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Global Inequalities for Curves and Surfaces in Three-Space (*).

R. BENEDETTI - M. DEDO

Summary. - The aim of the paper is to give upper bounds for the total curvature of smooth curves
and surfaces embedded in euclidean space, in terms of other global geometric characlers; in
particular, for a plane curve y, we prove the inequality K(y) < (2 + f(y)d(y)/2), where d(y)
is the geometric degree of y and f(y) is the number of its inflection points. In the case of a
surface 8, a bound is given in terms of the genus g(8), the nuwmber of components of the
parabolic points on 8 and the geometry of ils apparent contour.

0. — Introduction.

This paper consists of two parts. The first one is an improvement of the result
obtained in [BD]: let y C R3® be a smooth or simplicial closed simple curve embed-
ded in R3; the geomeiric degree d(y) is defined as

d = d(y) = sup # {E Ny}

where F varies among all the hyperplanes transverse to y.

If ¥ is a plane curve, then d is defined in the same way with respect to the trans-
verse lines in R?. Under mild hypotheses of « genericity », (in particular if y has a
finite number f = f(y) of inflection points, or inflection sides in the simplicial case)
we have proved in [BD] that, if y is a simple connected plane curve with f > 0, then

(0.1) K< af(l + d/2)

where K = K(y) denotes the total curvature of y.
The main result of part I is the following stricter inequality which holds under
the same hypothesis of (0.1):

(0.2) K < a2+ fd/2) .
(*) Entrata in Redazione il 2 dicembre 1987.
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We shall see that even (0.2) is far to be sharp for general f and 4. For instance, we
shall show that, if d = 4, then K < z(4 4 f) (see remark 2 of [BD]).

Nevertheless, it is not so easy to pass from (0.1) to (0.2): the main work con-
sists in introducing a quite subtle notion of depih of an inflection point (side) of y
(which gives a partial ordering on the set & of the inflection points); this notion of
depth may appear quite complicated: however, we shall show that other ways (at
firgt sight more ¢« natural »} to give a partial ordering on § in fact do not work,

Part I is organized as follows: in § 1 we define and discuss the notion of depth;
in § 2 we prove the inequality (0.2); in § 3 we extend it to a plane curve with cusps
and normal crogsing points; in § 4 we briefly discuss the case of a curve in R3.

- In part II, we consider the analogous problem about surfaces in R2; more pre-
cisely, let 8 be a closed eonnected smooth surface embedded in R® and K = K(8)
be the total curvature of 8, that is ‘

K(8) = [[k(p)] a4 ,
s

where k(p) denotes the Gaussian curvature of § at the point p and dA is the area
element. We shall be interested to bound K(S). Two numbers which «naturally »
generalize the geometric degree d(y) of a eurve y are

di=d,(8) =sup #{L N8} and dy=d,(8) = supb{H NS},
L H

where the sup is taken among all the affine lines ‘L (or affine hyperplanes H) which
are transverse to 8, and b (X) denotes the number of connected components of X.
As for f(y), a number which is a «natural » analogous in the case of surfaces is

F = F(8) = b,{parabolic points on §}.

One conld hope then to prove an inequality bounding K(S) in terms of F(S), d,(8)
and/or d,(S), and, of course, the genus g(8) of . However, this does not work, and
one needs other geomefric characters of § {less «natural »).

In §5 we define these characters a,(S), and we briefly discuss the genericity as-
sumptions under which they are well-defined positive integers; in § 6 we prove some
inequalities of the kind '

(0.3) K (8)<f{a(8))

(see theorems 6.3, 6.5 and 6.10); in § 7 we show, by means of some families of
examples, that these geometric characters are actually necessary in order to give a
bound to K(8) and there is no hope to get a simpler inequality in terms of
g, 7, dy, d, only.
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It should be noted that, even if the two parts of the paper are strictly related,
in fact they can be read quite independently: what one needs, in order to read part I,
is only theorem 3.2, which extends (0.2) to the case of a curve with cusps and normal
crossings. The reader mainly interested to the case of surfaces can simply assume 3.2
and skip directly to part II; alternatively, he can refer to [BD] to find a consider-
ably simpler proof of the weaker inequality (0.1) and then apply § 3 of part I to
(0.1), thus getting to weaker (by qualitatively analogous) inequalities.

The paper is intended to be elementary as muech as possible.

Parr I CURVES

1. — Depth.

Through all this paragraph 3 will denote a simple conneeted plane smooth
curve; we also assume that y satisfies the following.

1.1 GENERICITY ASSUMPTION. — ¥ has a finite number of inflection points and
no fritangents.

In the spirit of the Fabricius-Bjerre formula (see [FB1] and [B]) we distinguish
between exterior bitangents and interior bitangents to y, according to figure 1, and we
denote by F (resp. I) the set. of exterior (resp. interior) bitangents.

/. \J | "\
rel | " i /\
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Figure 1

Fix an orientation on y; we can then further distinguish, according to figure 2,
between exterior bitangents of the first and of the second kind (the set of which will
be denoted, respectively, by E' and E").

y .
X '
» rcE ( rer
r P Q . 7 r P Q -

Figure 2
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Let r be a bitangent, tangent to 4 in points P and @; we can choose points P’ and
P’"in y, close enough to P, in such a way that P’ P’ is a convex arc and the ortho-
gonal projection of P’ (resp. P") is contained in the interior (resp. in the exterior)
of the segment P@; we can similarly choose points @' and Q" close to @ in y (see
figure 3).

