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Preface

Along the years I have teached several times courses of differential topology
for the master curriculum in Mathematics at the University of Pisa. Typically the
class was attended by students who had accomplished (or were accomplishing) a
first three years curriculum in mathematics, together with a few peer physicists and
a few beginner PhD students. With the constraints imposed by their presumable
knowledges, time after time a certain body of topics, in different combinations, as
well as a certain way to present them stabilized. This textbook summarizes such
teaching experiences, so it keeps a character of “lecture notes” rather than of a
comprehensive and systematic treatise. It happens in a class to prefer a shortcut
towards some interesting application, giving up the largest generality. Similarly in
this text, for example, we will mainly focus on compact manifolds (especially when
we consider the sources of smooth maps). This allows simplifications in dealing for
instance with function spaces or with certain “globalization procedures” of maps.
There is already a plenty of interesting facts concerning compact manifolds, so we
will do it without remorse.

There is a lot of classical wellknown references (like [M1], [GP], [H], [M2],
[M3], [Mu], . . . ) which I used in preparing the courses and have strongly influenced
these pages. So, why a further texbookt on differential topology? An important
motivation came to me by looking at the personal polished notes of a few good
students glimpsing the lines of a reasonable text, together with the remark made
by someone of them that “they had not been able to find anywhere some of the
topics treated in the course”. It would be very hard to claim any ‘originality’ in
dealing with such a classical matter. However, the last sentence has perhaps a grain
of truth, at least referring to textbooks mainly addressed to undergraduate readers.
Let us indicate a main example. A theme of this text (alike others) is the synergy
between bordism and transversality. One of the beforehand mentioned constraints
is that we cannot assume any familiarity with algebraic topology or homological
algebra (besides perhaps the very basic facts about homotopy groups); on another
hand, it is very useful and meaningful to dispose of a (co)-homology theory suited
to embody several differential topology constructions. We will show that (oriented
or non oriented) bordism provides instances of covariant so called “generalized”
homology theories for arbitrary pairs (X,A) of topological spaces, constructed via
geometric means. Then, by restricting to compact smooth manifolds X, and after a
reidexing of the bordisms modules by the codimension (so that they are now called
cobordism modules), transversality allows to incorporate the bordism modules into
a contravariant cobordism functor with as target the category of graded rings; also
the product on cobordism modules is defined by direct geometric means. This mul-
tiplicative structure is a substantial enrichement and will lead to several important
and often very classical applications. For example it is the natural contest for un-
avoidable topics like the degree theory or the Poincaré-Hopf index theorem. Once
the cobordism product has been well-defined, we are exempted from reproving it
case by case for each specialization/application; moreover, the emphasis is on the
“invariance up to bordism” rather than on the “invariance up to homotopy” as it
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10 PREFACE

happens for most established references. Not assuming any familiarity with alge-
braic topology, this presentation could also be useful as an intuitive, geometrically
based introduction to some themes of that discipline.

Overall this text, besides the very foundation topics, is a collection of themes -
whose choice certainly is also matter of personal preference - in some case advanced
and of historical importance, with the common feature that they can be treated by
“bare hands”. This means by just combining specific differential-topogical cut-and-
paste procedures and applications of transversality, mainly through the cobordism
multiplicative structure. This geometric constructive character provides the ‘tone’
of this text, would be accessible to motivated master undergraduate students, to
PhD students and also useful to a more expert reader in order to recognize very basic
reasons for some facts already known to her/him as resulting from more advanced
theories and/or technologies.

Dedico tutto questo ai miei nipoti Pietro(lino) e Martin(in)a

Riccardo Benedetti

Sassetta XX/XX/XXXX



CHAPTER 1

The smooth category of open subsets of euclidean
spaces

We will be concerned with manifolds. Roughly, a manifold is a topological space
locally modeled on some euclidean space Rn, n ∈ N. So let us recall a few facts
about our favourite local models. Many of them should be familiar to the readers,
so sometimes we will omit the proofs or just sketch them.

1.1. Basic structures on Rn

Every space Rn, n ∈ N, is endowed with a variety of structures that case by
case will be involved in the discussion.

Rn is the vector space of colums vectors (with n rows). We stipulate that if
x ∈ Rn occurs as a vector in any linear algebra formula then it is considered as a
column.

The space L(Rn,Rm) of linear maps L : Rn → Rm coincides with the space
of matrices m × n, M(m,n,R), so that for every x ∈ Rn, x → Lx via the usual
“lines by column” product. By using the lexicographic order on the entries of any
matrix L = (li,j)i=1,...,m;j=1,...,n, we fix also the identification of M(m,n,R) with
Rmn. As every vector space, Rn has a canonical affine space structure determined
by the map that associates to every couple of points (x, y) ∈ Rn × Rn the vector
−→xy := y − x. Every affine map f : Rn → Rm is of the form f(x) = w + Lx where
w ∈ Rm and L ∈ L(Rn,Rm).

Rn is a complete metric space endowed with the euclidean distance d = dn
defined by

d(x, y) =

√√√√ n∑
j=1

(xj − yj)2 .

The standard positive definite scalar product (∗, ∗) = (∗, ∗)n on Rn is defined by

(x, y) :=

n∑
j=1

xjyj = xtIy

with the associated norm ||x|| =
√

(x, x). We note that

d2(x, y) = (x− y, x− y)

and that the familiar formula

(x, y) = ||x|| · ||y|| cos θ

allows to recover the measure of the angle formed by the ordered and oriented lines
spanned by two non zero vectors x, y; in particular they are othogonal iff (x, y) = 0.
Hence many basic objects of elementary geometry can be expressed analytically by
means of the standard scalar product.

Rn is a topological space endowed with the topology τ = τn induced by the
distance dn. As for any metrizable topological space, a subset U of Rn is open if

11



12 1. THE SMOOTH CATEGORY OF OPEN SUBSETS OF EUCLIDEAN SPACES

and only if for every x ∈ U , there is r > 0 such that the “open” n-ball of center x
and radius r

Bn(x, r) := {y ∈ Rn; d(x, y) < r}
is contained in U . We will denote by

Dn = B
n
(0, 1)

the closed unitary n-ball also called the unitary n-disk, and by

Sn−1 = ∂Dn = {x ∈ Rn; d(0, x) = ||x|| = 1}

the unitary sphere. One verifies that the “open” balls are indeed open sets and the
open balls with center in Qn ⊂ Rn and rational radius form a countable basis of
open sets of τ (every open set is union of such balls). Any other scalar product

(x, y)A := xtAy

defined by a positive definite symmetric matrix A = At, determines (by the same
formulas as above) a norm ||.||A, a distance dA and an associated topology τA. In
fact all these distances are topologically equivalent, that is every τA = τ . This can
be proved by means of the version of elementary spectral theorem stating that there
exists a basis of Rn which is simultaneously orthonormal for (∗, ∗) and orthogonal
for (∗, ∗)A. Another topologically equivalent distance on Rn is defined by

δ(x, y) := max{|xj − yj |; j = 1, . . . , n} .

Accordingly to general topological definitions, for every X ⊂ Rn,

τ ∩X = {U ∩X; U ∈ τ}

is the topology on X that makes it a topological subspace of (Rn, τ); given subspaces
X ⊂ Rn, Y ⊂ Rm, a map f : X → Y is continuous if for every open set U ⊂ Y ,
the inverse image f−1(U) = {x ∈ X; f(x) ∈ U} is an open set of X. A continuous
map f : X → Y is a homeomorphism if it is bijective and also the inverse map
f−1 : Y → X is continuous.

Every subspace X ⊂ Rn is metrizable (hence in particular Hausdorff) by the
restriction to X of the distance d (or of any distance topologically equivalent to d);
the restriction of any (countable) basis of open sets of τ is a (countable) basis of
τ ∩X.

As for every Hausdorff space with a countable basis, a subspace X of Rn is
compact (i.e. every open covering of X admits a finite sub-covering) if and only
if it is sequentially compact (i.e. every sequence an of points of X admits a sub-
sequence ajn converging to some point x of X). A subspace is compact if and only
if it is closed (i.e. the complementary is open) and bounded (i.e. it is contained in
some ball Bn(0, r)). Rn is locally compact (for every x ∈ Rn the family of closed

balls B
n
(x, r) = {y ∈ Rn; d(x, y) ≤ r}, when r > 0 varies, is a basis of compact

neighbourhoos of x). The same holds for every subspace X which is a closed subset
of Rn.

We have

Proposition 1.1. A non empty open subset U ⊂ Rn is connected (i.e. U is
the only open-and-closed non empty subset of U) if and only if it is path connected
(i.e. for every two points x0, x1 of U , there is a continuous path α : [0, 1]→ U such
that α(0) = x0, α(1) = x1).

Proof : The “if” implication holds in general for arbitrary topological spaces
and is due to the basic fact that intervals in the real line are connected; for “only if”,
note that “being connected by a continuous path” defines an equivalence relation
on U . The equivalence classes are called the path connected components of U . As
every open ball Bn(x, r) ⊂ U is contained in the path connected component of U
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which contains x ∈ U , then every path connected component of U is open, hence
there is only one if U is connected.

2

1.2. Differential calculus

Another fundamental structure carried by the spaces Rn is the differential cal-
culus. Let U ⊂ Rn, W ⊂ Rm be open sets. A map

f = (f1, . . . , fm) : U →W

is said to be C0 if it is continuos. The map is differentiable at x ∈ U if there
is a (necessarily unique) linear map dxf ∈ L(Rn,Rm) that “well” approximates
g(h) = f(x + h) − f(x) in a neighbourhood of h = 0. Precisely, for every ε > 0,
there is δ > 0 such that for every h such that ||h|| < δ, x+ h ∈ U and

||g(h)− dxf(h)|| ≤ ε||h|| .
The linear map dxf is called the differential of f at x. The map f is (globally)
differentiable if it is differentiable at every point x ∈ U . In such a case it is defined
the differential map

df : U →M(m,n,R), df(x) := dxf .

We say that f is C1 if it is differentiable and df is continuous (being L(Rn,Rm) =
M(m,n,R) confused with Rmn as above). Every C1 map is C0. By induction, for
every r ≥ 1, we say that f is Cr if df is Cr−1. In practice, f is Cr, r ≥ 1, if and only
if it is C0 and for every multi-index J = j1 . . . jn of order |J | := j1 + · · · + jm ≤ r,
for every i = 1, . . . ,m, it is defined and is continuous the partial derivative function

∂Jfi
∂j1x1 . . . ∂jnxn

: U → R .

Then for every x ∈ U , the partial derivatives of the first order can be organized in
a m× n matrix so that

dxf :=

(
∂fi
∂xj

(x)

)
i=1,...,m; j=1,...,n

∈M(m,n,R) .

This is a consequence of the “chain rule” (see below).
A map f is C∞ or, equivalently, smooth if it is Cr for every r ≥ 0. If f is

smooth, then also df is smooth. So we can define inductively for every r ≥ 1,
drf = d(dr−1f).

If f is (at least) C1 we have the following uniform version of the above property
that define the differentials dxf : for every x ∈ U there exists a neighbourhood W
of x in U (we can take as W a compact closed ball B̄n(x, ρ) ⊂ U), such that for
every ε > 0, there is δ > 0 such that for every y ∈ W and for every h, ||h|| < δ we
have y + h ∈ U and

||f(y + h)− f(y)− dyf(h))|| ≤ εδ ;

in other words

lim
h→0

g(y, h)− dyf(h)

||h||
= 0 .

uniformly with respect to y ∈W .

From now on we will be mainly concerned with smooth maps.

(Taylor polynomials.) A homogeneus polynomial maps of degree k ≥ 1

p : Rn → Rm

is by definition of the form p(x) = φ(x, . . . , x), where φ : (Rn)k → Rm is a (nec-
essarily unique) symmetric k-linear map (φ is called the “polarization” of p). It
follows that the set Pk(n,m) of these homogeneus polynomial maps has a natural
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structure of finite dimensional real vector space. A polynomial map of degree d,
p : Rn → Rm, is of the form

p = p0 + p1 + · · ·+ pd

where p0 ∈ Rm and for j ≥ 1, pj is homogeneous polynomial of degree j and pd is
not zero.

Let f : Rn → Rm be a smooth map. Then for every k ≥ 1 there is a smooth
map

Tk(f) : U → Pk(n,m)

such that for every k ≥ 1, for every x ∈ U , there is a neighbourhood W of x in U
such that for every ε > 0, there is δ > 0 such for every y ∈W and every h, ||h|| < δ,
we have y + h ∈ U and

||f(y + h)− (f(y) + T1(f)(y)(h) + · · ·+ Tk(f)(y)(h))|| ≤ ε||h||k .
The maps Tk(f) are uniquely determined by these conditions. Clearly

T1(f)(x) = dxf .

More generally, every p = (p1, . . . , pm) ∈ Pk(n,m) is of the form

pi(h) =
∑
|J|=k

aJi h
j1
1 · · ·hjnn

where the coefficients aJi ∈ R. Then one verifies that Tk(f)(x) is uniquely deter-
mined by the formulas

aJi =
1

k!

∂Jfi
∂j1x1 . . . ∂jnxn

(x) .

In other words, Tk(f)(x) is determined by means of 1
k!d

k
x(f). Tk(f)(x) is the ho-

mogeneous degree-k Taylor polynomial of f at x. Setting f(x) = T0(f)(x), the
polynomial map (of the variable h)

Tk(f)(x) := T0(f)(x) + T1(f)(x) + · · ·+ Tk(f)(x)

is called Taylor polynomial of f at x of degree ≤ k.

1.3. The category of open subsets of euclidean spaces and smooth maps

Let f : U → W , g : U ′ → W ′ be smooth maps between open subsets of some
(possibly variable) euclidean spaces. The composition g◦f is defined when W ⊂ U ′.
The fundamental well known chain rule for the composition of differentiable maps
states that for every x ∈ U , y = f(x), g ◦ f is differentiable at x and

dx(g ◦ f) = dyg ◦ dxf .
It follows immediately that if f and g are smooth then also g ◦ f is smooth. Then
we can consider the category whose objects are the open subsets of euclidean spaces
and for every couple (U,W ) of objects, the “arrows” (that is the morphisms) are
the smooth maps C∞(U,W ).

For every object U ⊂ Rn, the unit map 1U is the identity

idU : U → U, idU (x) = x

which is obviously smooth. For every x ∈ U ,

dxidU = idRn = In ∈ End(Rn) = M(n,R) .

If U ′ ⊂ U then the inclusion i : U ′ → U is smooth and for every f ∈ C∞(U,W ),
the restriction f |U ′ = f ◦ i is smooth.

The equivalences in this category are the diffeomorphisms. Let U ⊂ Rn and
W ⊂ Rm be open sets. Then f ∈ C∞(U,W ) is a diffeomorphism if it is a homeomor-
phism and also the inverse map f−1 : W → U is smooth. In such a case, by applying
again the chain rule, we have that for every x ∈ U , y = f(x), dyf

−1 ◦ dxf = In,
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dxf ◦ dyf−1 = Im, then by elementary linear algebra both inequalities n ≤ m and
m ≤ n hold, so that m = n; finally dxf ∈ GL(n,R) is invertible and

dyf
−1 = (dxf)−1 .

Hence we have proved the invariance of the dimension up to diffeomorphism and
this is reduced to the basic invariance of dimension up to linear isomorphism.

Another consequence of these considerations (based on the chain rule):

If a smooth homeomorphism f : U → W has differentiable inverse map f−1

then it is a diffeomorphism (i.e. f−1 is smooth indeed).

1.4. The chain rule and the tangent functor

The chain rule can be rephrased in the language of functors between categories.
A way is to consider the category of pointed open subsets of some euclidean spaces
and pointed smooth maps. Then by setting

(U, x), U ⊂ Rn =⇒ Rn

f ∈ C∞((U, x), (W, y)), U ⊂ Rn, W ⊂ Rm =⇒ dxf ∈ L(Rn,Rm)

we define a covariant functor from the smooth pointed category to the category of
finite dimensional real vector spaces and linear maps.

Avoiding to deal with the pointed category, another way is by defining the so
called tangent functor which is a covariant functor from our favourite category to
itself. Set

U ⊂ Rn =⇒ T (U) := U × Rn ⊂ Rn × Rn

f ∈ C∞(U,W ) =⇒ Tf ∈ C∞(T (U), T (W )), T f(x, v) := (f(x), dxf(v)) .

The chain rule can be rewritten as

T (g ◦ f) = Tg ◦ Tf

T idU = idT (U)

if f ∈ C∞(U,W ) is a diffeomorphism, then also Tf is a diffeomorphism.
There is a natural projection

πU : T (U)→ U, πU (x, v) = x .

(T (U), πU ) is called the tangent bundle of U . For every x ∈ U , the fibre

TxU := π−1
U (x)

is naturally identified with the vector space Rn and is called the tangent spaces to
U at x. Every v ∈ TxU is a tangent vector at x. This notion of TxU is essentially
the one we get by considering U as an open set in the affine space Rn.

The map Tf is called the tangent map of f . Clearly,

πW ◦ Tf = f ◦ πU

that is Tf sends every fibre TxU to the fibre Tf(x)W by means of the linear map
dxf which varies smoothly when x varies in U .
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1.5. Tangent vector fields, riemannian metrics, gradient fields

A tangent vector fields on U (often we will omit to say “tangent”) is a smooth
map of the form

X : U → T (U), X(x) = (x, vX(x))

so that πU ◦X = idU . Such a map is also called a (smooth) section of the tangent
bundle. Hence X selects a family (a “field”) of vectors {vX(x) ∈ TxU}x∈U which
vary smoothly with the point x ∈ U . In practice X could be confused with the
smooth map vX : U → Rn; however, if φ : U → W is a diffeomorphim, as a map
v = vX is transported on W by the composition v ◦φ−1, while the vector field X is
transported to φ∗X on W by the composition Tφ◦X, that is for every y = φ(x) ∈W

φ∗X(y) = (y, dxφ(vX(x))) .

Denote by Γ(T (U)) the set of vector fields on U . For every X,Y ∈ Γ(T (U)),
every f ∈ C∞(U,R), and every x ∈ U , set

X + Y (x) = (x, vX(x) + vY (x)), fX(x) = (x, f(x)vX(x)) .

This defines on Γ(T (U)) a natural structure of module over the commutative ring
C∞(U,R) which induces (by restriction to the constant functions) a structure of
R-vector space. Let us denote by ei(x) = (x, ei), i = 1, . . . , n, the constant vector
field on U such that ei = (0, 0, . . . , 1, . . . , 0)t is the ith-vector of the canonical basis
of Rn. Sometimes ei is also denoted by ∂

∂xi
. Then for every X ∈ Γ(T (U)),

X =
∑
i

vX,iei

that is the fields ei form a basis of such a module.
A riemannian metric on U ⊂ Rn, is a smooth map

g : U →M(n,R)

such that for every x ∈ U , the matrix g(x) is symmetric and positive definite. Then
{g(x)}x∈U is a smooth fields of positive definite scalar products (∗, ∗)g(x) defined on
each tangent space TxU . Denote by S(n,R) the space of symmetric n× n matrices

(S(n,R) can be identified with R
n(n+1)

2 ). By setting

U → U × S(n,R), x→ (x, g(x))

then the riemannian metric can be interpreted as a section of the “product bundle”
U × S(n,R)→ U .

If g is a riemannian metric on U and X,Y ∈ Γ(T (U)), then

x→ (vX(x), vY (x))g(x)

defines a smooth function on U .
If g0 and g1 are riemannian metrics on U , then gt = (1 − t)g0 + tg1, t ∈ [0, 1],

is a path of riemannian metrics.
An isometry φ : (U, g)→ (W,h) (g, h being riemannian metrics) is by definition

a diffeomorphism such that for every x ∈ U , every v, w ∈ TxU ,

(v, w)g(x) = (dxφ(v), dxφ(w))h(φ(x)) .

Given (U, g) and a diffeomorphism φ : U → W , this transports g to the rie-
mannian metric φ∗g on W such that φ is tautologically an isometry. If y ∈ W , set
P (y) = dyφ

−1, then

φ∗g : W →M(n,R), y → P (y)tg(φ−1(y))P (y) .

If f ∈ C∞(U,R), its differential function df : U → M(1, n) can be considered
as a smooth field of linear functionals {dxf : TxU → R}x∈U , dxf belonging to the
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dual space T ∗xU ; in other words, it is identified with the section x→ (x, dxf) of the
cotangent bundle

π∗ : T ∗(U) = U ×M(1, n)→ U .

Every such a section Ω(x) = (x, ω(x)) is called a differential form on U . For every
form Ω and every vector field X on U ,

x→ ω(x)(v(x))

defines a smooth function on U . If φ : U →W is a diffeomorphism, Ω a differential
form on U , then φ transports Ω to the form φ∗Ω on W such that for every y ∈W ,
every w ∈ TyW , then

φ∗Ω(y) = (y, ω(dyφ
−1(w))) .

Denote by ej , j = 1, . . . , n the field constantly equal to the functional ej such that

(ei(ej))i,j = In ∈M(n.R) .

Then every Ω ∈ Γ(T ∗(U)) is a unique linear combination

Ω =
∑
j

aje
j

the aj being smooth functions on U . Sometimes one writes ∂xj instead of ej .
If g is a riemannian metric on U , then by setting for every v, w ∈ TxU ,

ψv(w) := g(x)(v, w) ∈ R
one defines a smooth field of linear isomorphisms Ψg := {Ψg,x : Tx(U)→ T ∗x (U)}x∈U .
This transforms vector fields into differential forms. For every f ∈ C∞(U,R), let
∇gf be the unique vector field on U such that Ψg(∇gf) = df , so that for every
x ∈ U , v ∈ Tx(U), then

dxf(v) = (∇g(x), v)g(x) .

The field ∇gf is called the gradient of f with respect to the metric g. Clearly for
every x ∈ U , dxf(∇g(x)) = (∇g(x),∇g(x))g(x) ≥ 0 and is strictly positive if and
only if dxf 6= 0.

Obviously every U admits riemannian metrics, for example any constant one
gA(x) = A where A is a symmetric positive definite matrix. In particular g0 := gIn
is called the standard riemannian metric. We have that for every smooth function
f on U ,

∇g0
f(x) = dxf

t .

1.6. Inverse function theorem and applications

Let L ∈ L(Rn,Rm) be a linear map of maximal rank r. There are a few
possibilities and by elementary linear algebra, for every case there is a normal form
up to pre or post composition with linear isomorphisms.

• If r = n = m, then L ∈ GL(n,R) is invertible and the normal form is In
abtained as

In = L ◦ L−1 = L−1 ◦ L .

• If n < m, then the rank r is equal to n and L is injective. Let us fix a
direct sum decomposition

Rm = L(Rn)⊕ V
and a basis B = B′ ⊕ B” of Rm adapted to the decomposition. This
determines a linear isomorphism φB : Rm → Rn × Rm−n such that for
every x = (x1, . . . , xn)t ∈ Rn, we have

φB ◦ L(x) = (x1, . . . , xn, 0, . . . , 0)t

that is the standard inclusion j = jn,m : Rn → Rm = Rn ×Rm−n. This is
the normal form in this case.
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• If n > m, then the rank r is equal to m and L is surjective. Fix a direct
sum decomposition

Rn = V ⊕ ker(L)

and an adapted basis B = B′⊕B” of Rn. This determines a linear isomor-
phism (in fact the inverse of the above defined φB) ψB : Rm×Rn−m → Rn
such that for every x = (x1, . . . , xn)t ∈ Rm × Rn−m, we have

L ◦ ψB(x) = (x1, . . . , xm)

that is the natural projection πn,m : Rm × Rn−m → Rm. This is the
normal form in this case.

Let us consider now a morphism f ∈ C∞(U,W ) in our favourite category,
U ⊂ Rn, W ⊂ Rm, p ∈ U . Assume that dpf has maximal rank r. The following
fundamental theorems state that locally in a neighbourhood of p in U , the map f
takes the same normal form of the linear map dpf , up to pre or post composition
with smooth diffeomorphisms. As a first step, let us remark that the punctual
hypothesis has in fact a local valence. By a well known criterion dpf has maximal
rank r if and only if there is a r × r submatrix A(p) of dpf such that detA(p) 6= 0.
By taking the same submatrix A(x) of dxf for every x ∈ U , we define the smooth
function

detA : U → R, x→ detA(x) .

Then by the “sign permanence”, there exists an open neighbourhood U ′ ⊂ U of p
in U , such that for every x ∈ U ′, dxf has maximal rank r.

A map f ∈ C∞(U,W ) such that for every x ∈ U , dxf is injective is called an
immersion. If dxf is surjective for every x ∈ U , then f is called a summersion. If
n = m the two notions coincide. We can state now the theorem mentioned in the
title.

Theorem 1.2. (Inverse function theorem) Let f ∈ C∞(U,W ), U,W ⊂ Rn,
such that for every p ∈ U , the differential dpf is invertible. Then f is a local
diffeomorphism, that is for every p ∈ U there is a open neighbourhood U ′ of p in U
such that W ′ = f(U ′) is an open subset of W and the restriction f |U ′ ∈ C∞(U ′,W ′)
is a diffeomorphism.

Corollary 1.3. ((Local immersion theorem) Let f ∈ C∞(U,W ), U ⊂ Rn,
W ⊂ Rm, n < m, be an immersion. Then for every p ∈ U there exist

• An open neighbourhood U ′ of 0 in Rn;
• an open neighbourhood W ′ of q = f(p) in W ;
• an open neighbourhood W” of 0 in Rm and a diffeomorphism

φ : (W ′, q)→ (W”, 0)

such that for every x ∈ U ′, x+ p ∈ U , f(x+ p) ∈W ′ and

φ ◦ f(x+ p) = jn,m(x) .

Corollary 1.4. (Local summersion theorem) Let f ∈ C∞(U,W ), U ⊂ Rn,
W ⊂ Rm, n > m, be a summersion. Then for every p ∈ U there exist

• An open neighbourhood U ′ of p in U ;
• an open neighbourhood U” of 0 in Rn and a diffeomorphism

ψ : (U”, 0)→ (U ′, p)

such that f(U ′) ⊂W and

f ◦ ψ(x)− f(p) = πn,m(x) .
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Proof of the Corollaries. In both cases it is not restrictive to assume that p = 0
and f(0) = 0. We will use the notations introduced at the beginning of the section,
by replacing L with d0f .

(Immersions) Given a direct sum decomposition of Rm = d0f(Rn) ⊕ V , with
adapted basis B = B′ ⊕ B” and associated linear isomorphism

ψB : Rn × Rm−n → Rm

consider the smooth map

g : U × Rm−n → Rm, g(x, h) = f(x) + ψB(0, h) .

It is easy to verify that d(0,0)g is invertible and we can apply the inverse function
theorem to g on a neighbourhood U ′×A of (0, 0). By construction, for every x ∈ U ′,
f(x) = g ◦ jn,m(x), so that g−1 ◦ f(x) = jn,m(x).

(Summersions) Given a direct sum decomposition Rn = V ⊕ ker(d0f) with
adapted basis B = B′ ⊕ B” and associated linear isomorphism

φB : Rn → Rm × Rn−m

set p : Rm × Rn−m → Rn−m the natural projection. Define

g : U → Rm × Rn−m, g(x) = (f(x), p(φB(x)) .

One verifies that d0g is invertible, so we can apply the inverse function theorem to g
on a neighbourhood U ′ of 0. By construction, for every x ∈ U ′, f(x) = πn,m ◦ g(x),
and we conclude similarly to the case of immersions above.

2

Corollaries 1.3 and 1.4 are instances of the following general constant rank
theorem. The proof, based again on the Inverse Function Theorem, is a simple
variation and is left as an exercise.

Theorem 1.5. (Constant rank theorem) Let f : U →W be a smooth map, U ⊂
Rn, W ⊂ Rm be open sets. Assume that dxf is of constant rank k ≤ min{n,m}.
Then for every p ∈ U , q = f(p) up to pre and post composition with local diffeo-
morphisms ψ : U ′ → U , ψ(0) = p, φ : W ′ →W , φ(0) = p we have that

ρ := φ−1 ◦ f ◦ ψ : U ′ →W ′, ρ(u1, . . . , un) = (u1, . . . , uk) .

2

Strictly related to the local summersion theorem there is another corollary
known as the implicit function theorem. A consequence of the proof of Corollary
1.4 is that there is a diffeomorphism ρ : A× B → U ′, where A× B ⊂ Rn−m × Rm
is an open neighbourhood of (x0, y0) = (0, 0) and U ′ is an open neigbourhood of 0
in U ⊂ Rn, such that restriction of g = f ◦ ρ to A×B verifies:

(1) g(x0, y0) = 0;
(2) The restriction g̃ of g to Rm = {x0} × Rm has invertible differential dy0

g̃
at y0

We take such a situation as the hypotheses of the implicit function theorem.

Corollary 1.6. (Implicit function theorem) Let A × B ⊂ Rk × Rm be an
open set. Let g : A × B → Rm be a smooth map and (x0, y0) ∈ A × B such that
g(x0, y0) = 0. Let g̃ be the restriction of g to Rm = {x0} × Rm. Assume that dy0

g̃
is invertible. Then there exist an open neighbourhood A′ ×B′ of (x0, y0) in A×B,
and a smooth maps h : A′ → B′ such that

Graph(h) = f−1(0) ∩A′ ×B′ .



20 1. THE SMOOTH CATEGORY OF OPEN SUBSETS OF EUCLIDEAN SPACES

It follows that f(x, h(x)) = 0 for every x ∈ U ′ and h is said to be (locally)
implicitly defined by the equation f(x, y) = 0.

Sketch of proof. We use similar arguments as in the proofs of the previous
corollaries. Consider the smooth map

G : A×B → Rk × Rm, G(x, y) = (x, g(x, y)) .

It is immediate to check that d(x0,y0)G is invertible, so we can apply the inverse
function theorem to G in a neighbourhood A1×B′ of (x0, y0), and the inverse map
is necessarily of the form

G−1(x, y) = (x, l(x, y))

for a suitable smooth map

l : G(A1 ×B′)→ B′ .

Take

A′ = {x ∈ U ; (x, 0) ∈ G(U1 ×W ′}
and define h(x) = l(x, 0). The reader can complete by exercise the verification that
A′ ⊂ A1 and this eventually achieves the proof.

2

A proof of the inverse function theorem should be known to the reader. A
current conceptual proof is based on Banach’s principle for contractions on complete
metric spaces. This is suited for generalizations to infinite dimensional Banach
spaces. However we just sketch one in our finite dimensional situation, based on
elementary properties of continuos functions on compact spaces.

Sketch of a proof of the inverse function theorem. We can assume for simplicity,
and it is not restrictive, that p = 0 and f(p) = 0. Possibly by composing f with
(d0f)−1 we can also assume that d0f = In.

The proof is achieved by following the next sequence of claims.

Claim 1. There is a sufficiently small closed ball B = B
n
(0, ε) ⊂ U such that

(1) For every x ∈ B, dxf is invertible;
(2) For every x ∈ B, x 6= 0, then f(x) 6= 0;
(3) For every x, z ∈ B, 2||f(x)− f(z)|| ≥ ||x− z||.

Assuming these facts, by the continuity of the function and the compactness of
∂B, there is δ > 0 such that for every x ∈ ∂B, ||f(x)|| ≥ δ. Consider the open ball
B′ = Bn(0, δ/2).

Claim 2. Set A = B ∩ f−1(B′). Then the restriction φ : A → B′ of f to the
open set A is bijective.

Claim 3. φ is a homeomorphism.

Claim 4. φ is a diffeomorphism

Proof of Claim 1. The first point is evident. Assuming that the second point
fails, there would be a sequence xn in U , converging to 0, such that f(xn) = 0 for

every n. Hence || f(xn)−xn
xn

|| = 1 against the fact that d0f = In. As for the third

point, consider the function g(x) = f(x)− x, so that

||x− z|| − ||f(x)− f(z)|| ≤ ||g(x)− g(z)|| .

As
∂gi
∂xj

(x) =
∂fi
∂xj

(x)− ∂fi
∂xj

(0)
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we can take ε in order to make | ∂gi∂xj
(x)| < 1

2n2 uniformely on B. Then the conclusive

inequality

||g(x)− g(z)|| ≤ 1

2
||x− z||

is obtained by applying several times the Main Value Theorem for functions of one
variable,

Proof of Claim 2. It is enough to prove that for every y ∈ B′ there is a
unique x ∈ U such that f(x) = y. The smooth function h(x) = ||y − f(x)||2 has a
minimum point p on the compact set B and by construction p belongs necessarily
to the open ball B. A simple computation then shows that dpf(y−f(p)) = 0, hence
y − f(p) = 0 because dpf is invertible. As for the uniqueness, this follows by the
inequality ||p1 − p2|| ≤ 2||f(p1)− f(p2)||, so that p1 = p2 if f(p1) = f(p2) = y.

Proof of Claim 3. The same inequality implies that ||φ−1(y1) − φ−1(y2|| ≤
2||y1 − y2|| and the continuity of φ−1 follows.

Proof of Claim 4. As we know, it is enough to show that φ−1 is differentiable.
In fact by using directly the definition of the differential one can prove that dyφ

−1 =
(dxφ)−1, where y = φ(x). The details are left to the reader.

2

1.7. Topologies on spaces of smooth maps

Let U ⊂ Rn, W ⊂ Rm be open sets. For every k ≥ 0 we define a topology δk on
Ck(U,W ); we will denote by Ek(U,W ) the set C∞(U,W ) ⊂ Ck(U,W ) endowed with
the subspace topology. We determine δk by giving for every f = (f1, . . . , fm) ∈
Ck(U,W ) a basis of open neighbourhoods Uk(f,K, ε) where the varying arguments
are a compact subset K ⊂ U and a real ε > 0. Then, by definition, g ∈ Ck(U,W )
belongs to Uk(f,K, ε) if and only if

(1) For every x ∈ K, ||g(x)− f(x)|| < ε;
(2) For every multi-index J such that |J | = r ≤ k, for every i = 1, . . . ,m, for

every x ∈ K, we have

|| ∂
J(gi − fi)

∂xj11 . . . ∂xjnn
(x)|| < ε .

We omit the proof that this actually defines bases of neighbourhoods of some
topologies.

We denote by E(U,W ) the set C∞(U,W ) endowed with the union topology
δ = ∪kδk.

All these are called weak topologies. This understands the existence of other
strong topologies, say σk, on the same sets. By considering for example E(Rn,R),
we can control the difference of two functions, up to an arbitrarily prescribed order
on an arbitrarily given compact set K, but we have not any control “at infinity”.
The strong topologies σk, which contain δk being heavily finer, allow instead such
a control at infinity. On another hand, the weak topologies δk have nice properties,
for example one can prove that they are metrizable, hence every f has a countable
basis of open neighbourhoods. On the contrary this is not the case for the strong
topologies; for example if a sequence gn → f in Ck(Rn,R) with the strong topology,
then there exists a compact set K in Rn such that gn definetly equal f on the
complement of K. However, we do not define the strong topologies. To our aims,
the control at compact sets will suffice.

