
Annali di Matematica pura ed applioata 
(IV), Vol. CLV (1989), pp. 213-241 

Global  I n e q u a l i t i e s  for  Curves and  S u r f a c e s  in  Three-Space(*) .  

R. BE~J~])ETTI - !K. D~D6 

Summary. - The aim o] the paper is to give upper bounds ]or the tota~ curvature o] smooth curves 
and sur]aces embedded i~ euclidean space, in terms o] other global geometric characters; in 
particular,/or a plane curve •, we prave the inequality K(~) < ~(2 +/(r)d(r)[2),  where d(~) 
is the geometric degree o] r and ](7) is the number o / i t s  inflection points. I n  the case o] a 
sur]ace S, a bound is given in terms o] the genus g(S), the n~mber o] components o] the 
parabolic points on S and the geometry o] its apparent contour. 

O. - I n t r o d u c t i o n .  

This paper  consists of two parts .  The first one is an improvement  of the  result 
obta ined in [BD]: let  F g R3 be a smooth or simplicial closed simple curve embed- 

ded in R3; the geometric degree d(F ) is defined as 

d = d(r) = sup # {~ n F} 

where E varies among all the  hyperplanes transverse to F- 
I f  F is a plane curve, then  d is defined in the same way with respect  to the  t rans-  

verse lines in R ~. Under  mild hypotheses of K( genericity ~), (in par t icular  if F has a 
finite number  ] = ](Y) of inflection points, or inflection sides in the simplicial case) 
we have proved in [BD] that ,  if F is a simple connected plane curve with I > O, then  

(0.1) K < z/(1 + d/2) 

where K = K(F ) denotes the  total curvature of F. 
The main  result  of pa r t  I is the  following str icter  inequal i ty  which holds under  

the same hypothesis  of (0.1): 

(0.2) .~ < :~(2 + ld/2). 

(*) Entrata in Redazione il 2 dicembre 1987. 
Indirizzo degti AA. : R. BE]qEDETTI: Dipartimento di Matematica, via F. Buonarroti 2, 

56100 Pisa; M. D~D6: Dipartimento di Matematica, viale Merelto 92, 09126 Cagli,~ri. 
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We shall see tha t  even (0.2) is far to be sharp for general ] and d. For  instance, we 
shall show tha t ,  if d ~ 4, then  K < z(4 ~- ]) (see remark  2 of [BD]). 

Nevertheless,  i t  is not  so easy to  pass f rom (0.1) to (0.2): the m~in work con- 
sists in introducing a quite subtle not ion of depth of an inflection point  (side) of y 
(which gives a par t ia l  ordering on the  set ~- of the inflection points);  this notion of 
depth  may  appear  quite complicated:  however, we shall show tha t  other  ways (at 
first sight more (~ na tura l  ~) to give a par t ia l  ordering on ~- in fact  do not  work. 

Pa r t  I is organized as follows: in w 1 we define and discuss the notion of depth;  
in w 2 we prove the  inequal i ty  (0.2); in w 3 we ex tend  i t  to a plane curve with cusps 
and normal  crossing points;  in w 4 we briefly discuss the case of a curve in R 8. 

I n p a r t  I I ,  we consider the  analogous problem about  surfaces in Rs; more pre- 
cisely, l e t  S be a closed connected smooth surface embedded  in R 8 and K -~ K(S) 
be the  tota~ curvatq~re of S~ t ha t  is 

K(S) ----] I~(P)I ~A, 
B 

where k(p) denotes the Gaussiau curvature  of S at  the  point  p and dA is the area 
element.  We shall be interested to bound K(S). Two numbers which (( na tura l ly  ~) 

generalize the geometric degree d(y) of a curve y are 

41 = d~(~) = sup # {L n s} 
Z 

a n d  d~ ---- d2(~) ---- sup bo(H n S}, 
H 

where the  sup is t aken  among all the affine lines L (or affine hyperplanes H) which 
are t ransverse to S, and bo(X) denotes the  number  of connected components  of X. 
As for ](y), g number  which is a (~ na tura l  ~) analogous in the case of surfaces is 

----F(S) = b0(parabolic points on S}.  

One could hope then  to prove an inequal i ty  bounding K(S) in terms of I~(S), dl(S) 
and/or  d~(S), and, of course, the  genus g(S) of S. However,  this does not  work, and 

one needs other  geometric characters of S (less ~( na tura l  ))). 
In  w 5 we define these characters ai(S), and we briefly discuss the genericity as- 

sumptions under  which t hey  are well-defined positive integers;  in w 6 we prove some 

inequalities of the  k ind 

(0.3) K(S) <~ ](ai(S) ) 

(see theorems 6.3, 6.5 and 6.10); in w 7 we show, by  means of some families of 
examples,  tha t  these geometric characters are actual ly necessary in order to  give a 
bound to K(S) and there  is no hope to get a simpler inequal i ty  in terms of 

g, F, all, d2 only. 
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I t  should be noted tha t ,  even if the two parts of the paper are strictly related~ 
in fact t hey  can be read quite independently:  what one needs, in order to read par t  I I ,  
is only theorem 3.2, which extends (0.2) to the case of a curve with cusps and normal 
crossings. The reader mainly interested to the case of surfaces can simply assume 3.2 
and skip directly to pa r t  I I ;  alternatively, he can refer to [BD] to find a consider- 
ably simpler proof of the weaker inequali ty (0.1) and then  apply w 3 of par t  I to 
(0.1), thus getting to weaker (by qualitatively analogous) inequalities. 

The paper is intended to be elementary us much as possible. 

P ~ T  I CUI~VES 

1 .  - D e p t h .  

Through all this paragraph ~ will denote a simple connected plane smooth 
curve; we also assume tha t  ~ satisfies the following. 

1.1 GENERICITY ASSUM2TION. -- ~ has a finite number of inflection points and 
no tr i tangents.  

In  the spirit of the Fabricius-Bjerre fo rmula  (see [FB1] and [B]) we distinguish 
between exterior bitangents and interior bitangents to F, according to figure 1, and we 
denote by E (resp. 1) the se~ of exterior (reap. interior) bit~ngents. 

r ~ E  r r 
r e I  

Figure 1 

Fix  an orientation on ~; we can then  further distinguish, according to figure 2, 
between exterior bi tangents of the first and of the second kind (the set of which will 
be denoted, respectively, by  :E' and ~"). 

r P Q r ~ Q 

Figure 2 

r~E" 
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Let  r be a bi tangent ,  t angen t  to ? in points P and Q; we can choose points P '  and 
p,r in 7, close enough to  P ,  in such a way tha t  P ' / ) "  is a convex arc and the  or tho-  
gonal project ion of P '  (resp. P") is contained in the interior (resp. in the  exterior) 
of the  segment PQ; we can similarly choose poin% Q' and Q" close to Q in y (see 

figure 3). 