Yr

Figure 3

1.2 DxrINITION. — Let v € B’ and P, @, P, Q" be as above; the arc associated
to r (denoted by y,) is the connected component of y\{P,Q} which contains the
points P’ and @'.

Let us denote by & the convex hull of « and by & the boundary of &, where «
may be either a closed curve or an arc.

1.3 REMARKS. — If ¢ is a simple curve, then:

a) # Ny is the disjoint union of convex subarcs of y;

b) 7\ is the disjoint union of segments (they are disjoint, otherwise y would
have tritangents); each one of these segments is contained in a bitangent r belong-
ing to E'. Let us call B, the subset of B’ consisting of these bitangents; note that
re B, if and only if r NP P,

¢) YN\ is the disjoint union of subarcs of y, contained in the interior of 73
let us call C; the set of these arcs; note that each « in (, is an arc y, associated to
2 bitangent r € H;.

d) Bach y, € C, contains a positive even number of inflection points. In fact,
let 7: y — S be the «tangential Gauss map » and P, @, P, @' be as in definition 1.2:
then, as » € By, t(P) = 7(Q) and the ares 7(P)7(P’) and 7(Q)7(Q’') are coherently
oriented in §'; thus, the number of points 7(X) where the orientation of 8§* is
reversed must be even. Note that this number cannot be zero, otherwise PQ would
not be in 7.

1.4 DEFINITION. — We say that a bitangent 7 is a bitangent of depth 1 if v € E,.

1.5 A SPECIAL CASE. — Agsume that, for each r € E,, p, contains exactly two
inflection points; set f=4#F, e=#B, i=4#I, e,=#E, and note that (see
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figure 4):

\ o = M4) = W4’

Figure 4

a) there is a natural 2 — 1 map h: F — B, such that h-'(r) consists of the
two inflections points in 4,;

b) in particular, f/2 = e,;; as the Fabricius-Bjerre formula in this case reduces
t0 ¢ = f/2 4 4, we also have ¢ — i = ¢,;

¢) let " be the curve obtained from y by replacing each of the arcsy, with
the segment having the same endpoints: y' is a convex (2, piecewise C*) curve and

E(y)= K@)+ 2 Ey) =2n+ 3 K(y,) .

rel 1EE,

'(K(oc) denotes here the total curvature of the arc «).
We want to generalize the above situation to any curve y; that is, we want to
prove the following:

1.6 PROPOSITION. — For any y one can choose:

1) & subset B c H';
2) subsets B;CE (re B, will be called a bitangent of depth i);
3) subsets F,.CF (P e F; will be called an inflection point of depth 4);

4) two families of ares C; and Cj;

such that:

o) F=FU.UF, end E=8U..LIE,;

b) there exists a natural 2 — 1 map h,: ¥, ~ H,; in particular (setting, as usual,
E=#E, e,= #E,, f.=#F,) we have that ¢, = fi/2 ond /2 = & = e — {;
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e) O, is the family of arcsy, associated to r € E,; for each v, we can construct
an auxiliary arc y. such that y. contains exactly the two inflection points of y which are
in k7Y r); O will be the family of such aumiliary arcs;

d) K(y) =27+ 3 E(y,);

relf

¢) if, for each v € B, y, contains exactly two inflection points, then O, = O, and
Fi+1 = Ei+1 = 0.

Note: 1.5 above corresponds to the case kb = 1.

Proor. ~ The proof consists in constructing inductively the families ¥;, C;, By,
and 0., starting from E,; and C,, provided they satisfy

.7 o) B,CE; b)) Ci={p:vehB}; o rnicy, Vrek;.

We give the details for 4 == 1: the construction will be the same in the general in-
ductive step.

Note that, by remarks 1.3, B, and €, satisfy (1.7) above.

Fix r € B, and let P, and @, be the endpoints of the associated arc y,; we want
to choose

1) two elements of ¥, which will be the elements of A *(r) (and will be called
privileged for »);

2) two subsets ¥,,C H, and 0,,C 02 satisfying (1.7 )'a,bove;

3) one element y, of C, such that y, contains the two privileged inflection points
for v and K(y,) = K(y)) + 3 EK(p,).

8€H,,r

If y, contains exactly two inflections points 4, and B,, then r7'(r) ={4,, B,},
Hyp=0,,=0 and y, = y,.

Otherwise, consider , and §,: the situation is similar to the one we discussed
in 1.3 for # and §, with the only difference that y, is now an arc instead of a closed
curve; however, recalling that r € £/, we can say that:

a) P, My, is the disjoint union of convex subares of y,;

b) P\, is the disjoint union of a simplicial arc P’ P Q Q¥ and of some seg-
ments; each one of these segments is contained in a bitangent s belonging to E';
while the segment P, P® (resp. @ Q!Y) is contained in a tangent through P,
(resp. @,) to y, at PV (vesp. Q) (see figure 5);

¢) y,\J. is the disjoint union of the two arcs o, and §, with endpoints P,, P¥
and Q,, Q" and of some other subarcs of y,: each one of these other subares is the
arc y, associated to one of the exterior bitangents s found in b) above;



R. BENEDETTI - M. DEDO: (lobal inequalities for curves, eic. 219

d) each y, contains a positive even number of inflection points and is such that
§ N $,C ,; on the other hand, both a, and §, contain an odd number of inflection

points.

