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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 87, Number 1, January 1983 

A CYCLE IS THE FUNDAMENTAL CLASS 
OF AN EULER SPACE 

R. BENEDETTI AND M. DED6& 

ABSTRACT. We prove that every cycle in a closed P.L. manifold M can be regarded as 
the fundamental class of an Euler subpolyhedron of M. 

Let V be a compact real analytic manifold without boundary. It is a long-standing 
problem to see which (Z2-) homology classes of V can be represented as the 
fundamental class of an analytic subset of V (and, in fact, it is conjectured that this 
is true for any homology class). The analogous problem arises with real algebraic 
manifolds, although in this case the general statement is false (even if V is 
connected; see, for instance, [BT]). 

D. Sullivan (in [S]) observed that every real analytic set can be regarded as an 
Euler space (see definition below); it is then natural to ask, first of all, if it is true 
that every homology class of a closed P.L. manifold M can be represented as the 
fundamental class of an Euler subpolyhedron of M. 

In this note we prove that this in fact happens: actually, we give a construction to 
add lower-dimensional simplexes to a cycle in M until we get an Euler space (in M). 

The techniques used are entirely elementary and involve merely P.L. transversality 
(as stated for example in [RS]) and combinatorial results on Euler spaces (see [A]). 

We shall work in the P.L. category. For notations and definitions we refer to [RS]. 
All cycles and manifolds are intended unoriented and compact. 

By an n-cycle P we mean a polyhedron P = i K I such that 
(1) n = max{dim A, for A a simplex of K), 

(2) each (n - 1)-simplex of K is the face of an even number of simplexes of K. 

By an n-cycle P with boundary aP we mean a pair of polyhedra (P, aP) = I K, aK 

such that (1) n = max{dim A, for A a simplex of K), (2) aP is an (n - 1)-cycle, (3) 
each (n - 1)-simplex of K \ aK is the face of an even number of n-simplexes of K, 
(4) each (n - 1)-simplex of aK is the face of an odd number of n-simplexes of K. A 
cycle (with boundary) in M is a subpolyhedron of M which is a cycle (with 
boundary). 

A closed (P.L.) manifold is a compact (P.L.) manifold without boundary. 
An Euler space is a polyhedron P such that, for each x E P, X(lk(x, P)) 0 

(mod 2). 
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170 R. BENEDETTI AND M. DED6 

An Euler pair is a pair of polyhedra (P, Q) such that (1) Vx E P \ Q, X(lk(x, P)) 
0 (mod 2); (2) Vx E Q, X(lk(x, Q)) 0_ (mod 2); (3) Vx E Q, X(lk(x, P)) 1 

(mod 2). 
REMARKS. (1) An Euler space is a cycle (without boundary). 
(2) An Euler pair (P, Q) is not, in general, a cycle with boundary (if dim P = n, Q 

may not be of dimension n - 1). 
(3) Note that the definition of an n-cycle is slightly different from the usual one 

which requires also each simplex of K to be the face of an n-simplex of K. However, 
a cycle as we defined it naturally carries a fundamental class (which is a cycle in the 
usual sense) as follows: 

Let P = I K I be an n-cycle. The fundamental class P of P is the polyhedron 
obtained by taking all the n-simplexes of K (together with their faces). Note that, if P 
is connected, then P P is a representative of the generator of Hn(P; Z2) -Z2. 

In order to show the kind of arguments used, we first prove an "abstract" version 
of the stated result, that is 

THEOREM 1. Let P be an n-cycle. Then there exists an Euler polyhedron P' such that 
P' D Panddim(P'\P)< n. 

PROOF. Let P = J K J and assume that K = T(l), that is, K is the first barycentric 
subdivision of another triangulation T of P. Set 

Q- {A E K: X(lk(A, K)) 1 (mod 2)) 

Q =H is a subpolyhedron of P and dim Q < n - 1 (as P is a cycle). 
(a) Assume dim Q = 0. Then Q consists of a finite number of points v . Vh and 

(P, Q) is an Euler pair. Let Z be the 1-skeleton of K; then (for the properties of the 
barycentric subdivision) Z is a 1-cycle with boundary the 0-skeleton of H, that is, Q 
itself (see [A], Propositions 1 and 2, and the subsequent remark). Thus h is even and 
we can form P' = P UQ F, where F is any I-cycle with boundary Q. 

(b) The general case. Let d = dim Q (O < d s n - 2). We prove first of all that 

Q =J HI is a d-cycle. Let A be a (d -)-simplex of H and B ,. . . ,Bh the set of 
d-simplexes of H such that B, > A. If C is a simplex of R = lk(A, K), then 
C * A E K and lk(C, R) = lk(C * A, K) (here * denotes the join operation). Since 
dim(C * A) = dim C + d, X(lk(C, R)) is always even, except for the vertices v1, . . .,Vh 

such that v, * A = B,. Then, by the case (a), h is even, which means that Q is a cycle. 
Now we can form P, = P UQ F, where F is any (d + 1)-cycle with boundary Q, 

for example the cone on Q. P, is not necessarily an Euler space; however, if B is a 
d-simplex of H, lk(B, P,) = lk(B, P)II{odd number of points), so that Q, 
={ A G P: X(lk(A, P1))-- 1l is a subpolyhedron of dimension < (d- 1) in P,; 
by iterating the argument we obtain the required Euler space P'. O 

Note that the hypothesis that P is a cycle is necessary; see, for example, the 
following Figure 1. 