T" @" 

2a Q r 1 ~ (2 

Figure 3 

1.2 DEFI~ITI0~. - Le t  r e E '  and P ,  Q, P ' , Q '  be as above;  the  arc associated 
to r (denoted by 7~) is the connected component o] ~ \ { P ,  Q} which contains the  

points  P '  and Q'. 
Le t  us denote by  ~ the convex hull of ~ and by  ~ the boundary  of ~, where 

m ay  be ei ther a closed curve or an arc. 

1.3 RE~I)A~KS. - I f  y is a simple curve, then:  

a) ~ (~ y is the disjoint union of convex subarcs of ?;  

b) ?-~7 is the  disjoint union of segments ( they arc disjoint, otherwise y would 
have t r i tangents) ;  each one of these segments is contained in a bi tangent  r belong- 
ing to E r. Le t  us call Et  the subset o f /~ '  consisting of these bi tangents;  note  t h a t  

r e e l  if and only if r n ~ c  ~. 

c) y \ ~  is the disjoint union of subarcs of ~,, contained in the interior of ~; 

let  us call C~ the  set of these arcs; note  t h a t  each a in C~ is an arc y~ associated to 

a b i tangent  r e E~. 

d) Each  ?, e Cx contains a positive even number  of infiection points. In  fact,  
let  3: ? -> S * be the  (( tangent ia l  Gauss map ~> and P,  Q, P ' ,  Q' be as in definition J .2: 
then,  as r ~ E~, v(P) = v(Q) and the  arcs v (P )v (P  r) and z(Q)v(Q') are coherent ly 
oriented in $1; thus,  the number  of points v(X) where the orientat ion of S ~ is 
reversed must  be even. h-ore tha t  this number  cannot  be zero, otherwise PQ would 

not  be in ~. 

1.4 DEFI~-ITI0-~. -- We say tha t  a b i tangent  r is a bitangent o /dep th  1 if r e El .  

1.5 A S P E C I A L  C A S E .  - -  Assume that ,  for each r e El ,  7~ contains exact ly  two 
inflection points;  set ] = # 5 ,  e =  # E ,  i---- # I ,  e l = # E ~  and note  t h a t  (see 
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figure 4): 

�9 % a = ~ (A)  = ;~(X') 

Figure 4 

a) there is a natural  2 -  1 map h: ~ - - > ~ l  such tha t  h-l(r) consists of the 
two inflections points in ?~; 

b) in particular, ]/2 ---- e~; as the Fabricius-Bjerre formula in this case reduces 
to e ~ - - / / 2 ~ i ,  we also have e - - i = e ~ ;  

e) let ? '  be the curve obtained from y by  replacing each of the arcs y~ with 
the segment having the same endpoints: y'  is a convex (C ~, piecewise C ~) curve and 

K(r) = K(r') + K(U,) = 2= + 
tEE r~E, 

(K(~) denotes here the tota l  curvature of the arc ~). 
We want  to generalize the above situation to any  curve ?;  tha t  is, we want  to 

p rove  the following: 

1.6 PROPOSITIOI% - .For any y o#e ean choose: 

i) a subset ~ c_ E' ; 

2) subsets E~ c j~ (r e E~ will be called a bitangent  of depth i); 

3) subsets F~ g ~ (P e F~ will be called an inflection point of depth i); 

4) two /amilies o] arcs C~ and :CI; 

such that: 

a) E = Fi U ... l l lv~ an~ ~ = E~ U ... U E~ ; 

b) there exist8 a natural 2 -  1 map h~: tz~-+ E~; iq~ particular (setting, as usual, 
= # ~ ,  e ~ :  # E i ,  ] ~ :  #F~) we have that ei-~ H2 and //2 -~ ~ = e--  i; 
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c) C~ is the /amity o/ arcs 7~ associated to r e E,;  ]or each 7, we can construct 
an auxil iary arc y: such that y~ contains exactly the two inflection points o] F which are 
in h~-l(r); C~ will be the ]amily of such auxiliary ares; 

a) K(~) = 2~ + ~ K(r:); 

e) i], ]or each r e E, ,  ~, contains exactly ~wo i~]lection points, then C~ -~ C~ and 
Fi+~-= E~+x = O. 

Note: 1.5 above eorresponds to the ease k - ~  1. 

PI~OOF. - The proof consists in constructing inductively the families F~, C~, E~+I 
and C~+1, s tar t ing from E,  and C,, provided they  satisfy 

(1.7) a) Z~ c E,;  b) C, = (r , :  r e E~}; e) r n prc  ;5 ,  Vr e E , .  

We give the details for i = 1: the construction will be the same in the general in- 
ductive step. 

Note tha~, by  remarks 1.3, Ex and C~ satisfy (1.7) above. 
F ix  r e E~ and let P ,  and Q, be the endpoints of the associated arc y~; we want  

to choose 

1) tWO elements of FI  which will be the elements of h-~l(r) (and will be called 
privileged for r); 

2) two subsets E~,r_cE2 and C~,~c_C~ sa t is fying (1.7) above; 

f t 
3) one element ?~ of C1 such tha t  ?, contains the two privileged inflection points 

for r and K(~,r) = K(7~) + ~ K(Vs). 
8 ~ E ~ , r  

I f  y, contains exactly two inflections points A~ and B,,  then h-;l(r) = {A,, B~}, 

Otherwise, consider ~, and ~ :  the situation is similar to She one we discussed 
in 1.3 for ~ and ~, with the only difference t ha t  yr is now an are instead of a closed 
curve; however, recalling tha t  r s E ~, we can say tha t :  

a) ~, n ~,, is the disjoint union of convex snbares of ?~; 

b) ~ , \ ?~  is the disjoint union of a simpliciM arc pij)pQ,Q(~! and of some seg- 
ments ;  each one of these segments is contained in a bitungent s belonging to E ' ;  
while the segment _P_P(J)(resp. Q~Q(,I)) is contained in a tangent  through /'~ 
(resp. Q~) to y~ at  p~l (resp. Q(~)) (see figure 5); 

e) y~ \~ ,  is the disjoint union of the two arcs a, and fl~ with endpoints P , ,  P~(" 
and Q~, Q~) and of some other subarcs of y~: each one of these other subures is the 
arc ?~ associated to one of the exterior bitangents s found in b) above; 
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d) each ~ contains a positive even number  of inflection points and is such tha t  
s (h ~ c ~V~; on the  other  hand,  bo th  an and fl, contain an odd number  of inflection 

points. 

This can be proved as in remark  1.3 d): note  t h a t  the situation at  the endpoints 

of the arc gr looks like in figure 6. 