This can be proved as in remark 1.3 d): noté that the situation at the endpoints
of the are «, looks like in figure 6.

s<r

P \ (1
) (1)
’ Qr Pi‘

%y

%

B+

P,

iFigure 5 Figure 6

We say that the bitangents s found as above are derived from r (and we write
s <r), and the arcsy, found as above are derived from y, (and we write y, << y,).

If now both «, and B, contain exactly one inflection point (let them be 4, and B,
respectively), then we can finish the construction as follows:

1) hl_l(lr) = {AM Br} gFli

2) y: is the arc obtained from y» by replacing v, with the segment having the
same endpoints, for each p,<<y,; '

3) By, = {s:s<r} and Cp,= {y,: <.}

Otherwise, we need to iterate this construction on the arcs «, (andjor §,) in order
to choose on each one of them one « privileged » inflection point and « cut off » the
remaining ones by pairs, by means of exterior bitangents which will be further ele-
ments of #,,.

The only difference between the arc o, (or f,) and the arc y, is the situation at the
endpoints, which looks as in figure 7. Thus:

a) &, N o, is the disjoint union of econvex subares of y,;

b) &\, is the disjoint union of a simplicial arc P, P P® and of some. seg-
ments; each one of these segments is contained in a bitangent s belonging to ',
while the segment P”P® is contained in a tangent through P® to « at P®;
again we shall say that s is derived from r (and we write s < r);
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Figure 7

¢) a\& is the disjoint union of the subare «” with endpoints P and P®
and of some other ares: each one of these other arcs is the are y, associated to one of
the bitangents s found in b) above;

d) each one of the arcs y, contains an even number of inflection points and is
such that s N $,c 7,; while &V contains an odd number of inflection points;

»

¢) the arc &V at its endpoints looks like the arc ., so that we can (eventually)
iterate the construction without any further difference (see figure 7).

Since there is only a finite number of inflection points, the construction ends in
& finite number of steps.

Set o= «,, f¥=F, and let n (resp. m) be the smallest integer »>0 such
that «™ (resp. f™) contains exactly one inflection point A, (resp. B,); then:

1) the privileged inflection points for # are h '(r) = {4,, B,} C Fy;

2) B,,= {s: s < r} is the set of all the bitangents derived from r found during
the construetion;

3) Oy, = {y,: y,<<y.} is the set of all the arcs derived from p, found during
the eonstruction;

4) the auxiliary arvey, e C, is the arc obtained from y, by replacing each
subare y, <<y, with the segment having the same endpoints.

Note that y; contains exactly two inflection points, that is 4, and B,; moreover,
for ecach se H,,, one has sN J,c §,.
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Finally, we have:
F,= {P e h%r), for some 7€ E};

EB,= {s€ K,,, for some re H};
0, = {x e (,,, for some re E};

0, = {y,, for some re E}.

In the example shown in figure 8 we have that r (resp. y,) is the only element of B,
(resp. of 0y), Fy,= {4,,B,}, By= {a,b,¢,d}, Cy= {ys, sy ¥., ya} and C, consists of
the curve y. in figure 9.

Note that K(y) = 27 + > K(y.) + 3 K(y,); moreover, it is clear that B, and C,

rel, s<r
satisfy (1.7), so that we can iterate the construction. As the number of inflection

points is finite, there must exist a h>>0 such that F,= @, that is the construction
ends in a finite number of steps: we define the depth of y (written dep (y)) as the
biggest integer » such that F,>= 0; if dep(y)=n, then F = F,L1...LI1F,; set
E=E,U.. L1E,, and note that the properties stated are satisfied. In particular,
the identity (d) on K(y) can easily be proved by induction on dep (y). O

1.8 REMARKS. — ) The above construction gives a partial ordering on the set £
(or, equivalently, on the set of couples k~*(r) in & ); the associated graph is the disjoint -
union of ¢, trees: in fact, for each se E, (j>2) there exists a unique r € B, ; such
that s < 7.

Figure 8
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Figure 9

b) The definition of depth may seem very complicated and one could hope
to find a simpler way to get the same notion (that is, families satisfying 1.6); for
example, a more «natural » way to associate to an exterior bitangent of &' a couple
of inflection points of y could be to consider the first and the last one on the are
associated to » (with respect to a fixed orientation on y); however, by examining the
following figure 10, the reader can convince himself that this way does not work:
note that there does not exist an exterior bitangent s to  such that y, containg the
inflection points B and C; following 1.6, instead, we have F,= {4, B}, F,= {(, D}
and dep (y) = 2.

1.9. EXTENSION TO THE SIMPLICIAL cAsE. — All the above discussion applies,
with slight changes, to a simplicial curve (see also [BD]); for such a curve y, simple
closed and connected, f = f(y) is the number of the inflection sides of y; note that,
in this case, a line 7 can be «tangent » to y either at & verfex or at a side; the same
applies to bitangents (see figure 11). The analogous of (1.1) is in this case:

Figure 10
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1.10 SIMPLICIAL GENERICITY ASSUMPTION. — No two inflection sides of y are on
the same line; p has no tritangents; v has no tangent line at an inflection side.
With these changes, the construction works as in the proof of 1.6.

