the intersection number 

with this -ym. We note that the intersection number of a curve system S carried by 

a standard track with ym can be computed using only the subsurface MO c M shown 

in Fig. 8(a), namely it is the intersection number of S n MO with -y,,, in MO (Exercise). 

0 0 0 0 0 (2) 

(b) 

Fig. 8 

To see the effect of varying e, on this intersection number, it is convenient to lift 

to a covering space R’ - P* of MO. In case MO is the punctured torus, this cover is 

the universal cover of the torus with the preimages of the puncture deleted. If M, 

is a 4-punctured sphere, there is the well-known 2-sheeted branched covering of a 

sphere by a torus, branched at the four punctures, and R* - h2 is again the universal 

cover of the torus with preimages of the four punctures deleted; the group of deck 

transformations in this case is generated by 180” rotations about the points of Z2. 

We choose coordinates in R’ - H’ so that S, lifts to a slope CO line and ym lifts to a 

slope 0 line. For the punctured torus case, curve systems can be isotoped to consist 

of parallel copies of: 

(1) arcs which lift to lines of rational slope passing through points of Z’, and 

(2) circles which lift to lines of rational slope disjoint from B2. 

For the 4-punctured sphere case, there are also: 

(3) arcs whose lifts are obtained from the lines in (1) by pushing off alternate 

points in 2’; see Fig. 8(b), illustrating the slope 0 case. 

Looking in this R*-Z’ cover, we can see that increasing e, increases the slope 

of the lifted curves, while increasing e2 decreases slopes. Intersection number with 

ym therefore increases with e,. So y,,, detects the amounts of twisting, with at most 

a two-fold ambiguity, the direction of twisting. To remedy this small deficiency, 
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Fig. 9 

Fig. 10. 

take, in addition to y,,,, the loop -yk obtained from yrn by Dehn twist along Si. See 

Fig. 9 for sketches of the graphs of these intersection numbers as functions of e,. 

(One graph is a translate of the other.) 

Finally, consider a one-sided S,. Here we are not concerned with twisting along 

Si, but with detecting the presence of parallel copies of S, in curve systems which 

are disjoint from 2;. This can be done by intersection number with one loop yrn as 

shown in Fig. 10. 0 

The Global Structure of ML(M) and PL( M) 

Let b be the number of boundary components of M and let x =x(M). 

Proposition 1.5. ML(M) is piecewise linearly homeomorphic to R-3X~h x [0, OO)~, pre- 

serving scalar multiplication, with projection to the [0, 00) factors given by the weights 

at the b boundary circles of M. Consequently PL( M) ispiecewise linearly homeomorphic 

to the join of a sphere SPJXPhP’ with a simplex A’-‘. 

Proof. This will be by induction on k, the number of circles Si in the splitting of 

M into pairs of pants. We have already observed that the result holds when M is 

a pair of pants. This yields the initial step of the induction, k = 0, since ML for a 

disjoint union of two surfaces can clearly be identified with the product of the two 

ML’s. 

For the induction step, consider first the case of splitting M along a two-sided 

S, to form the surface M’. Referring to Fig. 8(a), we see that in passing from M’ 

to M, two boundary weights d, and d, are set equal, and new weights e, and e2 
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d 

e,=e, 

Fig. 11. 

measuring the twisting around Si are introduced. Thus the coordinates (d, , d2) E 

[0, ~0)~ are replaced by coordinates (d, e,) or (d, e2). These two new quadrants 

[0, ~0)~ have their boundaries identified as in Fig. 11 to form, piecewise linearly, a 

full plane lR*, since if either d = 0 or e, = e, = 0, the two alternative subtracks in Fig. 

7(a) coincide. Thus in R-‘X-h x [0, CO)~, a subproduct [0, a)* in the second factor 

shifts to an R2 in the first factor, completing the induction step in this case. 

If S, is one-sided, we form A4 from M’ by adjoining the Mobius band in Fig. 

7(b). The boundary weight d E [0, ~0) for M’ is carried along to the new track for 

M, becoming &I around the new branch. In addition, if d = 0 we are allowed to 

enlarge our track by adding a copy of the loop S,, with arbitrary weight ez0. If 

both d and e are zero we have a common subtrack, so the new factor [0, CO) = {e 3 0} 

S, 5, 

AL T 

a 

dAr 

b ------NC b 

r, ‘t; 

C 

Fig. 12. 
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intersects the old [0, ~0) = {d a 0) only in the origin, and the union of these two 

[0, c0)‘s is an R. So in R~3X~b x [0, oo)b, a factor [0, co) shifts to an R factor when 

we pass from M’ to M. This finishes the induction step. 0 

As an example, consider again the once-punctured torus, which is split into one 

pair of pants P, by a circle S,. A priori, the four basic tracks on P, and the two 

connectors near S, would give eight tracks on the punctured torus. But since we 

must have equal weights at the two boundary circles of P, which are identified to 

form S,, only two of the basic tracks on P, are really needed. Thus the four standard 

tracks in Fig. 12 cover ML(M). Each of these standard tracks has an octant of R3 

for its cone of weights, as indicated. Projectively, this gives four 2-simplices which 

fit together piecewise linearly to form a square, as shown. This is PL(M) = S’ * A’. 

