

A Cycle is the Fundamental Class of an Euler Space Author(s): R. Benedetti and M. Dedo Source: Proceedings of the American Mathematical Society, Vol. 87, No. 1 (Jan. - Apr., 1983), pp. 169-174 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2044375</u> Accessed: 11/07/2013 04:41

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

A CYCLE IS THE FUNDAMENTAL CLASS OF AN EULER SPACE

R. BENEDETTI AND M. DEDÒ¹

ABSTRACT. We prove that every cycle in a closed P.L. manifold M can be regarded as the fundamental class of an Euler subpolyhedron of M.

Let V be a compact real analytic manifold without boundary. It is a long-standing problem to see which (\mathbb{Z}_2) homology classes of V can be represented as the fundamental class of an analytic subset of V (and, in fact, it is conjectured that this is true for any homology class). The analogous problem arises with real algebraic manifolds, although in this case the general statement is false (even if V is connected; see, for instance, **[BT]**).

D. Sullivan (in [S]) observed that every real analytic set can be regarded as an Euler space (see definition below); it is then natural to ask, first of all, if it is true that every homology class of a closed P.L. manifold M can be represented as the fundamental class of an Euler subpolyhedron of M.

In this note we prove that this in fact happens: actually, we give a construction to add lower-dimensional simplexes to a cycle in M until we get an Euler space (in M).

The techniques used are entirely elementary and involve merely P.L. transversality (as stated for example in [**RS**]) and combinatorial results on Euler spaces (see [A]).

We shall work in the P.L. category. For notations and definitions we refer to [**RS**]. All cycles and manifolds are intended unoriented and compact.

By an *n*-cycle P we mean a polyhedron P = |K| such that

(1) $n = \max\{\dim A, \text{ for } A \text{ a simplex of } K\},\$

(2) each (n-1)-simplex of K is the face of an even number of simplexes of K.

By an *n*-cycle P with boundary ∂P we mean a pair of polyhedra $(P, \partial P) = |K, \partial K|$ such that (1) $n = \max\{\dim A, \text{ for } A \text{ a simplex of } K\}$, (2) ∂P is an (n - 1)-cycle, (3) each (n - 1)-simplex of $K \setminus \partial K$ is the face of an even number of *n*-simplexes of K, (4) each (n - 1)-simplex of ∂K is the face of an odd number of *n*-simplexes of K. A cycle (with boundary) in M is a subpolyhedron of M which is a cycle (with boundary).

A closed (P.L.) manifold is a compact (P.L.) manifold without boundary.

An Euler space is a polyhedron P such that, for each $x \in P$, $\chi(lk(x, P)) \equiv 0 \pmod{2}$.

© 1983 American Mathematical Society 0002-9939/82/0000-0441/01.75

169

Received by the editors October 13, 1981 and, in revised form, March 11, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57Q99; Secondary 57R95.

¹The authors are members of the G.N.S.A.G.A.

An Euler pair is a pair of polyhedra (P, Q) such that $(1) \forall x \in P \setminus Q, \chi(\operatorname{lk}(x, P)) \equiv 0 \pmod{2}$; $(2) \forall x \in Q, \chi(\operatorname{lk}(x, Q)) \equiv 0 \pmod{2}$; $(3) \forall x \in Q, \chi(\operatorname{lk}(x, P)) \equiv 1 \pmod{2}$.

REMARKS. (1) An Euler space is a cycle (without boundary).

(2) An Euler pair (P, Q) is not, in general, a cycle with boundary (if dim P = n, Q may not be of dimension n - 1).

(3) Note that the definition of an *n*-cycle is slightly different from the usual one which requires also each simplex of K to be the face of an *n*-simplex of K. However, a cycle as we defined it naturally carries a fundamental class (which is a cycle in the usual sense) as follows:

Let P = |K| be an *n*-cycle. The *fundamental class* \tilde{P} of *P* is the polyhedron obtained by taking all the *n*-simplexes of *K* (together with their faces). Note that, if *P* is connected, then $\tilde{P} \Rightarrow P$ is a representative of the generator of $H_n(P; \mathbb{Z}_2) \cong \mathbb{Z}_2$.

In order to show the kind of arguments used, we first prove an "abstract" version of the stated result, that is

THEOREM 1. Let P be an n-cycle. Then there exists an Euler polyhedron P' such that $P' \supset P$ and dim $(P' \setminus P) < n$.

PROOF. Let P = |K| and assume that $K = T^{(1)}$, that is, K is the first barycentric subdivision of another triangulation T of P. Set

$$Q = \overline{\{A \in K \colon \chi(\operatorname{lk}(A, K)) \equiv 1 \pmod{2}\}}$$

Q = |H| is a subpolyhedron of P and dim Q < n - 1 (as P is a cycle).