1.11. RELATIONSHIP BETWEEN dep (v) AND d(p). — Let y be either smooth or
simplicial; d(y) denotes the geometric degree of ¢ (as defined in the introduction).
Note that:

a) d(y) =2 <>y is a convex curve <>dep (y) = 0.

b) If re B, -and k>2, then r is tangent to y atb two points which lie in the
interior of #; thus, there exists a line 7’ (parallel and closed to r, transverse to )
such that #{r' N y}>6. This proves that d(y) =4 = dep (y)<1.

¢) The curve in figure 12 has degree 6 and depth 3.

This suggests the following problem, which, in spite of the elementarity of its for-
mulation, seems us to be quite subtle:

Figure 12
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1.12 PrOBLEM. —~ Does there exist a function h, depending only en d = d(y),
such that, for every y as before, dep (y)<h(d(y))?

1.13 EXERCISE. — The simplest non trivial case to consider is, probably, the one
of the simplicial curves y constructed inductively as follows: y, is & convex polygon;

the convex hull I'; of y.;\yp; intersects y, along one side s; of y;5 Yy \y:=
= I')\8: (see figure 13). Let s, = # {s;: s, is not an inflection side of y;}.
Then: '

a) (easy) dep (y) = s,;
b) (we do not know the solution) find (if any) an inequality of the kind
sy<h(d(y)).

dep(y) = 4

Figure 13

2. — The geometric inequality.

2.1 THEOREM. Let v be o simple connected plane curve with f= f(y) > 0; then
K < a2 -+ {d/2).

Proor. — Recall that K(y) = 2x + 3 K(y)) (see 1.6 4d)).

reE
Since & = f/2, it is enough to show that, Vre B, K(y)) <nd. Let us fix re £
and let y, be the auxiliary arc containing the two inflection points A and B of h~'(r);
let a (resp. b) be the tangent line to y; at A (resp. B) and s be the line through 4
and B (see figure 14); assume that s is transverse to y,. Clearly

n=#{snyl<d—2.

Moreover, if «, 8, «' and S’ are the angles marked in figure 16, then o 4 f =o' 4 §'.
We can compute K(y;) a8 the sum of the total curvatures of the convex arcs between
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Figure 14

two consecutive (along y.) points of » N s, thus obtaining:
K(y) =2+ B) + (n—2)n< dmw + (n— 2)n<dr .

If s is not transverse to y, then the same argument given in [BD] (pag. 113) shows
that the same inequality holds a fortiori. The theorem is proved. [

2.2. REMARKS. — @) Let L be a line and p, the orthogonal projection onto L;
we say that L is generic for y if p |y is a Morse function; for such an L, set
p(L) = # {eritical points of p [y} and denote by sb the superbridge index of y (so
called in analogy with knot theory: see [K]), that is sb = sb (y) = sup u(L)

: L

Recall that the total curvature of y may be interpreted as the mean or ewpecia-
tion value of u(L), that is K(y) = 1/2 f u(L) (where the lines I are intended here to
Sl

be oriented); thus we obviously have K(y)<zsb (y).

b) It is not difficult to see that the proof of 2.1 gives in fact
(2.3) ‘ sb (y) < 2 -+ dff2
(if f > 0; similarly in [BD] we had actually proved that:

(2.4) sb (y) < /(2 + d/2)
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¢) For f =2 and any d the inequality proved in 2.1 is sharp: see [BD],
remark 1.

d) The inequality K(y,) < nd is sharp for a single arc y/ € C.: in fact, the same
family of examples used in [BD] (figure 1) to show that 2.4 is sharp for f = 2 gives,
Ve >0, a curve y and a bitangent r € ¥, such that K(y,) = nd — .

¢) For f> 2, the inequality in 2.1 is NOT sharp (see, for instance, the fol-
lowing proposition 2.5); the main reason of this fact is that, as we noted in re-
mark b) above, we actually proved (2.4) and derived from it the inequality in 2.1.

Other reasons are that: i) it eould be possible to get for K(y;) a stricter bound,
when r is a bitangent of depth greater than 1; ii) we took into account each y; one
by one and not their reciprocal positions (see also the following proposition).

2.5 ProposITION. — If d(y) = 4, then K <m(4 + f).
ProoF. ~ Note that dep(y) =1 and B = E = E,. For each reH, (i =1,...

wym = f[2), let o, f;, n; be defined as in the proof of 2.1; note that n,= 2 for
each ¢; hence:

Epy=2rn+ 2 Ky)=2a+ 3 2w@+p).
i=1,...,m i=1,..,m
Using the faet that d = 4, it is not difficult to show that:
o+ fiza =4+ fi<ma Vi£i.

This implies that K(y) < 27 + 4 + (m — 1)27 = 4% + 2mn = 4w + af. O

2.6 BREMARK, — The inequality of (2.5) is sharp for f =2 and for f= 4 (see
figure 15); it is likely that it is not sharp for f>6.

2.7 PrOBLEM. - Give a sharp inequality for K(y) in terms of d(y) and f(y).

Figure 15
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3. — Generalization to curves with cusps and normal crossings.