Figure 2 can be superimposed on this square to show how PS( M) embeds in PL( M). 

2. Measured laminations 

The idea here is to provide an interpretation for the nonintegral points of ML(M), 

and likewise for the irrational points of PL( M), as topological objects in M. At the 

same time we shall eliminate the dependence of these spaces on a choice of 

decomposition of M into pairs of pants, which was part of their original definition. 

Construction of measured laminations 

Given a track r and a positive measure (Y E C(r) (i.e., with all weights (Y~ > 0), 

one can construct a foliation N, of the fibered neighborhood N(r), as follows. 

Decompose N(T) as a union of rectangles lying over the nonsingular arcs of T, the 

fibers of N(T) giving the vertical direction in these rectangles. Imagine the ith 

rectangle as a strip of paper of height (Y;. The branch equations LY~ = a; + CQ allow 

these paper rectangles to be matched together at their vertical ends to form a copy 

of n(7), with the foliation N, determined by the horizontal lines in the rectangles. 

N, has singularities at the cusp points of aN(r). To eliminate these singularities, 

we slit N, open along its finitely many singular leaves, starting at the cusps. In 

some cases, for example if all the weights (Y, are rational, the singular leaves of N, 

are compact, and the slitting open process is finite, yielding a thickening L, of a 

curve system on M, with the product foliation (or twisted product, in the case of 

Mobius band components of L,). In general, though, there may be noncompact 

singular leaves of N,, and some care must be taken to damp down the magnitude 

of the slitting fast enough so that the process converges (details left to the reader). 

The result of this slitting is the measured lamination L,, which lies in N(r) transverse 

to the fibers. 

An alternative viewpoint which avoids the subtleties of slitting along noncompact 

leaves is to consider equivalence classes of N,‘s under the equivalence relation 
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generated by isotopy and by slitting only along compact arcs in leaves, starting at 

cusps as before. 

Let Ju.Y(A4) denote the set of equivalence classes of measured N,‘s carried by 

good tracks in M, and let 9.9(M) be the projectivization of AZ(M), taking 

non-empty N,‘s and factoring out by scalar multiplication of (Y. 

Remarks. (1) It is not hard to check that two N,‘s slit open to isotopic La’s if and 

only if they are equivalent. So elements of AZ(M) can be viewed as isotopy classes 

of measured laminations. 

(2) Instead of slitting N, open to a lamination we could collapse A4 - N, onto 

a suitable spine, so as to form a foliation F, of M having isolated singularities with 

negative index. Here too to recover AZ’(M) one needs an equivalence relation, 

generated by collapsing leaves joining singularities. This was Thurston’s original 

approach. 

(3) Slitting along compact arcs corresponds to an analogous “splitting” operation 

on T. So elements of AZ( M) can also be identified with suitable equivalence classes 

of measured tracks T; see [7]. 

In each equivalence class in A&‘(M) there is a unique (up to isotopy) representa- 

tive NL obtained by slitting completely all the compact singular leaves, since slitting 

a compact subarc of a noncompact singular leaf can be realized by isotopy. Certain 

components of NL are foliated by parallel compact leaves, forming a thickening of 

some curve system in M. We claim: In the other components of Nb, there are no 

compact leaves, and the noncompact singular leaves (along which one would slit 

to form L,) are dense. To see this, consider a short vertical arc in N:, with one 

endpoint on a fixed nonsingular leaf. This arc can be translated horizontally along 

leaves (the idea of “holonomy”) to any prescribed distance without encountering 

cusps of N:, if the vertical segment is short enough. If the given leaf is compact, a 

suitably short vertical arc therefore eventually returns to its initial position exactly, 

and the leaf has a neighborhood of compact leaves. So compact leaves in NL are 

open; they are also obviously closed, and so form certain components of N&. If 

translation of a fixed vertical arc could be continued indefinitely along a noncompact 

leaf without being obstructed by a cusp of Nh, it would return infinitely often to 

the same fiber of Nk with a vertical translation, and so give this fiber infinite measure, 

which is impossible. Thus translation of every vertical segment along a non-compact 

leaf must eventually meet a cusp, making the singular leaves dense in the noncom- 

pact-leaf components of Nb. 