.p(~) 
f 

r P~ 

s < r  

QT' 

Qr 

p~l) 

[Figure 5 Figure 6 

We say t ha t  the  bi tangents  s found as above are derived /rein r (and we write 

s < r), and the  arcs ~ found us above are derived Item ~r (and we write $~< tn). 
I f  now bo th  ar and fir contain exact ly  one inflection point  (let them be Ar and B~ 

respectively),  t hen  we can finish the construct ion as follows: 

1) h?l(r) = {At, Br} _c/%; 

2) ~ '  is the  arc obta ined from ~r by  replacing y~ with the  segment hav ing  the 

same endpoints,  for each ~ <  ~n; 

3) = {s: s < a n d  = {r . :  r . <  r .} .  

Otherwise, we need to  i terate  this construction on the  arcs g~ (and/or fl~) in order 
to  choose on each one of t hem one (( privileged )) inflection point  and (( cut off )> the 
remaining ones by  pairs, by  means of exter ior  b i tangents  which will be fur ther  ele- 

ments  of /~.n. 
The only  difference between the arc g, (or fin) a n d  the arc ~, is the si tuation at  the  

endpoints~ which looks as in figure 7. Thus:  

a) •,. n a, is the  disjoint union of convex subares of ~,; 

_~(1) p(2)  b) 5~\a~ is the  disjoint union of a simplicial are /~, ~ n and  of some seg- 
ments ;  each one of these segments is contained in a b i tangent  s belonging to /~', 
while the  segment (~) (~) P ,  P~ is contained in a t angent  t h ro u g h  P(~) to  ~n at  pro). 
again we shall say t h a t  s is derived f rom r (and we write s < r); : 
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Figure 7 

e) ~ \ ~  is the  disjoint union of the  subarc %- (~) with endpoints  P(~),. and P(~) 
and of some other  ares: each one of these other  arcs is the  arc y~ associated to one of 
the bi tangents  s found in b) above;  

d) each one of the  arcs 7~ contains an even number  of inflection points and is 
such t ha t  s (~ % c ~ ;  while - (~) contains an odd number  of inflection points;  

e) the  arc a~) at  its endpoints looks like the  arc a~, so tha t  we can (eventually) 
i terate  the  construct ion wi thout  any  fur ther  difference (see figure 7). 

Since there  is only a finite number  of inflection points,  the  construction ends in 
a f in i te  number  of steps. 

Set %-(~ _~ %~ ~/~(~ fi~ and let  n (resp. m) be the  smallest integer ~ 0  such 
tha t  - (~) (resp. (~) % fl~ ) contains exact ly  one inflection point  A~. (resp. B~); then:  

1) the  privileged inflection points for r are h-~(r) = (A~, B~} c_ ~ ;  

2) /!7~., = {s: s < r} is the  set of all the  bi tangents  derived f rom r found during 
the  construct ion;  

3) G,~ = {~:  y~ < ~,} is the set of all the  arcs derived from y, found during 
the  construct ion;  

4) the auxil iary arc % e C' 1 is the arc obtained from 7r by  replacing each 
subarc y, < ~.r with the  segment having the  same endpoints.  

Note  t ha t  y: contains exact ly  two inflection points, t h a t  is Ar and B~; moreover,  
for each s e E~,,, one has s N % c ~ .  
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Finally,  we have:  

El-----{Pe h~-l(r), for some r e e l } ;  

E~ ---- {s e E2,~, for some r e El}; 

C2 = {~ e C~,~, for some r e El}; 

? I 
C~ = {7~, for some r e El}.  

In the example shown in figure 8 we have tha t  r (resp. 7,) is the only element of E1 
(resp. of C~), ~1-= {A,, Br} , E, = {a, b, v, g}, C, = {Ta, 7~' 7~, 74} and  C~ consists of 
the curve 7~ in figure 9. 

Note t ha t  K(7) = 2z + ~ K(7',) + ~ K(7,); moreover, it  is clear t ha t  E~ and C~ 

satisfy (1.7), so tha t  we can i terate the construction. As the number of inflection 
points is f inite,  there must  exist a h>~ 0 such tha t  ~ =  0, tha t  is the construction 
ends in a finite number of steps: we define the depth o] 7 (written dep (7)) as the 
biggest integer n such tha t  E ~ r  0; if dep (7) = n, then  Y : F~ [_J ... [_J E~; set 
J~ : E~ U ... U E~, and note tha t  the properties stated are satisfied. In  particular, 
the ident i ty  (d) on K(7 ) can easily be proved by  induction on dep (7). [] 

1.8 RElVIARKS. -- a) The above construction gives a part ial  ordering on the set 
(or, equivalently, on the set of couples h-l(r) in 5 )  ; the associated graph is the  disjoint 
union of el trees: in fact, for each s e Ej (]>2) there exists a unique r e e l . <  such 
tha t  s < r. 

/ ' ,  Q, 

Figure 8 

i 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ j  
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b ~ q 

p ,  I c Q, 

Figure 9 

b) The definition of dep th  m a y  seem ve ry  compl ica ted and  one could hope 

to find ~ simpler way  to get  the  same not ion ( that  is, families sat isfying 1.6); for 
example ,  a more  (~ na tu ra l  ~) way  to associate to an  exter ior  b i t angen t  of E '  a couple 

of infiection points  of y could be to consider the  first and  the  last  one on the  arc 

associated to r (with respect  to a fixed or ienta t ion on ~); however,  b y  examining  the  
following figure t0 ,  the  reader  call convince himself thu t  this  way  does not  work:  

no te  t h a t  there  does not  exist  an  exter ior  b i t angen t  s to ~ such t h a t  y~ contains the  
inflection points  B and C; following 1.6, instead,  we h ~ v e / 7 ,  = {.4, B}, / ~  = {C, D} 

and  dep (7) : 2. 

1.9. Ex~E~SIo~ mo Tm~ SIY~PLIC~L CASE. - All the  above  discussion applies, 

wi th  slight changes,  to a simplicial curve (see also [BD]);  for such a ourve y, simple 

closed and  connected,  / ~ ](~) is the  n u m b e r  oi the  inflection sides of ~; note  tha t ,  

in this  case, a line r can be (~ t angen t  )> to y ei ther  a t  a ve r t ex  or a t  a side; the  same 
applies to b i tangents  (see figure 11). The analogous oi (1.1) is in this case: 

V 

Figure i0 
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Figure 11 

'v,'V \ / / /  
$* ~,/ 9.r/ 

V V / I  . 

Figure 12 

1.10 SIM_2LICIAL GESIEa~ICITY ASSU-MI'TI0~I. - N0 tWO inflection sides of ~ are on 
the  same line; ~ has  no t r i t angents ;  ~, has no t angen t  line a t  an inflection side. 