The difficulty which arises in the general case is essentially to prove that Q is now 
a boundary in the ambient manifold. 
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P 

FIGURE 1 

THEOREM 2. Let M be a closed m-manifold and P a cvcle of dimension n < n in M. 
Then there exists a subpolyhedron P', P C P' C M, such that P' is an Euler space and 
dim(P' \P) < n. 

PROOF. Let Q be defined as in the previous theorem and (L, K, H) be a 
triangulation of (M, P, Q) which we assume, for the sake of simplicity, to be the 
first barycentric subdivision of another triangulation of (M, P, Q) (see remark 
below). 

CLAIM. Q is a boundary in P. 
(Note that this has already been proved in the case dim Q 0 O.) Let d = dim Q; 

let N be the simplicial neighbourhood of HW) in K?), N the boundary of N, p: 
N - Q the simplicial retraction and p p N. (P \ N, N) is an Euler pair; therefore 
(again by [A, Proposition 1]), if Z denotes the (d + I)-skeleton of P\ N and S 
denotes the d-skeleton of N (both with respect to K' )), we have that Z is a 
(d + 1)-cycle with boundary S. Let f = p I S; f is a simplicial map and we want to 
show that its degree is odd. Let a E H(') be a d-simplex and A E H such that a C A; 
we must prove that #{simplexes inf `(a)) = #{d-simplexes inp-'()) is odd; as 

# {B E K: A < B}= # {simplexes C of lk(A, K)} 

-x(lk(A, K )) -1 (mod 2), 

it is enough to show that, for each B > A, #{d-simplexes inP-'(d) n B) is odd. Let 
B > A; then B = A * C and p I N n B: N n B - A is obtained by the pseudoradial 
projection from C. 

C 

vertices of 
vertex of j,1(A) f B 

N n B 

A 

FIGURE 2 
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FIGURE 3 

= A' 

a/ 

FIGURE 4 

Note that, if dim A 09, (vertices of p-'(A) n B) 1 and *(vertices of 
P-1(A) n B) = #(vertices of C in K()} -1 (mod 2) (see Figure 2); while, if 
dim C = 0 (so that B is a cone over A with vertex C), # (d-simplexes in p- (d ) n B) 
= # (d-simplexes in p-1(a) n B) = 1 (see Figure 3). In general, if a = A * r, let A' 
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be the face of A containing T and D = C * A'. Then, if a is a d-simplex in 
p1(6) n B, necessarily a = B * -y, where -y is a (d - 1)-simplex in p-r(T) n D (see 
Figure 4). In order to conclude by induction, we have to show that also # {d-sim- 
plexes inpi'(6) n B) is odd. But, if C' varies over the faces of C, and B' A * C', 
then 

#{d-simplexes in Y(o ) n B} = #{d-simplexes in p-'(d ) nB } 

+ , #({d-simplexesinp-1(0a)nlB'}, 
c,<c 

By induction, all the terms of this sum are odd; moreover, their number equals 
#{C': C' < C} 1 (mod 2). Thus f: S -- Q is an odd degree map, so that the 
mapping cylinder Cf is a (d + 1)-cycle in P with boundary SiiQ and Q' = Z Us Cf is 
the required cycle with boundary Q. This proves the claim. 

In order to prove the theorem, it is enough now to put Q' transverse to P in M 
relatively to Q (see [RS, Theorem 5.3]). In this way we get a cycle Q" in M with 
boundary Q and such that dim(Q" n P) < d + I + n - m < d. Form P1 = 
P UQ Q"; P1 is an n-cycle in M and, if A is a d-simplex in P1, then 

I lk(A, P)u {odd number of points) if A E Q, 

lk(A, PI - 
k(A, P) if A E P \Q", 

- lk(A, Q") if A E Q" \P, 

lk(A, Pi)ui{even number of points} if A E Q" n P. 

In each case X(1k(A, PI)) _=O, so that Q, ={A E PI: X(lk(A, PI)) _ 1) has di- 
mension < (d - 1) and we can iterate the argument as before until we get an Euler 
space P'. O 

REMARK. As regards the choice of the triangulation, what we need is only that the 
simplicial neighbourhood N of Q in P (with respect to K(l)) is in fact a regular 
neighbourhood; therefore, any triangulation (K, H) such that Q is full in P would 
be enough (see [RS] for a definition of full). 

COROLLARY. Every homology class z E H(M, Z2) can be represented as the 
fundamental class of an Euler subpolyhedron of dimension n in M. 

ADDENDUM. With respect to the problem stated in the introduction (that is, to 
represent Z2-homology classes of a real algebraic manifold by algebraic subvarieties), 
since this paper was written we have proved the following (see [BD]): 

For each d 2 11, there exists a compact smooth manifold V and a class z E 

Hd 2(V, Z2) such that, for any homeomorphism h: V -* V' between V and a real 
algebraic manifold V', h*(z) E Hd-2(V', Z2) cannot be represented by an algebraic 
subvariety of '. 
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