Let us recall also (a particular case of) the classical Stone-Weierstrass theorem
(see [Stone]).



22 1. THE SMOOTH CATEGORY OF OPEN SUBSETS OF EUCLIDEAN SPACES

Theorem 1.7. For every f ∈ Ck(U,Rm), for every k ≥ 0, for every neighbour-
hood U = Uk(f,K, ε), there exists a polynomial map p : Rn → Rm such that the
restriction of p to U belongs to U . In other words, the polynomial maps are dense
in Ck(U,Rm) for every k ≥ 0 and in E(U,W ).

1.8. Stability of summersions and immersions at a compact set

Let f ∈ Ck(U,W ) be as above, k ≥ 1, K ⊂ U a compact set. We say that f is a
summersion (resp. an immersion) at K if for every x ∈ K, dxf is surjective (resp.
injective). This is equivalent to the fact that there exists an open neighbourhood
K ⊂ U ′ ⊂ U such that the restriction of f to U ′ is a summersion (immersion). Here
is the stability results.

Proposition 1.8. If f is either (1) a summersion, (2) an immersion or (3)
an injective immersion at K, then there is a neighbourhood U = U1(f,K, ε) such
that every g ∈ U shares the same properties of f respectively.

Proof : If n ≥ m (resp. n < m), then every m × n matrix A has
(
n
m

)
m ×m

(resp.
(
m
n

)
) submatrices say Aj ; in any case define

δ(A) =
∑
j

(detAj)
2 .

In both cases (1) and (2) the hypothesis is equivalent to d(x) := δ(dxf) > 0 for
every x ∈ K. As d is continuous and K is compact, then

sup
x∈K
{d(x)} = max

x∈K
{d(x)} = d0 > 0 .

Then it is clear that if g is close enough to f at K in C1(U,W ), then δ(dxg) > 0
for every x ∈ K. As for (3), assume that the thesis fails. Then there would exist
a seguence gn ∈ C1(U,W ), sequences of points xn, yn in the compact set K such
that:

(1) Every gn is an immersion at K (by (2));
(2) gn → f and dgn → df uniformly on K;
(3) xn → x, yn → y in K, xn 6= yn and gn(xn) = gn(yn) for every n.
(4) vn := xn−yn

||xn−yn|| → v ∈ Sn−1 (by the compactness of the unitary sphere

Sn−1).

Then: gn(xn) → f(x), gn(yn) → f(y), hence x = y because f is injective.
Hence

||gn(xn)− gn(yn)− dyngn(xn − yn))||/||xn − yn|| → 0

uniformly, so that

||dyngn(vn)|| → ||dxf(v)|| = 0 .

This is absurd because dxf is injective.
2

1.9. An elementary division theorem

By definition a convex subset C of Rn has the property that for every x0, x1 ∈ C,
the (parametrized) segment γ : [0, 1] → Rn, γ(t) = (1 − t)x0 + tx1 is enterely
contained in C. We have

Theorem 1.9. (Elementary division theorem) Let f = (f1, . . . , fm) ∈ C∞(U,Rm)
where U ⊂ Rn is a convex open subset. Assume that 0 ∈ U and f(0) = 0. Then
there are smooth maps gj = (gj1, . . . , gjm) : U → Rm, j = 1, . . . , n, such that for

every x ∈ U , f(x) =
∑
j xjgj(x), and (necessarily) gji(0) = ∂fi

∂xj
(0).
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Proof : It is a basic property of elementary integration that for every smooth

function h : U → R, the function h̃ : U → R defined by h̃(x) =
∫ 1

0
h(tx)dt is smooth.

By the funtamental theorem of elementary integration for continuous functions, we
have that

f(x) =

∫ 1

0

df(tx)

dt
dt = (

∫ 1

0

df1(tx)

dt
dt, . . . ,

∫ 1

0

dfm(tx)

dt
dt) .

By the chain rule, for every i = 1, . . . ,m,∫ 1

0

dfi(tx)

dt
dt =

∫ 1

0

(
∑
j

xj
∂fi
∂xj

(tx))dt =
∑
j

xj

∫ 1

0

∂fi
∂xj

(tx))dt .

We achieve the proof by setting

gji(x) :=

∫ 1

0

∂fi
∂xj

(tx))dt

2

Remarks 1.10. (1) The same arguments in the above proof work as well by
assuming only that U is starred with center at 0.

(2) In the setting of the division theorem, if n = m = 1, we have that f(x) =
xg(x), that is the coordinate function x divides f . Assume now m = 1, f is defined
on an open set of the form U = A × (−1, 1) ⊂ Rn−1 × R and that {f = 0} =
U ∩ {xn = 0}. Then by applying fibre by fibre the same construction of the above
proof, we get that f(x) = xng(x). Moreover, if f is a summersion, then g(x) is
nowhere vanishing.

We will see several applications of the division theorem.

1.10. A differential interpretation of the tangent spaces: derivations

Above we have introduced the tangent spaces TxU , mainly by considering U as
an open set of the affine space Rn. Here we give a genuine differential interpretation,
compatible with the already defined tangent functor.

Let p ∈ U . Consider the set of smooth functions f : U ′ → R defined on some
open neighbourhood U ′ of p in U . On this set put the equivalence relation such
that (U1, f1) ∼ (U2, f2) if and only if there is (U3, f3) such that U3 ⊂ U1 ∩ U2 and
for every y ∈ U3 f3(y) = f1(y) = f2(y). Denote by Ep the quotient set. Note that U
is immaterial for this purely local definition, as we would get the same Ep by taking
for instance the whole of Rn instead of U . Similarly also Tp = TpU essentially does
not depend on the choice of the open set containing p. Denote by [f ] = [f ]p an
equivalence class. The usual sum and product defined on every C∞(U ′,R) induce
well defined sum and product on Ep which make it a commutative ring as well a
real vector space with compatible operations. The translation x→ x−p determines
a canonical isomorphism between Ep and E0, then the considerations we are going
to do for E0 can be straighforwardly transported to Ep by this translation. Let
v = (v1, . . . , vn)t ∈ T0 ∼ Rn. By means of the usual derivative at 0 in the direction
v, we define the function

δv : E0 → R, δv([f ]) =
∑
j

∂f

∂xj
(0)vj .

One verifies easily that δv is well defined (it does not depend on the choice of the
representative f), is R-linear, and moreover verifies the Leibniz identity:

δv([f ][g]) = f(0)δv([g]) + g(0)δv([f ]) .
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Let us call a derivation on E0 any map δ : E0 → R that verifies the same properties.
Set Der(E0) the set of these derivation. It has a natural structure of real vector
space, so that the map

L : T0 → Der(E0), L(v) = δv

is R-linear. Let us prove that L is a linear isomorphism. For every derivation
δ we will find a unique v ∈ T0 such that δ = δv. It follows immediately from
the derivation properties that for every constant germ [f ] (i.e. with a constant
representative), δ([f ]) = 0. For every [f ] we can take a representative f defined on
a small open ball Bn(0, ε) (which is convex). By the division theorem, for every x
in such a ball,

f(x)− f(0) =
∑
j

gj(x)xj

for some smooth functions gj . Then, by using again the derivation properties, we
have

δ([f ]) =
∑
j

∂f

∂xj
(0)δ([xj ])

hence we conclude by taking v = (δ([x1]), . . . , δ([xn])).
2

The above discussion can be globalized by replacing Tp with the set Γ(T (U)) of
(tangent) vector fields on U , and Ep with the commutative ring C∞(U,R) with the
induced compatible structure of R-vector space. Γ(T (U)) is also in a natural way a
vector space and this extends to a natural structure of C∞(U,R)-module. For every
vector field X ∈ Γ(T (U)), define

δX : C∞(U,R)→ C∞(U,R), δX(f)(x) = δX(x)([f ]x) .

It is R-linear and verifies the Leibniz rule

δX(fg) = fδX(g) + δX(f)g

hence, by definition, it is a derivation on C∞(U,R). Finally the map

L : Γ(T (U))→ Der(C∞(U,R)), L(X) = δX

establishes an isomorphism of C∞-modules.
Note that if δ, δ′ ∈ Der(E0) (resp. ∈ Der(C∞(U,R))) then δδ′ is not in general

a derivation, while δδ′ − δ′δ is a derivation. In particular for every couple X,Y ∈
Γ(T (U)) there is a unique vector fields [X,Y ] such that

L([X,Y ]) = L(X)L(Y )− L(Y )L(X) .

1.11. Morse lemma

Let f ∈ C∞(U,R), U open set of Rn. A point p ∈ U is regular for f if dpf 6= 0
(that is f is a summersion near p); otherwise we say that p is critical (or also
singular). We are interested to the local behaviour of f at p (actually to the germ
[f ]p). Up to pre or post composition with a translation we can normalize the
situation so that p = 0 and f(0) = 0. Moreover we can assume that U = Bn(0, ε0)
for some ε0 > 0 and, case by case, we can restrict f to any Uε = Bn(0, ε), 0 < ε ≤ ε0.
For every ε, the commutative ring C∞(Uε,R) has a canonical ideal

mε = {g ∈ C∞(Uε,R); g(0) = 0}
so that we are assuming that f ∈ mε. It is an immediate corollary of the division
theorem that mε is generated by the coordinate functions xj , j = 1, . . . , n; that is
every g ∈ mε is a C∞(Uε,R)-linear combination of the coordinate functions. Hence
we have that for x ∈ U ,

f(x) =
∑
j

gj(x)xj , d0f = (g1(0), . . . , gn(0)) .
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If 0 is a regular point for f , the particular case of theorem 1.4 can be rephrased
by saying that, up to pre composition with a local diffeomorphism, f locally coin-
cides with d0f that is its first Taylor polynomial T1(f)(0).

If 0 is critical, then all the smooth functions gj vanish at 0, and we can apply
again to each of them the division theorem and eventually we get that on U

f(x) =
∑
|J|=2

gJ(x)xJ , xJ := xj11 . . . xjnn

that is it has the form of a homogeneus polynomial of degree 2 whose coefficients
are smooth functions. Moreover

T2(f)(0) =
∑
|J|=2

gJ(0)xj11 . . . xjnn .

In fact we can express T2(f)(0) in the form

T2(f)(0) =
1

2
xtH0(f)x := Q0(f)(x)

where H0(f) is the symmetric (by Schwartz Lemma) Hessian matrix of f at 0

H0(f) =

(
∂2f

∂xi∂xj
(0)

)
i,j=1,...,n

while Q0(f) is the associated quadratic form. We can organize the above functions
gi,j to rewrite f on U as

f(x) = xtG(x)x

where
G : U →M(n,R)

is a smooth map such that G(x) = G(x)t is symmetric for every x ∈ U , and
G(0) = T2(f)(0).

We say that the critical point x = 0 is non degenerate if

detH0(f) 6= 0 .

We have the following characterization of non degenerate critical points. For every
Uε, denote by J(f, ε) the Jacobian ideal of C∞(Uε,R) generated by the partial

derivative functions ∂f
∂xj

, that is the ideal of the C∞(Uε,R)-linear combinations∑
j hj

∂f
∂xj

, hj ∈ C∞(Uε,R). If 0 is a critical point, then J(f, ε) ⊂ mε . Then we

have

Lemma 1.11. 0 is a non degenerate critical point of f ∈ C∞(U,R), f(0) = 0, if
and only if there exists 0 < ε ≤ ε0 such that J(f, ε) = mε.

Proof : It is enough to prove the inclusion “⊇”, then it is enough to show that
the generating coordinate functions xj belong to J(f, ε) for some ε. As 0 is non
degenerate, the smooth map

x→ (
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x))

has invertible differential at 0, then we can apply the inverse map theorem locally
on a neighbourhood Uε of 0, so that there are smooth functions Fj such that for
every j = 1, . . . , n, Fj(0) = 0 and

xj = Fj(
∂f

∂x1
, . . . ,

∂f

∂xn
) .

Again by the division theorem we finally get

xj =
∑
i

Gj,i(x)
∂f

∂xi
(x)

and the Lemma is proved.
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2

Assume that 0 is a non degenerate critical point for f . We are going to prove
that up to pre composition with local diffeomorphisms at 0, f locally coincides
with T2(f)(0). More precisely, the Hessian matrix H0(f) has a certain index of
negativity 0 ≤ λ ≤ n (i.e. the maximal dimension of the linear subspaces of Rn on
which the restriction of the quadratic form Q0(f) is negative). By definition λ is
the index of the non degenerate critical point 0. This notion is stable under local
diffeomorphism.

Lemma 1.12. If 0 is a non degenerate critical point of index λ of f ∈
C∞(Uε,R), f(0) = 0, and φ : W → Uε is a diffeomorphism, ψ(0) = 0, then 0
is a non degenerate critical point of f ′ := f ◦ φ of index λ.

Proof : By direct computation, using the chain rule an the fact that d0f = 0,
we have

H0(f ′) = d0φ
tH0(f)d0φ

hence the symmetric matrices H0(f ′) e H0(f) are congruent so they are both non
singular and have the same signature.

2

Let 0 be a non degenerate critical point of f of index λ. Up to composition
with a linear isomorphism x = Pu, we have that

Q0(f)(Pu) = −(

λ∑
j=1

u2
j ) + (

n∑
j=λ+1

u2
j ) = utIn,λu

where In,λ is the suitable diagonal matrix with ±1 entries. Finally we can state

Theorem 1.13. (Morse Lemma) Let 0 be a non degenerate critical point of
index 0 ≤ λ ≤ n of f ∈ C∞(U,R), f(0) = 0. Then there is a local diffeomorphism
x = φ(u), 0 = φ(0), such that ψ := φ−1 is defined on some Uε and

f(φ(u)) = utIn,λu .

Proof : It is not restrictive to assume that

H0(f) = In,λ .

Let us take as above on U an expression

f(x) = xtG(x)x .

If ε > 0 is small enough, we have that on Uε every symmetric matrix G(x) has
negativity index λ, and by applying to the canonical basis of Rn the usual algorithm
producing a normalized othogonal basis with respect to the scalar product (∗, ∗)G(x),
we eventually get a smooth map

P : Uε → GL(n,R)

such that:

(1) P (0) = In;
(2) For every x ∈ Uε, the linear isomorphism x = P (x)u is such that

P (x)tG(x)P (x) = In,λ .

Then consider the smooth map

ψ : Uε → Rn, ψ(x) = P (x)−1x

one verifies that ψ has invertible differential at 0, so by the inverse map theorem,
possibly by shrinking ε, u = ψ(x) is a diffeomorphism onto its open image and
finally

f(x) = xtG(x)x = utIn,λu
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as desidered.
2

Let us state, without proof, an interesting generalization of Morse’s Lemma.
With the usual notation, for every k ≥ 1, define mkε as the ideal of C∞(Uε,R)

generated by the monomials xJ = xj11 . . . xjnn , J be an arbitrary multi-index with
|J | = k. Clearly mε = m1

ε ⊂ m2
ε ⊂ . . . . We have

Proposition 1.14. Let f ∈ C∞(U,R), f(0) = 0, be such that 0 is a critical
point, and there is k ≥ 1 such that mkε ⊂ J(f, ε). Then up to pre composition with a
local diffeomorphism at 0, f locally coincides with the Taylor polynomial Tk(f)(0).

1.12. Bump functions and partitions of unity

Consider the function α : R → R defined by α(x) = 0 if x ≤ 0, α(x) = e−
1
x if

x > 0. One verifies that α is smooth and that for every k ≥ 1, d
kf
dxk

(0) = 0. Then we
say that α is flat at 0, although α is not locally constant at 0. This phenomenon is
an important feature of the “flexibility” of smooth functions that makes them suited
for topological applications. On the contrary, for example, analytic functions are
much more rigid: an analytic function on R which is flat at some points is constant.

Let us fix two real numbers 0 < a < b. Define β = βa,b : R→ R,

β(x) = α(x− a)α(b− x) .

Hence β is smooth, β(x) = 0 on {x ≤ a}∪{x ≥ b}, is strictly positive on {a < x < b}
with a unique maximum; β is flat at a and b.

Define γ = γa,b : R→ R by

γ(x) =

∫ b
|x| β(t)dt∫ b
a
β(t)dt

.

Then γ is smooth, γ(x) = 1 if |x| ≤ a, γ(x) = 0 if |x| ≥ b, 0 ≤ γ(x) ≤ 1 and
is monotone on each connected interval of {a < |x| < b}; γ is flat at ±a and ±b.
For every n ≥ 1 we can define γn : Rn → R, γn = γn,a,b(x) = γa,b(||x||), however
we will omit the index n whenever the dimension is clear by the contest. Such a
function γa,b : Rn → R is called a bumb function on Rn with center 0 and rays a, b.
If τp(x) = x− p, then

γp,a,b = γa,b ◦ τp
is a bump function with center p; when the center is clear from the context we will
omit also to indicate it.

Recall that the support of a function is the closure of the set where it is not
zero. Hence B

n
(p, b) is the support of γp,a,b.

We introduce also bump functions “at infinity” as follows. Let Rn ⊂ Rn+1

as the hyperplane with equation xn+1 = 0. Denote by π+ : Sn \ {en+1} → Rn
(en+1 = (0, . . . , 0, 1)) the stereographic projection defined geometrically by

π+(x) = r(x, en+1) ∩ Rn

where r(x, en+1) is the straight line passing through the two points. Similarly define
the projection π− : Sn \ {−en+1} → Rn. One easily verifies by direct computation
that

ρ := π− ◦ (π+)−1 : Rn \ {0} → Rn \ {0}
is a diffeomorphism. Then a bump function at infinity is by definition of the form
γ∞(x) = γ ◦ ρ(x) if x ∈ Rn \ {0}, γ∞(0) = 0 which clearly is smooth.

We extend now the definition to bump functions at an arbitrary compact subset
of K ⊂ Rn, as follows. Let K ⊂ Rn be a compact set, U an open neighbourhood
of K. Then we can find W0 := U∞,a∞ := Rn \ Bn(0, a∞), some Wj := Bn(pj , bj),
j = 1, . . . , k, and some 0 < aj < bj , a∞ < b∞ such that:
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(1) W 0 ∩K = ∅;
(2) The open balls Uj := Bn(pj , aj) together with U0 := U∞,b∞ make a finite

open covering U of Rn;
(3) The union of the above open balls that intersect K is an open neighbour-

hood U ′ ⊂ U of K.

Denote by γ0 the bump function at infinity with support equal to W 0 and
constantly equal to 1 on U0; by γj the bump function at pj with rays aj , bj . For
every j = 0, . . . , k, define the smooth function

λj :=
γj∑
j γj

.

By the properties of the covering U and of the bump functions, the denominator is
strictly positive everywhere. Clearly, for every x ∈ Rn,∑

j

λj(x) = 1 .

Such a family of function {λj} is called a partition of unity subordinate to the (finite)
covering U . Now we define “local” constant functions cj : Wj → R, such that cj = 1
if Uj ∩K is non empty, cj = 0 otherwise. Finally set

γK =
∑
j

λjcj .

By construction it is smooth, it is constantly equal to 1 on U ′ and has compact
support contained in U . Any γK constructed in this way is called a bump function
at K.

Bump functions are an important device. A basic use is the following: let U
be an open neighbourhood of a compact set K as above, f : U → R be a smooth
function locally defined at K. In certain cases it is useful to find a globally defined

smooth function f̂ : Rn → R with compact support and which locally agrees with

f at K, that is there is an open neighbourhood K ⊂ U ′ ⊂ U such that f(x) = f̂(x)

for x ∈ U ′. Take any bump function γ = γK at K constructed as above; then f̂

defined by f̂(x) = γ(x)f(x) if x ∈ U , f̂(x) = 0 if x ∈ Rn \ U , does the job.
These partitions of unity provide also a very flexible way to construct riemann-

ian metrics on Rn. Let {λj} be as above. Fix on every Uj an arbitrary riemannian
metric gj (for instance a constant one varying with j). Then

g =
∑
j

λjgj

is a well defined riemannian metric on the whole of Rn.

In the next sections we will see a few other concrete applications.

Remark 1.15. As Rn is metrizable, locally compact and with a countable basis
of open sets, one can prove that for every open set U ⊂ Rn, for every open covering
A of U there exist a countable family of open balls B = {Bj = Bn(pj , bj)}j∈N, and
for every j ∈ N, 0 < aj < bj such that

(1) B is a refinement of A, that is it is a open covering of U and every Bj is
contained in some A ∈ A;

(2) B is locally finite, that is for every p ∈ U , there is a ball B = Bn(p, r)
which intersects only finitely many Bj ’s;

(3) Also U = {Bn(pj , aj)}j∈N is an open covering of U .

Take the corresponding family of bump functions {γj = γpj ,aj ,bj}. Set, for every
j ∈ N

λj =
γj∑∞
j=1 γj

.
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This is well defined and smooth because, by the local finiteness, the denominator
reduces at every point p to a strictly positive sum of a finite number of terms.
Clearly for every p, ∑

j

λj(p) = 1 .

The family {λj} is called a partition of unity subordinate to the covering B (which
refines the given A). For example, if K ⊂ U is a compact set as above we could
apply the construction to the open covering of Rn, A = {U,Rn \K}, and use the
resulting partition function over B to construct as well a bump function γK at
K. These more general partitions of unity rely on a topological property called
paracompacteness; however, we will not really need them.

1.13. Homotopy, isotopy, diffeotopy

Here we fix a few notions and terminology that shall be widely employed and
developed. U and V are open sets in Euclidean spaces. A map

F : U × [0, 1]→ V

is smooth if it is the restriction of a smooth map defined on the open set U × J , J
being an open interval and [0, 1] ⊂ J . For every t ∈ [0, 1], set ft the restriction of
F to U ×{t}. Then F is called a (smooth) homotopy between f0 and f1. It can be
considered as a continuous path in E(U, V ) joining f0 and f1.

We say that f : U → V is an embedding if f is an injective immersion and is a
homeomorphism onto its image. If ft is an embedding for every t ∈ [0, 1], then F is
called an isotopy between f0 and f1.

If U = V and ft is a diffeomorphism for every t ∈ [0, 1], then F is called a
diffeotopy. In this case F can be reconsidered as follows: consider the map

H : U × [0, 1]→ U × [0, 1], H(p, t) = (f0(p), t) .

Then G := F ◦H−1 is a diffeotopy between idU and f1 ◦ f−1
0 , and F = G ◦H. This

formal manipulation suggests nevertheless the following specialization of homotopy.
If G : V × [0, 1]→ V is a diffeotopy between g0 = idV and g1, and φ : U × [0, 1]→
V × [0, 1] is of the form φ(p, t) = (f(p), t) for some f : U → V , then G ◦ F is called
a diffeotopy between f0 := f and f1 := g1 ◦ f ; sometimes one also says that f0 and
f1 are homotopic through an ambient isotopy.

Let f : U → U be a diffeomorfism. The support of f is the closure of the subset
of U on which f(x) 6= x. If F is a diffeotopy between f and idU the support of F
is the closure of the union of supports of the ft’s.

Homotopy and its relatives define equivalence relations on the pertinent space
of maps. Clearly F (p, t) = (f(p), t) is a homotopy between f and itself. If F is a

homotopy between f0 and f1, then F̂ (p, t) := F (p, 1 − t) is a homotopy between
f1 and f0. As for the transitivity: by using the 1-dimensional bump functions, we
see that there exist a smooth function s : [0, 1] → [0, 1] and 1/3 > ε > 0 such that
s(t) = 0 on [0, ε], s(t) = 1 on (1 − ε, 1], and s is a diffeomorphim on [ε, 1 − ε]. If

F is any homotopy between f0 and f1, then replace it by F̃ (p, t) = F (p, s(t)). If a

homotopy F̃ ′ connects f0 and f1, while F̃” connects f1 and f2, then set

F̃ (p, t) = F̃ ′(p, 2t), t ∈ [0, 1/2]

F̃ (p, t) = F̃”(p, 2t− 1), t ∈ [1/2, 1] .

It is a smooth homotopy between f0 and f2. For isotopies and diffeotopies we argue
similarly.
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1.14. Linearization of diffeomorphisms of Rn up to isotopy

We have

Proposition 1.16. Every diffeomorphism f : Rn → Rn, f(0) = 0, is diffeotopic
to the differential d0f ∈ GL(n,R), through diffeomorphisms ft such that ft(0) = 0
for every t ∈ R.

Proof : Define F : Rn × R→ Rn, by F (x, t) = f(tx)/t if t 6= 0, F (x, 0) = d0f .
It follows from the very definition of the differential that F is continuous; clearly it
is smooth where t 6= 0. To check that it is fully smooth we note that by the division
theorem F (x, t) =

∑
j gj(y)xj , y = tx the gj being smooth maps of y.

2

We can strenghten the above Proposition. Let us set GL± = GL±(n,R) the
open subsets of GL(n,R) formed by the matrices A such that either detA > 0 or
detA < 0. Take the identity In and the matrix In,1 (the notation has been intro-
duced in the proof of Morse’s Lemma) as base points of the two sets respectively.
We have

Theorem 1.17. Every diffeomorphism f : Rn → Rn, f(0) = 0, such that
d0f ∈ GL+ (resp. d0f ∈ GL−) is diffeotopic to the linear isomorphism In (resp.
In,1), through diffeomorphisms ft such that ft(0) = 0 for every t ∈ R.

Proof : If U is a connected open set of some Rn, then it follows easily from the
proof of Proposition 1.1 that any two points of U can be connected by a piecewise
smooth path in U . In fact it is not hard to see that one can take a globally smooth
path (use bump functions in order to get a smoothing). By using this remark, it
is enough to prove that both open sets GL± are connected. In fact it is enough to
show that GL+ is connected. For if A ∈ GL−, then In,1A is in GL+; if At is a path

connecting In,1A with In in GL+, then In,1At is a path connecting A and In,1 in

GL−.
Let us show first that there is a path Bt in GL+ connecting any given A = B0

with some B = B1 which belongs to

SO(n) := {P ∈ GL(n,R); P−1 = P t, detP = 1} .

Let < ∗, ∗ > be the positive definite scalar product on Rn determined by imposing
that the ordered columns of A form an orthnormal basis B of Rn with respect to
such a scalar product. Set

(∗, ∗)t = (1− t) < ∗, ∗ > +t(∗, ∗)

where (∗, ∗) is the standard euclidean scalar product, t ∈ [0, 1]. Then (∗, ∗)t is a
path of positive definite scalar products. For every t ∈ [0, 1], apply the usual Gram-
Schmidt othogonalization algorithm to the basis B that produces an othonormal
basis Bt for (∗, ∗)t; by considering the ordered vectors of Bt as columns of a matrix
Bt, we eventually get a path of matrices such that B0 = A and B1 ∈ SO(n). It
remains to show that every B ∈ SO(n) can be connected to In by a path in SO(n).
Let us consider B : Rn → Rn as a linear isometry with respect to (∗, ∗). By
linear algebra we know that Rn can be decomposed as the orthogonal direct sum
of B-invariant linear subspaces Vi of dimension either 1 or 2. In the first case the
restriction of B to Vi is the identity; in the second case B acts on Vi as a rotation.
Then we are reduced to prove that a rotation on R2 can be connected to I2 by a
path of rotations, and this is immediate.

2

1.15. Homogeneity

We have
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Proposition 1.18. Let p, q ∈ Rn such that ||p − q|| = d > 0. Then for every
ε > 0 there is a diffeomorphism f : Rn → Rn such that

(1) f(p) = q
(2) f is diffeotopic to the identity of Rn by a diffeotopy of compact support

contained in Bn(p, d+ ε).

Proof : In this proof we use some tools that will be developed in Chapter 7.
Without the requirement about the supports the proof is immediate: set v = q− p,
then ft(x) := x + tv, t ∈ R, f = f1 verify the thesis. Note that for every x ∈ Rn,
ft(x) is the integral line defined on the whole real line of the vector field on Rn
constantly equal to v. Now we use a bump function to modify this vector field
making it with compact support. Let d+ ε/3 < a < b < d+ ε/2, and consider the
bump function γ = γp,a,b. Take the smooth vector field on Rn defined by γ(x)v.
For every x ∈ Rn there is a unique maximal parametrized integral curve denoted
again ft(x) such that f0(x) = x; as the field has compact support also in this case
every ft(x) is defined on the whole real line. The ft(x) for t ∈ [0, 1] realizes the
required isotopy.

2

The above proposition is a sort of local case of the following more general result

Theorem 1.19. Let U ⊂ Rn be a connected open set. Then for every p 6= q ∈ U
there is a diffeotopy F of U between f0 = idU and f = f1 such that f(p) = q, and
F has compact support.

Proof : The proof is qualitatively similar to the one of Proposition 1.1. Being
‘connected’ via a diffeotopy with compact support as in the statement of the theorem
defines an equivalence relation on U . By applying Proposition 1.18 on a chart
diffeomorphic to Rn at every p ∈ U we realize that every equivalence class is an
open set, hence there is only one because U is connected.

2





CHAPTER 2

The category of embedded smooth manifolds

Let us begin by widely extending the notions of smooth map and diffeomorphism
to arbitrary topological subspaces of some Rn, n ∈ N.

Let X ⊂ Rn, Y ⊂ Rm be arbitrary subspaces. Then f : X → Y is Ck, k ≥ 0,
if for every x ∈ X there exist an open neighbourhood U of x in Rn and a map
gU ∈ Ck(U,Rm) such that for every y ∈ U , f(y) = gU (y). Such a map gU is called
a local Ck extension of f at x ∈ X.

f is C∞ (i.e. smooth) if for every x ∈ X there are smooth local extensions of f
at x.

A map f : X → Y is a diffeomorphism if it is a homeomorphism and both f
and f−1 are smooth maps.

It is easy to verify by using the results of Chapter 1 that Ck maps, smooth maps
and diffeomorphisms are stable under composition of maps. By using this very
general notion of diffeomorphism we can readly define embedded smooth manifolds.

Definition 2.1. For every 0 ≤ k ≤ n, a topological subspace M ⊂ Rn is an
embedded smooth k-manifold (k is called the dimension of M) if for every p ∈ M ,
there exist an open neighbourhood W of p in M , an open set U of Rk and a
diffeomorphism φ : W → U .

Every such a (W,φ) is called a chart of M ; set ψ = φ−1, then (U,ψ) is called a
local parametrization of M . The family of all charts is called the atlas A = AM of
M . Hence by definition A incorporates an open covering of M . An atlas U ⊂ A of
M is any family of charts that incorporates an open covering of M .

The category of smooth embedded manifolds has as objects the embedded smooth
manifolds in some Rn, n ∈ N; the morphisms are the smooth maps between embed-
ded smooth manifolds; the diffeomorphisms are the equivalences in the category.

2.1. Basic properties and examples

We are going to list a few basic examples or properties that follow immediately
from the definitions or are consequence of results of Chapter 1.
• A 0-manifold in Rn is a subset of isolated points. It is compact if and only if

it is finite; otherwise it is countable.
• In order to show that M ⊂ Rm is a smooth manifold (sometimes we will

omit to say “embedded”) it is enough to exhibit an atlas U . The whole atlas A
is implicitly determined by U . For example for every (W,φ) ∈ U , for every open
subset U ′ ⊂ U , the restriction (U ′, φ′ := φ|U ′) belongs to A.
• Every open set U ⊂ Rn is a n-manifold: the inclusion j : U → Rn forms

an atlas of U with only one chart. Hence the category discussed in Chapter 1 is a
subcategory of the present category. More generally an open set in a k-manifold M
is also a k-manifold.
• Let U be an open set in Rn, f : U → Rm a smooth map. Then its graph

G(f) := {(x, y) ∈ U × Rm; y = f(x)}

33
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is a n-smooth manifold embedded in Rn+m. In fact W = G(f)∩ (U ×Rm) = G(f),
φ : W → U , φ(x, f(x)) = x form an atlas of G(f) with only one chart; the inverse
parametrization is ψ : U →W , ψ(x) = (x, f(x)).
• Let V be a linear (or affine) k-subspace of Rn. It is a k-manifold, in fact the

atlas A contains any linear (affine) isomorphism L : V → Rk.
• Let M ⊂ Rm, N ⊂ Rn be embedded smooth manifolds. Then the product

M ×N is a smooth manifold embedded into Rn+m, and

dim(M ×N) = dimM + dimN .

In fact if (W,φ) is a chart of M at p, (W ′, φ′) of N at q, then (W ×W ′, φ× φ′) is
a chart of M ×N at (p, q).
• If (W,φ), (W ′, φ′) ∈ A are charts of a k-manifold M , and W ∩W ′ 6= ∅, then

βW,W ′ := φ′ ◦ ψ : Ũ → Ũ ′

is a diffeomorphism between open sets of Rk (that is Ũ = φ(W ∩ W ′) ⊂ U and

Ũ ′ = φ′(W ∩ W ′) ⊂ U ′). It is called indifferently change of charts or of local
parametrizations or also of local coordinates.
• If f : M → N is a smooth map between embedded smooth manifolds, (W,φ)

is a chart of M , (W ′, φ′) of N such that f(W ) ⊂W ′, then

fU,U ′ := φ′ ◦ f ◦ ψ : U → U ′

is a smooth map between open sets of euclidean spaces called a representation of f
in local coordinates or shortly a local representation of f .
• The dimension of embedded smooth manifolds is invariant up to diffeomor-

phism. This follows immediately from the above items and the “invariance of di-
mension” already discussed in Chapter 1.

Lemma 2.2. (1) An embedded smooth k-manifold M ⊂ Rn is connected if and
only if it is path connected.

(2) Every path connected component of M is a k-manifold. M is the disjoint
union of its path connected (equivalently connected) components.

Proof : It is a general topological fact that a path connected space is connected.
For the other implication we can repeat the argument already used for the open
sets in Rk. In fact by using a chart around any point p ∈ M we can argue that
the path connected component of p is open in M , hence there is only one if M is
connected. This proves (1) and also (2) indeed.

2

The definition of embedded smooth manifold M ⊂ Rn implies some strong local
constraint on the relative configuration of the pair (Rn,M). We have

Lemma 2.3. Let M ⊂ Rn be an embedded smooth k-manifold; p ∈ M . Then
there exist a chart (Ω, β) of Rn, p ∈ Ω, such that (Ω ∩M,β|) is chart of M and
moreover

β(Ω,Ω ∩M,p) = (Bn(0, 1), Bn(0, 1) ∩ Rk, 0)

(where Rk ⊂ Rk ×Rn−k = Rn as usual). Such a β is called a relative normal chart
of the pair (Rn,M).