Wi th  these changes~ the  construct ion works as in the  proof of  1.6. 

1.11, I~ELATIONSHIP BETWEEN dep (y) A N D  d ( y ) .  - Le t  y be ei ther  smooth  or 
simplicial; d(y) denotes  the  geometr ic  degree of y (as defined in the  introduction).  

Note  t ha t :  

a) g@) ---- 2 ~=~ ~ is a convex curve <=>dep @) ---- 0. 

b) I f  r e E k  and k > 2 ,  t hen  r is t angen t  to ~ a t  two points  which lie in the  
interior of ~; thus,  there  exists a line r '  (parallel and  closed to r, t ransverse  to y) 
such t h a t  # {r' (~ y} > 6, This proves  t h a t  d(~) = 4 ~ dep (~) < 1. 

e) The curve in figure 12 has degree 6 and  depth  3. 

This suggests the  following problem, which, in spite of the  e lementar i ty  of its for- 

mulat ion,  seems us to be quite subtle:  

R.  BE~EDETTI - M. DED6: Global inequalities ]or eurves~ etc. 
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1.12 P~0]3LE~. - Does there exist a function h, depending only on d = d@), 
such tha t ,  for every r as befor% dep @)<h(d@))? 

1.13 EXERCISE. - The simplest non trivial case to consider is, probably~ the one 
of the simplicial curves y constructed inductively as follows: ~o is a convex polygon; 

the convex hull /~, of V,+z\V, intersects ~, along one side s, of y~; y , + l \ y , :  

= F , \ s ,  (see figure 13). Le t  % = # {~,: s, is not  an inflection side of V,}. 
Then: 

a) (easy) dcp ( ~ ) =  %; 

b) (we do not  know the solution) find (if any) an inequali ty of the kind 
< h(d(r)). 

d e p  (y) = 4 "~  .-~ 

Figure 13 

2 .  - T h e  g e o m e t r i c  inequality. 

2.1 THEO~E)L .Let ~ be a simple connected plane curve with ]----](~,) > O; then 
�9 : < + ]a/2). 

PROOF.  - Recall that K @ ) =  2u + ~K({~)  (see 1.6 d)). 
rr  

Since ~ ]/2, i t  is enough r show that ,  Vr e ~ ,  (~J < std. Let  us fix r e 
and let ?~ be the auxiliary arc containing the two inflection points A and B of h-l(r) ; 
let a (resp. b) be the tangent  line to ~ at  A (resp. B) and s be the line through A 
and B (see figure 14); assume tha t  s is transverse to ~,~. CleaEy 

n # { s n y r } <  - - Z  

Moreover, if ~, fi, ~' and fl' are the angles marked in figure 16, then ~ + fl = s + fiq 
We can compute K@~) as the sum of the to ta l  curvatures of the convex arcs between 
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a/~/ t" q ~ b r 

Figure 14 

two consecutive (along 7'~) points of y '  ~ s, thus obtaining: 

g / ~ (y~) 2 ( ~ + ~ ) + ( n  2 ) ~ < ~ + ( n  2)~<d~. 

If  s is not transverse to ~, then the same argument  given in [BD] (pag. 113) shows 
tha t  the same inequali ty holds a for t io r i .  The theorem is proved. [] 

2.2. R E d , K S .  - a) Let  L be a line and PL the orthogonal projection onto L;  
we say tha t  L is generic for y if PLIY is a Morse function; for such an L, set 
#(s = # {critical points of P~tY} and denote by  sb the superbridge index of ~ (so 
called in analogy with knot  theory:  see [K]), tha t  is sb = sb (~) = sup #(L). 

Recall t ha t  the total  curvature of ~ may  be interpreted as the mean or expecta- 
tion value of #(L), tha t  is K(~) = 1/2f~(L) (where the lines L are intended here to 

$1 

be oriented); thus we obviously have K ( ? ) < u s b  (~), 

b) I t  is not  difficult to see tha t  the proof of 2.1 gives in fact 

(2.3) sb (~,) ~ 2 + dJI2 

(if ] > 0; similarly in [BD] we had actually proved tha t :  

(2.4) sb (~) < / ( 2  -[- d/2) 
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v) For /----2 and any  d the inequal i ty proved in 2.1 is sharp: see [BD], 
remark 1. 

g ! l l d) The inequali ty (7~) < ~d is sharp for a single arc 7~ ~ C~: in fact, the same 
family of examples used in [BD] (figure 1) to show tha t  2.4 is sharp for ] = 2 gives, 
Ve > 0, a curve 7 and a bi tangent  r e E~ such tha t  K(7~) = : ~ d -  e. 

e) For f > 2, the  inequali ty in 2.1 is NOT sharp (see, for instance, the fol- 
lowing proposition 2.5); the main reason of this fact  is tha t ,  as we noted in re- 
mark  b) above, we actually proved (2.4) and derived from it  the inequali ty in 2.1. 

Other reasons are t ha t :  i) i t  could be possible to get for K(7') a stricter bound, 
when r is a bi tangent  of depth greater than  1; ii) we took into account each 7~ one 
by one and not  their  reciprocal positions (see also the following proposition). 

2.5 P~OPOSITm~-. - I1 d(7 ) = 4, then K < ~(4 + / ) .  

P ~ o o F . -  Note t ha t  dep ( 7 ) =  1 and /~ = E = El .  For  each r , e  E1 (i = 1, ... 
. . . ,  m = f /2) ,  let ~ ,  fl,, n, be defined as in the proof of 2.1; note tha t  n~=  2 for 
each i; hence: 

K(7)-~ 2~ + ~, K(7~ ) = 2~ + ~ 2(g,+fl~). 
{,= 1 , . . . ,m i = l , . . . , m  

Using the fact  tha t  d = 4, it  is not difficult to show tha t :  

~ + f l ~ > ~ + f l ~ < ~  Vjr 

This implies tha t  K(7 ) < 2z -~ 4~ ~- (m -- 1)2~ = 4z ~- 2m~ ---- 4z + zf. [] 

2.6 REMARK. -- The inequal i ty of (2.5) is sharp for ] = 2 and for ] = 4 (see 
figure 15); i t  is likely t ha t  it  is not  sharp for ] > 6 .  

2.7 PROBLEI~. - Give a sharp inequali ty for K(7 ) in terms of d(7 ) and f(7)" 

Figure 15 
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3. - Genera l izat ion  to  curves  w i t h  cusps and n o r m a l  crossings.  

We consider curves y _c R ~ such tha t :  

1) there  exists a local homeomorphism g: $1-> y onto y;  

2) there  is a finite set C(y) of cusp points of y;  

3) gI{S~',,g-l(e(y))} is a smooth normal immersion with a finite number  of 

simple normal crossings. 