We consider curves y € R? such that:
1) there exists a local homeomorphism g: 8! —y onto y;
2) there is a finite set C(y) of cusp poinis of y;

3) g}{Sl\g-l(G(y))} is a smooth normal immersion with a finite number of
simple normal crossings.

We distinguish between cusps of the first and of the second kind (denoted by C'(y)
and C’(y)), according to figure 16.

PeCly) Qecy) &

P Q

Figure 16
We call such a ¢ an irreducible plane curve with cusps and normal crossings. Let
us denote:
N(y) = {normal crossings}; n(y) = #N(); ) =#CH);
') =#Cly); ely)=H#CH) =) +W).

3.1 REMARK. - Recall that the generalization of the Fabricius-Bjerre formula
to this case gives (see [FB2]):

e=i+f24+n+c+d)2.

This suggests that the quantity f/2 = e— ¢ of 2.1 should be replaced in this case
by f/2 +n 4 ¢ 4 ¢’/2. In fact:

3.2 THEOREM. — Let y be an irreducible plane curve with cusps and normal crossings
and assume that it is « generic » (in the sense of Fabricius-Bjerre); them:

K(y) < 27 + =d(y)[f(y)/2 + nly) + ¢'(y) + ¢"(y)[2] .
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Proor. — The idea is to construct & smooth connected simple curve »’ such that:

1) <Hy) + 2n(y) + 2¢'(y) + ¢"(y) .

The « moves » in order to pass from y to 4’ are shown in figure 17: note that they
can be done in such a way that o' iz a 0% curve.

It is eagy to show, by induction on n(y), that we can choose one of the two moves
described for the erossing points in sueh a way that 9’ is connected. If no crossing
point is an infleetion point, then the moves add two inflection points in cases A
and B and one in case ¢ (see figure 17). Thus

PeN(y)

A
S . A el =iy +2

either

) or
C\ 1) = fly) +1
~——
PeC'y

Figure 17

'y =iy + 2

If, instead, some erossing point is also an inflection point, it is easy (see figure 18)
to show that «two» is replaced by «abt most two», so that « =» is replaced by
« < » above,.

In order to see that d(y')<d(y) it is enough to note that every move replaces two
arcs (say o and «’) of ¥ by one convex are (say o) whose convexity is directed towards
the singular point (say P): see figure 19,
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KX
KX

") = 1) 1) = o) + 1) = 1) 1oy = 1ty) oY =1+  f5)=fp)—2

Figure 18

To see that K(y')>K(y), let the endpoints of « tend towards P; then K{x') +4-
+ K(o") — 0 (see figure 19), while K(x) —> o, > 0 (note that if P is a cusp then
o, = 7). The theorem is proved. [

3.3 REMARKS. — @) 3.2 holds also in the simplicial case; in this case there are
no cusps, and the moves at a crossing point are the natural analogous to the previous
ones; the inequality becomes

K(y)y < 2n + nd(y)(f(p)[2 + n(y) ) -

b) As in the simple case (see remark 2.2 b)), 3.2 gives in fact

(3.4) b (y) < 2 + AP + () )+ )+ o')2)

Figure 19
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where sb (y) can be defined as in the simple case, with respect to lines L generic
for y, that is: no «tangent» to y at a singular point is orthogonal to I and
pellP\(C LI N())] is a Morse function (with necessarily a finite number of
eritical points).

4. — An application to knets.

Let y be a smooth knot in R® with nowhere vanishing torsion 7 > 0; the total
curvature and the total torsion are defined as K(y) :f]k(s)[ds and T(y) = f [z(s)]| ds.
'

¥
An hyperplane E of R® is generic for y if pyl, is a normal immersion.
Set N(y) = sup # {normal crossings of pg|,}. Then

E generic

4.1 PROPOSITION
K(y) < 2m + d(y)l4=N(y) + T(»)1/8 .

Proor. - It is an immediate consequence of 3.2 and the results of [Mi]. A similar
result holds for simplicial knots. O

Parr IT SURFACES

5. — The geometric characters.

From now on, § will denote a smooth closed connected surface embedded in Rs.

Let us first fix some notations: one uses RP? to parametrize both the lines and
the hyperplanes through the origin in R3; to distinguish these two cases we shall
adopt the notation RP? and RP: respectively. If F e RP? p,: R*— E will denote
the orthogonal projection onto E (or its restriction to §). We say that ¥ e RP?
is generic for 8 if ps|8 is a Morse function; we say that B e RPZ is generic for § if
pz|8 is ewcellent in the sense of Whitney (that is, it is a stable map). In particular, if B
is generie, the eritical set X, of py is a smooth closed curve in S and the apparent
contour of 8 in H, via pg, that is yuz= pg(Zr), is & curve with cusps and simple
normal crossing points.

Let M be a surface diffeomorphic to 8 (by means, for example, of the identity
map; let us denote by Emb (M, R?) the open set of C*(M, R3) (with the Whitney
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topology) consisting of smooth embeddings of M in R3; if k€ Emb (M, R3) we write
M, for h(M).

5.1 THEOREM. — There exists an open dense subset A of Emb (M, R®) such that
Yh e A the (normal) Gauss map n,: M, — 82 is o stable map, that is i is ewcellent
in the sense of Whitney.

Proor. — We refer to [BW], [Br], [McS]. O

We shall say that 8 is generic if § = M,, for some he A. 5.1 implies, in parti-
eular, that, if S is generic, then the eritical set X, of the Gauss map »n: § — §2 ig
a smooth closed curve in §.