(a) Assume dim Q = 0. Then Q consists of a finite number of points v_1, \ldots, v_h and (P, Q) is an Euler pair. Let Z be the 1-skeleton of K; then (for the properties of the barycentric subdivision) Z is a 1-cycle with boundary the 0-skeleton of H, that is, Q itself (see [A], Propositions 1 and 2, and the subsequent remark). Thus h is even and we can form $P' = P \cup_Q \Gamma$, where Γ is any 1-cycle with boundary Q.

(b) The general case. Let $d = \dim Q$ ($0 < d \le n - 2$). We prove first of all that Q = |H| is a d-cycle. Let A be a (d - 1)-simplex of H and B_1, \ldots, B_h the set of d-simplexes of H such that $B_i > A$. If C is a simplex of $R = \operatorname{lk}(A, K)$, then $C * A \in K$ and $\operatorname{lk}(C, R) = \operatorname{lk}(C * A, K)$ (here * denotes the join operation). Since $\dim(C * A) = \dim C + d$, $\chi(\operatorname{lk}(C, R))$ is always even, except for the vertices v_1, \ldots, v_h such that $v_i * A = B_i$. Then, by the case (a), h is even, which means that Q is a cycle.

Now we can form $P_1 = P \cup_Q \Gamma$, where Γ is any (d + 1)-cycle with boundary Q, for example the cone on Q. P_1 is not necessarily an Euler space; however, if B is a d-simplex of H, $lk(B, P_1) = lk(B, P)$ II {odd number of points}, so that Q_1 $= \{A \in P_1 : \chi(lk(A, P_1)) \equiv 1\}$ is a subpolyhedron of dimension $\leq (d - 1)$ in P_1 ; by iterating the argument we obtain the required Euler space P'. \Box

Note that the hypothesis that P is a cycle is necessary; see, for example, the following Figure 1.

The difficulty which arises in the general case is essentially to prove that Q is now a boundary in the ambient manifold.

THEOREM 2. Let M be a closed m-manifold and P a cycle of dimension n < m in M. Then there exists a subpolyhedron P', $P \subset P' \subset M$, such that P' is an Euler space and $\dim(P' \setminus P) < n$.

PROOF. Let Q be defined as in the previous theorem and (L, K, H) be a triangulation of (M, P, Q) which we assume, for the sake of simplicity, to be the first barycentric subdivision of another triangulation of (M, P, Q) (see remark below).

CLAIM. Q is a boundary in P.

(Note that this has already been proved in the case dim Q = 0.) Let $d = \dim Q$; let N be the simplicial neighbourhood of $H^{(1)}$ in $K^{(1)}$, \dot{N} the boundary of N, p: $N \to Q$ the simplicial retraction and $\dot{p} = p | \dot{N}$. ($\overline{P \setminus N}$, \dot{N}) is an Euler pair; therefore (again by [A, Proposition 1]), if Z denotes the (d + 1)-skeleton of $\overline{P \setminus N}$ and S denotes the d-skeleton of \dot{N} (both with respect to $K^{(1)}$), we have that Z is a (d + 1)-cycle with boundary S. Let $f = \dot{p} | S$; f is a simplicial map and we want to show that its degree is odd. Let $\sigma \in H^{(1)}$ be a d-simplex and $A \in H$ such that $\sigma \subset A$; we must prove that #{simplexes in $f^{-1}(\sigma)$ } = #{d-simplexes in $\dot{p}^{-1}(\sigma)$ } is odd; as

 $# \{ B \in K : A < B \} = # \{ \text{simplexes } C \text{ of } lk(A, K) \}$

 $\equiv \chi(\operatorname{lk}(A, K)) \equiv 1 \pmod{2},$

it is enough to show that, for each B > A, $\# \{d \text{-simplexes in } \dot{p}^{-1}(\sigma) \cap B\}$ is odd. Let B > A; then B = A * C and $\dot{p} | \dot{N} \cap B$: $\dot{N} \cap B \to A$ is obtained by the pseudoradial projection from C.