Proof : It follows immediately from the definition of embedded manifold that
there exist an open neighbourhood Ω of p in Rn, an open set U of Rk, and an
injective immersion ψ : U → Ω, such that ψ(U) = Ω ∩M := W . By Theorem 1.3
on local normal form of immersions, possibly by shrinking Ω, there is chart (Ω, β)
of Rn that verifies the statement of the Lemma.

2

The above argument can be somehow reversed.
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Lemma 2.4. Let U be an open set of Rk, ψ : U → Rn be an injective immersion
such that ψ : U → ψ(U) is a homeomorphism. Then M = ψ(U) is a smooth
manifold embedded in Rn, and ψ : U → M is a (global) smooth parametrization of
M .

Proof : By using again Theorem 1.3 and the fact that f is a homeomorphism
onto its image, we readly see that at every p ∈ M one can find relative normal
charts of (Rn,M), and eventually ψ is a diffeomorphism onto M .

2

The condition that ψ is a homeomorphism onto its image is necessary as it is
shown by the following example:

Example 2.5. Consider the smooth map

E : R2 → R2 × R2, E(x, y) = (cos(2πx), sin(2πx), cos(2πy), sin(2πy)) .

For every a ∈ R, a 6= 0, consider the map

f : R→ R2 × R2, f(x) = E(x, ax) .

This is an injective immersion but if a is not a rational number, then it is not a
homeomorphism onto its image in S1×S1. In fact one can verify that f(R) is dense
in S1 × S1 (every non empty open set of S1 × S1 intersects f(R)), hence f(R) is
not an embedded manifold in R2 × R2.

Submanifolds. If Y ⊂M are embedded smooth manifolds in Rn , we say that
Y is a submanifold of M . In particular both Y and M are submanifolds of Rn. By
extending the argument of Lemma 13.4.1 (details are left as an exercise) we can
prove

Lemma 2.6. Let Y be a submanifold of M ⊂ Rn, of dimension k and m respec-
tively. Let p ∈ Y . Then there exist relative normal charts (for triples)

β : (Ω,Ω ∩M,Ω ∩ Y, p)→ (Bn(0, 1), Bn(0, 1) ∩ Rm, Bn(0, 1) ∩ Rk, 0)

where as usual we consider Rm = Rk × Rm−k, Rn = Rm × Rn−m.

By using the immersions, we have indicated above a way to get embedded mani-
folds (endowed with global smooth parametrizations). Now we show how embedded
manifolds can be defined implicitly.

Lemma 2.7. If f : U → W is a surjective smooth summersion between open
sets of euclidean spaces, U ⊂ Rn, W ⊂ Rm. Then for every q ∈W , M = f−1(q) is
an embedded smooth manifold in Rn and dimM = n−m.

Proof : Being an embedded manifold is a local property. Hence the lemma is
an immediate consequence of Theorem 1.4 on local normal form of summersions or
(equivalently) of the implicit function Theorem 1.6.

2

Remark 2.8. In spite of the existence of relative normal charts at every point
of a submanifold, the relative position of two submanifolds of some Rn can look
stranger than one could expect. This is mainly due to the fact that submanifolds are
not necessarily closed subsets. Consider for example the map f : (0,+∞)→ C ∼ R2

f(x) =
x

1 + x
eix .

This is an immersion and a homeomorphism onto its image say N . Then the unitary
circle S1 and N are disjoint 1-submanifolds of R2. Nevertheless, two points p ∈ S1

and q ∈ N cannot be separated by normal charts of S1 and N at p and q respectively.
In other words N ∪ S1 is not an embedded submanifold.
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Example 2.9. (Spheres) Let us show, in several ways, that the unitary sphere
Sn ⊂ Rn+1, n ∈ N, is an embedded smooth n-manifold. Let Rn+1 = Rn × R. Let
W+ = Sn \ {en+1}, φ+ : W+ → Rn be the stereographic projection with center
en+1. It is defined geometrically by φ+(x) = r(x, en+1)∩Rn where r(x, en+1) is the
straight line passing through the two points. Analytically we have

φ+(x) =
1

1− xn
(x1, . . . , xn−1) .

This is a diffeomorphism onto Rn with inverse given by

ψ+(y) =

(
2y

1 + ||y||2
,
||y||2 − 1

||y||2 + 1

)
.

Then (W+, φ+) is a chart of Sn at every points different from en+1. By using the
similar projection with center −en+1, we get a chart (W−, φ−) which misses only
−en+1. Hence {(W±, φ±} is an atlas of Sn (formed by two charts).

For every p ∈ Sn, let p⊥ the subspace of Rn+1 orthogonal to p. Then by using
the projection of Sn \ {p} onto p⊥ with center p (followed by any linear chart of p⊥

onto Rn) then we obtain other charts of the atlas ASn .
Further charts are obtained as graphs of functions defined on the unitary open

disk of p⊥ with center p. The basic example for p = en+1 is the function h : Bn → R,

h(x) =

√√√√1−
n−1∑
i=1

x2
i .

Sn = f−1(1), where f : Rn+1\{0} → R, f(x) = ||x||2. As dfx = (2x1, . . . , 2xn+1)
then f is a summersion and this implies again (implicitly) that Sn is a n-manifold
by Lemma 2.7.

Sn is a compact manifold. In fact it is closed because Sn = f−1(1) as above;
obviously it is bounded.

Sn is path connected: given x 6= y ∈ Sn, let P be the 2-plane spanned by these
two vectors. Then P ∩ Sn is a maximal circle, x, y separate it into two arcs both
connecting x and y.

Important examples of embedded smooth manifolds (widely generalizing the
spheres) are discussed in Chapter 3.

2.2. The embedded tangent functor

Let us fix a setting we will refer to all along the rest of this Chapter.

• M ⊂ Rh is an embedded smooth manifold of dimension m, p ∈M ; N ⊂ Rk
is an embedded smooth manifold of dimension n, q ∈ N ;

• f : M → N is a smooth map, f(p) = q.
• φ : W → U ⊂ Rh is a chart of M at p, φ(p) = a, with inverse local

parametrization ψ : U →W ⊂M .
• fU,U ′ : U → U ′ is a representation of f in local coordinates at p; recall that

this is obtained as follow: we take a local chart of M at p for semplicity
still denoted (W,φ), and a local chart (W ′, φ′) of N at q, φ′(q) = b, such
that f(W ) ⊂W ′; then

fU,U ′ = φ′ ◦ f ◦ ψ : U → U ′

(U and U ′ being open set of Rh and Rk respectively).
• Possibly by shrinking W we can also assume that there are an open neigh-

bourhood Ω of p in Rh such that Ω ∩M = W , a local smooth extension
Φ : Ω→ Rm of φ and a local smooth extension F : Ω→ Rk of f .
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The facts collected in the following Lemma are easy consequences of the very
definitions and of the results of Chapter 1. The reader would like to make the useful
exercise to fill the details.

Lemma 2.10. (1) The differential daψ is injective so it is a linear isomorphism
onto its image daψ(Rm), Rm = TaU , which is a m-linear subspace of Rh = TpRh .
This image does not depend on the choice of the local parametrization ψ of M at p.
Hence

TpM = daψ(Rm)

is well defined and is called the tangent space to M at the point p.

(2) The restriction of the differential dpΦ to TpM is the inverse isomorphism
(daψ)−1. Hence it does not depend on the choice of the local extension Φ of φ, and

dpφ := dpΦ|TpM

is a well defined linear isomorphism

dpφ : TpM → TaU .

(3) The restriction of dpF to TpM does not depend on the choice of the local
extension of f and is valued in TqN . Hence it is well defined

dpf := dpF|TpM

it is a linear map

dpf : TpM → TqN

and is called the differential of f at p. We have

dafU,U ′ = dqφ
′ ◦ dpf ◦ daψ : TaU → TbU

′

and this is the representation in local coordinates of dpf . In particular this applies
when M = W , and f = φ′ : W → U ′ ⊂ Rm is another chart of M at p.

(4) If g◦f is a compostion of smooth maps between embedded smooth manifolds,
f(p) = q, then

dp(g ◦ f) = dqg ◦ dpf .
If f is a diffeomorphism, then dpf is a linear isomorphism and dqf

−1 = (dpf)−1.
If f = id, then dpf = idTpM .

(5) If M = G(g) is the graph of a smooth map g : U → Rs defined on an open
set U ⊂ Rm, then

T(x,g(x))M = G(dxg) .

(6) If M = g−1(q), where g : Ω→ Rs is a summersion, p ∈M , then

TpM = ker dpg .

2

Set

T (M) = {(x, v) ∈ Rh × Rh; x ∈M, v ∈ TxM} .
The restriction of the projection of Rh×Rh onto the first factor Rh defines a smooth
projection

πM : T (M)→M .

Example 2.11.

T (Sn) = {(x, v) ∈ Rn+1 × Rn+1; x ∈ Sn, v ∈ x⊥}

Check it!



38 2. THE CATEGORY OF EMBEDDED SMOOTH MANIFOLDS

As a set T (M) = ∪x∈MTxM . Note that for every open set W ⊂ M , T (W )
coincides with π−1

M (W ), it is naturally included in T (M) as an open set, and πW =
(πM )|T (W ).

We are going to show that

T (M) is an embedded smooth manifold of dimension 2m, of a special nature
indeed.

Every chart φ : W → U ⊂ Rm of M can be enhanced to a chart

Tφ : T (W )→ T (U) = U × Rm, Tφ(x, v) := (φ(x), dxφ(v)) .

The inverse parametrization is

Tψ : U × Rm → T (W ), Tψ(y, w) = (ψ(y), dyψ(w)) .

If πU is the natural projection onto U , it is immediate that the following diagram
denoted [ψ, Tψ] commutes

U × Rm Tψ→ T (W )
↓πU ↓πW
U

ψ→ W

We say that πM : T (M)→M is locally trivial (a product) over W and that the
above diagram is a local trivialization. By varying the chart (W,φ) in the atlas A
of M we get an atlas

TA = {(T (W ), Tφ)}
of T (M). The local coordinates for TA changes in a special way as they are of the
form

Tβ := Tφ′ ◦ Tψ : Ũ × Rm → Ũ ′ × Rm

Tβ(x, v) = (φ′ ◦ ψ(x), dx(φ′ ◦ ψ)(v)) = (β(x), dxβ(v)) .

Hence, for every x varying in M , it is a linear isomorphism on the second argument
which “varies smoothly” with the point x. This means that

The intrinsic linear structure of every fibre TxM = π−1
M (x) of the projection πM

is respected by the changes of coordinates for the atlas TA.

We can encode the same information by lifting TA at the level of the open
covering {W} of M ; that is we have the locally trivializing commutative diagrams

W × Rm T̃ψ→ T (W )
↓πW ↓πW
W

idW→ W

where

T̃ψ = Tψ ◦ (φ, idRm) .

Any change of local trivialization for T̃A is of the form

T̃ β : (W ∩W ′)× Rm → (W ∩W ′)× Rm, (x, v)→ (x, dxβ(v)) .

We summarize all these facts by saying that

πM : T (M)→M

is the tangent vector bundle of the embedded smooth manifold M and that TA
(actually and equivalently T̃A) is its vector bundle atlas.

In section 2.6 we will formalize these notions in a more general setting.
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Now we extend the definition of the tangent map already considered in Chapter
1 in the case of open sets in some Rn. Let f : M → N be our smooth map between
embedded smooth manifolds, then set:

Tf : T (M)→ T (N), T f(x, v) = (f(x), dxf(v)) .

Note that the defining inclusion T (M) ⊂ Rh × Rh = T (Rh) is nothing else
than Tj, j : M → Rh being the inclusion. Clearly the following diagram, denoted
[f, Tf ], commutes

T (M)
Tf→ T (N)

↓πM ↓πN
M

f→ N

that is Tf sends every fibre TxM linearly to the fibre Tf(x)N , by af ‘smooth field’
of linear maps.

If g ◦ f is a composition of smooth maps between embedded smooth manifolds,
then

T (g ◦ f) = Tg ◦ Tf
T idM = idT(M)

if f is a diffeomorphism, then Tf is a diffeomorphism and

Tf−1 = (Tf)−1 .

All verifications are local and follows immediately from Lemma 2.10 and the prop-
erties of the tangent map in the category of open sets in euclidean spaces.

We can summarize these considerations a follows:

The tangent category of the category of embedded smooth manifolds has as
objects the tangent vector bundles of embedded smooth manifolds and as morphisms
the tangent maps of smooth maps between embedded smooth manifolds. Then

M ⇒ πM : T (M)→M

f : M → N ⇒ [f, Tf ]

define a covariant functor from the category of embedded smooth manifolds to its
tangent category.

2.3. Immersions, summersions, embeddings, Monge charts

The notions of immersion and summersion extend immediately to map between
embedded smooth manifolds: f : M → N is an immersion (resp. summersion) if for
every x ∈M , dxf is injective (surjective). We say that f : M → N is an embedding
if f is a diffeomorphism onto its image (in particular the inclusion M ⊂ Rh is an
embedding). The proof of the following proposition is of local nature and follows
from Lemmas 5.2 and 2.7.

Proposition 2.12. (1) Let f : M → N be a surjective summersion; then for
every q ∈ N , Y = f−1(q) is a submanifold of M , dimY = dimM − dimN .

(2) If f : M → N is an embedding then f(M) is a submanifold of N .
(3) f : M → N is an embedding if and only if f is an immersion and a

homeomorphism onto its image.
(4) If f : M → N is both an immersion and a summersion, then it is a local

diffeomorphism.

2

We have seen in example 2.9 a distinguished local graph chart of Sn. Here
we show that such a kind of charts exists for every embedded smooth m-manifold
M ⊂ Rh at every point. For every multi-index J = (j1, . . . , jm), |J | = m, let J ′,
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|J ′| = h−m be its complementary multi-index. Denote by RJ the subspace of Rh
generated by (ej1 , . . . , ejm); hence we have the orthogonal direct sum decomposition
Rh = RJ ⊕RJ′ and the orthogonal projection onto RJ , πJ(x) = (xj1 , . . . , xjm). For
every p ∈M , denote by πJ,p : Rh → RJ the composition of the translation x→ x−p,
followed by πJ . Denote by φJ,p the restriction of πJ,p to (any suitable subset of)
M . We have

Proposition 2.13. (Monge charts) For every embedded smooth m-manifold
M ⊂ Rh, for every p ∈M , there exist J , |J | = m, and an open neighbourhood W of
p in M such that (W,φJ,p) is a chart of M at p. The inverse local parametrization
is of the form ψJ,p : U → W , U ⊂ RJ , ψJ,p(y) = (y, fJ,p(y)) (by using the above
decomposition Rh = RJ ⊕ RJ′). Hence at every point p, M is locally a graph of a
smooth function defined on some RJ .

Proof : By elementary linear algebra, there exist J such that the restriction
of πJ to TpM is a linear isomorphism onto RJ . As dpφJ,p coincides with such a
restriction, then φJ,p is a local diffeomorphism.

2

2.4. Topologies on spaces of smooth maps

Let M ⊂ Rh N ⊂ Rk be smooth manifolds as usual. We define the weak topol-
ogy on every set Cr(M,N), r ≥ 0, the topological spaces Er(M,N) (subspaces of
Cr(M,N) formed by the smooth maps) and the space E(M,N) that is C∞(M,N)
equipped with the union of the Er topologies. This extends the case of open sets
treated in Chapter 1 which is actually used in order to do it. There are two equiv-
alent ways; both determine a basis of open neighbourhoods of every element in the
pertinent map space. We leave to the reader the verification that the two topologies
defined in these ways actually are the same one.

(1) For every f ∈ Cr(M,N) we consider neighbourhoods of the following form

Ur(f, f̂ ,K, ε)

where

• f̂ : Ω→ Rk is a local Cr extension of f|W : W → N , W = Ω∩M , Ω ⊂ Rh
being open;

• K ⊂W is a compact set;
• ε > 0.

Then g ∈ Cr(M,N) belongs to Ur(f, f̂ ,K, ε) if and only if there exists a Cr
extension ĝ : Ω→ Rk of g|W such that ĝ ∈ Ur(f̂ ,K, ε) ⊂ Cr(Ω,Rk).

(2) For every f ∈ Cr(M,N) we consider neighbourhoods of the following form

Ur(f, fU,U ′ ,K, ε)

where

• fU,U ′ : U ′ → U is a (necessarily Cr) representation of f in local coordinates
(U ⊂ Rm, U ′ ⊂ Rn being open sets);

• K ⊂ U is a compact set;
• ε > 0.

Then g ∈ Cr(M,N) belongs to

Ur(f, fU,U ′ ,K, ε)

if and only if it admits a local representation (over the same open sets U,U ′) gU,U ′ :
U → U ′ such that gU,U ′ ∈ Ur(fU,U ′ ,K, ε) ⊂ Ck(U,U ′).
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2.5. Homotopy, isotopy, diffeotopy, homogeneity

These notions already introduced in Chapter 1 within the smooth category of
open sets, extend verbatim to embedded smooth manifolds. They correspond to
continuous paths in appropriate map spaces and bring equivalence relations along.

The proof of the homogeneity Theorem 1.19 is essentially of local nature. and
extends straightforwardly.

Theorem 2.14. Let N be a connected embedded smooth manifold. Let p, q ∈ N .
Then there is a diffeotopy with compact support between f0 = idN and f = f1 such
that f(p) = q.

2

2.6. Embedded fibre bundles

The tangent vector bundle is a first fundamental example of the general notion
of fibre bundle. We will encounter several instances of all along this text. Chapter
4 will develop this topic. Here we state the basic facts.

An embedded smooth fibre bundle with base space X, total space E and fibre F , is
a surjective summersion f : E → X between embedded smooth manifolds such that
every fibre f−1(q), q ∈ X, is a submanifold of E diffeomorphic to a given manifold
F , and which is locally trivial(izable) at every point q of X. This means that for
every q ∈ X, there is a open neighbourhood Ω in X and trivializing commutative
diagram of the form

Ω× F Φ→ Ω̃
↓πΩ ↓f|
Ω

idΩ→ Ω

where Ω̃ := f−1(Ω), Φ is a diffeomorphism (with inverse say Ψ). If E = X × F
and f = πX is the natural projection then it is a trivial (also called ‘product’) fibre
bundle. The family of all local trivializations as above form the maximal fibred atlas
F of the fibre bundle. A fibred atlas is a subfamily of F such that the Ω’s form an
open covering of X, hence the Ω̃’s of E. Every fibred atlas is contained in a unique
maximal one, so it is enough to give a fibred atlas in order to determine a fibre
bundle structure. Every change of local trivialization is of the form

Φ′ ◦Ψ : (Ω ∩ Ω′)× F → (Ω ∩ Ω′)× F
(p, y)→ (p, ρ(p)(y))

where ρ(p) belongs to the group Aut(F ) of the smooth automorphisms of the fibre
F .

• In many cases the fibre F has an additional structure which is preserved
by a subgroup G of Aut(F ) (for example F is a linear subspace of some Rn and
G = GL(F )); if the ρ(p)’s as above belong to G then we have a G-fibre bundle
(vector bundle, . . . ).

• A particular case is when dimF = 0. In such a case a fibration f : E → X is
also called a covering map (of degree d if F is compact hence finite, and d = |F |).
For every local trivialization, the restriction of f to every connected component of
Ω̃ is a diffeomorphism onto Ω, provided that Ω is connected.

• A fibred map between fibre bundles is a commutative diagram of smooth maps
[g, g̃] of the form

E
g̃→ E′

↓f ↓f ′
X

g→ X ′
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so that every fibre Ex ∼ F is mapped to the fibre E′g(x) ∼ F ′. It is a fibred

diffeomorphism if both g and g̃ are diffeomorphisms. In such a case F = F ′. The
diagrams [f, Tf ] of the tangent functor are basic examples of fibred maps.

Fibred equivalences. Consider the set F(X,F ) of fibred bundles over a given
base space X, with given fibre F . There are two natural equivalence relations on
F(X,F ):

(1) The full equivalence: it is generated by the fibred diffeomeorphisms [g, g̃]
such that g belongs to the group Aut(X) of smooth automorphisms of X.

(2) The strict equivalence (often we will omit to say “strict”): it is generated
by the fibred diffeomorphism of the form [idX , g̃].

This specializes directly to the case of G-fibred bundles.

2.7. Tensor functors

Let us recall some elementary facts of finite dimensional multi-linear algebra.
Every finite dimensional real vector space V has an infinite family of associated
tensor spaces T pq (V ), p, q ∈ N - also denoted (V )⊗

p ⊗ (V ∗)⊗
q

- formed by the
multilinear forms

α :

p∏
i=1

V ∗ ×
q∏
j=1

V → R .

Hence the dual space V ∗ = T 0
1 (V ), while V is “equal” to T 1

0 (V ) via the canonical
identification of V with its bidual space (V ∗)∗. If dimV = m, then

dimT pq (V ) = mpq .

Moreover, to every basis B of V , we can associate in a canonical way a basis Bpq of
T pq (V ), we can say that the basis B “propagates” to every tensor space. The linear
group GL(V ) acts on T pq (V ) by

(g, α)→ g(α)

g(α)(w1, . . . , wp, v1, . . . , vq) = α((gt)−1(w1), . . . , (gt)−1(wp), g(v1), . . . , g(vq)) .

By applying this to V = Rm (endowed with the canonical basis C) and to T pq (Rm)
(with the canonical basis Cpq ) we get a homomorphism of group (that is a represen-
tation)

ρp,q : GL(m,R)→ GL(T pq (Rm)) ∼ GL(mpq,R)

which is an explicit regular rational map. The basic example is

ρ0,1(A) = (At)−1 .

As another example: T 0
2 (Rm) can be identified with M(m,R) by associating to

every matrix B the form

(v, w)→ vtBw .

Then

ρ0,2(P )(B) = P tBP .

In some case it is interesting to consider suitable subspaces W of T pq (V ),
dimW = w say, which are invariant for the action of GL(V ) and are endowed
as well with a basis BW canonically associated to B. By appling this to V = Rm,
this gives rise to other representations

ρW : GL(m,R)→ GL(W ) ∼ GL(w,R) .

For example consider the subspace W = S2
0(V ) ⊂ T 0

2 (V ) of symmetric bilinear form
on V ×V (i.e. the space of scalar products on V ). In this case the representation ρW
is just the “restriction” of ρ0,2. Another example is the subspace Λ0

q(V ) ⊂ T 0
q (V ) of
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alternating multilinear forms. As a particular case Λ0
m(Rm) is 1-dimensional with

canonical basis
det : M(m,R)→ R, X → det(X)

considered as m-linear function of the columns of X. This gives rise to the repre-
sentation

δm : GL(m,R)→ GL(1,R), δm(P ) = detP .

We are going to show that for every embedded smooth m-manifold M ⊂ Rh,
the tangent vector bundle

π = πM : T (M)→M

has naturally associated a family of further embedded vector bundles over M

πp,q = πp,q,M : T pq (M)→M

such that for every x ∈M , π−1
p,q(x) = T pq (TxM), and clearly T (M) = T 1

0 (M).
Let us start with the cotangent bundle

T ∗(M) := T 0
1 (M) .

Recall that (Rh)∗ = M(h, 1,R) ∼ Rh. For every x ∈ M , denote by Vx the or-
thogonal complement of TxM in Rh, so that we have the orthogonal direct sum
decomposition Rh = TxM ⊕ Vx. For every functional γ ∈ T ∗xM , extend it to a
functional on the whole of Rh by imposing that γ(v + w) = γ(v) for every w ∈ Vx.
In this way we have identified T ∗xM as a linear subspace of (Rh)∗. For every open
subset U ⊂ Rm, the cotangent bundle is the product bundle U × (Rm)∗ → U . By
copying the definition of the tangent bundle, set

T ∗(M) = {(x, γ) ∈ Rh × (Rh)∗; x ∈M, γ ∈ T ∗xM}
endowed with the natural projection

π∗M : T ∗(M)→M .

For every open set W ∈M , T ∗(W ) = (π∗M )−1(W ), it is an open set of T ∗(M) and
π∗W is the restriction of π∗M . We define the vector bundle atlas T ∗A of T ∗(M); for
every chart (W,φ) of M with inverse local parametrization ψ, set (T ∗(W ), T ∗φ),

T ∗φ : T ∗(W )→ U × (Rm)∗, (x, γ)→ (φ(x), γ ◦ dψ(x)) .

The changes of local (fibred) coordinates for T ∗A are of the form

T ∗β : Ũ × (Rm)∗ → Ũ ′ × (Rm)∗

T ∗β(x, γ) = (β(x), ρ0,1(dxβ)(γ)) .

If f : M → N is a diffeomorphism, we define

T ∗f : T ∗(N)→ T ∗(M), (y, γ)→ (f−1(y), γ ◦ df−1(y))

Then
M ⇒ π∗M : T ∗(M)→M

f : M → N ⇒ [f, T ∗f ]

define the contravariant cotangent functor from the restricted category of embedded
smooth manifolds to its cotangent category (‘restricted’ means that only the dif-
feomorphisms are allowed as morphisms). To get a covariant version of the same
functor it is enough to replace T ∗f with T ∗(f−1).

(The T 0
2 functor) For every x ∈M , identify T 0

2 (TxM) as a subspace of T 0
2 (Rh)

by extending every bilinear form α over TxM to a bilinear form over the whole of
Rh by imposing that for every v +w, u+ z ∈ TxM ⊕ Vx, α(v +w, u+ z) = α(v, u).
By the usual scheme, set

T 0
2 (M) = {(x, α) ∈ Rh × T 0

2 (Rm); x ∈M, α ∈ T 0
2 (TxM)}

π0,2,M : T 0
2 (M)→M
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the natural projection. We have the vector bundle atlas T 0
2A obtained by associ-

ating to every chart (W,φ) of M , with inverse local parametrization ψ, the chart
(T 0

2 (W ), T 0
2 φ)

T 0
2 φ(x, α) = (φ(x), α ◦ (dxψ × dxψ)) .

The changes of coordinates for T 0
2A are of the form

T ∗β(x, α) = (β(x), ρ0,2(dxβ)(α)) .

If f : M → N is a diffeomorphism, we can define

T 0
2 f : T 0

2 (N)→ T 0
2 (M)

T 0
2 f(y, α) = (f−1(y), α ◦ (df−1(y)f × df−1(y)f) .

This leads to the contravariant functor defined on the restricted category of embed-
ded smooth manifolds:

M ⇒ π0,2,M : T 0
2 (M)→M

f : M → N ⇒ [f, T 0
2 f ] .

As above we can obtain a covariant version by replacing T 0
2 f with T 0

2 (f−1).

(The T pq functors) The construction of T := T 1
0 , T ∗ := T 0

1 , T 0
2 functors can

be generalized straightforwardly (with the same formal features) to every (p, q),
getting the tensorial functors

M ⇒ πp,q,M : T pq (M)→M

f : M → N ⇒ [fT pq f ]

where we can stipulate to take always the covariant version (and we refer to the
restricted smooth category when necessary).

(The determinant bundle) By using the spaces Λ0
m(TxM) we get the determi-

nant bundle of M (with 1-dimensional fibre)

δM : detT (M)→M

with changes of detTA coordinates

detTβ(x, r) = (β(x), (det dxβ)r) .

2.8. Tensor fields, unitary tensor bundles

We can extend and generalize the content of section 1.5 of Chapter 1 to em-
bedded smooth manifolds.

Let π : E(M)→M be any tensor vector bundle as above, with fibre ExM over
x ∈M of dimension say r. A section of this bundle is a smooth map

σ : M → E(M)

such that for every x ∈ M , π(σ(x)) = x. In other words σ determines a smooth
field of tensors of a certain type on M . Denote by

Γ(E(M))

the set of these sections. As for every vector bundle, every Γ(E(M)) has a canonical
zero section

σ0(x) = (x, 0), x ∈M .

In this way M is canonically included into E(M). Every Γ(E(M)) is a module over
the commutative ring C∞(M,R), hence a real vector space.

• An element of Γ(T (M)) is called a vector field on M . Generalizing verbatim
section 1.10, Γ(T (M)) is isomorphic to the vector space of derivations on C∞(M,R),
Der(C∞(M,R)).
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• An element in Γ(T ∗(M)) is called a 1-differential form on M . If f : M → R
is a smooth function, then df ∈ Γ(T ∗(M)).

• A section g ∈ Γ(S0
2(M)) such that g(x) is positive definite for every x ∈M is

called a riemannian metric on M . Every M admits riemannian metrics: for every
riemannian metric ĝ on Rh (for instance the standard g0), then the restriction of
ĝx to TxM for every x ∈M defines a riemannian metric g on M .

f : (M, g) → (N, g′) is an isometry if it is a diffeomorphism and for every
x ∈M , v, w ∈ TxM , then gx(v, w) = g′f(x)(dxf(v), dxf(w)).

If (W,φ) is a chart of (M, g), with inverse parametrization ψ : U → W , then
by imposing that ψ is tautologically an isometry we get a representation gU of g in
local coordinates; gU is an instance of riemannian metric on the open set U ⊂ Rm
as defined in Chapter 1.

• Given a riemannian metric g on M , for every smooth function f : M → R
there is a unique vector field ∇gf (called the gradient of f with respect to g) such
that for every x ∈M , every v ∈ TxM ,

dxf(v) = gx(∇gf(x), v) .

• (Other functors) By setting

M ⇒ Γ(T ∗(M))

f : M → N ⇒ f∗ : Γ(T ∗(N))→ Γ(T ∗(M))

where

f∗(ω)(x)(v) = ω(f(x))(dxf(v))

ones defines a contravariant functor from the category of embedded smooth mani-
folds to the category of real vector spaces.

By allowing only the diffeomorphisms as morphisms, then by setting

M ⇒ Γ(T (M))

f : M → N ⇒ f∗ : Γ(T (M))→ Γ(T (N))

where

f∗(X)(y) := df−1(y)(X(f−1(y))

one defines a covariant functor from the ‘restricted’ category of embedded smooth
manifolds to the category of real vector spaces.
• Let (W,φ) and (U,ψ) be chart/parametrization of M as above, then for ev-

ery X ∈ Γ(T (M), every ω ∈ Γ(T ∗(M)), by using either φ∗ or ψ∗ we get local
representantions in the coordinates of U of the type described in section 1.5. Rep-
resentations in local coordinates can be straightforwardly developed for every field
of tensors of arbitrary type on M .

2.8.1. Unitary tensor bundles. Let (M, g) be endowed with the riemannian
metric restriction of the standard metric g0 on Rh. Set

UT (M) = {(x, v) ∈ T (U); ||v||gx = 1}

with the restriction

uπM : UT (M)→M

of πM : T (M)→M . Then UT (M) is a submanifold of T (M) of dimension m(m−
1), and uπM is a surjective summersion with every fibre diffeomorphic (isometric
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indeed) to the unitary sphere Sm−1. More precisely, the local trivializations of
T (M),

U × Rm Tφ→ T (W )
↓πU ↓πW
U

φ→ W

restrict to “unitary” local trivializations

U × Sm−1 UTφ→ UT (W )
↓πU ↓uπW
U

φ→ W

Then uπM : UT (M)→M is called the unitaty tangent bundle of M .
Let π : E(M) → M be as before any of our tensor bundles. For every x ∈ M ,

the positive scalar product gx on every TxM canonically propagates to a positive
definite scalar product gEx on the fibre ExM ; this is defined as follows: given one
gx-othonormal basis Bx of TxM , gEx is determined by imposing that the basis BEx
of ExM canonically associated to Bx is gEx -othonormal (one verifies that this does
not depend on the choice of the basis Bx). Then by the very same procedure we
get the unitary tensor bundle

uπ : UE(M)→M

with fibre isometric to the unitary sphere Sr−1.

Remark 2.15. We have defined the unitary tangent bundle (and its relatives)
by using the restriction of the standard riemannian metric on the ambient euclidean
space. However, if f : M → M is a diffeomorphism then in general the unitary
tangent bundle is not preserved; moreover the costruction of a unitary tangent
bundle works as well if M is endowed with an arbitrary riemannian metric; from
a differential topological view point, there is not a privileged riemannian metric.
So we dispose indeed of an infinite family of unitary bundles. The total spaces of
two unitary bundle defined with respect to two metrics g0 and g1 are canonically
diffeomophic via radial diffeomorphisms fibre by fibre, centred at the origine of
each TxM . Moreover by using the path of riemannian metrics gt = (1− t)g0 + tg1

this diffeomorphism is connected to the identity by a smooth path (an isotopy)
through diffeomorphisms of unitary bundles of the same type. This considerations
“propagate” to all tensor bundles. Every unitary tensor bundle is well defined up
to isotopy.

2.9. Parallelizable, combable and orientable manifolds

An embedded smooth manifold M ⊂ Rh of dimension m ≥ 1 is said paral-
lelizable if there are m sections Σ = (σ1, . . . , σm) ∈ Γ(T (M))m such that for every
x ∈M , Σ(x) is a basis of TxM . This property “propagates” to every of our favourite
tensor bundles say π : E(M)→M with fibres ExM of dimension say r. In fact for
every (p, q), the canonical correspondence Σ(x)→ Σ(x)pq determines

Σpq ∈ Γ(T pq (M))m
pq

such that for every x ∈ M , Σ(x)pq is a basis of T pq (TxM); similarly we have a
nowhere vanishing section det Σ of the determinant bundle δM : det(T (M)) → M .
In generical notations, denote Σ ∈ Γ(E(M))r such a distinguished field of bases.
We can define

tΣ : M × Rr → E(M), tΣ(x, v) = (x,
∑
j

vjσj(x))



2.9. PARALLELIZABLE, COMBABLE AND ORIENTABLE MANIFOLDS 47

clearly this is a diffeomorphism and also a vector bundle map in the sense that for
every x ∈ M , it induces a linear isomorphism {x} × Rr → ExM . Moreover the
following diagram obviously commutes

M × Rr tΣ→ E(M)
↓pM ↓π
M

idM→ M

Then tΣ is called a global trivialization of the bundle E(M).

So M is parallelizable if and only if its tangent bundle is strictly equivalent to a
product bundle, and a necessary condition in order that M is parallelizable is that
the determinat bundle of M has a nowhere vanishing section. Let us say that M is
orientable if it verifies such a necessary condition. Obviously, if M is parallelizable,
then it is “combable”, that is it carries a nowhere vanishing tangent vector field.
Every open set of Rn is parallelizable, hence orientable and combable. The same
facts hold locally on every manifold M . So we have here a bunch of crucial genuine
global questions concerning the structure of a generic smooth manifold M in terms
of the existence of suitable patterns of sections of natural fibre bundles over M .