As in the case of curves (see 2.2 a)), we can define the superbridge index of S as

sh = sb (8) = sup u(¥)

where u(E) = # {critical points of p,|S}, and the sup is taken among all the hyper-
planes E € RP2 which are generic for §. Again, sb (8) is related to the total curva-
ture of 8

K = K(8) = [k(p)| a4
S

by the inequality

K(S) = 1/2 f w(B) <27 sh (8) .

8

Two geometric characters of § which certainly play a role in bounding K(S) are:

g = g(S) (the genus of 8)
F = F(8) = bo(Z) -
Note that, by 5.1, F' is a well-defined positive integer: moreover, g>0 = F >0
and F = g =0 < 8 is a convex sphere. For each B e RP?%, F generic for 8, set:
n(B) = # {normal crossing points in pg(Zs)};

o(f) = # {ousps in pe(Ze)};  7(B) = by(Zy) .

If EeRP. is such that Z; and X, are transverse curves on S, set t(H) =
= sup # {2y N 2;}, where the sup is taken among all the connected components
20 Of 27,. . o )

We can now introduce the geometric characters associated to 8, in terms of which
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we shall give a bound to K(S):

N = N(8) = sup n(E)

E generic

O =W = sup c(&)

E generic

R = B(¥) = sup r(#)

F generic

D = D(8) = sup d(Z%)

F generic

T =1T(8) = sup #EH).

E generic

We want first to justify the fact that these geometric characters (as long as sb)
are well-defined and « generically » finite.

As regards D, the geometric degree of a smooth curve y in R® (or of a plane
curve y) can be seen to be well-defined by means of elementary transversality
arguments.

In order to see that N, C, R, and sb are well-defined, we must show that the set
of lines ¥ € RP} (or hyperplanes E € RP}) generic for § is not empty: this is an
easy application of a general result of Mather ([M]):

5.2 PROPOSITION. — For any S (not necessarily S generic):

a) there ewists am open dense subset W C RP? such that, YE € W, pg|8 is a
Morse function; -

b) there exists an open dense subset 2 C RP2 such that, VE € Q, pz|8 is a stable
map (excellent in the sense of Whitney). O

Thus, ¥, 0, R, sb are well-defined.

Note that the analogous of the first statement in 5.2 holds also for smooth closed
curves y in R? (or for plane curves y with respect to lines in RP?).

As regards T, we must also show that it is not empty the set of E such that 2%
is transverse to X,: thus, we need a sort of «relative version » of 5.2 (applied to the
curve X, in 8); again, it is not hard to prove it in our simple case, using the tech-
niques of [M7]:

5.3 LEMMA. — There exists an open dense subset Q' C Q such that, VH e 2, the
curves Xy and X, ave transverse in 8; moreover, X, does not meet X'y at any cusp or notr-
mal orossing of pp and pg|X, is & normal immersion (with simple normal erossings)
of X, in H. [}

Note that, a priori, the geometric characters we have defined could be oc; in this
case, the inequalities we are concerned with would be trivial.. However, they aro
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« generically » finite: one can see this, for example, by approximating the surface §
with some non singular algebraic surface V: for such a surface V, the set of generic
lines (or hyperplanes) is a semi-algebraic set and thus has a finite number of con-
nected components; as the geometric characters we have defined are constant on
each of these connected components, they are finite.

From now on, we shall always assume, implicitely, that § is generic and that
all its geometrie characters are finite.

6. — The inequalities,

Let Be Q' (as in 5.3); then the critical set X, of pg|S is a smooth closed curve
in 8, while the apparent contour of § in E, that i8 ygz= pg(2%), is a curve with
(a finite number of) cusps and simple normal crossings; moreover, if X\, ..., 2, are
the connected components of Xy, then y,= pz(Z,) (i =1, ..., k) are the irreducible
components of y;. Clearly, we want to apply the results of § 3 to the curve y,: the
fact that this is possible is an easy consequence of the genericity assumption on §:

6.1 LeMMA. ~ There exisis an open dense subset Q' C Q' such that, VE € ", amy
irreducible component y; of yz 18 @ generic curve with cusps and normal crossings. O

Recall now that a line L in P(E) is generic for y; if py is & Morse function outside
the singular points of y; and no tangent to y in a singular point is orthogonal to L.
In particular, if I is generic for y5, then it is generic for each y»,. It is not hard to
see that the set of lines generic for 9, is an open dense subset of P(E); if L is such
a line, then pyopy: 8§ — L is a Morse function on S and there is a natural bijection
(via pg|) between the ecritical points of p,opg|S and the critical points of
Pul(ye \Sing (yz)). It is clear from the above discussion that there exist E and L
as before such that

sb (8) = # {eritical pqints of props|8} .
Thus we have, for suech an H: |
(%) 8b (8) = sb (yz) = 8b (y1) + ... - 8b (7);
Moreover, as we can assume E in 0":
(%) $b () <2 + dilne+ 6+ 14/2)

where d;= d(y:), n.= n(y.), e;= e(y.), fi= f{ys).
It is obvious, by definitions, that:

M+ oo < NS); 6L ... Fe<Ol); E<R(S).
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As regards d;, note that, if L is an affine line in ¥ e £, transverse to y;, then the
hyperplane H through L orthogonal to F is transverse to X and there is a natural
bijection between {L M yz} and {H N 2y}; thus, d,<D(8), Vi.