We distinguish between cusps of the  first and of the second kind (denoted b y  e ' (y )  
and C"(y)), according to figure 16. 

/ '  ~ e'O,) q e e'(~,) ~ , . . ~ . ~  

Figure 16 

We call such a y an irreducible plane curve with cusps and normal crossings. Let  
us denote:  

3~(y) = {normal crossings} ; n(y ) = # 2g'(y) ; e'(y) -= # C'(y); 

c~(r) = # e : ( r ) ;  c(r) = # e ( r ) =  c'(r) + ~ " ( r ) .  

3.1 RE~A~K. - Recall t ha t  the generalization of the Fabricius-Bjerre formula 
to this case gives (see [FB2]): 

e = i + 1/2 + n + e ' +  c"/2. 

This suggests tha t  the  quant i ty  1/2 = e -  i of 2.1 should be replaced in this case 
by  1/2 -t- n ~- c' -[- 0"/2. In  fact :  

3.2 Tn'EO~E~. - Let y be an irreducible plane curve with cusps and normal crossings 
and assume that it is ((generic ~ (in the sense o/ ~abricius-Bjerre); then: 
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P~ooF. - The idea is to construct  a smooth connected simple curve y '  such tha t :  

K(r')~>K(Z), 

d(r') <d(z), 

I(/) <1(~) + .9n(7) + 2e'(r) + c"(:J) 

The (~ moves ~) in order to pass from F to 7' are shown in figure 17: note  tha t  they  
can be done in such a way  tha t  7' is a C ~ curve. 

I t  is easy to show, by  induction on n(y), t ha t  we can choose one of the two moves 
described for the crossing points in such a way tha t  y'  is connected. I f  no crossing 
point  is an inflection point,  then  the moves add two inflection points in cases A 
and B and one in case C (see figure 17). Thus 

] ( / )  = r + 2n(~) + 2e'(),) + e"(y). 

P e e'(y) < 

either 

< 
& 

F i g u r e  17 

c.  

/(r')=/(~) + 2  

1()/) = / ( y )  + 1 

If ,  instead, some crossing point  is also an inflection point,  i t  is easy (see figure 18) 
to show tha t  (~ two ~) is replaced b y  (~ at  most  two ~, so tha t  (( = ~ is replaced by  

(~ ~< ~ above. 

In  order  to see tha t  d(y')~< d(~) it is enough to note tha t  every move replaces two 
arcs (say c~' and e") of y by  one convex are (say e) whose convexi ty  is directed towards 

the singular point  (say P) :  see figure 19. 
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t \  / \  
C/ 

](r') = l(r) l(r ')  = l(r) + 2 l (r ' )  = l(r) t (r ' )  = l(r) 

Figure 18 

l (r ' )  = l(r) + 2 l(f") = l(r) - 2 

To see t h a t  K ( ) / ) > > . K ( ~ ) ,  let  the  endpoints  of a t end  towards  P ;  then  K(a ' )  

K ( ~ " ) - +  0 (see figure 19), while K(a)- ->  so > 0 (note t ha t  if P is a cusp then  
~o = ~). The theorem is proved.  [] 

3.3 }~EMARKS. - a )  3.2 holds also in the  simpliciM ease; in this case there are 

no cusps, and  the  moves  at  a crossing point  are the  na tura l  analogous to the  previous 
ones; the  inequal i ty  becomes 

K(~)< 2~ + ~a(~)(/(r)12 + ~(~,)) . 

b) As in the simple ease (see r emark  2.2 b)), 3.2 gives in fact  

(3.4) sb (~) < 2 + a(r)[l(r)/2 + ~(r) + ~'(r) + c"(r)12] 

�9 /" e or(y) 
! 

/ '  e e'(r ) 

/ 

Figure 19 

2, e e"(rl ) 
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where sb (7) oan be defined as in the  simple case, with respect  to lines Z generic 

for 7, t h a t  is: no ((tangent ~> to 7 s t  a singular point  is orthogonul to L and 

pL][7 \ (C(7)  U 2C(7)) ] is a 5lorse funct ion (with necessarily a finite number  of 
critical points).  

4. - A n  appl i ca t ion  to  knots .  

Le t  7 be a smooth  knot  in R a with nowhere vanishing torsion v > 0 ; the  to ta l  

curva ture  and  the to ta l  torsion are defined as g ( 7  ) -~f[k(s)[ ds and T(7 ) = f l z ( s ) [  ds. 
Y y 

An hyperp lane  E of R ~ is generic for 7 if P,[v is a normal  immersion.  
Set N(y ) = sup # {normal crossings of PE]~,}. Then 

E generic 

4.1 PIIOPO SITIOI~ 

K(7) < 2= § a(7)[4=N(7) + 2'(7)]/8. 

PROOF. - I t  is an immedia te  consequence of 3.2 and the  results of [1Ki]. A similar 

result  holds for simplicial knots.  [] 

PART I I  SUI~FACES 

5. - The  geometr i c  characters .  

F r o m  now on, S will denote  a smooth  closed connected surface embedded  in R 3. 

Le t  us first fix some nota t ions :  one uses R P  ~ to  pa ramet r i ze  bo th  the  lines and  
the  hyperplanes  th rough  the  origin in R~; to distinguish these two cases we shall 

adop t  the  no ta t ion  RP~ and RP~ respectively.  I f  E e R P  2, PE: R 3 -+ E will denote 
the  or thogonal  project ion onto E (or its restr ic t ion to S). We say t h a t  E e RP~ 
is generic for S if p~tS is a Morse funct ion;  we say t ha t  E e RP~ is generic for S if 
p~[S is excellent in the sense o/Whitney ( tha t  is, i t  is a stable map) .  I n  part icular ,  if E 
is generic, the  critical set ZE of p ,  is a, smooth  closed curve in S and the  apparent 
contour of S in E,  v ia  PE, t h a t  is ?E~-pE(X,) ,  is ~ curve with cusps and simple 
normal crossing points. 

Let  M be a surface diffeomorphic to S (by means,  for example ,  of the  ident i ty  
m a p ;  let us denote b y  E m b  (M, R 8) the  open set of C~(M, R 8) (with the  Whi tney  
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topology) consisting of smooth embeddings of M in R3; if h e Em b  (M, R 3) we write 
M~ for h(M). 

5.1 T n ~ o ~ .  - There exists an open dense subset A o / E m b  (M, R 3) such that 
Vh e A the (normal) Gauss map n~ : M~ -+ S ~ is a stable map, that is it is excellent 
in the seq~se oJ Whitney. 