Two consequences of this are: 
_ The fully slit open lamination L, meets fibers of N(T) only in intervals and 

Cantor sets. 

- Only the compact-leaf components of NL can meet dM, since obviously a noncom- 

pact singular leaf along which one would slit to form L, cannot meet dM, the only 

endpoint of this leaf being a cusp point in the interior of M. 
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Length functions 

Given N, as above and a loop y in M, consider loops homotopic to y which 

meet N, in finitely many arcs which are either vertical (in fibers of N(r)) or 

horizontal (in leaves of N,); such loops we call PVH-piecewise vertical or horizon- 

tal. PVH loops have a length, the total length of all their vertical segments. Define 

JY( N,) to be the infimum of the lengths of all PVH loops homotopic to y. (We will 

show that this infimum is always realized, assuming r is good.) The notion of 

“vertical” depends on the vertical fiber structure of N,, which is not really part of 

the data of N,. To avoid this, we could instead use PTH paths: piecewise either 

transverse to N, or horizontal. Length can be defined just as well for PTH paths, 

and leads to the same e,,(N,). 

Note that e,,( N,) is linear with respect to scalar multiplication of LY. Also, l,,( N,,) 

is clearly constant on equivalence classes in .42’(M), and so defines a map 

lY : A,Ce( M) + [0, CO). If the measure (Y is integral, it is easy to see that e,( N,) = i,(S,) 

where S, is the curve system associated to (Y E C(T). So /, extends i, from KY(M) 

to A-Fe(M). 

If (Y has some coordinates a, = 0, this corresponds to passing to a subtrack of r 

on which Q becomes positive, in other words to a face of C(r). So we can regard 

/, as a function C(7) + [0,00). 

Proposition 2.1. For r a good track and y a loop in M, the function ly : C(T) + [0, co) 

is piecewise linear. 

Remark. If T is allowed to have complementary digons (disks with two cusps), /, 

may not be continuous at aC( r). For example, for the track in Fig. 13, if the weights 

b and c are equal and a > 0, then the indicated curve y can be homotoped (rel its 

boundary) so that in the part of the surface shown, its length is zero. On the other 

hand when a = 0 this cannot be done, and one suddenly has a contribution of b + c 

to e,. 

Proof of Proposition 2.1. We begin by putting y into a minimal position with respect 

to 7. We consider y’s which are divided into finitely many smoothly immersed 

segments which lie either inside 7, or outside Q- with endpoints on 7. For example, 

Fig. 13 
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if y is transverse to r, the intersection points with T determine a segmentation of 

y. For a segmented y, any backtracking along T can easily be eliminated (by 

homotopy of y) without adding new segments, so we may assume that at the 

endpoints of its segments, y either leaves or enters T, or y stays in T but reverses 

direction and switches branches at a cusp of T. Possibly y is a single segment 

consisting of a smoothly immersed circle in T or M-T (a “segment” without 

endpoints). 

We choose y within its homotopy class to have the minimum number of segments 

outside T, and among y’s with this number of segments outside T, the minimum 

number of segments inside 7. 

The track T is obtained from N, by collapsing fibers of N,,. Let y, be a PVH 

loop which projects to y under this collapse (and hence is homotopic to y). Keeping 

y, PVH, we can by a finite number of vertical deformations pull it taut in N,, so 

that it has no configuration as in Fig. 14 which can be shortened by pushing vertically 

a horizontal piece of y, . 

ttttttt 

Fig. 14. 

The claim is that in this taut position, y, achieves the minimum length within its 

homotopy class. If not, there is a shorter PVH loop y’ homotopic to y,. We may 

assume the measure (Y is rational and positive, since both y’ and the taut y, can be 

chosen to vary continuously (by vertical deformation) with small perturbations of 

(Y. Resealing, we may then assume (Y is integral. 

Let A be the union of the fibered rectangles in M such that collapsing the fibers 

of A to points converts the foliated submanifold L, to N,. When we reverse this 

collapsing process, y, can be “expanded” to a loop y2 by inserting certain fibers 

of A. We may assume the vertical parts of yr in L, are complete fibers. The length 

of y2 is the number of intersections, counted with multiplicity, of y2 with C, the 

“core” leaves of L,, of which L, is a thickening. 

Since yr is not shortest in its homotopy class, it intersects C more often than 

necessary. By Lemma 1.3 this implies there is a homotopy of a piece of yZ which 

eliminates two intersections of yZ with C. Thus there is a map f: D*+ M taking 

one arc a+D* of dD* to yr, the remainder of dD* being d_D’ =f-‘(C). Sincef(a+D’) 

meets int( L,) only in two vertical arcs containing its two endpoints, we may push 

the path J(a_D’) vertically away from C to make f(dD’) disjoint from int(L,). 