Let us explicate now the definition of orientability. It is clear that M is ori-
entable if and only if every connected component of M is orientable; so let us
assume that M is connected. Consider the unitary determinant bundle. The fibre
is S0 = {±1}, so we can write it as

p : M̃ →M

where M̃ is a m-manifold, p is a covering map of degree 2 called the orientation
covering of M . The fibre over every x ∈M is {(x,±1)}. There are two possibilities:

either M̃ is connected or it has two connected components

M̃ = M̃+ ∪ M̃−
where

M̃± = {(x,±1);x ∈M} .
Obviously the restriction of p to M̃± is a diffeomorphism (basically it is the identity).
If x→ (x, σ(x)) is a nowhere vanishing section of the determinant bundle, as M is

connected the sign σ(x)
||σ(x)||g(x)

is constant. So we have proved

Proposition 2.16. M is orientable if and only if M̃ = M̃+ ∪ M̃− is not con-
nected.

Example 2.17. Referring to section 3.4, examples of connected p : M̃ →M are
the natural covering maps

Sn → Pn(R)

when n is even. Then such projective spaces are not orientable.

The alternative “M orientable/non-orientable” can be reformulated as follows:
a signature s on an atlas U of M assign to every chart a sign s(W,φ) = ±1. Given
such an s, modify U to Us by post composing every chart with negative sign with
a linear reflection of Rm (which has the determinant equal to −1). An atlas U is
oriented if all changes of coordinates for U have the determinant sign constantly
equal to 1. Then we have

Proposition 2.18. The following facts are equivalent to each other:

(1) M is orientable;
(2) There exists an oriented atlas U of M ;
(3) For every atlas U of M there exists a signature s such that Us is oriented.
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We leave the proof to the reader as an useful exercise on this complex of def-
initions. The condition of point (2) in the Proposition is often given as the very
definition of orientability. A reader can do it without effecting the rest of our
discussions. Here is some further remarks on these notions.
• If M is connected and orientable, then every oriented atlas U is contained

in an unique maximal oriented atlas. There are exactly two maximal oriented
atlas say A±. Any signature s on A such that As is oriented produces one among
A±; s produces A+ if and only if the opposite signature −s produces A−. By
definition A± define two opposite orientations of M and make it (in two ways) an
oriented manifold. If M is oriented, −M denotes M endowed with the opposite
orientation. The two components of M̃ are naturally oriented and correspond to
the two orientations of M .

• The definition via oriented atlas allows us to recover the elementary notion
of orientation of Rm as a vector space. By definition two bases B and D of Rm are
co-oriented if the determinant of the change of linear coordinates passing fro B to
D is positive. By the multiplicative properties of the determinant, this defines an
equivalence relation on GL(m,R) (considered as the space of bases of Rm); then an
orientation on Rm is an equivalence class of bases. Let us call standard orientation
the class [C] of the canonical basis C. If U is a (connected) open set of Rm we get the
standard field of orientations by giving each TxU = Rm the standard orientation.
U is obviously an orientable manifold and we can take the maximal oriented atlas
say A+ of U which contains the chart id : U → U . Let ψ : U ′ → U” ⊂ U the
local parametrization associated to a chart of A+. By taking the standard field of
orientations on U ′, dψ transforms it to the field of orientations {[dyφ(C)]}x=ψ(y) on

U”. The fact that ψ belongs to A+ just means that this last field coincides with
the standard one on U ′′. Extenting this considerations to an arbitrary manifolds
M , an orientation on M , if any, can be considered as a “locally coherent” field of
orientations on each TxM .

• Let f : M → N be a diffeomorphism. If U = {(W,φ)} is an atlas of M , then

f(U) := {(f(W ), φ ◦ f−1)}

is an atlas of N . The proof of the following Lemma follows immediately from the
definitions.

Lemma 2.19. Let f : M → N be a diffeomorphism between connected oriented
manifolds with maximal oriented atlas say A+

M and A+
N respectively. The following

facts are equivalent to each other.

(1) f(A+
M ) = A+

N .

(2) There exist an oriented atlas U ⊂ A+
M such that f(U) ⊂ A+

N .
(3) For every representation in local coordinates fU,U ′ : U → U ′ of f relative

to charts in A+
M and A+

N and for every x ∈ U , then det dxfU,U ′ > 0.

If one (hence all) of the above conditions is verified, then we say that f is an
oriented diffeomorphism.

• By specializing the objects to oriented manifolds we get a sub-category of our
favourite one.

Remark 2.20. (Oriented 0-Manifolds) A 0-manifold is a discrete set of points,
hence just one point if connected. We stipulate that it is orientable and is oriented
by giving it a sign ±1.
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2.10. Manifolds with boundary, oriented boundary, proper
submanifolds

By definition an embedded smooth m-manifold M ⊂ Rn is locally diffeomorphic
to open sets of the basic model Rm. Let us change this last by taking instead the
half-space

Hm = {x ∈ Rm; xm ≥ 0}
with the boundary

∂Hm = {x ∈ Hm; xm = 0} .

Definition 2.21. For every 0 ≤ m ≤ n, a topological subspace M ⊂ Rn is an
embedded smooth m-manifold with boundary if for every p ∈M , there exist an open
neighbourhoodW of p inM , an open set U of Hm and a diffeomorphism φ : W → U .
The notions of “chart”, “local parametrization”, “atlas” extend straightforwardly.
By definition, the boundary ∂M is the set of points p ∈M such that there exists a
chart (W,φ) at p such that φ(p) ∈ ∂Hm.

The following Lemma provides a basic way to produce manifolds with boundary.

Lemma 2.22. Let X be a m-manifold with empty boundary, f : X → J a
surjective summersion, where J is an open interval of R, and 0 ∈ J . Then M =
{x ∈ X; f(x) ≥ 0} is a m-manifold with boundary ∂M = {f(x) = 0}.

Proof : The question being of local nature one can reduce to summersions in
normal form for which the result is evident.

2

The following Lemma contains by the way an extension of Lemma 13.4.1 and
similarly is an application of the inverse map theorem (and its corollaries).

Lemma 2.23. Let M ⊂ Rn be an m-manifold with boundary. Then
(1) If p ∈ ∂M , then for every chart (W,φ) of M at p, φ(p) ∈ ∂Hm.
(2) Int(M) := M \∂M is an open set in M and a manifold with empty boundary

(called the interior of M). For every p ∈ Int(M) there are normal relative charts of
(Rn, Int(M)) at p that do not intersect ∂M .

(3) For every p ∈ ∂M , there are normal relative charts of (Rn,M, ∂M) at p:

β : (Ω,Ω ∩M,Ω ∩ ∂M, p)→ (Bn(0, 1), Bn(0, 1) ∩Hm, Bn(0, 1) ∩ ∂Hm, 0)

(4) If ∂M 6= ∅, then it is (m− 1)-manifold with empty boundary.

2

The definition of “embedded smooth manifold with boundary” does not exclude
that ∂M = ∅. We have early considered such a boundaryless case. It is formally
convenient to stipulate that the empty set ∅ is a k-boundaryless manifold for every
k ∈ N. In such a way for example point (4) of the last Lemma holds even if ∂M = ∅.
By setting M = (M, ∅) for every boundaryless manifold, the early category of em-
bedded smooth manifolds extends to the category of embedded smooth manifolds with
boundary. Let us briefly retrace within such an extension the main facts developed
so far .

• The tangent functor and its relatives extend verbatim. If ∂M is non empty,
the inclusion j : ∂M → M leads to a vector bundle embedding [j, T j] of π∂M :
T (∂M) → ∂M into πM : T (M) → M . The total space T (M) is a manifold with
boundary equal to the restriction over ∂M of the tangent bundle of M (with the
notions that we will introduce in Chapert 4 it is the pull-back j∗T (M) over ∂M).
Similarly for the other tensors bundles.

• Also “orientability/orientation” estends directly. The boundary ∂M of an
oriented M is orientable and we can fix the following procedure in order to make it
the oriented boundary of M :
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(“First the outgoing normal”) Take an oriented atlas U of M made by normal
charts. Post compone every chart along the boundary ∂M with a trasformation
r ∈ SO(m) such that r(e1, . . . , em) = (−em, r(e1, . . . , em−1). The so obtained atlas,
say rU is again an oriented atlas of M and its restriction to ∂M is an oriented atlas
which carries a determined orientation of the boundary.

By the usual convention M = (M, ∅), the category of oriented boundaryless
manifolds extends to the category of oriented manifolds with oriented boundary.

• (Submanifolds) Alike the boundaryless case, let us stipulate that if Y,M ⊂
Rn are embedded smooth manifolds with boundary and Y ⊂ M , then Y is a
submanifold of M . By extending the Remark 2.8, because of the presence of the
boundary there are several qualitatively different ways of being a submanifold; let
us list a few examples:

(1) (Y ⊂ M) = (B
n
(0, 1) ⊂ Bn(0, 2)): ∂Y 6= ∅ and Y is contained in the

interior of M .
(2) (Y ⊂M) = (Int(M) ⊂M); if ∂M 6= ∅, then Y is not closed in M .
(3) (Y ⊂ M) = (N ⊂ Bn(0, 1)), where N is defined in Remark 2.8: Y is

boundaryless, is contained in the interior of M , and every point of ∂M is
in the closure of Y ; again Y is not closed in M .

(4) (Y ⊂ M) where Y = B
n
(0, 1), M = {xn ≥ −1}. Then ∂Y is tangent to

∂M , while the interior of Y is contained in the interior of M .
(5) Let γ := γ1,2 : R → R the bump function defined in Chapter 1. (Y ⊂

M) = (N ⊂ H2), where N = {(x, y) ∈ H2; y ≥ γ(x)}. Then ∂Y is
partially contained in the interior of M , partially into ∂M .

(6) . . .

Among this wide typology there is a particularly clean type which deserves to
be pointed out by a definition.

Definition 2.24. Let Y ⊂ M ⊂ Rn smooth manifolds with boundary. Then
Y is a proper submanifold of M if

(1) Y is closed in M ;
(2) ∂Y = Y ∩ ∂M ;
(3) Y is transverse to ∂M . This means that for every p ∈ Y ∩ ∂M

TpM = TpY + Tp∂M .

All the above examples are not proper. Every M is a proper submanifold of
itself. The properness implies for instance that every boundaryless component of Y
is contained in the interior of M ; if ∂M = ∅, then also ∂Y = ∅; if dimY = dimM
then Y is union of connected components of M .

The following Proposition extends (1) of Proposition 2.12 in two ways, to man-
ifolds with boundary and to oriented manifolds.

Proposition 2.25. Let M be a manifold with boundary and N a boundaryless
one. Let f : M → N be a surjective relative summersion (that is both f and
∂f := f|∂M are summersions). Then:

(1) For every q ∈ N , Y = f−1(q) is a proper submanifold of M , dimY =
dimM − dimN .

(2) If both M and N are oriented, then Y is orientable, and we can fix a proce-
dure to orient it, in such a way that the orientation of ∂Y as oriented boundary of
Y coincides with the orientation obtained by applying the procedure to ∂f , provided
that ∂M is the oriented boundary of M .

Proof : Assume that M ⊂ Rh, dimM = m, dimN = n. If q does not belong to
the image of ∂f , then we apply directly Proposition 2.12 so that Y is a closed bound-
aryless submanifold of the interior of M . Assume now that q belongs to the image
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of ∂f . The question being of local nature, we reduce to analyze a representation
(called f as well) of f in local coordinates which are normal for (M,∂M):

f : (Bm(0, 1) ∩Hm, Bm(0, 1) ∩ ∂Hm)→ U ⊂ Rn

q = 0 ∈ U . Moreover we can assume that f is the restriction of a smooth map
g : Bm(0, 1)→ U defined on the whole of Bm(0, 1), which a surjective summersion.

By applying again Proposition 2.12 to g, we have that Ỹ = g−1(0) is a boundaryless
submanifold of Bm(0, 1) of the correct dimension, such that Y = f−1(0) is Y =

Ỹ ∩Hm. As f is a relative summersion, one readly checks that Ỹ is transverse to
∂Hm and that the restriction say π to Ỹ of the projection onto the xm coordinate
is a summersion onto its image and that Y = {y ∈ Ỹ ; π(y) ≥ 0}. We conclude by
applying Lemma 2.22.

Let us come to the orientation. First consider the case f = idM . Then Y = {p}
is just a point of M . Let us orient it by giving it the sign +1. By applying the rule
to ∂f we get the same sign. In the general case. For every p ∈ Y let

ν(p) = (TpY )⊥ ∩ TpM

clearly

Tp(M) = TpY ⊕ ν(p)

and ν(p) varies “smoothly” when p varies along Y (by using the contents of next
Chapter 4 this means precisely that ν : Y → Gk,n is a smooth map). In our
hypotheses, for every p ∈ Y , the restriction of dpf to ν(p) is a linear isomorphism
onto Tf(p)N . Let us consider the orientation on N as a field of orientations on the
TyN , y ∈ N , (i.e. a field of equivalence classes of bases of TyN) which is locally
coherent). Take an orienting (say “positive”) basis Bq of TqN . For every p ∈ Y ,
lift it to a basis Bp of ν(p) by means of the restriction of the differential of f . This
determines a field of “transverse orientations” [Bp] along Y . At every p, take a basis
Dp of TpY such that the basis Dp ⊕ Bp of TpM (compatible with the above direct
sum decomposition of TpM) is positive with respect to the given orientation of M .
This determines a field [Dp] of orientations on the TpY , eventually the desidered
orientation of Y . This procedure could be finalized in terms of the construction of
a suitable oriented atlas for Y ; we leave it to the reader. One can check that the
restriction of this procedure to ∂f is compatible in the sense of the last statement
of the proposition.

2

•Also the topologies of spaces of smooth maps between manifolds with boundary
extend word by word.

2.11. Product, manifolds with corners, smoothing

We know that the product of two boundaryless manifolds is a boundaryless
manifold. The situation is more complicated if we consider non empty boundaries.
The following Lemma is immediate.

Lemma 2.26. Let M be a boundaryless (embedded smooth) m-manifold, N be
a n-manifold with ∂N 6= ∅. Then M ×N is a (m+ n)-manifold with ∂(M ×N) =
M × ∂N

2

However, if both ∂M and ∂N are non empty, then M × N is no longer an
embedded smooth manifold with boundary.

Example 2.27. As a basic example, consider the square

Q = D1 ×D2 := [−1, 1]× [−1, 1] ⊂ R2 .
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Its topological frontier is

∂Q = (∂D1 ×D2) ∪ (D1 × ∂D2) ;

its interior
Q \ ∂Q = Int(D1)× Int(D2)

is an open set of R2 hence a 2-manifold with empty boundary;

Q \ (∂D1 × ∂D2)

is a 2-manifold with boundary equal to

∂Q \ (∂D1 × ∂D2) ;

∂D1×∂D2 is a 0-manifold. The points where Q fails to be a manifold with boundary
are the “corner” points which form ∂D1 × ∂D2.

The behaviour of such a simplest example is qualitatively the general one:

Proposition 2.28. Let (M,∂M) ⊂ Rh and (N, ∂N) ⊂ Rk be an m-manifold
and an n-manifold with boundary respectively. Then M ×N ⊂ Rh×Rk verifies the
following properties:

• Set
∂(M ×N) := (∂M ×N) ∪ (M × ∂N) .

Then
(M ×N) \ ∂(M ×N)

is a boundaryless (m+ n)-manifold;
•

(M ×N) \ (∂M × ∂N)

is a (m+ n)-manifold with boundary equal to

∂(M ×N) \ (∂M × ∂N) ;

• ∂M × ∂N is a boundaryless (m+ n− 2)-manifold.

2

Hence M × N fails to be a manifold with boundary at the “corner locus”
∂M × ∂N . This means that the category of embedded smooth manifolds with
boundary is not closed with respect to the product. This is somehow unpleasant. A
way to fix this fact is to enlarge our category by extending the sets of basic models,
incorporating the corners. We do it in the minimal way suited to incorporate such
product manifolds.

Definition 2.29. The basic m-corner models is

Cm = {x ∈ Rm; xm ≥ 0, xm−1 ≥ 0}
that is the intersection between Hm with another halfspace. Its boundary (in fact
its topological frontier) is

∂Cm = {x ∈ Cm; xm = 0} ∪ {x ∈ Cm; xm−1 = 0} .
Cm \{xm = 0, xm−1 = 0} is a manifold with boundary and the last set is its corner
locus.

Definition 2.30. For every 0 ≤ m ≤ n, a topological subspace M ⊂ Rn is an
embedded smooth m-manifold with corners if for every p ∈ M , there exist an open
neighbourhood W of p in M , an open set U of Cm and a diffeomorphism φ : W → U .
The notions of “chart”, “local parametrization”, “atlas” extend straightforwardly.
The boundary ∂M is the set of points p ∈ M such that there exists a chart (W,φ)
at p such that φ(p) ∈ ∂Cm. The corner locus is where M is not locally a smooth
manifold with boundary.
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The following properties clearly hold for the basic models and descend easily to
every manifold with corners.

(i) Every manifold with corners is naturally stratified by means of the disjoint
locally finite union of boundaryless connected smooth manifolds (of varying dimen-
sion m−2 ≤ d ≤ m) called the strata; the top dimensional strata are the components
of the boundaryless smooth m-manifold M \ ∂M ; the (m − 1)-strata are the com-
ponets of ∂M from which we have removed the corner locus; the (m− 2)-strata are
the components of the corner locus which is a boundaryless manifold of dimension
m − 2 contained in the boundary of M . The closure of every stratum is union of
strata, as well as the maximal smooth manifold with boundary contained in the
closure of every stratum.

(ii) The product of two smooth manifolds with boundary is a manifold with
corners.

However, manifolds with “codimension 2” corners are not closed under the
product (take for instance the cube [−1, 1]3). So we have only shifted the difficulty
and we should extend furthermore our category of manifolds. This would bring us
a bit far away from our original objects of interests. Fortunately there is another
way that leads back manifolds with corners (according with the above restrictive
definition) to ordinary manifolds with boundary, even though up to diffeomorphism.
To introduce such a “smoothing the corner” procedure, let us consider again our
simplest square example. The function

f : R2 →, f(x) = (x1 − 1)(x2 − 1)(x1 + 1)(x2 + 1)

has the property that Q is the closure of a connected component of

R2 \ f−1(0)

and for every x ∈ int(Q), f(x) > 0. For every ε > 0, sufficiently small, there is a
connected component Qε of f(x) ≥ ε contained in the interior of Q, and which is a
smooth manifolds with boundary homeomorphic to Q. Moreover, we can construct
a “piece-wise smooth” radial homeomorphism (centred at 0) s : Qε → Q such that
the natutal stratification of Q lifts to a stratification by smooth submanifolds of Qε
and the restriction to the maximal manifold with boundary contained in the closure
of every stratum is a diffeomorphism onto its analogous image in Q. Finally, up
to diffeomorphism, the result of such a smoothing does not depend on the specific
implementation (in particular on the choice of the small ε).

This basic idea can be generalized. By applying it to Cm, by using Mε =
{xmxm−1 ≥ ε} ∩ Cm, ε > 0 small enough, we get nice local smoothing homeo-
morphism s : Mε → Cm with the same qualitative properties as above. Then one
should have to prove that such local smoothings can be patched to give a global
smooth atlas. This could be a bit technically demanding (with simplifications if the
manifolds are compact) and we do not further push in that direction. In Section
7.3 we will reconsider and properly establish such a smoothing procedure in a more
flexible “abstract” setting. Anyway we already state the following

Proposition 2.31. For every m-manifold with corner M ⊂ Rh, then
(1) by implementing a determined “smoothing the corner” procedure, we get a

smooth manifold with boundary M̃ ⊂ Rh and a piece-wise smooth homeomorphism

s : (M̃, ∂M̃)→ (M,∂M)

such that the natural stratification of M lifts to a stratification of M̃ by boundaryless
smooth submanifolds, and the restriction of s to the maximal smooth manifold with
boundary contained in the closure of every stratum of M̃ is a diffeomorphism onto
its analogous image in M .
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(2) M̃ is uniquely determined up to diffeomorphism (i.e. it does not depend on
the actual implementation of the procedure).

2

Coming back to our motivating problem, the product of two smooth manifolds
with boundary as a smooth manifold with boundary is well defined up to diffeomor-
phism.



CHAPTER 3

Stiefel and Grassmann manifolds

The tensorial vector bundles contructed in Chapter 2 belong to a wide category
of “embedded vector bundles” that we will consider in Chapter 4; the core of that
discussion will consist in remarkable families of embedded smooth manifolds and
smooth maps between them that we are going to study by themselves.

3.1. Stiefel manifolds

We introduce first the Stiefel manifolds. There are two versions that we call
linear and orthogonal respectively. For every n ∈ N and every 0 ≤ k ≤ n, the linear
Stiefel manifold Ln,k, as a set, is the set of ordered k-uple (v1, . . . , vk) of linearly
independent vectors in Rn. By arranging each of them in a n× k matrix A (so that
vj is the j-column of A), Ln,k ⊂M(n, k,R). In fact it is an open subset: consider the
smooth function δ : M(n, k,R)→ R defined in the proof of Proposition 20.1.6, then
Ln,k = M(n, k,R) \ δ−1(0). This specifies the embedded smooth manifold nature
of Ln,k. As a particular case we have GL(n,R) = Ln,n. For every P ∈ GL(n,R),
A→ PA defines a diffeomorphism (restriction of a linear map) Ln,k → Ln,k, and it
is well known that this action is transitive; in particular for every A ∈ Ln,k, there
exists P ∈ GL(n,R) such that PIn,k = A where In,k is the matrix whose columns
are e1, . . . , ek, the first k vectors of the canonical basis of Rn.

Now, let Sn,k ⊂ Ln,k be the closed subset defined as f−1(Ik) where

f : Ln,k → S(k,R)

is the smooth map f(A) = AtA with values in the space S(k,R) of k×k symmetric

matrices which can be identified with R
k(k+1)

2 . In other words, we require that the
columns of any A ∈ Sn,k form an orthonormal system. As particular cases we have
Sn,1 = Sn−1, Sn,n = O(n) the classical (real) orthogonal groups. As M(n, k,R) =
(Rn)k, we see immediately that Sn,k ⊂ (Sn−1)k, hence Sn,k is compact. The above
action of GL(n,R) on Ln,k restricts to a transitive action of O(n) on Sn,k: for every
A ∈ Sn,k, there exists P ∈ O(n) such that PA = In,k. It follows that in order to
prove that Sn,k is an embedded smooth manifold in (Rn)k, it is enough to prove
that there is a chart (W,φ) of Sn,k at J := In,k. Hence it is enough to prove that
dJf is surjective and conclude by applying again Theorem 1.4. Let us compute dJf
by the very definition of the differential. Then

dfJ(B) = lim
t→0

(J + tB)t(J + tB)− Ik
t

=

lim
t→0

(J tB +BtJ + tBtB) = J tB +BtJ .

We have to prove that for every symmetric matrix C ∈ S(k,R) there exists B ∈
M(n, k,R) such that J tB +BtJ = C. Set B = 1

2JC. Then

J tB +BtJ =
1

2
J tJC +

1

2
CtJ tJ =

1

2
C +

1

2
Ct = C

55
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because C = Ct. Summarizing, Sn,k is a compact embedded smooth manifold in
Ln,k ⊂M(n, k,R) = (Rn)k, of dimension

dimSn,k = nk − k(k + 1)

2
.

Sn,k is called a orthogonal Stiefel manifold. In particular the orthogonal group O(n)
is a compact embedded smooth submanifold of (Sn−1)n of dimension

dimO(n) = n2 − n(n+ 1)

2
.

Remark 3.1. The operation (A,B)→ AB, and A→ A−1 that define the group
structure of GL(n,R) are smooth (for A−1 recall the determinantal formula based
on Cramer’s rule). These restrict to smooth operations giving the group structure
of the manifold O(n). Hence GL(n,R) and O(n) are basic examples of Lie group.
O(n) is a Lie subgroup of GL(n,R), in the sense that the first is a submanifold of
the second and the smooth operations are compatible.

The Gram-Schmidt orthonormalization algorithm applied to the ordered columns
of every A ∈ Ln,k defines a smooth map

rn,k : Ln,k → Sn,k

which is onto and such that rn,k(A) = A for every A ∈ Sn,k. The map rn,k is the
canonical retraction of Ln,k onto Sn,k.

3.2. Fibrations of Stiefel manifolds by Stiefel manifolds

For every 0 ≤ h < k ≤ n, Ln,k is a submanifold (an open set) in the product
Ln,h × Ln,k−h and denote by

lk,h : Ln,k → Ln,h

the restriction of the natural projection onto the first factor. This map is equivari-
ant for the above actions of GL(n,R) on both Stiefel manifolds (i.e. lk,h(PA) =
Plk,h(A)), hence in order to study local properties such as the smoothness of the

map, it is enough to study the restriction of lk,h on l−1
k,h(Ω) where Ω is a neighbour-

hood of In,h. Clealy lk,h(In,k) = In,h. The fibre Fk,h := l−1
k,h(In,h) over In,h is made

by the 2× 2 block matrices of the form

Y (S,D) :=

(
Ih S
0 D

)
where (S,D) ∈M(h, k−h,R)×Ln−h,k−h. If P ∈ GL(n,R) is such that PIn,h = A,

then P (l−1
k,h(In,h)) = l−1

k,h(A), all fibres are diffeomorphic to each other. Let Ω be
the open neighbourhood of In,h made by matrices of the form

X =

(
B
R

)
where B ∈ GL(h,R). We define the smooth map X → P (X) ∈ GL(n,R)

P (X) =

(
B 0
R In−h

)
such that P (X)In,h = X. Finally we have the following commutative diagram of
smooth maps

Ω× Fk,h
Ψ→ l−1

k,h(Ω)

↓πΩ ↓lk,h
Ω

idΩ→ Ω

such that the first row is the diffeomorphism defined by

(X,S,D)→ P (X)Y (S,D) .
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The costant section of the product on the left, X → (X, 0, In−h,k−h) is transformed
into the section of lk,h over Ω:

s(X) =

(
B 0
R Ik−h

)
A similar construction can be performend for the orthogonal Stiefel manifolds.

For every 0 ≤ h < k ≤ n, Sn,k is a submanifold in the product Sn,h × Sn,k−h and
denote by

hk,h : Sn,k → Sn,h

the restriction of the natural projection onto the first factor. This map is equivariant
for the above actions of O(n) on both Stiefel manifolds. Clealy hk,h(In,k) = In,h.

The fibre h−1
k,h(In,h) over In,h is made by the 2× 2 block matrices of the form

Y (D) :=

(
Ih 0
0 D

)
where D ∈ Sn−h,k−h. If P ∈ O(n) is such that PIn,h = A, then P (h−1

k,h(In,h)) =

h−1
k,h(A), all fibres are diffeomorphic to each other. Let Ω be the open neighbourhood

of In,h in Sn,h made by matrices of the form

X =

(
B
R

)
where B ∈ O(h). Recall the “Gram-Schmidt” retractions rn,k defined above. Then
we define the smooth map X → P (X) ∈ O(n)

P (X) = rn,n(

(
B 0
R In−h

)
)

such that P (X)In,h = X. Finally we have the following commutative diagram of
smooth maps

Ω× Sn−h,k−h
Ψ→ h−1

k,h(Ω)

↓πΩ ↓hk,h
Ω

idΩ→ Ω

such that the first row is the diffeomorphism defined by

(X,D)→ P (X)Y (D) .

The costant section of the product on the left, X → (X, 0, In−h,k−h) is transformed
into the section of hk,h over Ω

s(X) = rn,k(

(
B 0
R Ik−h

)
)

Summing up:

All these restriction of natural projections onto Stiefel manifolds are locally
trivial(izable) fibrations with a transitive action of either the group GL(n,R) or
O(n) respectively, which sends fibres into fibres. In the case of othogonal Stiefel
manifolds, the fibre is a Stiefel manifold itself.

• A case of particular interest is when n = k. In the linear case we have a
fibration of the linear group GL(n,R) over Ln,h with fibre the subgroup of GL(n,R)
made by the matrices of the form

Y (S,D) :=

(
Ih S
0 D

)
where (S,D) ∈M(h, n− h,R)×GL(n− h,R).
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In the orthogonal case we have a fibration of the othogonal group O(n) over
Sn,h with fiber the orhogonal group O(n − h). Sometimes this is summarized by
writing

Sn,h = O(n)/O(n− h) .

• Another useful fibration is hk,1 : Sn,k → Sn−1 with fibre Sn−1,k−1.

• Recall that O(n) has two connected components and that the component
containing In is the special othogonal group SO(n). If h < n, also the action of
SO(n) on Sn,h is transitive, hence we can specialize all the discussion obtaining a
fibration

shn,h : SO(n)→ Sn,h

with fibre SO(n− h), so that

Sn,h = SO(n)/SO(n− h)

in particular this implies that

For h < n, the Stiefel manifold Sn,h is connected.

3.3. Grassmann manifolds

For every (n, k) as above, we are going to define now the Grassmann manifold
Gn,k.

Denote by Gn,k the set of linear subspaces of Rn of dimension k. Let Gn,k be

the closed subset of S(n,R) = R
n(n+1)

2 defined by the polynomial matrix equations

A2 −A = 0, trace(A) = k .

If A ∈ S(n,R) verifies A2−A then its spectrum of eigenvalues is {0, 1}, and by the
spectral theorem for real symmetric matrices, the respective eigenspaces provide
an orthogonal direct sum decomposition of Rn; the last condition on the trace is
equivalent to the fact that the eigenspace for the eigenvalue λ = 1 has dimension
equal to k, and also to the fact that A has rank equal to k.

We fix a bijection V → AV from Gn,k onto Gn,k as follows. For every V ∈ Gn,k
we have the orthogonal direct sum decomposition Rn = V ⊕ V ⊥, (V ⊥ being the
orthogonal space to V with respect to the standard euclidean scalar product) and
the linear map AV ∈ L(Rn,Rn) = M(n,R) such that AV (v + v′) = v. One readly
verifies that AV ∈ Gn,k. The inverse map A → VA is defined by setting VA equal
to the eigenspace of A relative to the eigenvalue λ = 1.

Next we prove that Gn,k is an embedded smooth manifold in S(n,R), of di-
mension k(n − k). Note that the action by smooth diffeomorphisms of O(n) on
S(n,R) given by (P,A)→ P tAP , restricts to an action on Gn,k: for every A ∈ Gn,k
(P tAP )2 − P tAP = P t(A2 − A)P = 0; as P t = P−1, then trace(PAP−1) = k be-
cause the trace is invariant up to conjugation. This action corresponds via the above
bijection V → AV to the action of O(n) on the set Gn,k defined by (P, V ) → PV .
These actions are transtive, hence for every A ∈ Gn,k there exists P ∈ O(n) such
that P tAP = H where H is the 2× 2 block diagonal matrix

H =

(
Ik 0
0 0

)
So it is enough to find a chart of Gn,k at H. First note that the space of

symmetric matrices of rank k ( denote it by S(n|k,R)) is a submanifold of S(n,R)

of dimension k(k+1)
2 + k(n− k). A local parametrization of S(n|k,R) at H is given

by

(S(k,R) ∩GL(k,R))×M(k, n− k,R)→W ⊂ S(n|k,R), (D,B)→ Z(D,B)
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where Z(D,B) is the 2× 2 block symmetric matrix

Z(D,B) =

(
D B
Bt BtD−1B

)
To see that Z(D,B) is of rank k, consider the non singular matrix

X(D,B) =

(
Ik 0

−BtD−1 In−k

)
then

X(D,B)Z(D,B) =

(
D B
0 0

)
This last matrix has the same rank of Z(D,B) and this is equal to rank(D) = k.
The same argument shows that if one changes the second block along the diagonal
of Z(D,B) by any one different from BtD−1B, then the resulting matrix would
have rank > k. Clearly Z(Ik, 0) = H. Hence W ∩Gn,k is given by restriction to W
of the matrix equation A2 −A = 0. The matrix equation carried by the first k × k
block along the diagonal reads:

BBt +D2 −D = 0

and by replacing BBt = D −D2 into the equations carried by the other blocks, a
direct computation shows that they are automatically satisfied. We are reduced to
study the map

h : (S(k,R) ∩GL(k,R))×M(k, n− k,R)→ S(k,R), (D,B)→ BBt +D2 −D
which is a summersion at (Ik, 0); hence, possibly shrinking W, we conclude that
Z(h−1(0)) =W ∩Gn,k is an embedded smooth manifold of dimension k(n− k).

An alternative way to get the same conslusion is to provide a local parametriza-
tion of Gn,k at H. Let Ũ be the subset of Gn,k formed by the k-linear subspaces

V of Rn = Rk × Rn−k such that V ∩ Rn−k = {0}. Every V ∈ Ũ is the graph of a
uniquely determined linear map LV : Rk → Rn−k. In fact the restriction to V of
the projection onto Rk is a linear isomorphism; hence the inverse isomorphism is
of the form x → (x, LV (x)). Then Ũ can be identified with M(n − k, k,R). The
restriction to M(n−k, k,R) of the above map V → AV can be explicitely computed
as follows. For every L ∈ M(n − k, k,R), let V = VL be the graph of L. Consider
the ordered basis of Rn

BL = {(e1, L(e1)), . . . , (ek, L(ek)), ek+1, . . . , en)}
such that the first k-vectors form a basis of V . Apply to BL the Gram-Schmidt
orthogonalization algorithm which produces an orthonormal basis DL of Rn, whose
first k vectors are a orthonormal basis of V and the last n−k of V ⊥. By organizing
as usual DL in a n × n matrix, we get PL ∈ O(n). Finally AL = AV = P tLHPL.
The map L → AL is clearly smooth; by a bit of direct computation we see that it
is indeed an immersion. Finally, if Ω is a sufficiently small neighbourhood of H in
S(n,R), and W = Ω ∩ Gn,k, then for every A ∈ W , VA belongs Ũ ; the restriction
to W of A → LV is a chart of Gn,k with values in a open neighbourhood U of
0 ∈ M(n − k, k). We have eventually proved that Gn,k is an embedded smooth
manifold of dimension k(n− k) in S(n,R).

3.4. Stiefel manifolds as fibre bundles over Grassmann manifolds

There are natural surjective maps

ln,k : Ln,k → Gn,k

sn,k : Sn,k → Gn,k

defined in both cases by B → A[B] where [B] denotes the linear k-subspace of Rn
generated by the columns of B.
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Let us concentrate on the map sn,k. Note that [B] = [C] if and only if there
exists Q ∈ O(k) such that C = BQ, and that A[B] = H if and only if it is of the
form

B =

(
Q
0

)
, Q ∈ O(k) .

It follows that every fibre of sn,k is diffeomorphic to O(k) and there is a transitive
action (on the right) of O(k) itself on every fibre.