PRooF. - We refer to [BW], [Br], [McS]. [] 

We shall say tha t  S is generic if S = M~, for some h e A. 5.1 implies, in parti-  
cular, that ,  if S is generic, then  the critical set Z~ of the Gauss map  n: S -+ S ~ is 
a smooth closed curve in S. 

As in the c~se of curves (see 2.2 a)), we can define the superbridge index of S as 

sb : sb (S) ---- sup tt(E ) 

where #(E) = # {critical points of pElS}, and the sup is t aken  among all the hyper-  
planes E e RP~ which are generic for S. Again, sb (S) is related to  the total curva- 
ture of S 

K = K ( S )  =~lk(p)] dA 
S 

b y  the inequal i ty  

K(S) -= 1/2 f t t (E ) <2~ sb (S) .  
S ~ 

Two geometric characters of S which certainly play a role in bounding K(S) are: 

g ----g(S) (the genus of S) 

F = / ~ ( S )  ---- b0(27,) �9 

Note tha t ,  by  5.1, /~ is a well-defined positive integer:  moreover,  g > 0 ~ / ~  > 0 
and E = g = 0 r S is a convex sphere. For  each E e RP~,  E generic for S, set:  

n(E) -~ # {normal crossing points in ps(XE)} ; 

c(E) = # {cusps in p~(Z~)}; r(E) = bo(ZE). 

I f  E e R P ~  is such tha t  ZE and X~ are transverse curves on S, set t ( E ) =  
= sup # {270 (~ 27x}, where the sup is t aken  among all the connected components 
2:0 of 27~. 

We can now introduce the geometric characters associated to S, in terms of which 
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we shall give a bound to  K(S) :  

N = ~ u  sup n(E) 
generic 

( J = C ( ~  ~) = sup e(E) 
.E generic 

R = R ( ~ ) =  sup r(E) 
E generic 

D = D ( S ) =  sup d(Z~) 
E generic 

T =  T(N) = sup t (E).  
E generic 

We want  first to  jus t i fy  the  fac t  t ha t  these geometr ic  characters  (as long as sb) 
are well-defined and  (~ generically ~> finite. 

As regards D, the  geometr ic  degree of a smooth  curve V in R a (or of a plane 

curve V) can be seen to be well-defined b y  means of e l ementa ry  t ransversa l i ty  
a rguments .  

I n  order to see t h a t  N,  C, R, and  sb are well-defined, we mus t  show tha t  the  set 

of lines E ~ RP~ {or hyperplanes  E ~ RP~) generic for S is not  e m p t y :  this is an 

easy appl icat ion of a general  result  of Mather  ([M]): 

5.2 PlCOI~0SiTI0~. - For any S (not necessarily S generic): 

a) there exists an ope~ dense subset W ~ RP~ such that, VE ~ W, pE]S is a 
Morse funetion ~ 

b) there exists an open dense subset ~2 c_ RP~ such that, VE ~ Q, pEIS is a stable 
map (excellent in the sense o] Whitney). [] 

Thus, N, C, R, sb are well-defined. 
Note  t h a t  the  analogous of the  first s t a t emen t  in 5.2 holds also for smooth  closed 

curves y in R 3 (or for plane curves ), wi th  respect  to lines in RP~). 
As regards T~ we mus t  also show t h a t  i t  is not  e m p t y  the  set of E such t h a t  22~ 

is t ransverse  to  Z~: thus,  we need a sort  of ~( relat ive version ~ of 5.2 (applied to the  
curve Z~ in S); again, i t  is not  ha rd  to  p rove  it  in our simple case, using the  tech- 

niques of [M]: 

5.3 LE~D~A. - There exists an open dense subset 12'c_ I2 such that, gE ~ Q', the 
curves Z~ and X, are transverse in S; moreover, Zn does not meet X~ at any cusp or q~or- 
real crossing o] PE and pEIZ~ is c~ normal immersion (with simple normal crossings) 
o] X~ in E. [] 

Note  tha t ,  a priori, the geometr ic  characters  we have  defined could be oc; in this 
case, the  inequalities we are concerned with  would be trivial .  However ,  they  arc 
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(~ geaerically ~ finite: one can see this, for example, by  approximating the surface S 
with some non singular ~lgebraic surface V: for such a surface V, the set of generic 
lines (or hyperplanes) is a semi-~lgebraic set ~nd thus has a finite number  of con- 
nected components;  as the  geometric characters we have defined are constant  on 
e~ch of these connected components,  they  are finite. 

F rom now on, we shall always assume, implieitely, t ha t  S is generic and tha t  
all its geometric characters are finite. 

6. - The inequalities. 

Let  E e ~ '  (as in 5.3); then  the critical set I s  of pslS is a smooth closed curve 
in S, while the apparent  contour of S in E,  tha t  is y e n  pc( Is ) ,  is a curve with 
(~ finite number  of) cusps and simple normal crossings; moreover~ if X~, ..., 11~ are 
the connected components of !E ,  then  ? i n  p s ( l i )  (i = 1, ..., k) are the irreducible 
components  of y=. Clearly, we want  to apply the results of w 3 to the curve ?=: the 
fact tha t  this is possible is an easy consequence of the genericity assumption on S: 

6.1 L F ~ A .  - There exists an open dense subset ~" c f f  such that, VE e ~", any 

irreducible component ?~ o/?= is a generic curve with cusps and  normal crossings. [] 

l~ecall now tha t  a line L in P(E)  is generic for y= if p= is a Morse function outside 
the singular points of ?E and no tangent  to y in a singular point  is orthogonal to Z. 
In  particular,  if L is generic for 7=, then it  is generic for each yi. I t  is not  h~rd to 
see tha t  the set of lines generic for 7s is an open dense subset of P (E) ;  if L is such 

line, then  pLopE: S --> L is ~ ~o r se  fm~_ctioa on S and there  is a natural  bijection 
( v i a  Psi) between the critical points of pLopslS and the critical points of 
PLl(?s \Sing  (?E)). I t  is clear f rom the above discussion tha t  there  exist E and 15 
as before such tha~ 

sb (S) = # {critical points of pLOpSlS } . 

Thus we have,  for such an E:  

(*) sb (S) = sb (yE) = sb (71) + ... + sb (?~); 

lVIoreover, as we can assume E in ~" :  

(**) sb (;~i)<2 + d~(ni+ ci + Ii/2) 

where di = d(?,), n i = n ( ~ / i )  , c i = c ( ~ ) i )  , / i  = / ( ~ / i )  * 

I t  is obvious, by  definitions, tha t :  

nl~-  ... § n~<iV(S); c~§ ... § e1~<r k < R ( S ) .  
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As regards d~, note  that ,  if L is all affine line in E e D", t ransverse to 7~, then the 
hyperplane H through L orthogonal to E is t ransverse to I ,  and there is a natural  
bijection between {Lr3),E} and { H n  Z'E}; thus, d~<D(S), Vi. 