Then we may assume that f(D*) = M -int(L,); see Fig. 15 for an example. The 

path f(d+D’) must now lie in ~JL, u A, otherwise homotoping it via f to f(d_D’) 

would yield a homotopy of y to a loop with fewer segments outside r. We may 

assume that f(&D’) is a monotone path in its leaf and that f is transverse to dL, 

and to d,A, the vertical part of JA. Circles of f-‘(d,A) in int( D*) can be eliminated 

by redefining f in int( D’). 
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Fig. 15. 

Consider now an arc a of_jP’(aUA) in int(D’). 

(i) Suppose both endpoints of a lie on d-D2 and a is an edgemost such arc in 

D*. If both endpoints of a map to the same endpoint of the component c of d,A 

containing f(a), then when the path j-(&D’) passes through this endpoint of c at 

the two endpoints of a, it does so in opposite directions (by transversality), contra- 

dicting monotonicity off(a_D’) in its leaf. If, on the other hand, the two endpoints 

of a map to different endpoints of c, we may take f to be a homeomorphism of a 

onto c, and f restricted to the disk in D2 cut off by a gives a homotopy in 

M -int(L, u A) of c to an arc in a( M -int(L,)), fixing ac. So c cuts off a disk from 

M -int(L,) which corresponds to a complementary monogon of r-the second 

excluded region in Fig. 5. Thus there can be no arcs a with both endpoints on a_ D2. 

(ii) Suppose that a has both endpoints on 6’+D2 and that a is an edgemost such 

arc in D2. Then the arc of a+ D* cut off by a maps by f either into A (Fig. 16(a)) 

or into the closure of a complementary region of L, u A (Fig. 16(b)). In the former 

case this arc would have to arise from backtracking of y in r, contrary to our choice 

of y. In the latter case, this arc of d+D2 mapping to a(L, u A) must correspond to 

a part of y which cycles around (perhaps more than once) an n-cusped boundary 

component of a complementary region R of M - 7. This cycle is null-homotopic in 

R, via f on the disk in D2 cut off by a, so R is a disk, and n 2 3 since 

In this case y would not be minimal. Hence there can be no arcs a 

endpoints on d,D*. 

(b) 

r is good. 

with both 

Fig. 16. 
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(4 
Fig. 17. 

(b) 

(iii) The remaining arcs a have one endpoint on each of d+D2 and d-D*. These 

arcs divide 0’ into regions mapping either into A or into components of M - 

int(L, u A). An arc of d+D’ in the boundary of the latter type of region in D* must 

map to the leaf of L, containing f(a_D’), for otherwise, as in (ii), the region in D2 

would map to an n-cusped disk component of M --7 and y would again be 

nonminimal, as shown for example in Fig. 17(a). With a suitable choice of the 

“expansion” y2 of y, (eliminating detours as in Fig. 17(b)) we may now assume f 

maps all of a+D* into the leaf containingf(&D’). But this contradicts the tautness 

of y,. The claim that y, minimizes length within its homotopy class is therefore 

proved. 

As mentioned before, a taut y, can clearly be chosen to vary continuously with 

(Y, so f?(N,) is at least a continuous function of a. To show piecewise linearity, 

look at a piece of y, projecting to a segment of y in r. This piece of y, moves 

monotonically through a string of rectangles of IV, formed by the fibers through 

cusp points, as shown in Fig. 18. The heights of these rectangles are given by weights 

(Y,. The net vertical distance between any two horizontal edges in this chain of 

rectangles is a linear function of the a,‘~ with Z coefficients. This can be seen by 

induction on the number of rectangles between the two horizontal edges; in the 

induction step one either adds or subtracts an (Y,, since two adjacent rectangles 

always have a horizontal edge on the same level. 

Where two horizontal edges are at the same height therefore defines a hyperplane 

in C(r) (if it is not all of C(T)). On the complementary components of the union 

of all such hyperplanes, the length of y, is a Z-linear function of cy, since each 

stretch of yr going monotonically (in the weak sense) up or down has length given 

by the vertical distance between two horizontal edges of rectangles. (This holds true 

even in the special case that y is a smoothly immersed circle in T and y, is globally 

Fig. 18. 
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monotone up or down, since the length of y, in this case is the vertical distance 

from a horizontal edge to itself as measured all the way around y, .) q 

We remark that we have proved slightly more than stated in Proposition 2.1, since 

we have shown that where 8, is linear, it has integer coefficients. This will be useful 

in proving Lemma 2.2 below. 

A version of Proposition 2.1 for embedded loops y (which follows from 2.1 and 

Lemma 2.4 below) is sketched in [lo]. 

Intrinsic structure via length functions 

Call a collection of n loops y c M injective if the map %U( M) + [0, CO)” having 

the associated intersection number functions i, as coordinates is injective. Lemma 

1.4 says that injective collections exist. 