The map sn,k is equivariant with respect to the actions of O(n): (P,B)→ PB
on Sn,k, (P,A)→ P tAP on Gn,k, respectively. Recall that ‘equivariant’ means that
for every (P,B), A[PB] = P tA[B]P . Then it is enough to analyse the behaviour

of the restriction of the map to the inverse image Ω̃ := s−1
n,k(Ω) (which is a open

neighbourhhod of J in Sn,h) of some open neighbourhood Ω of H in Gn,h. For
every B ∈ Sn,k, if P is the top k × k submatrix of B, let us express this by writing

B = (P |D). Let Ω̃ be the open neighbourhood of J in Sn,k formed by the matrices

B = (P |D) such that P is non singular. If B ∈ Ω̃ then [B] ∩ Rn−k = {0}, hence
its image say Ω in Gn,k is an open set. Moreover, If [(P |D)] = [(R|S)], then there
is Q ∈ O(k) such that (P |D) = (RQ|SQ). If P is non singular, then also R is

necessarily non singular. This means that Ω̃ = s−1
n,k(Ω) that is a satured open set of

Sn,k with respect to the surjective map sn,k. We can make explicit sn,k(B) on Ω̃ by
applying to every [B] and its orthonormal basis given by B itself the construction
already used above in order to construct a local parametrization of Gn,k at H.

This shows that sn,k is smooth. Moreover, define φ : Ω̃ → M(k, n − k,R) by
φ((P |D)) = DP−1. If (P |D) = (RQ|SQ) as above, then SQQ−1R−1 = SR−1.
Then there is an induced smooth map Ω→M(k, n− k,R) whose inverse map is

ψ : M(k, n− k)→ Ω, ψ(Z) = A[rn,k(Ik|Z)]

providing once again a local parametrization of Gn,k at H. We can summarize this
discussion by saying that there is a locally trivializing commutative diagram at H

Ω×O(k)
Ψ→ Ω̃

↓πΩ ↓sn,k
Ω

idΩ→ Ω

where Ψ(A,Q) = ψ(Z)Q, A = ψ(Z). Its orbit by the action of O(n) provides a
fibred atlas for the summersion sn,k. Summing up we have proved:

Proposition 3.2. The map sn,k : Sn,k → Gn,k is a fiber bundle with fibre
O(k). Every change of trivialization

Φ′ ◦Ψ(Ω ∩ Ω′)× 0(k)→ (Ω ∩ Ω′)×O(k)

is of the form
(p, P )→ (p, PQ(p))

where p→ Q(p) defines a smooth map Ω ∩ Ω′ → O(k).

We have also the following topological corollaries

Corollary 3.3. Every Gn,k is a compact and connected embedded smooth
manifold. As a topological space it has the quotient space topology Sn,k/sn,k.

• Real projective spaces. A particular case of the above discussion is when
k = 1. In such a case Gn,1 is also denoted by Pn−1(R) and called the (real) (n−1)-
projective space. Sn,1 = Sn−1, and the map s = sn,1 : Sn−1 → Pn−1(R) is a smooth
covering map of degree 2.

• Complex Stiefel and Grassmann manifolds. As a smooth manifold Cn = R2n,
hence M(n,C) is a submanifold of M(2n,R) etc. All along the above discussion let
us replace:
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• Rn with Cn. The real linear subspaces of Rn with the complex linear
subspaces of Cn.

• The standard positive definite scalar product on Rn with the standard
positive definite Hermitian product on Cn, < v,w >= vtw̄.

• The (real) orthogonal groups O(n) with the unitary groups

U(n) := {A ∈ GL(n,C); A−1 = A∗ := Āt} .
• The spaces of real symmetric matrices S(n,R) with the spaces of Hermit-

ian matrices

H(n,C) = {A ∈M(n,C); A = A∗} .
• The spectral theorem for real symmetric matrices with the spectral theorem

for complex hermitian matrices.

Then by repeating verbatim the above constructions, for every (n, k) as above,
we realize the (unitary) complex Stiefel manifold Sn,k(C) as a compact embedded
smooth manifold in M(n, k,C), the complex Grassmannian manifold Gn,k(C) as
a compact embedded smooth manifold in H(n,C) (defined by the usual equations
A2 − A = 0, trace(A) = k), the complex projective spaces Pn−1(C) = Gn,1(C),
and so on. Although we are dealing with spaces based on the complex numbers,
we stress that in this way we have actually realized them as real embedded smooth
manifolds.

We understand that also all next considerations about Stiefel and Grassmann
manifolds would have a counterpart for the complex version.

3.5. A cellular decomposition of the Grassmann manifolds

We describe a natural partition of Gn,k by a finite number of subsets each one
diffeomorphic to some Rh, 0 ≤ h ≤ dimGn,k, (i.e. an open h-cell) and such that
its closure in Gn,k is union of cells of lower dimension. Let L ∈ Gn,k, that is L is
a k-dimensional linear subspace of Rn (here we confuse Gn,k and Gn,k). For every
i = 0, . . . , n, denote by

pi : Rn → Rn−i

the projection onto the first n − i coordinates, pi((x1, . . . , xn)t) = (x1, . . . , xn−i)
t.

The dimensions of pi(L) ⊂ Rn−i decrease from k to 0 in exactly k steps; that is
there are integers

1 ≤ σ1 < σ2 < · · · < σk ≤ n
such that for j that decreases from k to 1,

dim pσj+1(L)− dim pσj (L) = 1 .

Then
σ(L) := (σ1, . . . , σk)

is called the Schubert symbol of L. There is a concrete elementary way to determine
σ(L):

• Fix any rank k, n× k matrix A ∈ Ln,k which projects to L ∈ Gn,k.

• Apply to A the Gauss algorithm via elementary operations on the columns
and get a matrix

Â ∈ Ln,k
in column echelon form which also projects to L. So for every j = 1, . . . , k, the
(σj , j) entry of Â is equal to 1 and is a so called ‘pivot’ of Â; the (transposed of the)

σjth row of Â is the σjth vector of the standard basis of Rk; beyond the pivots,

for every 1 ≤ j ≤ k, an (s, j) entry of Â is possibly non zero only if σj < s ≤ n
and s is not the row index of any pivot row. The computation of σ(L) by means of

Â is immediate from the very definition. This means in particular that the initial
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choice of the matrix A is immaterial to this computation of σ(L); σ(Â) := σ(L) is

the symbol of the matrix Â and two matrices in column echelon form have the same
index if and only if they share the pivot positions.

We claim furthermore that the whole matrix Â does not depend on the choice
of A as it is completely determined by L. For, given σ = σ(L), denote by pσ the
projection of Rn onto the k coordinates (xσ1

, . . . , xσk); then the restriction of pσ to

L is a linear isomorphism and the columns of Â are characterized as the vectors of
L which are mapped in the order by pσ to the vectors eσ1 , . . . , eσk of the standard
basis of Rk.

Summarizing, there are
(
n
k

)
Schubert symbols. For every such a symbol σ, the

subset Cσ of Gn,k formed by the k-subspaces of Rn which share the symbol σ is

in bijection with the subset Ĉσ of Ln,k formed by the matrices in columns echelon

forms which also share the symbol σ. Ĉσ has a natural base point, that is the
matrix Jσ whose entries different from the pivots are zero; then

Ĉσ = Jσ + Vσ

and it is easy to check that Vσ is a linear subspace of M(n, k,R) formed by the
matrices with a given pattern of zero entries determined by the symbol σ. The
other entries contain free parameters. By counting the free parameters column by
column, we readly verify that

dσ := dim Vσ =

k∑
j=1

(n− σj − (k − j)) .

It follows that Cσ ⊂ Gn,k admits a smooth parametrization

ψσ : Rdσ → Cσ .

By varying the symbols we have obtained a partition of Gn,k by open cells. We
claim that:

The closure of every Cσ in Gn,k is formed by the Cσ′ ’s such that for every j,
σ′j ≥ σj .

This claim is not obvious. We omit the proof, however next item 4) should help
the reader to reconstruct such a proof.

Remarks and examples.
1) There is one top dimensional (i.e. of dimension k(n − k)) cell of Gn,k cor-

responding to the symbol (1, 2, 3, . . . , k). This covers a chart around the image of
In,k in Gn,k. In general every cell Cσ has a natural base point, that is the image in

Gn,k of the the matrix Jσ ∈ Ĉσ. There is one 0-cell corresponding to the symbol
(n− k + 1, n− k, . . . , n).

2) In the case of projective spaces Pn(R) = Gn+1,1, there are n + 1 cells, one
cell for every dimension n, . . . , 0 corresponding to the symbols (1),(2), . . . , (n + 1).
The closure of every cell of dimension d say is a copy of Pd(R) linearly embedded
into Pn(R).

3) For example G4,2 has six cells corresponding to the Schubert symbols (1, 2),
(1, 3), (1, 4), (2, 3), (2, 4), (3, 4), and these cells have dimensions 4, 3, 2, 2, 1, 0 re-
spectively.

4) The cells of Gn,k can be described also in terms of the orthogonal Stiefel

manifold Sn,k. A matrix Ã ∈ Sn,k is in orthogonal column echelon form of symbol

σ if its standard column echelon form Â is of symbols σ and Ã may differ from Â
only by: 1) the pivot entries of Ã are non zero not necessarily equal to 1; 2) the

entries of a pivot row of Ã on the left of the pivot are not necessarily equal to 0; 3)
the last non zero entry of every column is positive. One can verify that for every
L ∈ Gn,k there is only one Ã ∈ Sn,k which projects to L; in fact if Â is the unique
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matrix in standard column echelon form which projects to L, then we can obtain
Ã by applying the Gram-Schmidt algorithm to the columns of Â considered in the
backward order (normalized to achive also the condition 3) above). The subset

C̃σ of Sn,k formed by the matrix in echelon form of symbol σ is diffeomorphic to

Ĉσ ⊂ Ln,k and maps diffeomorphically onto Cσ ⊂ Gn,k. One can prove that the

closure of C̃σ in Sn,k is diffeomorphic to a closed disk of dimension dσ which maps
onto the closure of Cσ in Gn,k.

5) Referring to Section 4.5, the cell decompositions respect the inclusions

jn : Gn,k → Gn+1,k

in the sense that the cells of Gn,k are also cells of Gn+1,k; hence we have also a cell
decomposition of the limit infinite Grassmannian G∞,k.

3.6. Stiefel and Grassmannian manifolds as regular real algebraic sets

For the notions and basic results of (real) algebraic geometry mentioned in this
section we can refer for example to [BCR] or to [BR].

By definition a real algebraic set Z ⊂ Rm, for some m ∈ N, is of the form
Z = F−1(0) for some polynomial map F : Rm → Rh. Hence the Stiefel and
Grassmannian manifolds (even in the complex version) are also examples of real
algebraic sets. We are going to outline a way to recover that they are embedded
smooth manifolds by the means of algebraic geometry, obtaining indeed a stronger
result.

For every algebraic set Z as above,

I(Z) := {p(X) ∈ R[X1, . . . , Xm]; p(x) = 0 for every x ∈ Z}
is called the (defining) ideal of Z. By a theorem of Hilbert, I(Z) is finitely gen-
erated, that is there exist some polynomials p1(X), . . . , pk(X) ∈ I(Z) such that
I(Z) coincides with the set of linear combinations of the pj(X)’s with polynomials
coefficients in R[X1, . . . , Xm]. Consider the polynomial map

P : Rm → Rk, P (x) = (p1(x), . . . , pk(x)) .

For every p ∈ Z, set

r(p) = rank dpP .

It is not too hard to show that r(p) does not depend on the choice of the generators
p1, . . . , pk. So it is well defined

r(Z) = max{r(p); p ∈ Z} .
Assume for simplicity that Z is irreducible that is it cannot be expressed as

Z = Z1 ∪ Z2 where Z1 and Z2 are algebraic sets both different from Z (one can
prove that the connected Stiefel and Grassmannian algebraic sets are irreducible
- that is all with the exception of the othogonal groups O(n)). Then p ∈ Z is a
regular point if r(p) = r(Z). Note that by the definition, the set R(Z) of regular
points of Z is non empty. A Zariski open set in Rm is of the form Rm \ Y where Y
is an algebraic set in Rm. The following is a non trivial result.

Theorem 3.4. Let Z ⊂ Rm be an irreducible algebraic set of rank r = r(Z).
Then for every p ∈ R(Z) there exist a Zariski open set U of Rm and a polinomial
map F = (F1, . . . , Fr) : Rm → Rr such that:

(1) p ∈ U .
(2) Fj ∈ I(Z), j = 1, . . . , r.
(3) Z ∩ U = U ∩ F−1(0).
(4) For every x ∈ U ∩ Z,

rank dxF = r .
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In particular R(Z) is an embedded smooth manifold in Rm of dimension m− r.

Assuming this fundamental theorem, we can prove

Corollary 3.5. Let Z ⊂ Rm be one of our favourite (Stiefel or Grassmannian)
algebraic sets. Then Z = R(Z). In particular Z is an embedded smooth manifold
of dimension m− r(Z).

Proof : We know that R(Z) 6= ∅. Let p ∈ R(Z). By using the suitable transitive
action on Z of orthogonal (unitary) groups, we realize that for every q ∈ Z there is
a particularly simple linear diffeomorphism φ : Rm → Rm such that φ(Z) = Z and
φ(p) = q. Although this is a particular case of a general result on the invariance of
R(Z) up to “algebraic isomorphism”, these diffeomorphisms are so simple that one
can check directly that since p is regular then also q is regular. Then Z = R(Z).

2

Note that the linear Stiefel manifolds are in fact Zariski open sets of the perti-
nent matrix space.

Remark 3.6. (1) We stress that the notion of regular point is rather a delicate
one. For example it can happen that for some irreducible algebraic set X ⊂ Rm
which is an embedded smooth manifold, nevertheless R(X) 6= X.



CHAPTER 4

Tautological bundles and pull-back

The basic notions about fibred bundles have been already introduced in Section
2.6, and we will use them. The tensorial vector bundles and their relatives, defined
in Chapter 2 belong to a wide category of “embedded fibred bundles” constructed
via the pull-back of tautological bundles over Grassmann manifolds. We are going
to state these matters.

4.1. Tautological bundles

We are going to construct so called tautological fibre bundles over the grassman-
nian Gn,k.

• (The tautological vector bundle) Define

V(Gn,k) = {(A, v) ∈ Gn,k × Rn; v ∈ VA}
i.e. v belongs to the k-linear subspace V of Rn such that A = AV , via the usual
bijection Gn,k ∼= Gn,k. The restriction of the projection onto the first factor defines
the smooth surjective map

τn,k : V(Gn,k)→ Gn,k .

It is clear that for every A ∈ Gn,k, the inverse image τ−1
n,k(A) = VA. We have

Proposition 4.1. τn,k : V(Gn,k)→ Gn,k is an embedded smooth vector bundle
with fibre Rk. It is called the tautological vector bundle over Gn,k.

• (The tautological linear frame bundle) Define

L(Gn,k) = {(A,X) ∈ Gn,k × Ln,k; ln,k(X) = A}
i.e. X spans the k-linear subspace V of Rn such that A = AV . The restriction of
the projection onto the first factor defines the smooth surjective map

lτn,k : L(Gn,k)→ Gn,k .

It is clear that for every A ∈ Gn,k, the inverse image lτ−1
n,k(A) consists of all linear

frames of VA. We have

Proposition 4.2. lτn,k : L(Gn,k) → Gn,k is an embedded smooth fibre bundle
with fibre GL(k,R). It is called the tautological linear frame bundle over Gn,k.

• (The tautological orthogonal frame bundle) Define

S(Gn,k) = {(A,X) ∈ Gn,k × Sn,k; sn,k(X) = A}
i.e. X spans the k-linear subspace V of Rn such that A = AV . The restriction of
the projection onto the first factor defines the smooth surjective map

sτn,k : S(Gn,k)→ Gn,k .

It is clear that for every A ∈ Gn,k, the inverse image sτ−1
n,k(A) consists of all or-

thonormal frames of VA. We have

Proposition 4.3. sτn,k : S(Gn,k)→ Gn,k is an embedded smooth fibre bundle
with fibre O(k). It is called the tautological orthogonal frame bundle over Gn,k.

65
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Proofs: Let us prove Proposition 4.1. Recall that Gn,k is endowed with an atlas
{(ΩV , φV )}V ∈Gn,k where

ΩV = {A ∈ Gn,k; VA ∩ V ⊥ = {0}}

equivalently, VA is the graph of a uniquely determined linear map LA : V → V ⊥.
Set as usual Ω̃V = τ−1

n,k(ΩV ). Then a vector bundle atlas of τn,k is given by the

locally trivializing commutative diagrams (V varying in Gn,k, B = {v1, . . . , vk}
varying in the linear frames of V )

ΩV × Rk ΨB→ Ω̃V
↓πΩV

↓τn,k
ΩV

idΩV→ ΩV

where

ΨB(A, x) = (A,

k∑
i=1

xivi +

k∑
i=1

xiLA(vi)) .

It is immediate that for every couple (V,B), (V ′,B′) there is a smooth map

λB,B′ : ΩV ∩ ΩV ′ → GL(k,R)

such that the corresponding change of local trivialization is of the form

(ΩV ∩ ΩV ′)× Rk → (ΩV ∩ ΩV ′)× Rk

(A, v)→ (A, λB,B′(A)v) .

Remark. By restricting to orthogonal frames B of the V ’s, we get a sub-fibred
atlas such that the change of local trivializations are governed by smooth maps

λB,B′ : ΩV ∩ ΩV ′ → O(k) .

The proof of the other two propositions is similar and left to the reader. Note
that the change of local trivializations for the frame bundles are governed by the
same smooth maps λB,B′ as above, with values in GL(k,R) for lτn,k, or in O(k) for
sτn,k respectively; the groups GL(k,R) or O(k) act on themselves by left multipli-
cation.

2

4.2. Pull-back

We introduce a fundamental construction on embedded smooth fibred bundles.
We state it in wide generality; later we apply it to the tautological bundles of Section
4.1.

Let us give an embedded smooth fibre bundle

ξ := f : E → X

with fibres Ex diffeomorphic to the manifold F (recall section 2.6).
Let g ∈ E(M,X). Then set

g∗E = {(p, y) ∈M × E; g(p) = f(y)}

g∗ : g∗E → E, g∗(p, y) = y

g∗f : g∗E →M, g∗f(p, y) = p .

Obviously we have the commutative diagram of smooth maps, denoted by [g, g∗]
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g∗E
g∗→ E

↓g∗f ↓f
M

g→ X

Moreover, for every p ∈M , x = g(p), then g∗Ep := (g∗f)−1(p) is equal to the fibre
Ex. Hence, also every g∗Ep is diffeomorphic to F . In fact we have

Proposition 4.4. (1) For every fibre bundle ξ := f : E → X with fibre F , for
every g ∈ E(M,X),

g∗ξ := g∗f : g∗E →M

is an embedded smooth fibre bundle with fibre F . It is called the pull-back of ξ via
g. Moreover, [g, g∗] is a fibred map between fibred bundles.

(2) For every h ∈ E(N,M), every g ∈ E(M,X), then

(g ◦ h)∗ξ = h∗(g∗ξ) .

(3)

(g ◦ h)∗ = g∗ ◦ h∗ .

Proof : The second and third points follow from the very definitions. As for the
first; consider a fibre bundle atlas of ξ. This is formed as usual by locally trivializing
diagrams

Ω× F Ψ→ Ω̃
↓πΩ ↓f
Ω

idΩ→ Ω

and any change of local trivializations is of the form

(Ω ∩ Ω′)× F → (Ω ∩ Ω′)× F

(x, y)→ (x, ρ(x)(y)

x→ ρ(x) ∈ Aut(F ) .

The Ω’s form an open covering of X. Fix an open covering {W} of M such that
g(W ) is contained in some Ω. The for every W we have the locally trivializing
commutative diagram

W × F Ψ◦(g,idF )→ W̃
↓πW ↓g∗f
W

idW→ W

The chage of local trivialization is of the form

(W ∩W ′)× F → (W ∩W ′)× F

(w, y)→ (w, ρ(g(w))(y))

w → ρ(g(w)) ∈ Aut(F ) .

2

Remark 4.5. If F has an additional structure preserved by a subgroup G ⊂
Aut(F ), and x → ρ(x) as above is a smooth map with values in G (i.e. ξ is a
“G-bundle”) then also the pull-back g∗ξ has the same property. For example il ξ is
a vector bundle (with fibre Rk) then also g∗ξ is so.
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4.3. Categories of vector bundles

Let M be an embedded smooth manifold (possibly with boundary). Let

f : M → Gn,k

be a smooth map. Then we can consider the pull-back vector bundle f∗τn,k, that
is

f∗V(Gn,k)
f∗→ V(Gn,k)

↓f∗τn,k ↓τn,k
M

f→ Gn,k

.

By the strict definition, the total space of id∗Gn,kτn,k is a submanifold of Gn,k ×
(Gn,k ×Rn); however, the projection onto the product of the first and third factors
gives a canonical fibred diffeomorphim onto the total space of τn,k. Modulo this
normalized embedding, we can stipulate that

id∗Gn,kτn,k = τn,k .

Similarly, for every f : M → Gn,k as above, the total space of f∗τn,k has a canonical
embedding into M × Rn; modulo this normalization we can state that

id∗M (f∗τn,k) = f∗τn,k .

We stipulate that such a normalization is performed by default. Note also that the
composition of f∗ with the natural projection of V(Gn,k) to Rn gives a map which
is linear and injective at every fibre of f∗(V(Gn,k)), from which we can reconstruct
tautologically the map f .

Denote N = {(n, k) ∈ N× N; 0 ≤ k ≤ n}. For every (n, k) ∈ N set

Vn,k(M) := {f∗τn,k; f ∈ E(M,Gn,k)} ;

and

V(M) = ∪(n,k)∈N Vn,k(M) .

Then we see immediatly that

M ⇒ V(M)

g : N →M ⇒ g• : V(M)→ V(N), g•(f∗τn,k) = (f ◦ g)∗τn,k

so that

(g ◦ h)• = h• ◦ g•

define a contravariant functor from the category of embedded smooth manifolds
(with boundary) to this category of embedded smooth vector bundles. Moreover,
for every f and every g as above there is the natural vector bundle map

[g, g∗] : g•(f∗τn,k)→ f∗τn,k .

If g : N → M is a diffeomorphism, then g• : V(M) → V(N) is a bijection (with
inverse (g−1)•), and for every f , [g, g∗] is a vector bundle isomorphism between
g•(f∗τn,k) and f∗τn,k.

The tangent bundle of a manifold M ⊂ Rn as well all its tensorial relatives
belong to V(M). For example πM : T (M)→M is the pull-back of the (tautological)
map

tM : M → Gn,m, tM (p) = TpM .

More generally we have

Lemma 4.6. If ξ := f : E → M is a smooth vector bundle with fibre Rk such
that the total space E is a submanifold of some Rn, and every fibre Ex is a linear
k-subspace of Rn, then the bundle ξ belongs to V(M).
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Proof : In fact ξ is the pull-back of the (tautological) map

eM : M → Gn,k, eM (x) = Ex .

2

4.3.1. Bundle equivalences. We are going to refine the above constructions
by introducing suitable quotient sets of V(M).

For every f : M → Gn,k, and every inclusion jn : Gn,k → Gn+1,k (see Section
4.5), the total space of (jn ◦ f)∗τn+1,k is embedded in M × Rn and coincides with
the total space of f∗τn,k. This gives us a canonical identification between these
formally different points of V(M). A first mild quotient of V(M) is obtained by
means of such canonical identifications. Let us keep for it the name V(M). For
every equivalence class, there is one representative f∗τn,k with minimum n.

More substantially we can restrict to V(M) the full equivalence between vector
bundles defined in Section 2.6, generated by arbitrary vector bundle isomorphisms
of the form [g, g̃]. Denote by V(M) the quotient set.

Example 4.7. For example, if g ∈ Aut(M), then for every f : M → Gn,k, the
corresponding [g, g∗] realizes a full equivalence between f∗τn,k and g•(f∗τn,k). By
the way this establishes an action of Aut(M) on V(M), so that V(M) is a quotient
set of V(M)/Aut(M).

We can restrict to V(M) the strict equivalence between vector bundles defined
in Section 2.6, generated by isomorphisms of the form [idM , g̃]. Denote by V0(M)
the quotient set. Clearly V(M) is a quotient of V0(M).

Example 4.8. (i) If f, g : M → Gn,k are two different constant maps, then
f∗τn,k and g∗τn,k are different points of V(M) which obviously are strictly equiva-
lent.

(ii) Let g : M → N be a diffeomorphism; then [g−1, T g−1] ◦ [g, g∗] is a strict
equivalence between T (M) and g∗T (N).

(iii) By generalizing the above item, let [g, g̃] realize a full equivalence between
bundles in V(M); then also [g, g∗] as in the above example realizes such an equiva-
lence. Moreover, [g−1, g̃−1] ◦ [g, g∗] realizes instead a strict equivalence.

• By associating to every f∗τn,k its class in the preferred quotient set of V(M),
we get variants of the basic pull-back functor defined above.

We will concentrate on V0(M). In particular we pose the following natural
question: set

E(M,G) := ∪(n,k)∈N E(M,Gn,k) .

Question 4.9. Consider the obvious surjective map

(.)∗ : E(M,G)→ V0(M), f → [f∗τn,k]

so that tautologically

V0(M) = E(M,G)/(.)∗ .

This relation on E(M,G) is only implicitly defined. The question is to make it
explicit. An answer will be discussed later when M is compact.

4.4. The frame bundles

We can repeat the above scheme by using instead the tautological frame bundles.
It is enough to replace V(M) either with

L(M) = ∪(n,k)∈N Ln,k(M)

Ln,k(M) := {f∗lτn,k; f ∈ E(M,Gn,k)} .
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or the similarly defined S(M) and Sn,k(M) by using the tautological bundles sτn,k.
For every f : M → Gn,k, the vector bundle f∗τn,k is associated to its linear frame
bundle f∗lτn,k, provided that both are considered as GL(k,R)-bundle. By the
reduction from GL(k,R) to O(k), then f∗τn,k is associated to its orthogonal frame
bundle f∗sτn,k, both considered as O(k)-bundles. In particular by applying this
to the tangent bundle T (M) of a manifolds, we get the linear or othogonal frame
bundle of M , say Fl(M) or Fs(M). M is parallelizable if and only if Fl(M) (hence
Fs(M)) has a section.

4.5. Limit tautological bundles

We will deal with a few concrete instances of the following general topological
construction. Let {Xn}n∈N be a countable family of Hausdorff topological spaces
each admitting a countable basis of open sets. Assume that for every n, Xn is
strictly contained in Xn+1 as a closed subset. Then consider the “limit” space

X∞ = ∪nXn

endowed with the final topology with respect to the family of inclusions

{in : Xn → X∞} ;

this means the finest topology such that every in is continuous. In other words, A
is open in X∞ if and only if for every n, A ∩Xn is open in Xn. We have

Lemma 4.10. If K ⊂ X∞ is compact then there is n ∈ N such that K ⊂ Xn.

Proof : Assume that there is not, then there should be an infinite sequence
xn in K such that xn ∈ Xn+1 \ Xn. The union of these points of K would be a
closed subset of K (hence compact) with induced discrete topology (i.e. it would
be a compact and discrete space). Such a space is necessarily finite against our
assumption.

2

Some examples:

• Rn ⊂ Rn+1, (x)→ (x, 0). Then we can define the limit space R∞.

The above inclusions induce “equatorial” inclusions in : Sn−1 → Sn of unit
spheres, so we can define the limit space S∞.

• The definition of S∞ can be generalized to arbitrary Stiefel manifolds. The
inclusions M(n, k,R)→M(n+ 1, k,R)

A→
(
A
0

)
induce inclusions of embedded smooth manifolds in : Sn,k → Sn+1,k, and we can
define the Stiefel limit space S∞,k.
• The inclusions S(n,R)→ S(n+ 1,R)

A→
(
A 0
0 0

)
induce the inclusions jn := jn,n+1 : Gn,k → Gn+1,k, and we can define the limit
grassmannian G∞,k.

• Clearly we have the family of commutative diagramms of smooth maps

Sn,k
in→ Sn+1,k

↓sn,k ↓sn+1,k

Gn,k
jn→ Gn+1,k

so we can eventually define the “limit projection” which is continuous



4.6. A CLASSIFICATION THEOREM FOR COMPACT MANIFOLDS 71

S∞,k
↓s∞,k
G∞,k

Symilarly by using the linear frames we have the limit projection

L∞,k
↓l∞,k
G∞,k

Example 4.11. As a particular case we have the projection

s∞,1 : S∞ → P∞(R) .

We easily realizes that s∞ is a continuous covering map of degree 2, alike every sn,1.
Thanks to lemma 4.10, for every p ∈ N, every continuous map f : Sp → S∞ is of
the form in ◦ f̃ , for some f̃ : Sp → Sn such that the image of f̃ does not contain
en+1. By considering Sn = Rn ∪ {∞} via the stereographic projection with center

∞ := en+1, then f̃ factorizes through a map with values in Rn which is contractible.
We can conclude that every such a map f is homotopically trivial. In other words
all homotopy groups πp(S

∞) are trivial. By a theorem of Whitehead (see [H]), it
follows that S∞ is contractible, hence s∞ : S∞ → P∞(R) is a universal covering
map. By the theory of covering maps we eventually get that the fundamental group
π1(P∞(R)) ∼ Z/2Z, while all other groups πp(P

∞(R)), p > 1, are trivial. We
summarize these facts by saying that P∞(R) is a K(Z/2Z, 1) spaces.

• The same limit procedure applies to the tautological bundles. We have the
family of commutative diagramms of smooth maps

V(Gn,k)
j̃n→ V(Gn+1,k)

↓τn,k ↓τn+1,k

Gn,k
jn→ Gn+1,k

so we eventually define the “limit tautological vector bundle” :

V(G∞,k)
↓τ∞,k
G∞,k

.

Similarly we have the limit bundles

L(G∞,k) S(G∞,k)
↓lτ∞,k ↓sτ∞,k
G∞,k G∞,k

4.6. A classification theorem for compact manifolds

In this section we assume that M is compact. By Lemma 4.10, f ∈ C0(M,G∞,k)
if and only if there is a minimum n such that it factorizes through a continuous
map

f̂ : M → Gn,k

followed by the inclusion

jn,∞ : Gn,k → G∞,k .

So it makes sense to say that such a map f is smooth if f̂ is smooth in the usual
sense. Moreover also the topologies on the spaces E(M,Gn,k) pass to the limits,

giving us the topological space E(M,G∞,k) of such smooth maps. If f, f̂ are as
before, we have

f∗τ∞,k = f̂∗τn,k



72 4. TAUTOLOGICAL BUNDLES AND PULL-BACK

provided that the we have incorporated the canonical identifications illustrated in
section 4.3.1. Set

Vk(M) := {f∗τ∞,k; f ∈ E(M,G∞,k)} .
It is clear from the above considerations that the already defined space V(M) can
be described as

V(M) = ∪∞k=0 Vk(M)

as well as

E(M,G) = ∪∞k=0 E(M,G∞,k) .

Thus we have rephrased in terms of these limits the surjective maps

(.)∗ : E(M,G)→ V(M)

[(.)∗] : E(M,G)→ V0(M)

and we stipulate that the target spaces are endowed with the quotient topology.
Given f0, f1 ∈ E(M,G) we say that they are smoothly homotopic if f0, f1 ∈

E(M,G∞,k) for some k, and are connected by a smooth homotopy F ∈ E(M ×
[0, 1],G∞,k), provided that ft := F|M×{t}. As usual, this defines an equivalence
relation on E(M,G). Denote by [M,G] the set of smoothly homotopy classes of
maps of E(M,G).

Proposition 4.12. Let M be an embedded compact smooth manifold. If [f∗0 τ∞,k] =
[f∗1 τ∞,k] in V0(M), then f0 and f1 are homotopic. Hence it is well defined a sur-
jective map

v : V0(M)→ [M,G], [f∗τ∞,k]→ [f ] .

Proof : We will provide two proofs.
First proof: If [f∗0 τ∞,k] = [f∗1 τ∞,k] ∈ V0(M), we can assume that they both

factorize through maps (for simplicity we keep the same names) f0, f1 : M → Gn,k,
for some n big enough. Moreover, sometimes we will confuse here a point A ∈ Gn,k
with the corresponding subspace VA ⊂ Rn. For j = 0, 1, for every p ∈ M , we have
the direct sum decomposition Rn = fj(p)⊕fj(p)⊥. The projections of the canonical
basis {e1, . . . , en} onto fj(p), when p varies, define n-sections sj,1, . . . , sj,n of f∗j τn,k
which span the fibre fj(p) over every p ∈ M . The map fj can be reconstructed
from these set of sections as follows: for every p ∈M , the linear evaluation map

ej,p : Rn → fj(p), ej,p(X) =
∑
i

xisj,i(p)

is onto so that ker(ej,p) = fj(p)
⊥ and finally fj(p) = ker(ej,p)

⊥. A strict equivalence
from f∗0 τn,k to f∗1 τn,k transports the system of sections s0,1, . . . , s0,n to a system
s′1,1, . . . , s

′
1,n over f∗1 τn,k which generate all its fibres. Denote by e′1,p the corre-

sponding evaluation maps and apply to it the above procedure in order to produce
a map from M with value in Gn,k; we realize that this recovers f0. For every p ∈M ,
ker(e′1,p) is a graph of a linear map Lp : f1(p)⊥ → f1(p), while f1(p)⊥ itself is the
graph of the zero map. The homotopy Lp,t = tLp, t ∈ [0, 1], eventually allows to
define a desired homotopy between f0 and f1.

Second proof: We know that fj is determined by a map say gj from f∗j (V(G∞,k))
to R∞ which is linear and injective at every fibre. Moreover, it factorizes through a
map with value in some Rk with k big enough. If [f∗0 τ∞,k] = [f∗1 τ∞,k] ∈ V0(M), we
can transport the map g1 to a map g′0 with such a property, defined on f∗0 (V(G∞,k))
and we have to show that g0 and g′0 are homotopic through maps that are linear
injections on fibers. First compose g0 with the homotopy at : R∞ → R∞ defined
by at(x1, x2, . . . ) = (1 − t)(x1, x2, . . . ) + t(x1, 0, x2, 0, . . . ). This moves the image
of g0 into the odd-numbered coordinates. Similarly we can move g′0 into the even-
numbered coordinates. By keeping the names of these maps, we eventually define
the desired homotopy ht = (1− t)g0 + tg′0.
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2

Finally we can answer Question 4.9, at least in the compact case. A similar clas-
sification theorem holds under more general assumptions. Compactness simplifies
the proof and it will suffice to the aim of this text.