This means that ,  f rom the inequalities ( , )  and (**),  we can get 

(***) sb (,s')<2R + D[Y + C +/(~,~)/2]. 

6.2 LE~51A. - For each E in D H, /(?~)<.<F(S)T(S). 

PI~OOF. - Le t  y e 27E be a point  such tha t  PE(Y) is not  a singular point  of ~'E: 
then,  as 2J~ and I .  are transverse,  there exists a neighbourhood of y in Z'~ such 
tha t  its image is a planar  arc a where the curvature  never  vanishes; note tha t  in a 
neighbourhood of y in S the  gaussiau curvature  k of S is positive (resp. negative) 
if S folds towards the convex (resp. concave) pa r t  of e (see figure 20). 

k(y) = 0 

l [ !  o 

Figure 20 

Thus, if xo is an inflection point  of ?~, then  Xo = PE(Yo), where k(y,) = 0, tha t  
is Yo e ZE (3 X~. The thesis now follows from the definitions of /~(S)  and T(S). [] 

6.3 COROLLA~Y. 

K(~) < 4~R + ~D[2N + 2C + ~ F ] .  [] 

We want  now to show tha t  i t  is possible to eliminate ei ther R or C f rom the inequal- 
i ty  in 6.3, by  adding the  genus g(S). 

The possibility of eliminating C follows from a nice result of Pignoni (see [P]). 

6.4 L~lVL~A. - .For every generic E 

c(E)/2<n(E) § r(E) § g--  1. 

PRoof .  - In  fact  Pignoni proves a quite stronger result:  he shows how to as- 
sociate to every  component  F~ of IE  a sign #~----=I=1 and similarly to every  normal  
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crossing a sign at; then,  sett ing _h r+ ---- # {]: at = 1} and 2 ~ - =  # {]: a~ = -  1}, one 
has the  identity: 

c(E)/2 : ( ~  tt,) -~ iV+-- _AT- + g -- 1 .  

Of course the  inequal i ty  follows trivially. [] 

6.5 CO~0LLARY. - For every generic sur]aee S in R ~, 

K(S)  < 4~R -~ ~D[6N ~ 4t~ + 4 g -  4 + TF] . [] 

We are now going to see how one can eliminate R f rom 6.3. 
Le t  S + and ~-  be the subsets of S where k is positive and negative respectively 

( S \ l n  = S + L.J S-) .  l~ote t ha t :  

a) every  cusp point  of I s  must  be contained in S- :  in fact  it  is not  on I s  and 
the cusp in E looks like in figure 21; 

Figure 21 

b) if F n  1 .  = 0, and F does not  contain cusps, then  l%]F is a normal  eon- 
vex immersion, t h a t  is /(p~(F)) = 0; 

e) if F ~  X . =  O, and F c_S-, then  F could contain cusps, bu t  again 
I(pE(F)) = 0. We call pElF a convex immersion with cups. 

Let  X be the set of the  connected components  of XE; set:  

V = ( _ r e X :  F n  l . ~  0}; 

W =  { F e X :  F ( ~  Z ~ -  0 and p~iF is a convex immersion with cusps} ; 

Z = { F e  X:  F ( ~  l~----- 0 and pElF is a normal  convex immersion} . 

I t  is immediate  to see tha t  

boW) < T F  

while, recalling tha t  (by [H]) every  component  of W has an even number  of cusps, 
we also have 

bo( W) < C12, 
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Thus, we are leit with the problem to give a bound to bo(Z). In order to do this, 

we need some lemmas. 

6.6 LE~wA. - Let F e Z and assume that it bounds a disk D in S + [.J S -  such that 

D does not intersect any other component of I ,  then JF c_ S + and y = pE(F) is a simple 

convex curve. 

P~oo~ ~. - Choose a small collar of F inside D. This is an annulus A,  ~A = F U F' ,  
und we m a y  assume (if F '  is close to F)  tha t  p~[F' is a normal  convex immersion and 

7 ' =  p~(F') looks like 7- 

5~oreover, it is clear tha t  p ~ I D \ A  is an immersion; by  a result of [H], the rotation 
number of pE[F' must  be 1. I f  F is in  S-,  the rotat ion number  should be negative;  

while, if F is in S + and ? is not  simple, the rotat ion number  should be > 1 (see 

figure 22). 
This proves the lemm~. [] 

6.7 L E ~ t .  - Let 1 ~, 17"' be in Z and assume that they are both in S + or both in S- .  

Then F L_J F cannot be the boundary o] an annulus A in S \ Z ~  such that A does not 

intersect any other component oJ XE. 

PROOF. - Use the same argument  as before and the fact  tha t  the rotat ion number  

mus t  be 0. [] 

6.8 L E ~ A .  - I] F E Z is like in 6.6, and S is not the 2-sphere, then there exists a 

component F '  o] Z,,, which bounds a disk D ' ~  S + U F '  such that Fc_ D'. 

PROOF. - By  6.8, y = pE(_F) is a simple convex curve and F_c S+; if there does 

not  exist a F '  like in the thesis, then S should close up to give a sphere. [] 

6.9 Lv,~L~A. - Let S be a non convex sur]ace; i] (g-~ 1 ) F > I ,  then b0(Z)< 

<~3g ~ 3F  ~- C - - 3 .  
I]  (g ~- 1 ) F  = 1, then bo(Z)<2. 

y c S  + 

?' 

Figure, 22 



]~. BEI~EDETTI - ~r DED0: Global inequalities ]or curves, etc. 237 

P~ooF. - Le t  M denote the  surface obta ined b y  cut t ing S along the  k <~ F ~- C/2 
curves of X~ I I  W; note  t h a t  z(M) -~ )~(S) ~ 2 - -  2g and  M has 2k > 0 bounda ry  

components  (if k where 0, S would be a convex surface). 
B y  the  above lemmas,  we are interested to bound the  max ima l  number  ~(M) 

of connected simple closed curves on M \ ~ M  such t ha t :  

1) no one of these curves bounds a disk in M' .~M,  

2) no two of these curves bound an  annulus in M ~ M .  