This means that, from the inequalities (%) and (%%), we can get

(%) sb (S)<2F + D[N + C 4 f(y£)/2] .
6.2 LEMMA. — For each B in 2", f(ys) <F(8)T(S).

Proor. - Let y € 2% be a point such that pg(y) is not a singular point of ys:
then, ag 2y and X, are transverse, there exists a neighbourhood of ¥ in X, such
that its image is a planar are ¢ where the curvature never vanishes; note that in a
neighbourhood of # in § the gaussian curvature k of § is positive (resp. negative)
if § folds towards the convex (resp. concave) part of o (see figure 20).

Figure 20

Thus, if #, is an inflection point of yz, then x, = px(y,), where k(y,) = 0, that
i8 yoe XM X,. The thesis now follows from the definitions of F(8) and 7(8). O

6.3 COROLLARY.

K(S)<4aR -+ zD[2N 1 2C + TF]. O

We want now to show that it is possible to eliminate either B or ¢ from the inequal-
ity in 6.3, by adding the genus g¢(8).
The possibility of eliminating C follows from a nice result of Pignoni (see [P]).
6.4 LEMMA. — For every generic H

oB)2<n(B) + rE) +-g—1.

Proor. — In fact Pignoni proves a quite stronger result: he shows how to as-
sociate to every component I'; of Xy a sign u,= -1 and similarly to every normal



R. BENEDETTI - M. DEDO: Global inequalities for curves, eie. 235

crossing a sign o,; then, setting N+= #{j: 0,=1} and N-= #{j: 0,= — 1}, one
has the identity:

oB)f2 = (Sp)+ Nr—N-+g—1.
Of course the inequality follows trivially. O
6.5 COROLLARY. ~ For every generic surface 8 in R3,
K(8)<4nR + nD[6N + 4R+ 49— 4 --TF]. O

We are now going to see how one can eliminate R from 6.3.
Let 8+ and 8- be the subsets of § where & is positive and negative respectively
(S\Z,.= 8+L18-). Note that:

a) every cusp point of 2z must be contained in 8-: in fact it is not on X, and
the cusp in F looks like in figure 21;

4

* k<0

1 A y
!
!

Figure 21

b) it I'n X, =0, and I" does not contain cusps, then pz|I" is a normal con-
vex immersion, that is f(ps(I")) = 0; ’

¢)if 'NnX,=0, and I'C8-, then I' could contain cusps, but again
f(pa(I) = 0. We call py|I" a convex immersion with cups.

Let X be the set of the connected components of Zy; set:

V ={TeX:I'nZ,+0;
W={TeX: I'nX,= 0 and pg|l" is a convex immersion with cusps};

Z ={I'eX: I'n 2,=0 and p;|I" is a normal convex immersion} .

It is immediate to see that
b(VY<TF

while, recalling that (by [H]) every component of W has an even number of cusps,
we also have

bo(W)< )2 .
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Thus, we are left with the problem to give a bound to b,(Z). In order to do this,
we need some lemmas.

6.6 LuMMa. — Let I'e Z and assume that it bounds & disk D in S+ 11 8- such that
D does not intersect any other component of Xy then I'C 8+ and y = pg(l') is & simple
CONvEL CUrve.

ProoF. - Choose a small collar of I"inside D. This is an annulus 4, 94 = I'L1 I,
and we may assume (if 77 is close to I") that p,|I" is a normal convex immersion and
y'= pu(I") looks like y.

Moreover, it is clear that pElm is an immersion; by a result of [H], the rotation
number of pg|l” must be 1. If I'is in §-, the rotation number should be negative;
while, if I"is in S+ and y is not simple, the rotation number should be > 1 (see
figure 22).

This proves the lemma. [

6.7 LEMMA. — Let I", I'" be in Z and assume that they are both in 8+ or both in S-.
Then I'LIT" cannot be the boundary of an annulus A in S\, such that A does not
intersect any other component of 2p.

Proor. ~ Use the same argument as before and the fact that the rotation number
must be 0. 0O

6.8 LeEMwma, — If I'e Z is like in 6.6, and 8 is not the 2-sphere, then there exists a
component I' of %, which bounds & disk D'C S+ U I" such that I'C D',

ProOOF. — By 6.8, y = pz(I") is a simple convex curve and I'C 8+; if there does
not exist a I like in the thesis, then § should close up to give a sphere. [

6.9 LeMMA., — Let 8 be a non convew swrface; if (g + 1)F >1, then b(Z)<

<3¢ + 3F - C — 3.
If (g + 1) F =1, then by(Z)<2.

yc8t

Figure 22
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Proor. — Let M denote the surface obtained by cutting S along the k< F | 0)2
curves of 2, L1 W; note that y(M)= x(S) =2 — 2¢ and M has 2k > 0 boundary
components (if & where 0, § would be a convex surface).

By the above lemmas, we are interested to bound the maximal number o(M)
of connected simple closed curves on M\ oM such that:

1) no one of these eurves bounds a disk in M\2M,

2) no two of these curves bound an annulus in M\2M.