Lemma 2.2. For an injective collection of loops y, the map 8: ML(M) + [0, 00)” whose 

coordinates are the associated length functions JT is a piecewise linear homeomorphism 

onto its image. 

Proof. We can subdivide ML(M) into finitely many polyhedral cones on each of 

which e is Z-linear, in particular Q-linear. If 8 were noninjective on one cone, it 

would be noninjective on rational points, by linear algebra. (The kernel of a linear 

transformation with Q coefficients has the same dimension over Q as over R.) 

Clearing denominators, & would then be non-injective on integer points, contrary 

to hypothesis. Similarly, if / took two points in different cones to the same point, 

this would already happen for a pair of integer points. So 4? is injective on all of 

ML(M). Since e is linear on the finitely many cones covering ML(M), it must be 

a piecewise linear homeomorphism onto its image. 0 

Note that the image of e in Lemma 2.2 is independent of the choice of decomposi- 

tion of M into pairs of pants used to define ML(M) originally. Namely, it is the 

closure of the set of rays from the origin passing through /-images of the integer 

points ML(M)Z = %9(M). In other words, /(ML(M)) = 8(.A.Z(M)), since length 

functions !?,, : C( 7) + [0, ~0) are continuous for good tracks 7. 

An immediate consequence is that ML(M) has a well-defined piecewise linear 

structure (over Q), independent of the decomposition of M into pairs of pants. 

Since all the piecewise linear maps involved here preserve scalar multiplication, it 

follows that PL( M) has a well-defined, intrinsic piecewise projective-Q-linear 

structure. 

To get a description of ML(M) completely independent of any choices, we could 

identify it with its image under the embedding /: ML(M) + [0, ~0)~ whose coordin- 

ates are the length function 8,, associated to all the homotopy classes of loops y in 

M. Alternatively, we could take all embedded loops y. (However, the piecewise 

linear structure is perhaps somewhat more obscure in the infinite dimensional space 

[O, a)“.) 
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This yields a description of the space PL(M) in more elementary terms: It is the 

closure of the image of the projectivization of the map i: ‘33’(M) + [0, ~0)~ whose 

coordinates are the intersection number functions i,. 

Normal form for measured laminations 

Let a decomposition of M into pairs of pants be given, defining the polyhedron 

ML(M). 

Proposition 2.3. The map ML(M)+ J&Z?(M) is a bijection, hence 8: .&Z(M)+ 

[0, 03)” is injective. 

Proof. The map ML(M) + .&F( M) is injective since its composition with e is, by 

Lemma 2.2. Surjectivity will use the following lemma. 

Lemma 2.4. Given N, E .kW( M) and a curve system y consisting of circles, then N, 

can be slit and isotoped until each circle of y either is a leaf of N, or meets N, in 

jibers of N(r) whose total length realizes the minimum length in the homotopy class 

of that circle. 

Proof. This involves a variation on the proof of Proposition 2.1 to assure that y 

remains embedded. We consider PVH embedded y’s which are divided into finitely 

many segments which lie either outside N(T), with endpoints on IN, or inside 

N(T), proceeding monotonically (in the weak sense) through fibers, and transverse 

to fibers through cusp points of IN. Define the complexity of such a y to be the 

lexicographically ordered triple (#segments outside N(T), #segments inside N(T), 

#points of intersection with cusp fibers). Choose y of minimal complexity within 

its isotopy class. This implies that y passes monotonically through the rectangles 

of N(T) bounded by the cusp fibers, except for arcs as in Fig. 19(a). 

(4 
Fig. 19. 

(b) 

Now pull y taut, by vertical homotopy. Again this taut y achieves the minimum 

length within its homotopy class. The proof of this is virtually identical with the 

one given before, and will be left from the reader to verify in detail. The one minor 

difference (aside from the fact that we are now minimizing complexity over the 

isotopy class of y, rather than the homotopy class) is that an edgemost arc a with 

both endpoints on a+D’, cutting off a disk from D2 which maps to A, gives rise to 

the backtracking in Fig. 19(a), which is not ruled out. The presence of such arcs a 
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makes little difference to the rest of the argument however, which eventually 

eliminates them anyway. 

Consider now the process of pulling y taut. Slitting as in Fig. 19(b) to eliminate 

nonmonotonicity of y with respect to fibers of N(T) will not affect the process, so 

we may assume y is monotonic. Eliminating configurations as in Fig. 14 may 

introduce self-intersections of 3: but these are of a special kind: they can be removed 

by small perturbations of y. 