One easily shows (by computa t ion  on the  Euler-Poinear~ characteristic),  t ha t ,  if 

M '  is a connected surface with genus g' and k ' >  0 boundary  components ,  then  

~(M')  • 3g' ~- 2 k ' - -  3, except  for the  case g ' :  0 and  k'  -~ 1 ( that  is a disk), where 
a(M')  ~ 0; this except ion implies tha t ,  if M is as above,  then  the  max ima l  ~(M) 

occurs when all the  curves along which S is cut ted  to get  M bound disks in S, t h a t  

is M is the  disjoint union of k disks and  a surface M '  wi th  k boundary  components  
and  genus g ( M ' ) ~  g(S). Thus ~ ( M ) :  ~ ( M ' ) ~  3g -~  2 k - - 3 .  As before, the  o n l y  
exception is for g ~ 0 and  k ---- i ( that  is, as S is not  convex,  a sphere with F ~- 1 

and  C -~ 0), where ~(M) : 0. 
I n  order to get  bo(Z), i t  is enough to note t ha t  (for l emma 6.8) Z could have  one 

componen t  more  for each component  of X~: t h a t  is bo(Z)<~o~(M)-~<<.3g-~ 
-~ 2 (F  ~- C/2)-- 3 ~ ~ -~ 3g Jr 3F -~ C-- 3 if (g ~ 1 ) F >  1, while bo(Z)<2 if g : 0 
and  /~ ~ 1. [] 

6.10 THEOREm. - Zet S be a generic, non convex, sur/ave in R 8. Then: 

K(S)<2z[(2T -~ 4)~ --~ 3U -~ 6g-- 6] -~ :~D[2N + 2U --~ FT] i/ (g + 1 ) E  > 1; 

and 

K(S) < 2 ~ [ 2 T  -~ 2] ~- 7~DE2N + T] i/ (g ~- 1 ) ~  ----- 1 .  

PROOF. - Of course, R<~bo(V) ~- bo(W) ~- bo(Z); moreover ,  if F is a component  

of 27~ such t h a t  there  exists F ' e  V wi th  /" n F'=/= 0, then  F can not  be  among 
the  components  of X~ occurring in l emma  6.8; thus,  if (g ~ - 1 ) F >  1. 

R<~bo(V) -~ bo(W) -~ bo(Z)-  .F -~ 

: T.F-~ C/2-~3g-~3_F-~  U - - 3 - - F :  ( T - ~ 2 ) F + 3 U / 2 + 3 g - - 3 .  

I f  (g-~  1)_F--~ 1 and S is not  convex,  then  g = O, F = 1 and  the  worse ease 
occurs when C = 0 (see 6.9); thus R<~T + 1. I n  bo th  cases, the  thesis follows then  
immedia te ly  f rom 6.3. [] 

6.11 RE~ARK. -- A component  F in W m a y  actual ly  bound a disk or an  annulus 
in S -  (see l emmas  6.7 and  6.8): an  example  is given in figure 23. 
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/ 

Figure 23 

7. - R e m a r k s  and e x a m p l e s .  

We defined in the  in t roduct ion two other  geometr ic  characters  associated to a 

surface S, t h a t  is d ~ =  d~(S) and  d~= d~(S), which generalize, more  direct ly t h a n  

D(S), the geometr ic  degree of a curve. Note  first t h a t  ((( Morse theory  ~> in dimension 1) 

d~ < D/2 and  d2 < D / 2 .  

We are going to show t h a t  d~ and  d~ are essentially independent  and  t ha t  D is not  
bound b y  d~ and  d~. 

7.1 EXA)~PLE (dz is not  bound  b y  dl). - Consider a smooth  arc a which spires 
<( going down ~) (see figure 24) on the  surface of revolut ion obta ined f rom the graph  

of y = x ~. I f  we choose a sui tably  small  smooth  (~ regular 7> neighbourhood of a 
in R 3, then  the  bounda ry  S of such a neighbourhood is a surface whose dz can be 

made  a rb i t ra r i ly  large~ while d~----4. Note  t h a t  one can arrange the  example  in 
such a way  t h a t  ~ = 1 (and g = 0). 

7.2 EXAlVl:PLE (dl is not  bound b y  d~). - Consider in the  plane xy in R 3 an arc a 

looking as in figure 25; consider then  a su i tab ly  small  tubu la r  ne ighbourhood U 
of a in the  closed half  space {z>0} in such a way  t h a t  the  bounda ry  of {z > 0} U U 

is a smooth  surface S'  (after eventua l ly  (, smoothing ,> the  corners) whose dl can 
be made  arb i t ra r i ly  large while d~ = 2; S '  is not  compact ,  bu t  it  is not  ha rd  to 
arrange the  example  in order to get a compac t  surface S with  the  same proper t ies ;  
moreover ,  one can get  also /V = 2 (and g = 0). 

7.3 E XA~CPLE (D is not  bound b y  dl and  d~). - Consider in the  yz plane of R 3 
a s imple smooth  curve y, symmet r i c  wi th  respect  to the  z-axis, looking as in figure 26. 
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Figure 24 Figure 25 

We can arrange ~ in such a way tha t  d(?) ---- 4, but  the number of critical points 
of the orthogonal projegtion onto the z-axis is arbitrarily large. The surface of revo- 
lution S obtained from y has dl = 4 and d~ = 2, but  D can be made arbitrarily 
large. 

Figure 26 Figure 27 

7.4 PRO]~LE~. - Do they  hold inequalities of the kind: 

K <  h(/7, 27, C, T, dl, d~, g) or K<h( /7 ,  iv, R, T, d~, d~, g) 

To solve the problem, it is enough to control D in terms of dl, d~ and some other 
geometric character out of /7 ,  iV, C, R, T. 

The following examples show tha t  D a n d / 7  are not  enough in order to bound 
n@E) and ](yE). 

7.5 E x ~ L w  (D and /7 do not  bound n(yE)). - Consider a suitable knot  ~ in 
R 3 projecting into the xy-plane as in figure 27. By  taking the boundary  of a small 
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tubu la r  ne ighbourhood of ~,, we can ob ta in  a surface S such t h a t  D = 4 and  F ~- 2, 
while K(S)  ( together  wi th  hr(S)), can be a rb i t ra r i ly  large. 

7.6 EXA~'~:eLI~ (D and /~ do not  bound ](7~)). - Consider n arcs, mee t ing  a t  a 

point ,  drawn on a sphere like in figure 28; let  S be  the  surface obta ined f rom the 

sphere b y  (( pushing down ~ a small  ne ighbourhood of this g raph  (see figure 29); 

S has ~ = R = 1, while T ( S ) =  2n ( =  J(TB)) can be made  arb i t ra r i ly  large (see 
figure 30). This shows t h a t / ~  is not  enough in order to bound  the  number  of inflec- 
t ion points  of y~. Note  t h a t  we can arrange the  example  in order to have  D(S)  = 4. 

Figure 28 Figure 29 Figure 30 

7.7 PROBLE3L -- F in4  a good analogue of F for a simplicial surface, in order  to  
a d a p t  all the  above  discussion to  the  P.L.  case. 
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