FIGURE 2

FIGURE 4

Note that, if dim A = 0, #{vertices of $\dot{p}^{-1}(A) \cap \dot{B}$ } = 1 and #{vertices of $\dot{p}^{-1}(A) \cap B$ } = #{vertices of C in $K^{(1)}$ } = 1 (mod 2) (see Figure 2); while, if dim C = 0 (so that B is a cone over A with vertex C), #{d-simplexes in $\dot{p}^{-1}(\dot{\sigma}) \cap \dot{B}$ } = #{d-simplexes in $\dot{p}^{-1}(\dot{\sigma}) \cap B$ } = 1 (see Figure 3). In general, if $\sigma = \hat{A} * \tau$, let A'

be the face of A containing τ and D = C * A'. Then, if α is a d-simplex in $\dot{p}^{-1}(\dot{\sigma}) \cap \dot{B}$, necessarily $\alpha = \hat{B} * \gamma$, where γ is a (d-1)-simplex in $\dot{p}^{-1}(\tau) \cap D$ (see Figure 4). In order to conclude by induction, we have to show that also $\#\{d\text{-simplexes in } \dot{p}^{-1}(\dot{\sigma}) \cap B\}$ is odd. But, if C' varies over the faces of C, and B' = A * C', then

$$# \{d\text{-simplexes in } \dot{p}^{-1}(\mathring{\sigma}) \cap B\} = \# \{d\text{-simplexes in } \dot{p}^{-1}(\mathring{\sigma}) \cap \mathring{B}\} + \sum_{C' < C} \# \{d\text{-simplexes in } p^{-1}(\mathring{\sigma}) \cap \mathring{B'}\},\$$

By induction, all the terms of this sum are odd; moreover, their number equals $\# \{C': C' \leq C\} \equiv 1 \pmod{2}$. Thus $f: S \to Q$ is an odd degree map, so that the mapping cylinder C_f is a (d + 1)-cycle in P with boundary SIIQ and $Q' = Z \cup_S C_f$ is the required cycle with boundary Q. This proves the claim.

In order to prove the theorem, it is enough now to put Q' transverse to P in M relatively to Q (see [**RS**, Theorem 5.3]). In this way we get a cycle Q'' in M with boundary Q and such that $\dim(Q'' \cap P) \leq d + 1 + n - m \leq d$. Form $P_1 = P \cup_Q Q''$; P_1 is an *n*-cycle in M and, if A is a *d*-simplex in P_1 , then

$$lk(A, P_1) = \begin{cases} lk(A, P) \amalg \{ \text{odd number of points} \} & \text{if } A \in Q, \\ lk(A, P) & \text{if } A \in P \setminus Q'', \\ lk(A, Q'') & \text{if } A \in Q'' \setminus P, \\ lk(A, P) \amalg \{ \text{even number of points} \} & \text{if } A \in Q'' \cap P. \end{cases}$$

In each case $\chi(\text{lk}(A, P_1)) \equiv 0$, so that $Q_1 = \overline{\{A \in P_1 : \chi(\text{lk}(A, P_1)) \equiv 1\}}$ has dimension $\leq (d-1)$ and we can iterate the argument as before until we get an Euler space P'. \Box

REMARK. As regards the choice of the triangulation, what we need is only that the simplicial neighbourhood N of Q in P (with respect to $K^{(1)}$) is in fact a regular neighbourhood; therefore, any triangulation (K, H) such that Q is full in P would be enough (see [**RS**] for a definition of full).

COROLLARY. Every homology class $z \in H_n(M, \mathbb{Z}_2)$ can be represented as the fundamental class of an Euler subpolyhedron of dimension n in M.

ADDENDUM. With respect to the problem stated in the introduction (that is, to represent \mathbb{Z}_2 -homology classes of a real algebraic manifold by algebraic subvarieties), since this paper was written we have proved the following (see **[BD]**):

For each $d \ge 11$, there exists a compact smooth manifold V and a class $z \in H_{d-2}(V, \mathbb{Z}_2)$ such that, for any homeomorphism $h: V \to V'$ between V and a real algebraic manifold V', $h_*(z) \in H_{d-2}(V', \mathbb{Z}_2)$ cannot be represented by an algebraic subvariety of V''.

R. BENEDETTI AND M. DEDÒ

References

[A] E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc. 205 (1975), 341-359.

[BT] R. Benedetti and A. Tognoli, *Remarks and counterexamples in the theory of real algebraic vector bundles and cycles*, Lecture Notes, Springer, Berlin and New York (to appear).

[RS] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Math. und ihrer Grenzgebiete, Band 69, Springer-Verlag, Berlin and New York, 1972.

[S] D. Sullivan, *Combinatorial invariants of analytic spaces*, Proc. Liverpool Singularities Symposium. I, Lecture Notes in Math., vol. 192, Springer-Verlag, Berlin and New York, 1971.

[BD] R. Benedetti and M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism (to appear).

ISTITUTO MATEMATICO, VIA F. BUONARROTI 2, 56100 PISA, ITALY