Having y in taut position, we first slit N, along its compact singular leaves, which 

introduces some segments of y outside N(T). Achieving the desired conclusion for 

the compact-leaf components of the resulting Nk is very easy, so we need only 

worry about the other components. In these, the singular leaves are dense, as 

observed earlier in this section, so we may slit NL until each vertical piece of y has 

an endpoint on aN&. Then with a little more slitting, the remaining horizontal pieces 

can be eliminated. Finally, y can be perturbed back to an embedding. This is 

homotopic, hence isotopic, to the original y. 0 

Proof of Proposition 2.3 (continued). Take N, satisfying the conclusion of Lemma 

2.4 with y the circles determining the given decomposition of A4 into pairs of pants 

Pj. After further slitting, N, decomposes as the disjoint union of N& and NE where 

N& consists of all circle leaves of N, parallel to circles of y. Choose a track r 

carrying N, which is the disjoint union of tracks r’ and 7” carrying N& and NL, 

where r’ c y and 7” is transverse to y. We may take r to be a splitting of a good 

track carrying the original N,, so r is good, hence also T’ and 7”. 

The essential point is to see now that all leaves of NE n P, are compact. Fixing 

j, we may assume the previous slitting of N, eliminated any compact singular leaves 

of Ni n P,. As observed earlier, all leaves of Ni n P, meeting aPj must then be 

compact, forming certain foliated rectangle components of NE n P,. Let fi, be the 

union of the remaining components of NL n Pi, carried by a subtrack rj of r”n P, 

contained in int(Pj). This rj must be good in P,, since the only possible complemen- 

tary region in Fig. 5 is an annulus with one boundary circle in T, and the other 

boundary circle in dPj, but this would force Nj, and hence NL, to have circle leaves 

parallel to “4, contrary to the definition of NE. If Nj #0, then C(rj) # 0, SO C(r,) 

would contain rational points corresponding to curve systems in Pj disjoint from 

aPj. We conclude that N, = 0, verifying that all leaves of N& n Pj are compact arcs. 

Next we pinch NE (the reverse of the slitting operation), without disturbing N&, 

so that for all j, no complementary region of NL n P, in P, is one of the types in 

Fig. 5. The only bad regions which might occur are half-digons (sixth type in Fig. 

5) and rectangles, since half-disks (third type) cannot occur, otherwise some com- 

ponent of y would not achieve the minimum length in its homotopy class. Pinch 

according to the rule: half-digons first, then rectangles. Pinching rectangles might 

create half-digons, which should then be pinched before any more rectangles are 

pinched, to be sure that no digons are created. Since the total number of complemen- 

tary regions in the Pj’s decreases with each pinching, this is a finite process. 
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After this pinching, each NL n P, is carried by a standard track in Pi, and so 

clearly N, itself is carried by a standard track. 0 

Application to diffeomorphisms of nonclosed surfaces 

Using the topological machinery developed so far, we can easily prove the 

following proposition. 

Proposition 2.5. Suppose in M is nonempty. Then a difleomorphism f: M + M can be 

isotoped so that either 

(1) f has finite order, or 

(2) f leaves invariant a curve system consisting of circles in M, or 

(3) f takes a measured lamination in int(M) to a scalar multiple of itself: 

Proof. A diffeomorphism f induces a homeomorphism of _&E(M), given by a 

permutation of the coordinate length functions e,,, and hence also a homeomorphism 

of PZ’( M). This is a ball if ?JM # 0, so by the Brouwer fixed point theorem, there 

must be a (nonempty) measured lamination L, c M with f( L,x) = L,, for some 

A > 0. If L, is disjoint from aM, we are in case (3), so we may assume L, meets 

8M. Leaves of L, meeting aM are compact. These yield a curve system consisting 

of arcs in M which is invariant under f: Let M’ be M split open along these arcs, 

and let M” be M’ minus those components which are either disks, or annuli with 

one boundary circle in HIM. If M” # 0 then the circles of aM” which are not circles 

of ?IM give rise to a system of circles in M invariant under f; and we are in case 

(2). If M” = 0, f can clearly be isotoped to be of finite order. 0 

In case (2), M and f can be split open along the invariant circle system to obtain 

a simpler situation which can be analyzed inductively. Only a small amount of 

information is lost in this splitting process: Dehn twists along the invariant circles. 

If we are in case (3) but not case (2), then the invariant lamination L, has no 

compact leaves, and each complementary region of L, must be a disk with some 

number of cusps on its boundary, and possibly one puncture (component of JM) 

in its interior. (The full strength of Thurston’s theorem on surface diffeomorphisms- 

which holds also when M is closed-is that in this last case, f also preserves another 

measured lamination L, transverse to L,, with f(La) = L,, and f(La) = LPIh for 

someA#l.) 

Proposition 2.6. Laminations without compact leaves are dense in the subspace 

Jll&( M) = K3*-’ of 43( M) consisting of laminations disjoint from aM if and only 

if M is orientable. 