Theorem 4.13. (Classification Theorem) Let M be an embedded compact smooth
manifold. Then the map

v : V0(M)→ [M,G], [f∗τ∞,k]→ [f ]

is bijective. That is for every f0, f1 ∈ E(M,G), [f∗0 τ∞,k] = [f∗1 τ∞,k] ∈ V0(M) if
and only if f0, f1 are smoothly homotopic. Hence the map [(.)∗] induces the inverse
map of v

c : [M,G]→ V0(M), c([f ]) = [f∗τ∞,k] whenever f ∈ E(M,G∞,k) .

Proof : Thanks to Proposition 4.12, it is enough to prove that if f0 and f1 are
homotopic, then f∗0 τ∞,k and f∗1 τ∞,k are strictly equivalent. We can assume that
a homotopy factorizes through F : M × [0, 1] → Gn,k, n big enough. Take the
pull-back F ∗τn,k. The idea is to use it in order to connect f∗0 τn,k and f∗1 τn,k by a
path f∗t τn,k of bundles strictly equivalent to each other. For every t ∈ [0, 1], p ∈M ,
denote by Vt,p the fibre of f∗t τn,k over p.

Claim 1. There is ε > 0 such that for every t ≤ ε, f∗0 τn,k is strictly equivalent
to f∗t τn,k.

To prove it, recall the elementary fact that if Rn = V ′ ⊕ V = V ” ⊕ V (V , V ′

and V ” being linear subspaces), then φ : V ′ → V ”, φ(v′) = v” if v′ = v” + v, is a
canonical linear isomorphism between V ′ and V ”. We have:

Claim 2. There is ε > 0 such that for every 0 ≤ t ≤ ε, for every p ∈ M ,
Rn = V0,p ⊕ V ⊥0,p = Vt,p ⊕ V ⊥0,p.

Assuming Claim 2, then, for every t ≤ ε, the “field” of canonical isomorphisms

φp : Vt,p → V0,p

when p varies in M , defines a strict equivalence, as required by Claim 1. Let
us prove Claim 2. If such an ε does not exist by compactness there would ex-
ist a converging sequence (pn, tn) → (p0, 0) in M × [0, 1], such that for every n,
dimVtn,pn ∩ V ⊥0,pn > 0. But this is impossible because V0,p0 ∩ V ⊥0,p0

= {0} and this
is an open condition.

Set ε0 ∈ [0, 1] the sup of the ε’s verifying Caim 1. We claim furthermore that
ε0 is a maximum. In fact by applying the same argument, we see that there is ε > 0
such that f∗ε0τn,k is strictly equivalent to f∗t τn,k, for t ∈ (ε0−ε, ε0]. Finally we claim
that ε0 = 1: if ε0 < 1, we can apply again the above argument to fε0 and find
ε1 = ε0 + ε, for some small ε > 0, which works as well, against the fact ther ε0 is
the maximum.

2

• The above discussion can be repeated word by word, getting similar conclu-
sions, by dealing with embeded frame bundles and using the limit tautological bundles
lτ∞,k or sτ∞,k, L(M) or S(M).

4.7. The rings of stable equivalence classes of vector bundles

The final aim of this section is to endow a suitable quotient space K0(M) of
V0(M) with a natural ring structure, for every embedded smooth manifold M . This
leads to a contravariant functor from the category of embedded smooth manifolds to
the category of commutative rings. If M is compact we point out more information
such as the invariance up to homotopy of the functor.
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4.7.1. Grassmannian operations. The operations of the ring K0(M) will
descend from simple ‘operations’ defined between Grassmann manifolds.

• The inclusion S(n,R)→ S(n+m,R)

A→
(
A 0
0 0

)
induces for every k ≤ n, a smooth inclusion

jn,n+m : Gn,k → Gn+m,k .

• The inclusion S(n,R)× S(m,R)→ S(n+m,R)

(A,B)→
(
A 0
0 B

)
induces for every k ≤ n, h ≤ m a smooth inclusion

⊕n,k,m,h : Gn,k ×Gm,h → Gn+m,k+h .

• For every V ∈ Gn,k denote by V ∗ its dual spaces. Recall that this is considered
as a subspace of (Rn)∗ = M(n, 1,R) as follows. Let Rn = V ⊕ V ⊥ the othogonal
direct sum decomposition, V ⊥ ∈ Gn,n−k being the orthogonal complement of V
with respect to the standard euclidean scalar product. Then extend every γ ∈ V ∗
to a functional defined on the whole of Rn by setting γ(u+ w) = γ(u). M(n, 1,R)
is canonically isomorphic to Rn via the transposition.

Let (V,W ) ∈ Gn,k×Gm,h. Denote by V ⊗W the space of bilinear forms defined
on V ∗ ×W ∗. Its dimension is kh. In fact there is the canonical bilinear map

⊗ : V ×W → V ⊗W, v ⊗ w(γ, ρ) := γ(v)ρ(w)

and for every couple of bases (B,D) of V and W respectively, then B ⊗ D = {vi ⊗
wj ; vi ∈ B, wj ∈ D} is a basis of V ⊗W . By using the decomposition

Rn × Rm = (V ⊕ V ⊥)× (W ⊕W⊥)

and arguing as above we can consider V ⊗W as a subspace of Rn⊗Rm, hence (via
canonical isomorphisms) as an element of Gnm,kh. In this way we have defined a
map (between sets):

Gn,k ×Gm,h → Gnm,kh .

This can be transported to a map

⊗n,k,m,h : Gn,k ×Gm,h → Gnm,kh

via the usual bijections V → AV , . . . . One can check by direct computation that
this is a smooth map between embedded smooth manifolds.

Similarly one can check that the set map

Gn,k → Gn,n−k, V → V ⊥

induces a diffeomorphism

⊥n,k: Gn,k → Gn,n−k

with inverse ⊥n,n−k.
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4.7.2. The ring K0(M). The grassmannian operations of Section 4.7.1 induce
operations

⊕ : V(M)× V(M)→ V(M), f∗τn,k ⊕ g∗τr,s = (⊕ ◦ (f, g))∗τn+r,k+s

⊗ : V(M)× V(M)→ V(M), f∗τn,k ⊗ g∗τr,s = (⊗ ◦ (f, g))∗τnr,ks

⊥: V(M)→ V(M), ⊥ (f∗τn,k) = (⊥ ◦f)∗τn,n−k .

The operations ⊕,⊗,⊥ descend to each quotient set V(M)/Aut(M), V(M) and
V0(M).

The grassmannian operations ⊕ and ⊗ pass to the limits:

⊕ : G∞,k ×G∞,h → G∞,k+h

⊗ : G∞,k ×G∞,h → G∞,kh

and are continuous in the limit topology. The operation ⊥ induces in fact a family
of continuous maps

⊥n: G∞,k → G∞,n−k, n ≥ k .

For every embedded smooth manifold M , these operations define a ring struc-
ture on a suitable quotient of V0(M) that we are going to point out. Denote by εk

the class in V0(M) of the trivial (product) bundle M × Rk →M . Clearly

εk ⊕ εh = εk+h .

Definition 4.14. We say that ξ and η in V0(M) are weakly stably equivalent
if there exist εk and εh such that

ξ ⊕ εk = η ⊕ εh .

This is an equivalence relation indeed. Let us just check the transitivity. If

ξ ⊕ εk = η ⊕ εh, η ⊕ εr = β ⊕ εs

then
ξ ⊕ εk+r = β ⊕ εh+s .

Example 4.15. (1) Let M be a smooth manifold with non empty boundary
∂M . Let i : ∂M → M the inclusion. Then T (∂M) and i∗T (M) are weakly stably
equivalent vector bundles on ∂M . Fix any riemannian metric g on M . For every
x ∈ ∂M , consider ν(x) = (Tx∂M)⊥g(x) ; as TxM = ν(x)⊕Tx∂M , this defines a vector
bundle ν on ∂M , with 1-dimensional fibres, such that i∗T (M) = ν ⊕ T (∂M). The
bundle ν has a nowhere vanishing section (for every x ∈ ∂M take the “outgoing”
g-unitary vector in ν(x)). Then [ν] = ε1. In particular Sn = ∂Bn+1(0, 1), T (Bn+1)
is trivial as it is the restriction of T (Rn+1), hence [T (Sn)] is weakly stably trivial.

Denote by K0(M) the quotient of V0(M) up to weakly stable equivalence. It
is clear that if M = {p} is one point, then K0({p}) = 0.

Proposition 4.16. The operations ⊕, ⊗ descend to K0(M) and make it an
abelian ring.

Proof : Associativity of ⊕ is evident. The weakly stable equivalence class [ε1]
is the zero element; for every [[ξ]], assume that ξ ∈ Vn,k(M), then ξ⊥ ∈ Vn,n−k(M)
is such that

[ξ ⊕ ξ⊥] = εn

hence
[[ξ⊥]] = −[[ξ]] .

With a bit of more work one can also check the ring structure. We leave it as an
exercise.

2

Summing up
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M ⇒ K0(M)

g : N →M ⇒ g• : K0(M)→ K0(N), g•([[f∗τ∞,k]]) = [[(f ◦ g)∗τ∞,k]]

define a contravariant functor from the category of embedded smooth manifolds (with
boundary) to the category of abelian rings.

If M is compact, the above construction of the ring K0(M) from V0(M) can be
rephrased in terms of [M,G]. So: [f0], f0 : M → G∞,s, and [f1], f1 : M → G∞,r,
are weakly stably equivalent if and only if there are constant maps c0 : M → G∞,k,
c1 : M → G∞,h, such that [⊕◦(f0, c0)] = [⊕◦(f1, c1)] in [M,G]. Denote by [[M,G]]0
the quotient set. We have

Proposition 4.17. Let M be compact. The operations ⊕ and ⊗ descend to
[[M,G]]0 and make it an abelian ring such that the map v induces a ring isomor-
phism

ṽ : K0(M)→ [[M,G]]0

with inverse

c̃ : [[M,G]]0 → K0(M)

induced by the map c of the Classification Theorem 4.13.

2

Corollary 4.18. (Homotopy invariance) Let M , N be compact smooth man-
ifolds. Then:

(1) If g1, g2 ∈ E(N,M) are smoothly homotopic, then g•1 = g•2 .
(2) If M and N are smoothly homotopically equivalent, then K0(M) and K0(N)

are isomorphic. In particular if M is smoothly contractible, then K0(M) ∼ K0({p}) =
0.

Proof : (1) and (2) follows from the Classification Theorem, as [[∗,G]]0 is
manifestly homotopically invariant.

2

We conclude this Section with a few scattered remarks.

Remarks 4.19. (1) K0(∗) is a versions in our embedded smooth framework of
so called reduced topological K-theory [A] [B]. Taking into account, for simplicity,
only the additive structure, the unreduced group say K(M) is constructed as follows.

First we consider the quotient say Ṽ0(M) of V0(M) up to stable equivalence; this is
defined similarly to the above weak stable equivalence by imposing in the definition
that k = h. The operation ⊕ passes to the quotient, so that (Ṽ0(M),⊕) is a
commutative monoid with (the class of) ε0 as zero element.

(Ṽ0(M),⊕) verifies the “cancellation rule”.

In fact, if ξ⊕ η = ξ⊕α, we know that there exists β such that ξ⊕ β = [εn] (for
some n), hence [εn]⊕ η = [εn]⊕ α and finally η = α.

Then K(M) is the Grothendieck group of this monoid with cancellation rule. It
is a general construction (producing for instance (Z,+) from (N,+)) that works as

follows. Consider the product Ṽ0(M) × Ṽ0(M); often an element (ξ, η) is written
as a formal difference ξ− η. Put on this product the equivalence relation such that

ξ − η ∼ α− β

if and only if

ξ ⊕ β = α⊕ η .
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The cancellation rule is used to check that it is actually an equivalence relation.
The addition rule on the quotient K(M) naturally is

(ξ − η)⊕ (α− β) = ξ ⊕ α− η ⊕ β ;

the zero element is given by

[ε0]− [ε0] = ξ − ξ, ∀ξ ∈ Ṽ0(M) ;

The inverse of ξ − η is η − ξ.

Every element of K(M) can be represented by a difference of the form ξ − [εn]
(for some n).

In fact, for every α− β, let β ⊕ γ = [εn], then

α− β = α⊕ γ − β ⊕ γ := ξ − [εn] .

The correspondence ξ − [εn] → ξ induces a canonical surjective homorphism
K(M) → K0(M). It is well defined because if ξ − [εn] = ξ′ − [εm] in K(M), then
ξ ⊕ [εm] = ξ′ ⊕ [εn], hence ξ = ξ′ in K0(M). The kernel consists of the elements
of the form [εn]− [εm] which is isomorphic to Z so that K(M) ∼ K0(M)⊕ Z (in a
non canonical way).

(2) If M is compact, the construction of K(M) from V0(M) can be rephrased in
terms of [M,G]. This produces a group (a ring indeed) [[M,G]] which is isomorphic
to K(M), via the Classification Theorem (similarly to Proposition 4.17). Hence
also the functor

M ⇒ K(M)

. . . ⇒ . . .

verifies the homotopy invariance properties, similarly to Corollary 4.18.

(3) We can develop the very same constructions by using the complex grass-
mannians Gn,k(C) and the complex vector bundles; this leads to the functors

M ⇒ K0(M,C), K(M,C)

. . . ⇒ . . . .

(4) Bott’s periodicity theorem [B], [At] is among the fundamental results in
this theory. Let us just recall a few related statements that we can formulate in our
setting.

• For every compact M , K(M × S2,C) ∼ K(S2,C)⊗K(M,C);
• K(S2,C) = Z[X]/(X − 1)2 where X is the tautological complex bun-

dle over P1(C) (recall that P1(C) is diffeomorphic to S2, the “Riemann
sphere”);

• For every m ≥ 1, K0(Sm+8) ∼ K0(Sm), K0(Sm+2,C) ∼ K0(Sm,C).

(5) On real algebraic vector bundles. We have shown that every Grassmann
manifold Gn,k is also a regular real algebraic set. Dealing with real algebraic sets,
say X ⊂ Rn, Y ⊂ Rm, a natural class of maps R(X,Y ) consists of so called regular
rational maps (shortly “algebraic”) that is restriction of rational maps r : Rn → Rm,
whose denominators nowhere vanish on X. Consider the tautological vector bundle

τn,k : V(Gn,k)→ Gn,k .

It is immediate that also the total space V(Gn,k) is a regular algebraic set, and that
τn,k is algebraic. Moreover, if M is any regular real algebraic sets, and

f : M → Gn,k
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is an algebraic map, then one readly checks that also the pull-back f∗τn,k verifies
the same properties. So we can consider the family of algebraic vector bundles on
M

Valg(M) = ∪(n,k)∈N Valg
n,k(M)

where we consider only the pull-back via algebraic maps. The operations ⊕, ⊗, ⊥
restrict algebraically. We can also consider Valg

0 (M) where we impose that the strict
equivalence are realized by algebraic map. Many constructions developed so far have

a natural “algebraic” specialization (for instance we have Kalg
0 (M), Kalg(M)). By

forgetting the algebraic structure and keeping only the one of smooth manifold, we
have natural forgetting maps

Valg(M)→ V(M), Valg
0 (M)→ V0(M), . . . , Kalg(M)→ K(M)

and natural interesting questions (injective, surjective, . . . , ?) whose answers pre-
sumably depend on the real algebraic structure. On another hand, it is not so
evident how to formulate an algebraic version of the Classification Theorem (for
example our proof that smooth homotopy defines an equivalence relation used the
bump function, and this is not very “algebraic” indeed).

Similar algebraic specialization holds also for the frame tautological bundles.



CHAPTER 5

Compact embedded smooth manifolds

The hypothesis that an embedded smooth manifold M is compact usually sim-
plifies the study of several objects associated to it. A first example has been the
proof of the Classification Theorem of embedded vector bundles in Chapter 4. We
will develop this theme, by considering first a few technical device.

5.1. Nice atlas and finite partitions of unity

Let M be an embedded smooth m-manifold (possibly with boundary). Recall
that a normal chart (W,φ) of M is either contained in the interior of M and of the
form

φ : W → Bm(0, 1)

or it intersects ∂M and is of the relative form

φ(W,W ∩ ∂M)→ (Bm(0, 1) ∩Hm, Bm(0, 1) ∩ ∂Hm) .

The bump function (recall Section 1.12)

γ = γ1/3,1/2 : Bm(0, 1)→ R

lifts to a global bump function

γW : M → R
with compact support

SW = φ−1(B̄m(0, 1/2) ⊂W .

Denote by

BW = φ−1(Bm(0, 1/3)) ⊂ SW .

BW is a relatively compact open set in M .

Definition 5.1. Let M be a compact embedded smooth manifold.
(1) A nice atlas of M is a finite atlas U = {(Wj , φj)}j=1,...,s formed by normal

charts, such that the family {Bj} (Bj := BWj
) is a open covering of M .

(2) Set γj := γWj
,

λj :=
γj∑
j γj

so that ∑
j

λj = 1 .

Then {λj}j=1,...,s is the (finite) partition of unity subordinate to the nice atlas U .

It is clear that every compact M admits nice atlas. In fact we will use nice atlas
adapted to a determined situation or to the solution of a determined problem. Note
for example that the finite partitions of unity of Rn involving a bump function at
infinity used in Section 1.12, are in fact restriction of partitions of unity subordinate
to a nice atlas of Sn, provided that

Rn ⊂ Rn ∪ {∞} = Sn

via a stereographic projection.

79
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5.2. Spaces of maps with compact source manifold

We adopt the notations of Section 2.4. The so called weak topology is completely
adequate when the source manifold is compact, as it allows a complete global control
over the whole of M . In fact, let f ∈ Er(M,N). Let U be a nice atlas of M such that
every (Wj , φj) carries a local representation fj of f . Consider the neighbourhoods
of f of the form

Ur(f, fj , B̄j , ε) .
Then every

∩j Ur(f, fj , B̄j , ε)
is an open neighbourhood of f , and by varying ε > 0 we get a basis of neighbourhoods
of f because

∪jB̄j = M .

Equivalently, in a more “embedded fashion”: assume M ⊂ Rh, N ⊂ Rk. Let
U be a nice atlas of M such that every (Wj , φj) supports a local smooth extension
g : Ωj → Rk of f . We can also assume that Rh ⊂ Sh as above, and that the Ωj are

part of a nice atlas Ũ of Sh (which restrict to the nice atlas of M). By using the

partition of unity subordinate to Ũ we show that f has a global smooth extension

f̂ to the whole of Rh. Then, by varying ε > 0, we have a basis of neighbourhoods
of f of the form

Ur(f, f̂ ,M, ε) .

Let us study now some remarkable subsets of Er(M,N), r ≥ 1 or E(M,N).

Lemma 5.2. Let M be compact. Then f : M → N is an embedding if and only
if it is an injective immersion.

Proof : One implication is evident. We know that the other is in general false
without the compactness. To prove it recall that in a compact (Haussdorf) space
a subset is compact if and only if it is closed, and that a continuous map sends
compact sets to compact sets; it follows that since M is compact, then f is closed
so that f−1 is continuous and f is a homeomorphism onto its image in N .

2

We have

Proposition 5.3. Assume that M is compact. Then the subsets of immer-
sions, summersions, embeddings, diffeomorphisms are (possibly empty) open sets in
Er(M,N), r ≥ 1 and in E(M,N).

Proof : An immersion or summersion f is characterized by the condition of
maximum rank of dxf at every x ∈ M . If g belongs to a neighbourhood of f in
Er(M,N), r ≥ 1 giving a global control on the whole of M as above (with ε > 0
small enough) then g verifies the same maximum rank condition. As for embeddings,
thanks to Lemma 5.2 it is enough to prove that if g is close enough to an injective
immersion f then also g is so. Assume that this thesis fails. Then there would exist
a seguence gn ∈ C∞(M,N) , sequences of points xn, yn in M such that:

(1) Every gn is an immersion;
(2) gn → f and dgn → df uniformly on M ;
(3) xn → x, yn → y in M , xn 6= yn and gn(xn) = gn(yn) for every n.

Then: gn(xn)→ f(x), gn(yn)→ f(y), hence x = y because f is injective. Then we
can localize the situation in a chart of M at x and conclude (getting a contradic-
tion) by applying the local Proposition 20.1.6. Finally if f is a diffeomorphism, in
particular it is an embedding, hence g close to f is an embedding. It is enough to
prove that g is onto. It is not restrictive to assume that M is connected, so that
also N is connected. As an embedding g is an open map, its image is open in N ; on
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another hand the image of g is compact hence closed because M is compact. Then
the image of g coincides with the whole of N .

2

5.3. Tubular neighbourhoods and collars

Let M ⊂ Rh be a compact boundaryless smooth m-manifold. Let Rh be en-
dowed with the standard riemannian metric g0. Let us perform the following con-
struction.

(1) Consider the smooth map

ν : M → Gh,h−m

where for every p ∈M , ν(p) is the (matrix corresponding to the) orthogonal space
(TpM)⊥ (with respect to g0).

(2) Take the pull-back

ν∗τh,h−m : ν∗(V(Gh,h−m))→M .

Every fibre ν(p) of this vector bundle is endowed with the restriction of g0. We
consider M ⊂ ν∗(V(Gh,h−m)) via the canonical “zero section”.

(3) Define the smooth map

fν : ν∗(V(Gh,h−m))→ Rh, fν(p, v) = p+ v .

For every ε > 0, set

Nε(M) = {(p, v) ∈ ν∗(V(Gh,h−m)); ||v||g0
≤ ε} .

It is immediate to verify that

• fν(p) = fν(p, 0) = p, for very p ∈M ;
• there exists ε > 0 small enough such that the restriction of fν to Nε(M)

is an immersion. In fact, dim ν∗(V(Gh,h−m)) = dimRh, and for every
x = (p, 0), the image of dxfν is equal to TpM⊕ν(p) = TpRh = Rh, so that
fν is an immersion at M and the claim follows by the compactness of M .

(4) There exists ε > 0 small enough, such that the restriction (we keep the
name)

fν : Nε(M)→ Rh

is an embedding onto a compact h-submanifold of Rh with boundary, containing M
in its interior. We already know that for ε > 0 small enough, fν is an immersion;
it is enough to prove that it is also injective. As it is the identity on M , and
M is compact, this follows from the same argument used above to show that the
embeddings form an open set.

(5) Set

U := fν(Nε(M)) ⊂ Rh

p : U →M, p := ν∗τh,h−m ◦ (fν)−1 .

Let us analyze the arbitrary or inessential choices made in order to perform this
construction.

• Certainly ε is not unique.
• The standard metric g0 has nothing special from a topological differential

view point (we made a similar consideration when we discussed the unitary
tangent bundles). In fact the construction works as well by starting with
an arbitrary riemannian metric g on Rh.
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• What we have really used of the map ν is that it defines a transverse
distribution of (h−m)-planes along M , that is for every p ∈M ,

Rh = TpM ⊕ ν(p) .

However, this is a fake generalization because it is not hard to prove, by
using as usual Rh ⊂ Sh and suitable nice atlas, that for every such a
transvese distribution, there is a riemannian metric g on Rh that realizes
it.

Summing up, we can vary the metric g and the final choice of ε > 0. Let us call
tubular neighbourhood of M in Rh any couple (U, p) obtained by any implementa-
tion of the construction. We have the following uniqueness up to isotopy of these
tubular neighbourhoods. Fix a auxiliary base tubular neighbourhood say (U∗, p∗)
constructed by using the standard g0 and some ε0. We have

Proposition 5.4. Let M ⊂ Rh be a compact boundaryless m-manifold. Let
(U, p) be a tubular neighbourhood of M in Rh. Then there is a smooth map

H : U∗ × [0, 1]→ Rh

such that for every t ∈ [0, 1],

(1) Ht is an embedding of U∗ onto Ut ⊂ Rh;
(2) Ht is equal to idM on M ;
(3) (Ut, pt) is a tubular neighbourhood of M in Rh where pt := p∗ ◦H−1

t .
Moreover

(4) H0 = idU∗ ;
(5) (U1, p1) = (U, p).

Proof : If (U, p) differs from (U∗, p∗) only by ε 6= ε0, the statement is clearly
true (use a radial isotopy fibre by fibre). Assume that (U, p) has been constructed
by using a metric g. Take the path of riemannian metrics gt = (1 − t)g0 + tg,
t ∈ [0, 1]. Then there is a “path” of tubular neighbourhoods (Ut, pt) constructed by
using gt and some εt > 0. We can also assume that εt is a smooth function of t,
and that ε1 = ε. Hence we have the family of embeddings

fνt : Nεt(M, gt)→ Rh .

There is also a family of strict equivalences [idM , ρt] between ν∗0τh,h−m and ν∗t τh,h−m
given for every t ∈ [0, 1] by the “field” of canonical linear isomorphisms

ν0(p)→ νt(p), p ∈M
associated to the two direct sum decompositions

Rh = TpM ⊕ ν0(p) = TpM ⊕ νt(p) .
We can assume (we are free to change ε0) that for every t,

ρt(Nε0(M, g0)) ⊂ Nεt(M, gt)

and we can define the embeddings

fνt ◦ βt ◦ (fν0)−1 : U∗ → Ut .

This can be transformed to Ht with the required properties by composing it with
radial isotopies fibre by fibre.

2

Remark 5.5. The above constructions work as well if M is compact with non
empty boundary ∂M . The resulting tubular “neighbourhoods” (U, p) are not really
neighbourhoods of M in Rh. Rather they are submanifolds with corners of Rh,
containing (M,∂M) as a proper submanifold.
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5.3.1. Tubular neighbourhoods of submanifolds. Assume now that Y ⊂
M ⊂ Rh, dimY = s, dimM = m, s < m, M and Y compact. Assume also that M
and Y are boundaryless. Fix a riemannian metric g on Rh. As above, we have the
associated maps

νM : M → Gh,h−m

νY : Y → Gh,h−s .

Set for every y ∈ Y ,

ν̂Y (y) := νY (y) ∩ TyM .

This define a smooth map

ν̂Y : Y → Gh,m−s .

Define

fν̂Y : ν̂∗Y (V(Gh,m−s))→ Rh, fν̂Y (y, v) = y + v .

Let (UM , pM ) be a tubular neighbourhood of M constructed by means of νM . There
is ε > 0 small enough such that the image via fν̂Y of

N̂ε(Y, g) = {(y, v) ∈ ν̂∗Y (V(Gh,m−s)); ||v||g ≤ ε}

is contained in UM . Finally define

fY,M : N̂ε(Y, g)→M, fY,M := pM ◦ fν̂Y .

Arguing similarly as made above for fν , this verifies

• fY,M (y) = fY,M (y, 0) = y, for very y ∈ Y ;

• there exists ε > 0 small enough such that the restriction of fY,M to N̂ε(Y, g)
is an immersion.

• In fact, there is ε > 0 small enough such that the restriction of fY,M to

N̂ε(Y, g) is an embedding onto a neighbourhood UY,M of Y in M .

Finally (UY,M , pY,M ), where pY,M = ν̂∗τh,m−s ◦ (fY,M )−1 is by definition a
tubular neighbourhood of Y in M .

• By varying g and ε, we have again the uniqueness of these tubular neighbour-
hoods of Y in M up to isotpy. We leave the details to the reader.

5.3.2. Collars. Consider now M ⊂ Rh compact with non empty boundary
∂M . We would apply the above construction, by considering ∂M as a “monolateral”
submanifold of M . By keeping the above notations, we know that

ν̂∗∂M (V(Gh,1))

is strictly equivalent to the product bundle

∂M × R→ ∂M

and a section is given by the unitary “positive” v (write “v > 0”), that is pointing
towards the interior of M . So we can define

N̂+
ε (∂M, g) = {(y, v) ∈ ν̂∗∂M (V(Gh,1)); ||v||g ≤ ε, “v ≥ 0′′} .

By using it, the construction can be repeated and we eventually get (by definition)
a collar of ∂M into M , that is an embedding C : ∂M × [0, ε] → M which is the
identity on ∂M . Again we have the unicity of collars up to isotopy.

Remark 5.6. In the construction of the collars, it is not necessary that the
whole M is compact, it is enough that ∂M is so.

Remark 5.7. Assume that Y ⊂M ∈ Rh are compact manifolds with boundary
such that Y is a proper submanifold of M . Then we can apply again the above
construction to get tubular neighbourhoods of Y in M relative to the boundaries,
that is which restrict to tubular neighbourhoods of ∂Y in ∂M .
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Tubular neighbourhoods have several interesting applications. Here is a simple
one. Assume that M ⊂ Rh is compact. We already know (by using the partitions

of unity) that every f ∈ E(M,N), N ⊂ Rk, extends to a smooth map f̂ : U → Rk
defined on a neighbourhood of M in Rh. Let (U, p) be a tubular neighbourhood of
M . Then f ◦ p : U → N is a smooth extension of f with values in N .

5.4. Proper embedding and “double” of manifolds with boundary

Let M ⊂ Rh be a compact smooth manifold with ∂M 6= ∅. The existence of
collars suggests a variant in the definition of nice atlas.

Definition 5.8. A nice atlas with collar of (M,∂M) is of the form

{(W∂ , φ∂)} ∪ {(Wj , φj)}j=1,...,s

where

(1) W∂ is an open neighbourhood of ∂M and

φ∂ : W∂ → ∂M × [0, 1)

is a diffeomorphism which is equal to the identity on ∂M . Denote by
B∂ := φ−1

∂ ([0, 1/3)).
(2) Every (Wj , φj) is an normal chart contained in the interior of M , and

Bj ⊂Wj is defined as for the usual nice atlas.
(3) {B∂} ∪ {Bj} is an open covering of M . The existence of nice atlas with

collar is a direct consequence of the existence of collars.

Given such a nice atlas with collar, every Wj carries a global bump function
γj : M → R as in Definition 5.1. Define the collar global bump function

γ∂ : M → R

such that on W∂ it is equal to γ ◦ p[0,1) ◦ φ∂ , where p[0,1)∂M × [0, 1) → [0, 1) is
the projection, and γ is the restriction to [0, 1) of the 1-dimensional bump function
γ1/3,1/2; on M \W∂ , γ∂ is constantly equal to 0. Define

λ∂ =
γ∂

γ∂ +
∑s
i=1 γi

λj =
γj

γ∂ +
∑s
i=1 γi

.

Then the family of functions

{λ∂} ∪ {λj}j=1,...,s

is the partition of unity subordinate to the given nice atlas with collar.

Corollary 5.9. For every compact manifold M with non empty boundary there
is a smooth function f : M → [0, 1] such that ∂M = f−1(0) and f is a summersion
on a neighbourhood of ∂M .

Proof : Take a nice atlas with collar. Define locally the following functions

f∂ : W∂ → R, f∂ = p[0,1) ◦ φ∂ ;

fj : Wj → R, fj(x) = 1/2, ∀x ∈Wj .

Finally set

f = λ∂f∂ +
∑
j

λjfj .

It is not hard to verify that it is smooth and verifies the required properties.
2

The following is an easy generalization
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Corollary 5.10. Let M be a compact manifold with boundary ∂M equipped
with a partition ∂M = N0 ∪ N1, where both N0 and N1 are union of connected
components of ∂M . Then there exists a smooth function f : M → [0, 1] such that
f−1(0) = N0, f−1(1) = N1, and f is a summersion on a neighbourhood of ∂M .

2

Remark 5.11. To get the above corollaries we can even use a simpler covering
of M consisting of (W∂ , φ∂) as above together with an open set of the form U =
M \W ′ where W ′ ⊂W∂ is a smaller compat collar of ∂M contained in B∂ . Hence
W ′ ⊂ W” ⊂ B∂ , where W” is another collar of ∂M , so that the compact sets B∂
and B′∂ := M \W” cover M . By playing with collar bump functions and variants
we get smooth functions γ∂ and γ′∂ defined on M where γ∂ is as above, while γ′∂
is equal to 1 on B′∂ and is equal to 0 on W ′; λ∂ , λ′∂ denote the functions of the
associated smooth partition of unity. Then to prove for instance Corollary 5.9 define
f∂ as above, fU constantly equal to 1/2 on U and finally take f = λ∂f∂ + λ′∂fU .

Proposition 5.12. Let M ⊂ Rh be a compact smooth m-manifold with bound-
ary ∂M . Then there is a diffeomorphism β : M → M ′ ⊂ Rn (some n big enough)
such that (M ′, ∂M ′) is a proper submanifold of (Hn, ∂Hn).

Proof : Take a nice atlas with collar. Define

β = (β∂ , β1, . . . , βs) : M → (Rh × R)× (Rm × R)s := Rn

β∂ = (λ∂φ∂ , λ∂)

βj = (λjφj , λj) .

We claim that this β works. To show that it is an embedding it is enough to prove
that it is an injective immersion. It is an immersion because every x ∈ M belongs
either to B∂ or to some Bj . The restriction of either λ∂β∂ or λjβj is φ∂ or φj . In
any case it is an injective immersion, so β is a fortiori an immersion. As for the
injectivity, let x 6= y. If both belong to either B∂ or some Bj , then they are already
separated by λ∂β∂ or λjβj . Otherwise they are separated by either λ∂ or some λj .
Hence β is injective. Finally it follows by the construction that the image M ′ of β
is contained in Hn and that ∂Hn intersects transversely M ′ at ∂M = ∂M ′ (in fact
∂M = ∂M ′ is contained in ∂Hn, and there is a small ε > 0 such that

M ′ ∩ {x ∈ Hn; xn < ε} = ∂M × [0, ε) .

2

Remarks 5.13. (1) Corollary 5.9 is also a consequence of Proposition 5.12. In
fact f given by the composition of β with the projection onto the xn coordinate
has the required property with value in some [0, a), a > 0, and to get [0, 1) is just
a simple question of reparametrization.

(2) A proof of Proposition 5.12 can be obtained by using the open covering with
associated partition of unity of Remark 5.11. For one can take

β = (β∂ , βU ) : M → (Rh × R)× (Rh × R)

where β∂ is as above, βU = (λ′∂jU , λ
′
∂) and jU is the inclusion of M into Rh.

The double of M . Let M ′ ⊂ Rn be obtained from M as in the proof of
Proposition 5.12. Let M ′′ be the image of M ′ via the reflection

(x1, . . . , xn)→ (x1, . . . ,−xn) ;

∂M ′ = ∂M ′′ = ∂M . Also M ′′ is diffeomorphic to M and is a proper submanifold
of {xn ≤ 0}. Then D(M) := M ′ ∪M ′′ is compact smooth baundaryless manifold,
containing both M ′ and M ′′ as submanifolds. ∂M is given by the transverse inter-
section of D(M) with ∂Hn. Considered up to diffeomorphism D(M) only depends
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on M (also considered up to diffeomorphism). In this sense it is called the double
of M .

