Analisi I - IngBM - 2018-19 COMPITO A 2 Febbraio 2019

COGNOME	NOME	
MATRICOLA	VALUTAZIONE	+ =
1. Isa	TRUZIONI	
Gli esercizi devono essere svolti negli appo sarà ritirato e valutato. I fogli a quadr liberamente ma in nessun caso saranno ri prima parte deve essere svolta preliminarm con un punteggio di $0 \le x \le 10$ punti. O considerazione l'eventuale svolgimento del seconda parte viene valutata con un punteg ciente per l'ammissione alla prova orale se all'orale sarà $v = \min(28, x + y)$.	retti messi a disposizion tirati. Il compito è com tente. Essa verrà corrett Condizione necessaria a la seconda parte è che gio di $0 \le y \le 24$ punti	pe possono essere usati posto di due parti. La ta per prima e valutata affinché venga preso in $x \geq 6$. In tal caso la . Il compito sarà suffi-
2. Pri	MA PARTE	
Esercizio 0. (0 punti) Leggere e capire l	e istruzioni.	
Esercizio 1. (3 punti) Studiare il compor della successione:	rtamento (convergente, o	divergente o irregolare)
$\sin\left(\frac{(}{-}\right)$	$\frac{-1)^n}{n}$	
Nel caso sia convergente calcolarne il limite	e	
SOLUZIONE		
La successione risulta		
□CONVERGENTE e il limite è	\Box DIVERGENTE	\square IRREGOLARE

perché

Esercizio 2. (4 punti) Provare per induzione su n che

$$\sum_{k=0}^{n} (3k+2) = \frac{1}{2}(n+1)(3n+4)$$

SOLUZIONE.

Esercizio 3. (3 punti) Calcolare, precisando se si tratta di massimo o minimo, gli estremi superiore e inferiore dell'insieme

$$X = \{x \in \mathbf{R} | \exists t : x = \frac{1}{1 + (\cos t)^2} \}.$$

SOLUZIONE.

3. Seconda parte

Esercizio 1. (8 punti)

Si consideri la funzione $F;\mathbf{R}\to\mathbf{R}$ definita dalla formula

$$F(x) = \int_0^x e^{\sin t} dt$$

- (1) Calcolare gli zeri di ${\cal F}.$
- (2) Discutere la convessità di F nell'intervallo $[0, \frac{\pi}{2}]$.
- (3) Determinare i punti di flesso di f.
- (4) Determinare gli eventuali asintoti di f.

SOLUZIONE.

Zeri di F

Convessità □si □no

Flessi

Asintoti

Esercizio 2. (5 punti)

Si consideri la funzione $f_{a,b}: \mathbf{R} \to \mathbf{R}$ definita da $f_{a,b} = a \cos x + b \sin x$ dove $a \in b$ sono numeri reali

Determinare le coppie (a,b) per cui esiste $x_0 \in \mathbf{R}$ tale che $f_{a,b}(x_0) = 0$ e x_0 è un punto di minimo locale o un punto di massimo locale per $f_{a,b}$.

SOLUZIONE

Esercizio 3. (5 punti)

Per ogni numero naturale n, si consideri il polinomio $p_n(x) = 1 + x + x^2 + \cdots + x^n$. Determinare, al variare di n, le radici complesse di $p_n(x)$ specificando quali di esse sono reali.

SOLUZIONE

Esercizio 4. (6 punti) Si determini, se esiste, la soluzione massimale dell'equazione differenziale

$$y' = \frac{1}{1+t+t^2}$$

tale che y(0) = 1.

SOLUZIONE