Proof. The laminations in Ju6po( M) containing a given circle C c M as a leaf are 

obtained by assigning a weight in (0,~) to C and then adjoining a lamination in 

JU,JM - C). If M is orientable, C is two-sided, so M - C has two more boundary 
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circles than M, making J&Y,,( M - C) have dimension two less than JzK!!&( M). Thus, 

laminations containing C as a leaf are in the image of a piecewise linear map 

(0, co) x JMO( M - C) + JK&(M), this image having codimension at least one (equal 

to one, in fact). Since C ranges over a countable set of possibilities, the rest of 

_&Y,JM), consisting of laminations without compact leaves, is dense in JU_YO(M). 

When M is non-orientable and C is one-sided, Ju=Y”( M - C) has dimension only 

one less than JWO(M), so this argument fails. In fact, taking C as a one-sided S, 

in a pair of pants decomposition of M, the proof of Proposition 1.5 shows that 

laminations containing C correspond to the open set in JE&( M) = R~3X-h where 

the coordinate of lK3X~h corresponding to C is positive. 0 

3. Trees 

Axiomatics 

By a tree (or more precisely, an R-tree) we mean a metric space (T, d) such that: 

(1) Any two points x, y E T are the endpoints of a unique segment [x, y], i.e., a 

subset isometric to a closed interval in R. 

(2) [x, y] n [x, z] = [x, w] for some w. 

(3) [x, YIU [Y, zl= Lx, ~1 if ix, ~1 n [y, ~1 = iv>. 
This is the definition in the foundational paper [l]. Other basic references are [3] 

and [8]. (In fact, axiom (2) follows from (1) since d takes values in R, rather than 

in a more genera1 ordered abelian group.) 

The uniqueness of segments [x, y] with given endpoints tends to be hard to verify 

in practice. This problem is avoided with the following proposition. 

Proposition 3.1. A metric space ( T, d) is a tree if there is a function assigning to each 

unordered pair x, y E T a segment [x, y] in T, such that (2) and (3) hold. 

Proof. Choose a basepoint X,E T. According to Theorem 3.17 of [l], the following 

two axioms characterize trees: 

(4) Segments [x0, x] exist for all x E T. 

(5) Lettingx~y=~(d(x,x,)+d(y,x,)-d(x,y)),thenx~z~min(x~y,y~z)for 

all x, y, z E T. 

Under the hypotheses of the Proposition, x A y is d(x,, w), where [x0, x] n [x0, y] = 

[x,, w]. Then (5) follows by simply listing the possible configurations for the 

segments joining x0 to x, y, and z, shown in Fig. 20. •1 

xy* ‘y* ‘;y’ 
0 

Fig. 20. 
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The dual tree to a measured lamination 

Given a measured lamination N, carried by a good track T, let fiO be its preimage 

in the universal cover fi of M. For x, y E fi define d”(x, y) to be the infimum of 

the lengths of all paths in i6 joining x and y, where as in section 2 we take paths 

which are piecewise either transverse to leaves of I’?~ or in leaves of fia, and we 

measure lengths via the lifted measure from N,,. Then C? clearly defines a pseudo- 

metric on M (symmetric and satisfying the triangle inequality, but not positive 

definite-points in the same leaf being at J-distance zero, for example). Let (T, d) 

be the associated metric space, obtained by identifying points of I? of J-distance 

zero apart. 

A basic fact is that, given x, y E I$ there exists a path joining x and y whose 

length is d(x, y). This is proved by the argument for the existence of minimum 

length loops in the proof of Proposition 2.1, the only difference being that now we 

use paths with fixed endpoints rather than loops. (Details left to the reader.) A 

consequence of this fact is that points of T are either nonsingular leaves of 6’0 or 

connected unions of singular leaves with adjoining complementary regions of fi=. 

The latter type of points of T, countable in number, can be thought of as the 

“vertices” of T, though they can be dense in T. (This happens for example when 

M is the punctured torus and N,, corresponds to an irrational point of aPL(M), 

such an N, is obtained from a foliation of the torus by lines of irrational slope, by 

splitting open along the leaf containing the puncture.) 

Proposition 3.2. (T, d) is a tree. 

For (Y rational this is easily seen: T is evidently a l-dimensional simplicial complex, 

and it is simply-connected because loops in T can be lifted to loops in h?. (Note 

that goodness of T is not needed in this case.) 

Proof. First a preliminary observation: Nonsingular leaves 1 of fia are properly 
* 

embedded submanifolds of M. This follows from the stronger assertion that x meets 

each fiber of N(?) at most once. For if 1 met a fiber of N( ;) twice, the arc of i 

between the two intersection points would enclose a complementary region of N( ;) 

of linefield index greater than zero, hence N(T) also would have such a complemen- 

tary region. (Lift to 16 a linefield on M transverse to fibers of N(T) and JM, and 

having all singularities of negative index.) 