5.5. A fibration theorem

Proposition 5.14. (Fibration Theorem) Let M be a compact boundaryless
smooth manifold and f : M → N a surjective summersion onto the connected
manifold N . Let q0 ∈ N , F = f−1(q0). Then f is a smooth fibre bundle with fibre
F .

Proof : Let q0 ∈ N and F = f−1(q0). We know that F is a submanifold of M .
Fix a tubular neighbourhood (U, p) of F in M . Let D be a small open disk in N
around q0 such that f−1(D) ⊂ U . Define h : f−1(D)→ F ×D, h(x) = (f(x), p(x)).
Clearly, f = pD ◦ h, where pD is the projection onto D. Moreover, h(x) = (x, 0)
for every x ∈ F . As f is a summersion, it is easy to verify that the differential of
h is invertible on f−1(D) (possibly shrinking D). As h is essentially the identity
on F , and the fibres are compact, an usual argument (for instance like in the
costruction of the tubular neighbourhoods) shows that if D is small enough, h is
a diffeomorphism, hence a local trivialization of f . If q is an arbitrary point of
N , we can cover a smooth arc joining q0 and q in N by a “chain” of similar local
trivializations over a chain D = D0, D1, . . . , Dk, Dk around q, of small disks centred
at the arc, Dj ∩ Dj+1 6= ∅, so that one eventually deduces that the fibre F ′ over
q1 is diffeomorphic to F . Finally we have proved that f is a smooth fibration with
fibre F .

2

5.6. Density of smooth among Cr-maps

Recall that for every r ≥ 0, Cr(M,N) denotes the space of Cr maps endowed
with the weak topology; Er(M,N) is the subspace of smooth maps. We have

Proposition 5.15. Assume that M ⊂ Rh, N ⊂ Rk are boundaryless compact
smooth manifolds. Then for every r ≥ 0, Er(M,N) is dense in Cr(M,N).

Proof : Let (UM , pM ) and (UN , pN ) be respective tubular neighbourhoods. Let
(U, p) ⊂ (UM , pM ) be a smaller tubular neigbourhood (it just differs by a smaller
“ε”, so that p is the restriction of pM ). Let f ∈ Cr(M,N). Consider the Cr
extension f̂ = f ◦ pM . Apply Stone-Weierstrass Theorem 1.7 to get a polynomial

map P : UM → Rk which uniformely approximates (in the Cr-topology) f̂ on U
(which is compact); we can also require that P (U) ⊂ UN . Finally the restriction to
M of pN ◦P is a smooth map from M to N which approximates f in the Cr-topology.

2

By a very similar argument we have also

Lemma 5.16. Let M ⊂ Rh, N ⊂ Rk be compact boundaryless manifolds. If
f ∈ Er(M,N) is close enough to g ∈ Cr(M,N) then they are Cr-homotopic. If they
are both smooth then they are smoothly homotopic.

Proof : If f is close enough to g we can assume that for every p ∈M , for every
t ∈ [0, 1], (1− t)g(p) + tf(p) belongs to UN . Then H(p, t) = pN ((1− t)g(p) + tf(p))
is a required homotopy.

2

Remark 5.17. By using Remark 5.5, Proposition 5.15 and Lemma 5.16 hold
true if N is the interior of a compact manifold with boundary N̄ . Clearly they hold
also if N is an open set of Rk
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5.7. Smooth homotopy groups - Vector bundles on spheres

The above results have the following important application. Fundamental
topological-algebraic invariants, the homotopy groups πn(X) , n ≥ 1 (considered
up to isomorphism) are defined for every path connected topological space X in
terms of continuous homotopy classes of continuous maps Sn → X. If X = N ⊂ Rk
is as in above Remark 5.17, then Proposition 5.15 and Lemma 5.16 imply that we
can equivalently define the homotopy groups of N by using smooth maps Sn → N
up to smooth homotopy. If it is necessary to deal with pointed maps, we can do it
by using the smooth homogeneity of N .

Let us use these facts to classify (up to strict equivalence) the embedded vector
bundles on a unit sphere Sm ⊂ Rm+1, m ≥ 2. Let ξ = f∗τn,k, for some smooth
map f : Sm → Gn,k. Let us fix 1 > ε > 0. Set D+ = Sm ∪ {xm+1 ≥ −ε},
D− = Sm ∪ {xm+1 ≤ ε}. Clearly, both D± are diffeomorphic to a closed m-disk,
Sm = D+ ∪ D−, D+ ∩ D− is a tubular neighbourhood of the equatorial sphere
Sm−1 ⊂ Sm, diffeomorphic to Sm−1 × [−1, 1]. We know by the Classification
Theorem that the pull-back of ξ on D± via the respective inclusion maps is strictly
equivalent to the product bundle D±×Rk → D±. Fix two respective trivializations.
The change of trivialization on D+ ∩D− produces a smooth map

ρξ : D+ ∩D− → GL(k,R)

and we consider its restriction (we keep the name)

ρξ : Sm−1 → GL(k,R) .

As D+ ∩D− is connected, the image of ρξ is contained in one of the two connected
components of GL(k,R) and up to strict equivalence we can assume that this is
the subgroup GL+(k,R). The arbitrary choices made to define ρξ are the positive
scalar ε, the representative ξ in its strict equivalence class, the two trivializations.
It is easy to verify (by using the Classification Theorem) that the homotopy class
[ρξ] does not depend on these choices so we have well defined a map

V0,k(Sm)→ [Sm−1,GL(k,R)], [ξ]→ [ρ[ξ]] .

If m− 1 > 1, the (smooth) πm−1(GL+(k,R)) is abelian, the choice of a base point
is immaterial, so that [ρ[ξ]] ∈ πm−1(GL+(k,R)). If m = 2, we have to take into

account the base points say p0 = e1 of S1 and say x0 = Ik of GL+(k,R) and work
with pointed smooth maps. However this is a minor technical point, we can manage
it by using the smooth homogeneity of GL+(k,R) (we skip the details), so that
we can eventually consider again [ρ[ξ]] ∈ π1(GL+(k,R)). Summing up, for every
m ≥ 2, for every k ≥ 1, we have defined a map

ρ : V0,k(Sm)→ πm−1(GL+(k,R)) .

We claim that this map is bijective. In fact we can exhibit ρ−1. This will be a
particular case of Proposition 6.9, see Section 6.3.1.

Remark 5.18. The same construction works as well for complex embedded
smooth vector bundles on Sm, by replacing GL+(k,R) with GL(k,C) (which is
connected), or also for bundles with “reduced group” like for instance SO(k).

5.8. Smooth approximation of compact embedded Cr-manifolds

For every r ≥ 0 there is a natural category of embedded Cr-manifolds and
Cr-maps (Cr-diffeomorphisms) between them. When r = 0 we have the category
of (embedded) topological manifolds and continuos maps (homeomorphisms). This
presents its own phenomena (including “wild” ones) that are beyond the aims and
the possibilities of this text. On another hand, we are going to see that to a large
extent (at least in the compact case), for r ≥ 1, there are not essentially new
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phenomena with respect to the smooth category. Basically this depends on the
density of smooth maps already established.
• For r ≥ 1, let M ⊂ Rh be a boundaryless compact Cr-manifold. The construc-

tion of the tubular neighbourhoods of M in Rh works verbatim in the Cr-category.
It is enough to start with a Cr-map ν : M → Gh,h−m defining a distribution of
transverse (h − m)-planes along M . If we use for instance the standard metric
g0 on Rh, we obtain only a Cr−1-map. However by applying the same argument
of the proof of Proposition 5.15 we can approximate it by a Cr-map, keeping the
transversality. Assume that we have fixed one (U, p). We can summarize this by the
following commutative diagramms (where for simplicity we have written τ instead
of τh,h−m):

U
F→ V(Gh,h−m)

↓p ↓τ
M

ν→ Gh,h−m

where F = ν∗ ◦ (fν)−1. F is a Cr-map and verifies the following properties (which
are easy to check):

• M = F−1(Gh,h−m), where Gh,h−m ⊂ V(Gh,h−m) as the zero section.
• The image of F is contained in the interior of a compact submanifold with

boundary of the form Nε(Gh,h−m) for some ε > 0.
• F is transverse to Gh,h−m , that is for every p ∈M ,

TF (p)V(Gh,h−m) = TF (p)Gh,h−m + dpF (TpU) .

This means that M = F−1(Gh,h−m) can be considered as a sort of “global
equation” defining M , which localizes in terms of very domestic equations: for
every given triavialization Φ : τ−1(W )→W ×Rh−m of the tautological bundle, we
can consider the restriction of Φ ◦ F obtaining a map

(Φ ◦ F )−1(W × Rh−m)→W × Rh−m .

Let π : W × Rh−m → Rh−m the projection. As F is transverse to Gh,h−m then
π ◦ Φ ◦ F is a summersion (possibly shrinking U), and

(Φ ◦ F )−1(W × {0}) = (π ◦ Φ ◦ F )−1(0) .

By the way this confirms that M is a submanifold of U of the correct dimension
thanks to Proposition 2.12.

• By the density Theorem 5.15, see also Remark 5.17, we can uniformly approx-
imate F (in the Cr-topology) on a slightly smaller compact tubular neighbourhood
U ′ ⊂ U with a smooth map

F̃ : U ′ → V(Gh,h−m) .

As the transversality is manifestly a C1-open condition, if F̃ is close enough to
F , then it is transverse to Gh,h−m and by applying to F̃ the above construction

and again Proposition 2.12, we conclude that M ′ := F̃−1(Gh,h−m) is a compact

submanifold of the interior of U ′, dimM ′ = dimM . Moreover, If F̃ is close enough
to F then the restriction of p to M ′ defines a Cr-diffeomorphism ρ : M ′ →M . For
as p is the identity on M this last claim follows by the very same argument used
in the construction of the tubular neighbourhood to show that fν : Nε(M)→ U is
a diffeomorphism. Note that M ′ can be arbitrarily Cr-close to M in the sense that
the Cr-diffeomorphism ρ−1 : M →M ′ composed with the inclusion of M ′ in U ′ can
be arbitrarily close to the inclusion of M of in U ′.

Summing up:
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Proposition 5.19. (Smooth approximation theorem) For every r ≥ 1, for ev-
ery embedded compact boundaryless Cr-manifold M ⊂ Rh there is a smooth manifold
M ′ ⊂ Rh Cr-diffeomorphic to M . Moreover M ′ can be chosen arbitrarily Cr-close
to M (i.e. M ′ is a smooth approximation of M in Rh).

These smooth structures are unique up to diffeomorphism. Precisely

Proposition 5.20. (Uniqueness of smooth structure) If M , N are compact
boundaryless embedded smooth manifolds which are Cr-diffeomorphic, for some r ≥
1, then they are smoothly diffeomorphic.

In fact, if f : M → N is a Cr-diffeomorphism, it can be approximated by
a smooth map f̃ which is an injective immersion (because r ≥ 1), hence it is a
diffeomorphism.

2

5.9. Nash approximation of compact embedded smooth manifolds

By following carefully the above construction of F̃ , we have more information
about its “degree of smoothness”. Here we use some notions recalled il Section ??.
We assume also that the reader has a few basic knowledge of real analytic maps.
For the notions of real (semi)-algebraic geometry we refer to [BCR], [BR].

Let X ⊂ Rk be a compact regular real algebraic set of dimension r (as a
smooth manifold). Let us specialize the construction of a tubular neighbourhood in
this algebraic situation. If we use the standard metric g0 on Rk, then the associated
map ν : X → Gk,k−r is algebraic. The map fν : Nε(X) → Rk is algebraic. The
pull-back bundle ν∗τ is algebraic. Hence the tubular neighbourhood projection
p : U → X is the composition of algebraic maps and of a map obtained by inverting
an algebraic map. According to Remarks 5.5 and 5.17 these considerations hold
also for the tubular neighbourhoods of a compact regular “semilagebraic” set with
boundary, that is obtained as in Lemma 2.22, assuming that X is a regular real
algebraic set and the function f is algebraic (so that also the boundary is a real
algebraic set). Then such a projection p is not any smooth map. A basic example

of function of this type is y =
√

1 + x2 and we note that its graph is a branch of the
hyperbole defined by the polynomial equation y2−x2−1 = 0. We would say that it
belongs to the smallest class of maps containing the algebraic maps, closed by usual
algebraic operations and for which the inverse map theorem and its corollaries hold
true. As algebraic maps are real analytic, and the inverse map theorem holds for
real analytic maps, then p is at least real analytic. But we have more. Recall that
by definition a semialgebraic set Y in some Rn is definable as the union of a finite
family of subsets of Rn each one definable as the solution of a finite system of real
polynomial inequalities. Obviuosly this extends the notion of algebraic set. Fixing a
few technical issues, by developing these considerations one defines the subcategory
of Nash manifolds and maps of the category of smooth embedded manifolds. A
Nash m-manifold is an embedded real analytic m-manifold M ⊂ Rn, for some n,
which is also a semialgebraic set; in particular this implies that M is contained in a
real algebraic set X of the same dimension. A Nash map f : M → N between Nash
manifolds is a real analytic map such that its graph is a semialgebraic set. We say
that a Nash manifold M ⊂ Rn is normal if it is contained in the regular part R(X),
X being as above. A normal compact boundaryless Nash manifold M is union of
connected components of R(X). Although semialgebraic and analytically smooth,
in general M is not normal but it has a normalization up to Nash diffeomorphisms.
More precisely we have the following very concrete description of Nash manifolds
and maps (see [AM])

Proposition 5.21. Let M ⊂ Rn be a connected Nash m-manifold and f : M →
Rh be a Nash map. Then there are:
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(1) An irreducible m-dimensional real algebraic set X ⊂ Rn×Rk, for some k;
(2) A polynomial map p : X → Rh;
(3) A Nash manifold M ′ ⊂ M × Rk, such that M ′ ⊂ R(X), and it is the

graph a Nash map g : M → Rk, so that σ(x) = (x, g(x)) is a Nash
diffeomorphism;

(4) f = p ◦ σ.

2

If M and N are Nash manifolds, Nash maps form a subspace N r(M,N) of
Er(M,N), for r ≥ 1 and N (M,N) of E(M,N); thanks to the inverse map theorem
which holds for Nash maps, a compact Nash manifold M has Nash tubular neigh-
bourhoods (U, p) (U is a compact Nash manifold with boundary - possibly with
corners - and p is a Nash map). With the very same proof of Proposition 5.15 we
have the following density of Nash maps.

Proposition 5.22. (Density of Nash maps) Assume that M ⊂ Rh, N ⊂ Rk are
Nash manifolds, M compact boundaryless, N the interior of a compact N̄ . Then
for every r ≥ 1, N r(M,N) is dense in Er(M,N), N (M,N) in E(M,N).

2

Let M ⊂ Rh be a compact smooth boubdaryless m-manifold and consider again
the commutative diagramm

U
F→ V(Gh,h−m)

↓p ↓τ
M

ν→ Gh,h−m

Gh,h−m is a regular real algebraic set, Nε(Gh,h−m) is a compact regular semi-
algebraic set with boundary contained in the regular real algebraic set V(Gh,h−m),
hence we fix for it a Nash tubular neighbourhood say (UG, pG). The approximating

map F̃ is of the form
pG ◦ P

where P is a polynomial map (by application of Stone-Weirstrass); F̃ is eventually

a Nash map close to F , then M ′ := F̃−1(Gh,h−m) is a Nash manifold C∞-close to
M . So by adapting the very same construction used to give a compact Cr-manifold
a smooth structure, we have the following celebrated result by J. Nash [Na]. A first
approximation theorem in this vein is due to Seifert [Seif], concerning the case of
manifolds with product tubular neighbourhood.

Theorem 5.23. (1) (Nash approximation theorem) Let M ⊂ Rh be a compact
connected smooth boundaryless manifold. Then there is a Nash manifold M ′ ⊂ Rh
diffeomorphic to M and which can be chosen arbitrarily C∞-close to M . Up to
stabilize the embedding M ⊂ Rh ⊂ Rh × Rk, for some suitable k, we can assume
that the Nash approximation M ′ ⊂ Rh+k is normal, that is M ′ is union of connected
components of R(X), X ⊂ Rh+k being a real algebraic set of the same dimension.

(2) (Uniqueness of Nash structures) If two compact embedded boundaryless Nash
manifolds M ⊂ Rh, N ⊂ Rk are smoothly diffeomorphic, then they are Nash diffeo-
morphic to each other.

2

Remarks 5.24. (1) Let M be compact smooth with non empty boundary ∂M .
We can apply the Nash approximation to a double D(M) of M (realized in Rn as
above) and get a boundaryless Nash manifold D(M)′ ⊂ Rn close to D(M). Then
M ′ := D(M)′ ∩Hn is a Nash model (with boundary) of M .

(2) In his pyoneristic paper [Na], Nash stated also a few conjectures/questions
towards potential improvements of his result. The most natural conjecture was
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that M can be approximated by a regular real algebraic set. We will return on it in
Section 17.5.3. Another question concerned the existence of rational real algebraic
models, see also Sections 15.5, 19.9).

5.9.1. On Nash vector bundle. By using the classification theorem 4.13,
the density of Nash maps, and Lemma 5.16 we readily have (details are left as an
exercise) the following existence and uniqueness of Nash structures on smooth vector
bundles. This answers in the Nash category the analogue of (more demanding)
questions posed in Remark 4.19 (5) about real algebraic vector bundles.

Proposition 5.25. Let M be a compact embedded Nash manifold. Then
(1) Every smooth embedded vector bundle on M is strictly equivalent to a Nash

vector bundle.

(2) If two Nash vector bundles on M are smoothly strictly equivalent, then they
are Nash strictly equivalent to each other.

Remark 5.26. Beside its theoretic interest, approximation by Nash manifolds
and density of Nash maps can be also of practical utility. Whenever we are interested
in the density of smooth maps verifying a certain property, and we are in condition
to apply Nash approximation and density of Nash maps, then it will be enough to
show that Nash maps with the given property are dense among Nash maps. The
main advantage is that we have a much stronger geometric control on the image
of Nash than of arbitrary smooth maps. We will substantiate this remark in next
sections.

The interested reader can find a lot of information about Nash manifolds in
[BCR] and mostly in [Shi].

5.10. Smooth and Nash Sard-Brown theorem

Let us recall some facts of analysis.

(i) Every open set U ⊂ Rn is endowed with the (n-dimensional) Lebesgue mea-
sure and this defines the class of measure zero i.e. negligible subsets of U .

(ii) If X ⊂ U is negligible and f : U → W is a C1-map between open sets of
Rn, then f(X) is negligible in W .

(iii) If U ′ ⊂ U is an open subset and X is negligible in U then X∩U ′ is negligible
in U ′.

(iv) A countable union of negligible subsets of the open set U is negligible.

(v) If X is negligible in the open set U , then U \X is dense in U .

(vi) (Fubini property) If U ⊂ Rh×Rk , X ⊂ U and for every a ∈ Rh,X∩{a}×Rk
is negligible in U ∩ {a} × Rk, then X is negligible in U .

(vii) If M is a smooth embedded m-manifold, we say that X ⊂M is negligible
in M if for every chart φ : W → U ⊂ Rm, φ(X ∩W ) is negligible in U . Thanks
to the above properties of negligible sets it is enough to check it on the open sets
of any countable atlas of M (which certainly exists). We stress that we have not
defined any measure on M , we have just defined the class of negligible subsets.

Let f : M → N be a smooth map between embedded smooth manifolds of
dimension m and n respectively. By definition a point p ∈ M is critical for f if
rank dpf < n = dimN . Set C(f) ⊂M the set of critical points of M .

N \ f(C(f)) ⊂ N
is the set of regular values of f while q ∈ f(C(f)) is said a critical value of f . The
set M \C(f) is open (possibly empty) in M . If M is compact, f(C(f)) is compact,
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hence closed in N . Sard’s theorem is a fundamental result for differential topology;
in particular it is the base of transversality theory that we will develop later.

Theorem 5.27. (Sard’s theorem) Let f : M → N be a smooth map between
embedded smooth manifolds. Then f(C(f)) is negligible in N .

In fact in differential topological applications one rather uses the following corol-
lary, also known as Brown’s theorem.

Corollary 5.28. (Brown’s theorem) Let f : M → N be a smooth map between
embedded smooth manifolds. Then N \ f(C(f)) is dense in N (open and dense if
M is compact).

Easy special cases. A special case of Sard’s theorem is when dimM < dimN .
Then C(f) = M . In this case the proof is easy: clearly M is negligible in M×Rn−m
and f(M) = f ◦ pM (M) f ◦ pM : M × Rn−m → N , pM being the projection onto
M . Then we can apply the above property (ii).

A special and immediate case of Brown’s theorem is when M is the finite union
of disjoint submanifolds of N of dimensions strictly less than dimN , and f is the
union of the inclusion maps.

2

A very readable proof of Sard’s theorem, which fully employes the fact that
f is C∞, is in [M1]. We stress that it is a result of analytic nature and rather
delicate. To appreciate better this point, let us recall the following Morse-Sard Cr
generalization.

Theorem 5.29. (Morse-Sard theorem) Let f : M → N be a Cr-map between
embedded smooth manifolds. If r > max{0,m−n} then f(C(f)) is negligible in N .

The condition which relates the “degree of regularity” of f and the dimensions
of the manifolds is sharp. Whitney [Whit] has constructed an example of a C1-
function f : R2 → R such that C(f) contains a subset J homeomorphic to an open
interval, and that f is not constant on J . Hence f(C(f)) contains an open interval.
A proof of the Morse-Sard theorem can be found in [H].

5.10.1. A Sard-Brown theorem in the Nash category. Here is a Nash
version of the Sard-Brown theorem, whose statement is purely geometric.

Theorem 5.30. Let f : M → N be a Nash map between embedded Nash man-
ifolds. Then f(C(f)) is the union of a finite set of Nash submanifolds of N of
dimensions stricly less than dimN .

Remark 5.31. Assume that M and N are embedded smooth manifolds such
that we can apply to both the Nash approximation by means of Nash manifolds M ′

and N ′, so that N (M ′, N ′) is dense in E(M ′, N ′). It follows that the set of smooth
maps f : M → N which verify Brown’s theorem is dense in E(M,N). In many
applications this suffices

Outline of a proof of Theorem 5.30. Alike the statement of the theorem, it is of
purely geometric nature. For all details one can look at [BCR]. Let us recall the
following basic facts about semialgebraic sets:

(1) We know that every embedded Nash manifold is in particular a semialgebraic
set.

(2) Every semialgebraic set X ⊂ Rn is the union of a finite number of disjoint
connected Nash embedded manifolds.

(3) If X ⊂M is a semialgebraic subset of the embedded Nash manifold M , and
f : M → N is a Nash map between Nash manifolds, then f(X) is a semialgebraic
subset of N . This is a formulation adapted to our situation (and in fact a corollary)
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of the celebrated Tarski-Seidenberg theorem that the projection in Rn−1 of a semi-
algebraic set X in Rn is a semialgebraic set of Rn−1. Moreover, all Nash manifolds
making a partition of f(X) as in (2) have dimension less or equal dimM .

Let us come to the proof of Theorem 5.30. Let f : M → N be our Nash map
between embedded Nash manifolds. As f is a Nash map, it is not hard to check
that C(f) is a semialgebraic subset of M . By applying point (2), one realizes that
C(f) is the finite union of disjoint connected Nash submanifolds each one, say Y ,
verifying the following property: there exists 0 ≤ k < dimN such that for every
p ∈ Y , rank dpf|Y = k. f(C(f)) ⊂ N is the union of the images f(Y )’s hence it is
a semialgebraic subset of N . By point (2) again, it is the disjoint union of a finite
number of disjoint connected Nash submanifolds of N . We claim that for every such
a manifold, say Z, dimZ < dimN . If for example N = R, then the restriction of f
on every Y has vanishing differential, hence f is constant on Y , so that f(C(f)) is
a finite subset of R. In general we can assume that Z ⊂ f(Y ) for some Y as above,
and dimZ = dimN would be against the constant rank theorem 1.5.

2

Remark 5.32. We continue in the vein of Remark 5.26. The Nash Sard-Brown
theorem is an important example of application of the stronger geometric control
on the images of Nash maps. Merely continuous maps (between open sets of some
euclidean space) can have “wild” behaviour (i.e. anti intuitive with respect to an
“ordinary” geometric intuition). Let us recall for instance the so called Peano’s
curves, i.e. surjective continuous maps g : [0, 1] → [0, 1]2. Wild phenomena make
the category of topological manifolds much delicate to deal with. By Sard’s theorem
(easy case) there are not smooth Peano’s curves. In the Nash situation, even better
the image of any such a Nash g is a finite union of points or Nash 1-manifolds.
Smooth maps (and manifolds), although much more “tame” than merely C0 ones,
are suited to topological considerations because they are very “flexible”. This is
basically due to the existence of bump functions and the flatness phenomenon that
they incorporate. On another hand, this also implies for example that subsets of a
smooth manifold defined by a finite set of smooth equations or inequalities can be
weird: for instance one can prove that every compact subset of Rn can be realized
as the zero set of a smooth function. In a sense this means that the formulation of
the smooth Sard’s theorem in measure theoretic terms, is the best one can say in
general about the image of the critical set. The situation is dramatically simpler
and geometrically friendly in the Nash case. It can be profitable to combine the
flexibility of smooth manifolds with the Nash approximation and the density of
Nash maps (whenever they can be applied).

5.11. Morse functions via generic linear projections to lines

Let M be a compact boundaryless embedded smooth m-manifold.

Definition 5.33. A smooth function f : M → R is a Morse function if it has
only non degenerate critical points.

According to Chapter 1, the notion of non degenerate critical point p of a
determined index say λ can be defined on any representation in local coordinates
of f at p (as it does not depend on the choice of the local coordinates). By Morse
Lemma, the non degenerate critical points are isolated, hence by compactness every
Morse function on M has only a finite number of critical points. At least one of
them is certainly a minimum (of index λ = 0) at least one is a maximum (of index
λ = m). A Morse function on M is generic if distinct critical points take distinct
(critical) values. In such a case we can order the critical points p0, p2, . . . , pr so
that cj := f(pj) < f(pj+1) =: cj+1. Up to a linear reparametrization of the image,
sometimes we assume also that f(M) = [0, 1].
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We want to prove that Morse functions exist and moreover are open and dense
in E(M,R).

Lemma 5.34. Let M ⊂ Rh be a compact boundaryless smooth manifold. The
set of Morse functions on M is open in E(M,R).

Proof : Let f : M → R be a Morse function, with critical points p1, . . . , pk.
Fix a nice atlas of M such that every critical point pj is contained in a Bj of some
normal chart and these Bj ’s are pairwise disjoint. If g is close enough to f (in the C1

topology) then it has no critical points on the compact set M \∪jBj . Let us analyze

the local representation of f , say f̂j , defined on the compact set Ūj := φj(B̄j) ⊂ Rm,
for every j = 1, . . . , k. On Ūj , the positive smooth function

af̂j (x) := ||dxf̂j ||2 + (det(
∂2f̂j
∂xi∂xj

(x))2

never vanishes, because the first term vanishes only at 0 = φ(pj), and the second
term does not vanish because the critical point is non degenerate. By compactness,
there is d > 0 such that, for every x ∈ Ūj , af̂j (x) > d. If g is close enough to f in

the C2 topology, then aĝj (x) > d/2, hence also g has only non degenerate critical

points on B̄j . As there is a finite number of critical points of f , we readly conclude
that if g is close enough to f in the C2 topology, then g is a Morse function.

2

Let M ⊂ Rh be as above. For every linear function L ∈ (Rh)∗,

L(x) = a1x1 + · · ·+ ahxh

corresponding to (a1, . . . , ah) ∈ M(1, h,R)) consider the restriction LM to M . We
have

Theorem 5.35. Let M ⊂ Rh be a compact boundaryless smooth manifold. Then
for every f ∈ E(M,R), there is a open dense subset Lf of (Rh)∗ such that for every
L ∈ Lf , f + LM is a Morse function.

Corollary 5.36. Let M ⊂ Rh be a compact boundaryless smooth manifold.
Then:

(1) There is a open dense set L in (Rh)∗ such that for every L ∈ L, LM is a
Morse function.

(2) The set of generic Morse functions is a open dense set in E(M,R).

Proof of Corollary 5.36. (1) is a consequence of Theorem 5.35 applied to the
costant function f = 0. Theorem 5.35 together with Lemma 5.34 implies that the
set of Morse functions is open and dense in E(M,R) (if L is close to zero, then
f + LM is close to f). It is evident that generic Morse functions form an open
set in the set of Morse functions. Then it remains to show that generic Morse
functions are dense. Let f : M → R be a Morse function. Assume that there is a
critical point p which shares the value with another one. It is enough to show that
arbitrarily close to f there is a Morse function g with the same set of critical points
of f , such that g(p) 6= g(p′) for any other critical point p′. Then we conclude by
induction on the number of sharing value critical points. Let (W,φ) be a normal
chart centred at p, such that W does not contains other critical points of f . Let
γ be the global bump functions on M associated to this normal chart. For every
ε 6= 0, set gε = f + εγ. Clearly, if |ε| is small enough, then gε is close to f (because
M is compact), hence it is a Morse function. It is also clear that gε coincides with
f outside the compact support of γ (contained in W ). A discrepancy between the
sets of critical points could only occur on the support of γ. But for every x ∈ U ,

dxĝ = dxf̂ + εdxγ1/3,1/2. On Bm(0, 1/3) this reduces to dxf̂ , hence p is the only
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critical point of gε on B ⊂W (with the usual notations about normal charts). The

function f̂ has no critical points on the compact set Bm(0, 1/2) \Bm(0, 1/3), hence
if |ε| > 0 is small enough the same fact holds for gε. Finally, by the finiteness of the
critical set, it is clear that we can take |ε| small enough so that gε(p) differs from
any other critical value.

2

Proof of Theorem 5.35. By the Nash approximation theorem and the density of
Nash functions it is not restrictive to assume that M ⊂ Rh is a Nash m-manifold,
and that f : M → R is a Nash function. We will give a proof based on the Nash
version of Sard-Brown theorem. For a reader who would prefer a purely smooth
proof, we will indicate in parallel how to manage it by means of the ordinary Sard-
Brown theorem. Let us start with a local Lemma.

Lemma 5.37. Let f : U := Bm(0, 1) → R be a Nash function. Then there is
a negligible subset X of (Rm)∗ ∼ M(1,m,R) such that for every L ∈ (Rm)∗ \ X,
f + LU is a Morse function.

Proof : The differential

df : U →M(1,m,R)

is a Nash map. For every L, for every p ∈ U , p is a critical point of f + LU if and
only if dpf = −L. −L is regular value of df if and only if for every p ∈ U such that
dpf = −L,

dp(dpf) = (
∂2f

∂xi∂xj
(p))i,j=1,...m ∈M(m,R)

is invertible. Hence, −L is a regular value of df if and only if all the critical points
of f + LU are non degenerate, that is f + LU is a Morse function. We conclude by
means of the Nash Sard-Brown theorem.

2

In the smooth case we have the same Lemma with the same proof, by using the
smooth Sard-Brown theorem.

Let M ⊂ Rh be a compact Nash m-manifold as above. M is covered by a
finite set of Nash Monge charts (this depends on the compactness of M and on the
inverse function theorem which holds in the Nash category). Possibly reordering
the coordinates of Rh, the corresponding Nash local Monge parametrization of M
is of the form

U := Bm(0, 1)→ (x, ψ(x)) ∈M ⊂ Rm × Rh−m

so that the associated local representation of f is the Nash function

f̂(x1, . . . xm) = f(x1, . . . , xm, ψ(x1, . . . , xm)) .

Let us write every L ∈M(1, h) in the form

L(x) = (a1x1 + · · ·+ amxm) + (am+1xm+1 + · · ·+ ahxh) :=

α(x1, . . . , xm) + β(xm+1, . . . , xh)

then the corresponding local representation of f + LM is

(f̂(x1, . . . , xm) + β(ψ(x1, . . . , xm)) + α(x1, . . . , xm) := f̂β + αU .

For every fixed β ∈ M(1, h−m,R), let us vary α ∈ M(1,m,R) and apply Lemma

5.37 to f̂β . Then for every β the subset Cβ ⊂M(1,m,R) of α’s such that f̂β + αU
is not a Morse function consists of a finite number of disjoint Nash submanifolds
of M(1,m,R) of dimension < m. Also the subset Cf of M(1, h) such that the
restriction of f + LM to the given Monge chart is not Morse is a semialgebraic
subset, hence it is the finite union of disjoint Nash submanifolds of M(1, h,R). It is
also the union of the slices Cβ , β varying in M(1, h−m,R). As every Cβ is union
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of manifolds of dimension < m, then Cf is union of manifolds of dimension < h.
As there is a finite number of Monge charts, there is a finite number of such sets
Cf in M(1, h,R). The complement Lf of their union is dense in M(1, h,R) and for
every L ∈ Lf , f + LM is a Morse function.

In the smooth case, the dimensional consideration about Cf is replaced by the
conclusion that it is negligible, by using this information about every slices and the
Fubini property (vi) recalled at the beginning of this section.

2

5.11.1. Manifolds with boundary. Let M be a compact smooth manifold
with boundary ∂M , and let us fix a partition ∂M = V0 ∪ V1 as in Corollary 5.10.
By this Corollary we know that the set, say E(M,V0, V1;R), of smooth functions
f : M → [0, 1] such that f−1(j) = Vj , j = 0, 1, and without critical points near ∂M
is non empty. We can extend the results obtained in the boundaryless case.

Proposition 5.38. The generic Morse functions belonging to E(M,V0, V1;R)
form an open dense set.

The only point that needs some further considerations is the existence of such
relative Morse functions. By using the notations of Remark 5.11, via the proper
embeddings and the double of M , the results in the boundaryless case tell us that
there are arbitrarily small linear projections L which restrict to Morse functions on
U . If f belongs to E(M,V0, V1;R) and L is small enough, then λ∂f + λ′∂L provides
a Morse function closed to f ; details are left as an exercise. 2

5.12. Morse functions via distance functions

The use of generic linear projections to line is a geometrically transparent way
to produce Morse functions on a compact embedded smooth manifold. Here we
outline another natural way based on distance functions. Let M ⊂ Rh be compact
boundaryless as usual. For every q ∈ Rh consider the smooth (actually polynomial)
function

δq : Rh → R, δq(x) := ||x− q||2 .
We have

Theorem 5.39. There is an open and dense set Ω ⊂ Rh such that for every
q ∈ Ω, the restriction of δq to M is a Morse function.