One easily shows (by computation on the Huler-Poincaré characteristic), that, if
M' is a connected surface with genus ¢’ and %' > 0 boundary components, then
a(M') = 3¢’ + 2k — 3, except for the case ¢'= 0 and k'=1 (that is a disk), where
oa{M') == 0; this exception implies that, if M is as above, then the maximal «(M)
occurs when all the curves along which § is cutted to get M bound disks in §, that
is M is the disjoint union of ¥ disks and a surface M’ with % boundary components
and genus g(M') = g(8). Thus a(M) = a(M’') = 3¢ | 2k — 3. As before, the only"
exception is for g = 0 and % = 1 (that is, as § is not convex, a sphere with F =1
and ¢ = 0), where a(M)=0.

In order to get by(Z), it is enough to note that (for lemma 6.8) Z could have one
component more for each component of 2,: that is b(Z)<a(M) + F<3g +
+2(F+C)2)—3+F=3¢g+-3F+C~—3if (94 1)F>1, while b(Z)<2 if g=0
and F=1. 0O

6.10 THREOREM. - Let S be a generie, non convexs, surface in R3. Then:

K(8)<2n[2T + 4)F + 3C 4 6g— 6] +nD2N - 20+ FT} if @+ 1)F>1;
and

E8)<2[2T + 2]+ aD2N + T] if (g+1)F =1.

PrROOF. — Of course, R<by(V) -+ bo(W) + by(Z); moreover, if I" is a component
of X, such that there exists [”"eV with I'N I"5£ @, then I' can not be among
the components of X, occurring in lemma 6.8; thus, if (g -~ 1)F > 1.

RB<bo(V) + bo(W) + bo(Z) — F =
=TF+02+3¢+8F+C—3—F=(T+2)F-+3C/2+3g—3.
If (94-1)F =1 and 8§ is not convex, then ¢ =0, F = 1 and the worse case

occurs when ¢ = 0 (see 6.9); thus R< T -- 1. In both cases, the thesis follows then
immediately from 6.3. O '

6.11 REMARK. — A component I"in W may actually bound a disk or an annulus
in 8- (see lemmas 6.7 and 6.8): an example is given in figure 23.
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Figure 23

7. — Remarks and examples.

We defined in the introduction two other geometric characters associated to a
surface S, that is d,= d,(8) and d,= d,(8), which generalize, more directly than
D(8), the geometric degree of a curve. Note first that (« Morse theory » in dimension 1)

d,<D[2 and d,<DJ2.

We are going to show that d, and d, are essentially independent and that D is not
bound by d, and d,.

7.1 ExAMPLE {d, is not bound by d,). — Consider a smooth are ¢ which spires
« going down » (see figure 24) on the surface of revolution obtained from the graph
of y = «*. If we choose a suitably small smooth « regular » neighbourhood of ¢
in R?, then the boundary § of such a neighbourhood is a surface whose d, can be
made arbitrarily large, while d,= 4. Note that one can arrange the example in
such a way that # =1 (and g = 0).

7.2 ExAMPLE {d; is not bound by d,). — Consider in the plane #y in R3 an arc o
looking as in figure 25; consider then a suitably small tubular neighbourhood U
of o in the closed half space {#>0} in such a way that the boundary of {z> 0} U U
18 a smooth surface 8 (after eventually « smoothing » the corners) whose d, ean
be made arbifrarily large while d,= 2; 8’ is not compact, but it is not hard to
arrange the example in order to get a compact surface § with the same properties;
moreover, one can get also F = 2 (and g = 0).

7.3 ExAmeLE (D is not bound by d; and d,). — Consider in the yz plane of R?
2 simple smooth curve y, symmetric with respect to the z-axis, looking as in figure 26.
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Figure 25

We can arrange ¥ in such a way that d(y) = 4, but the number of critical points
of the orthogonal projection onto the z-axis is arbitrarily large. The surface of revo-
lution S obtained from y has d,= 4 and d,= 2, but D can be made arbitrarily
large.

s J—As
L N \o
; g 6 4

Figure 26 Figure 27

7.4 PrROBLEM. ~ Do they hold inequalities of the kind:
K<WF, N, C,T,dy,dy,g9) or K<h(F,N,R,T,dy,ds,9g)

To solve the problem, it is enough to control D in terms of d,, d, and some other
geometric character out of ', N, C, R, T.
The following examples show that D and F are not enough in order to bound

n(yz) and f(yz).

7.5 ExAmPLE (D and F do not bound n(yg)). — Consider a suitable knot p in
R? projecting into the zy-plane as in figure 27. By taking the boundary of a small
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tubular neighbourhood of y, we can obtain a surface § such that D = 4 and F = 2,
while K(8) (together with N(8)), can be arbitrarily large.

7.6 ExAvpiE (D and F do not bound f(yz)). ~ Consider n arcs, meeting at a
point, drawn on a sphere like in figure 28; let § be the surface obtained from the
sphere by «pushing down » a small neighbourhood of this graph (see figure 29);
S has F = R =1, while T(8) = 2n (= f(ys)) can be made arbitrarily large (see
figure 30). This shows that F is not enough in order to bound the number of inflec-
tion points of y5. Note that we can arrange the example in order to have D(S) = 4.

Figure 28 Figure 29 Figure 30

7.7 ProBLEM. — Find a good analogue of F for a simplicial surface, in order to
adapt all the above discussion to the P.L. case.
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