Now to prove the proposition we use the criteria of Proposition 3.1. For the 

segment [x, y] we take the image in T of a shortest path in i% To verify that this 

segment is well-defined, and at the same time check axiom (2), consider two shortest 

paths in fi with the same initial point. The intersection of their images in T is 

closed, being the intersection of two closed sets. The intersection is also connected. 

For otherwise we would have an embedded circle in T. This would contain points 

corresponding to nonsingular leaves of Gm, since there are only countably many 

singular leaves. Projecting to this circle in T there would be a loop in 6f meeting 
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X 

If 
Z 

Y 

Fig. 21. 

a nonsingular leaf of N, in one point, transversely. This is impossible since nonsin- 

gular leaves are properly embedded in 6. 

For (3), let segments [x, y] and [y, z] be given with [x, y] n [y, z] = {y}. If [x, z] 

differed from [x, y] u [y, z] we would have the configuration of Fig. 21 and again 

T would contain an embedded circle. 0 

Pullback laminations 

Let an action of r,M on a tree T be given, the elements of rr,M acting as 

isometries of T. Choose a triangulation of M, and lift this to a triangulation of the 

universal cover fi invariant under the action of ‘TT,M by deck transformations. We 

construct an equivariant map f: G + T inductively over skeleta G(j), as follows. 

On A?(“, let / be an arbitrary equivariant map. (Choose lifts 6 of the vertices ZI of 

M, let _? be arbitrary on these 6’s, then extend over A?“’ by equivariance.) Extend 

j: over 1-simplices [ 21 o, v,] by sending [ zlo, u,] linearly to the unique segment joining 

f( uo) to j( u,) in T. This is automatically equivariant. For convenience, modify this 

choice of f to be constant near vertices. To extend f over a 2-simplex [v,, v, , vz] 

consider the generic case shown in Fig. 22, where Y =J(a[v,, U, , ~1) consists of 

three edges meeting at a central vertex. In [ uo, u, , vz] insert three bands of parallel 

arcs as shown, of thicknesses given by the lengths of the corresponding edges of Y. 

Then let f map [ uo, ~1,) u2] to Y by the obvious collapse. In degenerate cases some 

of the three edges of Y may have length zero, and the corresponding bands in 

[no, u, , u,] are deleted. This prescription is automatically equivariant. Down in M 

we have therefore constructed a foliation N, of a neighborhood N(r) of a track r 

which in each 2-simplex has the standard form shown in Fig. 22 (or a subtract of 

this, in degenerate cases). 

Fig. 22. 
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Proposition 3.3. By-rechoosing 7 on ?I?“” (and possibly retriangulating M in case M 

is nonorientable) we can arrange that the track r carrying N, is good. 

Proof. As Fig. 23(a) shows, complementary monogons (the second picture in Fig. 

5) cannot occur since f” is monotone on edges. A smooth disk complementary region 

gives rise to a family of parallel trivial circle leaves as in Fig. 23(b). We can rechoose 

f on the vertices inside this disk so as to eliminate a maximal such family of parallel 

circles, producing N, carried by a subtrack of T. A complementary smooth half-disk 

or an annulus with one boundary circle on 8M is treated similarly. For other product 

complementary regions, f can be redefined on vertices so as to transfer a family of 

parallel leaves on N,, across such a product. Using the fact that the closure of a 

product region of M - 7 cannot be all of M (otherwise M would have Euler 

characteristic zero), a maximal family can be transferred so as to give a new N, 

carried by a subtrack of 7. Repeating these steps as often as possible (a finite process 

since at each step we pass to a subtrack), we eventually eliminate all complementary 

regions except MGbius bands-finishing the proof if M is orientable. 

A complementary MGbius band has a core circle C in MC’). Retriangulate, as in 

Fig. 24, by inserting a triangulated neighborhood of C. Replace T by TV C, making 

the complementary MGbius band into a complementary annulus. Now as in an 

earlier step, transfer a maximal family of leaves across this annulus onto a neighbor- 

hood of C, thereby passing to a subtrack of 7 u C. Repeat this until the complemen- 

tary region bordering C has negative index, which will eventually occur since 

x(M)<O. Cl 

Fig. 2?. 

(b) 

Fig. 24. 

The pullback lamination given by Proposition 3.3 is not in general uniquely 

determined by T and the r, M action. The relations between dual trees and pullback 

laminations are the following: 

(1) A lamination is a pullback of its dual tree. 

(2) Given T with rr,M action, there is an equivariant quotient map from the 

dual tree of any pullback lamination to T which preserves lengths of paths. 
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