Sketch of proof. Consider ν : M → Gh,h−m corresponding to the distribution
of normal (h−m)-planes with respect to the standard metric g0 on Rh. Let

fν : ν∗(V(Gh,h−m))→ Rh, fν(p, v) = p+ v

be the map already used to construct a tubular neighbourhood of M in Rh. One
proves that the restriction of δq to M has some degenerate critical point if and
only if q is not a regular value of fν (the reader can try to prove this by exercise;
anyway all detalis can be found in [M2] Part 1-6). Then we conclude by applying
the favourite version of Sard-Brown theorem.

2

5.12.1. Exhaustive sequences of compact submanifolds of non com-
pact manifolds. The argument of Theorem 5.39 applies also to any boundaryless
non compact submanifold N ⊂ Rh which is also a closed subset of Rh. Then by
using a generic δq, we can find a sequence o increasing regular values cn, cn → +∞,
of the restriction of δq to N such that every

Nn := {x ∈ N ; δq(x) ≤ cn}
is a compact submanifold with boundary of N , Nn ⊂ Nn+1 and ∪nNn = N . That
is we have an exhaustive sequence of nested compact submanifolds with boundary
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of N . Every compact subset of N is contained in some Nn. In particular, If
f : M → N is a Cr or a E-map, M being compact, then there is n such that
f(M) ⊂ Nn and we can extend the density result of E(M,N) in Cr(M,N). If all
involved manifolds are Nash we have the density of N (M,N) in E(M,N) as well.
We can also extend to N the notion of tubular neighbourhood. Fix a sequence a
tubular neighbourhoods πn : Un → Nn constructed with respect to the standard
metric g0 on Rh and a suitable decreasing sequence of εn > 0. For every smooth
positive function ε : N → R+ denote by Nε := {x ∈ Rh; d(x,N) < ε(x)} that is
the ε-neighbourhood of N with respect to the euclidean distance. Then we can find
such a function ε such that for every x ∈ Nn, ε(x) < εn so that the restriction of the
projections πn to Nε match with the projection π : Nε → N such that π(y) ∈ N is
the nearest point to y on N .

5.13. Generic linear projections to hyperplanes

Let M ⊂ Rh be a compact boundaryless m-manifold as above. We have seen
that generic linear projections of M to 1-dimensional subspaces of Rh are Morse
functions. Here we consider projections to hyperplanes, when the codimension
h −m is big enough. Precisely, let Rh−1 ⊂ Rh−1 × R; for every v ∈ Sh−1 \ Rh−1,
let pv : Rh = Rh−1 ⊕ span(v)→ Rh−1 be the associated projection. We have

Proposition 5.40. (1) If h > 2m, then there is an open dense subset IM ⊂
Sh−1 such that for every v ∈ IM , the restriction of pv to M is an immersion.

(2) If h > 2m+ 1, then there is an open dense subset EM ⊂ Sh−1 such that for
every v ∈ EM , the restriction of pv to M is an embedding.

Proof : (1) Let UT (M) ⊂ M × Sh−1 the total space of the unitary tangent
bundle of M (constructed by using the standard metric g0 on Rh). Let t : UT (M)→
Sh−1 the restriction of the projection M × Sh−1 → Sh−1. Then the restriction
of pv to M fails to be an immersion if and only if v belongs to the image of t.
dimUT (M) = 2m− 1 < h− 1. Hence Sh−1 \ t(UT (M)) is open and dense (by the
easy case of Sard’s theorem). This achieves point (1).

(2) The diagonal ∆ is a closed subset of M ×M . Consider the smooth map
defined on the complementary open set

β : M ×M \∆→ Sh−1, β(x, y) =
x− y
||x− y||

.

Then the restriction of pv to M is not injective if and only if v or −v belongs to the
image of β. dim(M ×M \∆) = 2m < h− 1. Hence Sh−1 \ Im(β) is a dense subset.
Its intersection with the dense open set Sh−1 \ t(UT (M)) is also dense. Then we
have a dense set of v’s such that the restriction of pv is an injective immersion,
hence an embedding of M because it is compact. Finally this set of v’s is also open
because the set of embeddings is open. 2

The Morse projections to lines, and the above special cases of projections to
hyperplane are the simplest instances of the general problem of understanding
“generic” linear projections of compact embedded smooth manifolds to lower di-
mensional subspaces. An interested reader can look at the definetly more advanced
paper [Ma].

5.13.1. Truncated classifying maps. The classification theorem 4.13, has
been formulated in terms of the limit grassmannians G∞,k; however we know that

every classifying map f : M → G∞,k factorizes through some f̂ : M → Gn,k (sim-
ilarly for homotopies between maps defining strictly equivalent vector bundles),
but a priori n might vary with M . In fact, arguing similarly to the weak immer-
sion/embedding theorem, we show that there is a “uniform truncation” depending
only on the dimension.
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Proposition 5.41. Let M be a compact embedded m-manifold. (1) Then every
f : M → G∞,k is homotopic to a map g which factorizes through a map ĝ : M →
Gm+k+1,k.

(2) Two homotopic classifying maps with values in Gm+k+1,k are homotopic
via a homotopy which factorizes through a map in Gm+k+2,k.

Proof : Start with f̂ : M → Gn,k, with n > m+k+1. Hence the corresponding
bundle is embedded into M × Rn. Consider linear projections pv : Rn → Rn−1, as
above, and the maps

Fv : M × Rn →M × Rn−1, (x, v)→ (x, pv(v)) .

For a generic v, Fv embedds the vector bundle into M × Rn−1; this corresponds
to a map M → Gn−1,k homotopic to the given one by the classification theorem.
Similar considerations hold for homotopies.

2



CHAPTER 6

The category of smooth manifolds

Abstract smooth manifolds and smooth maps between them will be introduced
by taking as definition some properties verified by embedded ones. We will see in
Section 6.7 that abstract compact manifolds can be embedded in some Rn. As we
are are mainly interested in compact manifolds, considered up to diffeomorphism,
this abstraction would appear to be a bit superfluous. However there are some
good reasons to proceed. There are natural constructions (quotients, “cut-and-
paste”, . . . , we will see them) to build new abstract manifolds, starting from given
ones (even embedded, even staying in the realm of compact manifolds). It would
be artificial to force them to deal from the beginning in the embedded setting. It is
more convenient to use the embedding result ex post, in order to exploit the facts
already established for compact embedded manifolds.

Definition 6.1. A topological space M is a m-smooth manifold (we will omit
the adjective “abstract”) if:

• M is Hausdorff and with a countable basis of open sets.
• M admits an smooth atlas U = {Wj , φj}j∈J (J being any set of indices);

that is
(i) {Wj}j∈J is an open covering of M ;
(ii) every chart φj : Wj → Uj ⊂ Rm is a homeomorphism onto a open set
of Rm (denote by ψj : Uj →Wj the inverse local parametrization);
(iii) for every i, j ∈ J ,

φj ◦ ψi : φi(Wi ∩Wj)→ φj(Wi ∩Wj)

is a smooth diffeomorphism.

We summarize this item by saying that M is (smoothly) locally m-euclidean.

Remarks 6.2. (1) Every smooth atlas U of M is contained in and implicitely
determines a unique maximal smooth atlas A = AM ; this is identified with a specific
smooth structure on M . In the embedded case M ⊂ Rn, the charts ofA were smooth
by themselves, referring to the smooth structure of the ambient euclidean space. In
the abstract case every single chart is only a homeomorphism; the smooth structure
is enterely carried by the changes of local coordinates. Nevertheless, this is enough
to deduce for example that the dimension m is well defined, alike the embedded
case.

(2) Obvioulsy every embedded smooth manifold is a smooth manifold.

(3) Being locally euclidean does not imply any of the global topological require-
ments of the first item. For example consider M = Rm × (R, τd) where the second
factor is endowed with the discrete topology. Then M is Hausdorff and locally
m-euclidean, but it has no countable basis of open sets. On another hand, con-
sider on R × {0, 1} (with the product topology) the equivalence relation such that
(x, j) ∼ (y, i) if and only if either (x, j) = (y, i) or x = y and x > 0. Let M be the
quotient topological space. Then M is 1-locally euclidean and has a countable basis
of open sets, but it is not Hausdorff. In fact the two points [(0, 0)] 6= [(0, 1)] ∈ M

99
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cannot be separated by disjoint neighbourhoods. M × Rk presents the same phe-
nomenon in arbitrary dimension.

(4) The fact that “locally euclidean” does not imply Hausdorff poses some
principle question when one uses manifolds as model of some physical space or
space-time. Local observations can support the idea that phenomena live in a
locally euclidean environment, but it is much more arbitrary to assume also the
(global) separation property. For example in some models of space-time one does
not assume a priori that it is Hausdorff, and this property is derived a posteriori
as consequence of certain global “causality assumptions” which look founded on
some reasonable physical (or philosophical) considerations [HE]. To our aims, we
do not hesitate to make these topological assumptions; as the theory is already rich,
there are no reasons to renouce say the limit uniqueness or the equivalence between
compact and sequentially compact spaces.

Definition 6.3. Let f : M → N be a continuous map between smooth mani-
folds of dimension m and n respectively. A representation in local coordinates of f
is of the form

f̂ = φ′ ◦ f ◦ ψ : U → U ′

where φ : W → U ⊂ Rm is a chart of AM , φ′ : W ′ → U ′ ⊂ Rn is a chart of AN ,
f(W ) ⊂W ′. Then f is smooth if for every p ∈M there is a local representation of

f such that p ∈ W and f̂ is a smooth map between open sets of euclidean spaces.
The map f is a diffeomorphism if it is a homeomorphism and both f and f−1 are
smooth.

The following Lemma is an easy consequence of the definitions and of the basic
fact that the composition of smooth maps between open sets of euclidean spaces is
smooth (details are left as an exercise).

Lemma 6.4. If f : M → N is a smooth maps between smooth manifolds, then
every local representation of f in local coordinates is smooth.

2

Obviuosly smooth maps and diffeomorphisms between embedded manifolds ful-
fill the above definition. So we have introduced the category of smooth manifolds
and smooth maps (diffeomorphisms) which extends the embedded one.

Let us describe some constructions that naturally produce (abstract) smooth
manifolds.

(1) (Quotient manifolds) Let M̃ be a smooth manifold (even embedded). Let G

be a subgroup of the group Aut(M̃) of smooth automorphisms of M̃ . Assume that

G acts freely and properly discontinuously on M̃ . This means that for every p ∈ M̃ ,
the identity is the only element of G that fixes p, and that for every compact subset
K of M̃ , the set of g ∈ G such that K ∩ g(K) 6= ∅ is finite. Let M := M̃/G be
the quotient topological space. It is known that M is Hausdorff and with countable
basis. Moreover, the projection π : M̃ →M is a covering map. We can assume that
for every p ∈ M , there is a open connected neighbourhood W of p such that the
restriction of π to every connected component W̃ of π−1(W ) is a homeomorphism,

and (W̃ , φ) belongs to AM̃ . Then by varying p in M , {(W,φ ◦ π−1)} is a smooth
atlas of M , such that π becomes a smooth, locally diffeomorphic map.

(2) (Grassmann manifolds again) We have already defined the projective spaces
Pk(R) as special instances of (embedded) grassmann manifolds. There is another
classical way to obtain it. Consider Rk+1. The multiplicative group R∗ acts on
Rk+1. Consider the quotient topological space Rk+1/R∗. This is not Hausdorff; the
only satured open set of Rk+1 containing 0 is the whole of Rk+1 and this intersects
any other satured open set. If we remove 0, and we restrict the action of R∗
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things go better. Evidently the orbits, i.e. the equivalence classes are in bijective
correspondence with the set of 1-dimensional linear subspaces of Rk+1. Then one
easily verifies that the quotient topological space Pk(R) := (Rk+1 \ {0})/R∗ is now
Hausdorff and with countable basis. We see also that we get the same quotient
space if we restrict the equivalence relation to the unit sphere Sk, and that the
restriction of the projection onto the quotient, π : Sk → Pk(R) is a 2 : 1 local
homeomorphism. In fact it is the quotient map by the action on Sk of the group
G of order 2 generated by the antipodal map x→ −x. Then we can endow Pk(R)
with a smooth manifold structure as a particular case of point (1). We can do it also
without resctricting to Sk. A finite atlas of Pk(R) is formed by {(Wj , φj)}j=1,...,k+1,
where Wj is the image of the satured open set {xj 6= 0} of Rk+1 \ {0};

φj([x1, . . . , xk+1]) = (x1/xj , . . . , xj−1/xj , xj+1/xj , . . . , xk+1/xj)

is a homeomorphism of Wj onto Rk. It is immediate to check that the changes of
local coordinates are smooth (actually rational). A posteriori we can define, in a
natural way, a diffeomorphism of this abstract model of the projective space to the
embedded model already constructed.

Every grassmann manifold could be treated in a similar way. First define it as
the quotient topological space of the associated linear Stiefel manifold (which is a
open set in some euclidean space). Prove that this quotient is Hausdorff and with
countable basis and finally give it a (abstract) smooth atlas made by the image of
suitable satured open sets of the Stiefel manifold. A posteriori one can construct a
diffeomorphism onto the already constructed embedded model.

Example 6.5. Let us make a few examples. We are going to establish that
SO(3) ∼ P3(R). An elegant way to see it is by using quaternions. Let H be the
quaternion algebra in its matrix form. That is H is the subalgebra of the matrix
algebra M(2,C) of the matrices of the form

A =

(
a+ ib c+ id
−c+ id a− ib

)
where a, b, c, d ∈ R. Then H is generated by the matrix

A(i) =

(
i 0
0 −i

)
, A(j) =

(
0 1
−1 0

)
, A(k) =

(
0 i
i 0

)
which verifies the relations

A(i)2 = A(j)2 = A(k)2 = −I
A(i)A(j) = A(k) = −A(j)A(i), A(j)A(k) = A(i) = −A(k)A(j)

A(k)A(i) = A(j) = −A(j)A(k) .

By setting
A∗ := Āt

we have
(AB)∗ = A∗ +B∗, (AB)∗ = A∗B∗

|A|2 := AA∗ = detA

and if A 6= 0

A−1 =
1

|A|2
A∗ .

Set
H1 = {A ∈ H; |A| = 1} .

This is a group with respect to the restriction of the multiplication. In fact H1 is
naturally identified with the special unitary group SU(2) which as a manifold is
naturally identified with the unit sphere S3 in R4. Set

H0 = {A ∈ H; A∗ = −A} .
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which is naturally identified with an euclidean space R3. One verifies easily that
for every A ∈ H1,

αA : H0 → H0, X → AXA−1

acts as a rotation on H0 = R3. In fact this gives us a degree 2 covering map

SU(2)→ SO(3), A→ αA

such that αA = αB if and only if B = ±A. Hence finally

SO(3) ∼ SU(2)/±I ∼ P3(R)

as claimed.
Let us consider now for every (P,Q) ∈ SU(2)× SU(2) = H1 ×H1, the map

αP,Q : H→ H, A→ PAQ−1

by identifying H ∼ R4, αP,Q ∈ SO(4) and αP,Q = αP ′,Q′ if and only if (P,Q) =
±(P ′, Q′). Then similarly as above we get that

(SU(2)× SU(2))/± 1 ∼ SO(4) .

(3) (Grassmann manifolds of oriented spaces) The set G̃m,n of oriented n-
subspaces of Rm can be naturally endowed with a smooth compact manifold struc-
ture G̃m,n such that the map

p : G̃m,n → Gm,n

that forgets the orientation becomes a degree 2 smooth covering map

p : G̃m,n → Gm,n .

There is a natural tautological bundle

τ̃ : V(G̃m,n)→ G̃m,n

which in fact equals p∗(τ). The fibres of τ̃ are tautologically oriented and this is
also the case for every pull-back of τ̃ .

(4) This example could sound a bit artificial, but it reveals nevertheless some
subtilities. let M be a smooth manifolds (even embedded). Let f : X →M be any
homeomorphism. Then

Uf := {(f−1(W ), φ ◦ f)}(W,φ)∈AM

is a smooth atlas on X so that f becomes tautologically a diffeomorphism. If
X = M (as a topological space), the two smooth structures given by Uf and AM
are diffeomorphic to each other but they are not the same structure (in other words
idM is not a diffeomorphism). Even if M is embedded in no natural way the
structure given by Uf is embedded.

Let us retrace and extend a few notions already developed for embedded man-
ifolds. The operative principle is:

Whatever has been built in terms of smooth atlas can be done as well for abstract
smooth manifolds.

Manifolds with boundary. We extend the Definition 6.1 by admitting
smooth atlas with charts homeomorphic to open sets of the half space Hm. The
boundary ∂M is (well) defined by the same arguments of the embedded case.

Orientable/oriented manifolds as well as the oriented boundary of an ori-
ented manifold with boundary treated in terms of oriented atlas make sense ver-
batim also in the abstract case. Also the interpretation in terms of the deteminant
bundle will extend as soon as it shall be defined (see below).

Boundaryless submanifolds of a boundaryless manifold are defined in terms of
the existence of atlas made by relatively normal charts. Relatively normal charts are
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defined also at the boundary of a manifold with boundary. As for embedded mani-
folds, especially if both the manifold and a submanifold have non empty boundary,
there are many possible configurations. Also in the abstract case, one points out
the notion of proper submanifold (we will return on and use it diffusely later).

Smooth fibred bundles and related notions introduced in Section 2.6 extend
words by words by replacing embedded with arbitrary smooth manifolds and maps.

By using the basis of neighbourhoods defined in terms of representations of maps
in local coordinates (as in (2) of Section 2.4), then the definition of the function
spaces Er(M,N), E(M,N) extends without any change to the abstract case.

Homotopy, isotopy, diffeotopy and the homogeneity property (see Section
2.5) extend as well.

6.1. The (abstract) tangent functor

Probably this is the most demanding extension by dealing with abstract smooth
manifolds. In the case of embedded manifolds tangent bundles and maps imposed
by themselves, starting from the basic ones for open sets in some euclidean spaces.
In the abstract case they must be somehow “invented”, with the constraint to agree
with already done in the embedded category. This also will bring us to a general
notion of fibre bundle in the sense of Steenrod [Steen].

Construction of the tangent bundle. Let M be a m-smooth manifold with
its maximal smooth atlas A = {(Wj , φj)}j∈J . For every (i, j) ∈ J2, define the map

µji : Wi ∩Wj → GL(m,R), µji(x) = dφi(x)(φj ◦ φ−1
i ) .

This family of maps {µji}(i,j)∈J2 verifies the following properties:

(1) Every µji is smooth.
(2) For every j ∈ J , for every x ∈Wj ∩Wj = Wj ,

µjj(x) = Im .

(3) For every (j, i) ∈ J2, for every x ∈Wi ∩Wj = Wj ∩Wi,

µji(x) = µij(x)−1 .

(4) For every (i, j, k) ∈ J3, for every x ∈Wi ∩Wj ∩Wk

µik(x)µkj(x)µji(x) = Im .

We summarize these properties by saying that

{µj,i} is a smooth cocycle on the open covering A with values in the Lie group
GL(m,R).

Note that as GL(m,R) is non commutative (if m > 1), then the order in prop-
erty 4 is not negligible.

Let us consider now the topological product M ×Rm × J , where J is endowed
with the discrete topology. Let T be the subspace made by the triples (x, v, j) such
that x ∈Wj . Hence T is the disjoint union of the open sets Wj ×Rm ×{j}, j ∈ J ,
each one being canonically homeomorphic to Wj × Rm. Now let us put on T the
relation (x, v, j) ∼ (x′, v′, k) if and only if x = x′ and v′ = µkj(x)v. The cocycle
properties 2–4 ensure that it is an equivalence relation. We set

T (M) := T / ∼
the topological quotient space and denote by q : T → T (M) the canonical continu-
ous projection. We have the well defined surjective map

πM : T (M)→M, πM ([x, v, j]) = x

which is continuous. In fact for every open set A of M , (πM ◦ q)−1(A) is the
intersection of T with A×Rm × J , hence it is a satured open set, with open image
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in T (M). It is a topological exercise to show that T (M) is Hausdorff and with
countable basis, this is left to the reader.

(Local trivializations) For every j ∈ J , set

Ψj : Wj × Rm → T (M), (x, v)→ q(x, v, j) = [(x, v, j)] .

One verifies that

(1) Ψj is continuous (because q is continuous);

(2) Ψj takes values in π−1
M (Wj) and πM ◦Ψj = pj , where pj : Wj ×Rm →Wj

is the projection.
(3) In fact Ψj is a homeomorphism onto π−1

M (Wj). For if b = [x, v, k] ∈
π−1
M (Wj) , then b = Ψj(x, µjk(x)v), hence Ψj is onto. If [x, v, j] = [x′, v′, j],

then x = x′ and v = v′ because µjj = Im. Hence Ψj is injective. Finally,
to show that the inverse of Ψj is continuous, it is enough to show that
if A is open in Wj × Rm, the q−1(Ψj(A)) is open in T . Since the Wk ×
Rm × {k}’s form a open covering of T , it is enough to prove that every
q−1(Ψj(A)) ∩ (Wk × Rm × {k}) is open. This intersection is contained in
the open set (Wj ∩Wk) × Rm × {k} of T . On this open set q = Ψj ◦ r,
where r(x, v, k) = (x, µjk(x)v) which is continuous; the thesis follows.

(Changes of local trivializations) These are of the form

Ψ−1
j ◦Ψi(x, v) = (x, µji(x)v)

defined on (Wj ∩Wi)×Rm to itself. Clearly they are smooth, and pointwise linear
in the second argument. So we have proved that

πM : T (M)→M

is a (abstract) smooth vector bundle over M with fibre Rm, called the tangent
bundle of M . For every p ∈M , the fibre TpM := π−1

M (p) is by definition the tangent
space of M at p. It is clear that T (M) is a smooth manifold because it is locally
diffeomorphic to spaces of the form Wj × Rm, Wj being a open set in the smooth
manifold M . To be even more concrete, we can exhibit the following special smooth
atlas of T (M) made of fibred maps:

TA = {π−1
M (Wj),Φj)}j∈J

where Φj := (φj , id) ◦Ψ−1
j , and

(φj , id) : Wj × Rm → Uj × Rm ⊂ Rm × Rm, (x, v)→ (φj(x), v) .

The changes of local coordinates are of the form

Φj ◦ Φ−1
i (x, v) = (φj ◦ φ−1

i (x), µji(x)v)

which ultimately is nothing else than the tangent maps of the change of coordinates
on M .

Tangent maps. Let f : M →M ′ be a smooth map between smooth manifolds.
We want to define now the tangent map

Tf : T (M)→ T (M ′)

in such a way that [f, Tf ] is a vector bundle fibred map. We have constructed the
tangent bundles by patching together the product pieces. We do similarly for Tf .
Precisely, let (π−1

M (W ),Φ), (π−1
M ′(W

′),Φ′) be fibred charts of T (M) and T (M ′) which
dominate charts (W,φ), (W ′, φ′) of M and M ′ respectively. Assume also that this

system of charts gives us a representation in local coordinates of f , f̂ = φ′ ◦f ◦φ−1.
Then we locally define

TfW,W ′ : π−1
M (W )→ π−1

M ′(W
′), T fW,W ′ = Φ′ ◦ T f̂ ◦ Φ−1 .

Recalling the equivalence relation that we have used to build the tangent bundles,
one readily checks that these locally defined Tf ’s are in fact representations in local
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(fibred) coordinates of a globally defined fibred map Tf : T (M) → T (M ′). For
every p ∈M the restriction say dpf of Tf to TpM , is a linear map

dpf : TpM → Tf(p)M
′

which by definition is the differential of f at p.

Tangent functor. The basic functorial properties of the chain rule globalize,
so that we have:

The tangent category of the category of smooth manifolds has as objects the
tangent vector bundles of smooth manifolds and as morphisms the tangent maps of
smooth maps between embedded manifolds. This is a subcategory of smooth vector
bundles over smooth manifolds. Then

M ⇒ πM : T (M)→M, f : M →M ′ ⇒ [f, Tf ]

define a covariant functor from the category of embedded smooth manifolds to its
tangent category. This extends the embedded tangent functor.

Immersions and embeddings. As we dispose now of the differentials dpf
for every smooth map, the notions of immersion and embedding extend as well as
the related results of section 2.3.

6.2. Principal and associated bundles with given structural group

The construction of the tangent bundles is suited to a wide generalization.
Let G be a Lie group (such as GL(m,R), O(m), SO(n), U(n), . . . ,). Assume

that it acts on a smooth manifold F . This means that there is a goup homomorphism
(also called a representation)

ρ : G→ Aut(F ) ;

the associate action is

G× F → F, (g, x)→ ρ(g)(x)

and sometimes one simple writes gx instead of ρ(g)(x). Sometimes one also requires
that ρ is injective so that G is confused with its image in Aut(F ) and considered as
a group of transformations of F (but this is not strictly necessary).

Remark 6.6. G acts on itself by the injective homorphism g → Lg (i.e. by left
multiplication)

G×G→ G, (g, h)→ Lg(h) := gh .

Let M be a smooth manifold and U = {As}s∈I be a open covering of M . A
principal cocycle on U with values in the structural group G is a family of smooth
maps

c = {cts : As ∩At → G}(s,t)∈I2

such that

(1) For every s ∈ I, for every x ∈ As,

css(x) = 1 ∈ G .

(2) For every (s, t) ∈ I2, for every x ∈ As ∩At,

cst(x) = cts(x)−1 .

(3) For every (s, t, r) ∈ I3, for every x ∈ As ∩At ∩Ar

csr(x)crt(x)cts(x) = 1 .
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For every representation ρ : G → Aut(F ) as above, we have an associated
cocycle with values in Aut(F )

{ρts := ρ ◦ cts : As ∩At → Aut(F )}(s,t)∈I2

which verifies the same properties 1-3 (by replacing 1 ∈ G with 1 ∈ Aut(F )).

Then we can repeat words by words the above construction of the tangent
bundles and get a smooth fibres bundle over M with structural group G and fibre
F . So we have a wide family of bundles which share the basic cocycle c. When
F = G and G acts as above by left multiplication, we get the principal bundle of
this family; all the other bundles are said associated to such a principal bundle.

6.2.1. Equivalent cocycles. The strict equivalence of fibre bundles can be
rephrased in terms of the defining cocycles. Assume that two cocycles c and c′ with
values in G are defined on the same open covering U = {As}s∈I of M . Then they
define strictly equivalent bundles if and only if there is a family of maps

{λs : As → G}s∈I
such that for every (s, t), for every x ∈ As ∩At,

c′ts(x) = λs(x)cts(x)λt(x)−1 .

6.2.2. Tensor bundles. We can apply this machinery to construct the ab-
stract version of the tensor bundle relatives to the tangent bundle.

In Section 2.7, for every (p, q), we have defined the representation

ρp,q : GL(m,R)→ GL(T pq (Rm)) ∼ GL(mpq,R)

which is an explicit rational regular map. By using it we get the tensor bundle

πp,q : T pq (M)→M .

The representation
det : GL(m,R)→ R∗

leads to the determinat bundle of M

The principal bundle of this family is the frame bundle of M , once we have
identified the columns of any non singular matrix with a basis of Rm.

Tensors fields. The contents of Sections 2.8 and 2.9 extend verbatim.

6.3. Embedding abstract compact manifolds

Let M be a compact smooth m-manifold possibly with boundary ∂M . The
notion of nice atlas makes sense in full generality. We have:

Proposition 6.7. (1) Let M be a compact smooth manifold. Then there is a
diffeomorphism f : M →M ′ onto an embedded manifold M ′ ⊂ Rh, for some h.

(2) The tanget map Tf establishes a vector bundle equivalence between the
respective tangent bundles of M and M ′. This equivalence propagates to all tensor
bundles and to the frame bundle.

Proof : (1): we argue as in the proof of Proposition 5.12, by using a nice atlas
of M {(Wj , φj)}j=1,...,s including also relative normal charts along ∂M , instead of
a nice atlas with collar. This allows to define the embedding

β = (β1, . . . , βs) : M → (Rm × R)s

βj = (λjφj , λj) .

The verification is the same of Proposition 5.12.

Point (2) follows from the fact that the abstract functor extends the embedded
one.

2
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By combining the last proposition with Proposition 5.40 we have:

Corollary 6.8. (Weak Whitney immersion/embedding theorem) Every m-
dimensional compact smooth m-manifold M can be immersed in R2m and can be
embedded in R2m+1.

Proof : If M is boundaryless it is an immediate corollary of Propositions 6.7
and 5.40. If M has boundary we can reduce to the boundaryless case by using the
double of M .

2

So, up to diffeomorphism we can assume that every compact manifold M is
embedded. We extend now this result to every abstract vector bundle over M ,
besides the tangent and tensor bundles.

Proposition 6.9. Every abstract vector bundle ξ over an embedded compact
smooth manifold M ⊂ Rh is strictly equivalent to an embedded vector bundle.

Proof : By compactness we can assume that the abstract bundle p : E →M is
determined by a cocycle cts over a nice atlas U = {(Wj , φj)}j=1,...,s of M . Consider
the family of local trivializations Φj : p−1|Wj → Wj × Rn, and let {λj} be the
partition of unity over U as usual. For every j, denote by qj : Wj × Rn → Rn the
natural projection. Finally define

h : E →M × Rns ⊂ Rh+ns, h(e) = (p(e), λ1(p(e))q1(e), . . . , λs(p(e))qs(e)) .

The restriction of h to M ⊂ E as the zero section is equal to the identity. Moreover
every fibre of the bundle is linearly embedded onto a n-subspace of Rns.

2

Remark 6.10. (1) The conclusion of Proposition 6.9 holds as well for the frame
bundle and more generally for any abstract smooth fibre bundle over M with em-
bedded fibre.

6.3.1. On vector bundles on sphere again. Now we can complete the
classification of vector bundles on the spheres stated in Section 5.7 . By combining
those constructions with the present ones, every map ρξ : Sm−1 → GL+(k,R)

extends to a cocycle ρξ : D+ ∩D− → GL+(k,R) on the nice covering of the sphere
formed by the two smooth disks D+, D−. So the claimed inverse map ρ−1 is
obtained by taking the strict equivalence class of the embedded vector bundle over
Sm−1 constructed as in Proposition 6.9 by using this cocycle.

6.3.2. On tubular neighbourhoods and collars again. In Section 5.3 we
have constructed tubular neighbourhoods and collars unique up to isotopy starting
from an embedded compact manifold M ⊂ Rk. Above we have shown that every (ab-
stract) compact manifold M can be embedded in some Rk and, a priori, that family
of tubular neighbourhoods and collars, considered up to isotopy, could depend on
the embedding. However this is not the case. First every embedding M ⊂ Rk can
be “stabilized” to M ⊂ Rk ⊂ Rk+h; moreover, by using the results of the present
section with Proposition 5.40, if h is big enough, up to isotopy two embeddings of
M in Rk+h have disjoint images and can be extended to an embedding of M × [0, 1]
so that they are isotopic to each other.

Summarizing:

By considering compact smooth manifolds up to diffeomorphism, we can exploit
all the results already obtained in Chapter 5 for embedded compact manifolds.
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6.4. On complex manifolds

Another reason to introduce the abstract notion of manifold in terms of atlas
with change of coordinates in a determined class of homeomorphism (for instance
smooth diffeomorphisms in our favourite setting) is that it is suited to several in-
teresting implementations. Abstract complex n-manifolds have as local models the
open sets in Cn and change of coordinates that are complex analytic (i.e. holomor-
phic) diffeomorphisms (biholomorphisms). Holomorphic maps beetween complex
manifolds are defined in terms of holomorphic local representations; and so on, by
following and specializing several constructions developed above (complex tangent
bundle, complex submanifolds etc.). On the other hand, by the maximum principle,
the constant functions c : M → C are the only holomorphic functions defined on
any compact connected complex manifold M . So compact complex manifolds can-
not be embedded into any Cm (as complex submanifolds). This is a main difference
with respect to our favourite real smooth theory. Moreover, bumb functions do not
exist in the complex setting, so the many constructions which have employed such
a tool cannot be performed on complex manifolds. Although we have introduced
them as examples of embedded smooth manifolds, complex Stiefel and Grassmann
manifolds (in particular the complex projective spaces) can be naturally endowed
with an (abstract) structure of compact complex manifold.

By identifying Cn ∼ R2n and considering holomorphic maps as a special kind of
smooth maps, by forgetting the complex structure, every complex n-manifolds M
can be considered as a smooth 2n-manifold (as we have done for the complex Grass-
mannian); moreover the complex structure induces on this 2n-manifold a natural
orientation. Especially in dimension 4, 2-complex manifolds (also called complex
surfaces) form an important class of oriented 4-manifolds.

(The Riemann sphere) As a basic example let us consider P1(C); let us
identify R2 ∼ C and consider the two-charts atlas of the 2-sphere S2 given by the
stereographic projections from the two poles. These can be considered as C-valued
charts. In order to make it a complex-manifold atlas it is enough to compose the
second projection with the complex conjugation z → z̄. Moreover it is immediate
to identify such an atlas with the standard two-charts complex atlas of P1(C).
This show in particular that P1(C) is diffeomorphic to S2; this last considered as a
1-dimensional complex manifold is called the Riemann sphere.



CHAPTER 7

Cut and paste compact manifolds

In this Chapter we deal with compact manifolds or more generally with possibly
non compact manifolds which nevertheless can be embedded in some Rn being a
closed subset too. Thus we can exploit the results of Chapter 5.

7.1. Extension of isotopies to diffeotopies

We recall a few notions.
Let N be a smooth boundaryless n-manifold. Let M be a smooth m-manifold

and

F : M × [0, 1]→ N

a smooth map such that ft is an embedding for every t ∈ [0, 1]; then F is an isotopy
connecting f0 and f1.

A diffeotopy of N (also called an ambient isotopy) is a smooth map

G : N × [0, 1]→ N

such that gt is a diffeomorphism for every t ∈ [0, 1]. We will also assume that
g0 = idN . Hence diffeotopies are special isotopies.

Definition 7.1. We say that an isotopy F as above extends to an ambient
isotopy if there is a diffeotopy G of N such that ft = gt ◦ f0 for every t ∈ [0, 1].
Note that {Vt = ft(M)} is a one parameter family of submanifolds of N (each
diffeomorphic to M), and Vt = gt(V0), for every t.

We are going to see that under mild compactness assumptions, isotopies actually
extend to diffeotopies. This will be a key result to show that several cut-and-paste
procedures below are well defined. To this aim, it is useful to recast diffeotopies as
flow of (suitable) vector fields. In doing it we will tacitly incorporate basic facts
about the existence, uniqueness and regular dependence on the initial data of the
solutions of ordinary differential equations (see for instance [A]).

For every isotopy F as above, its track is the map defined as

F̂ : M × [0, 1]→ N × [0, 1], F̂ (x, t) := (ft(x), t) .

The support of F is the closure in M of the set

{x ∈M | ∃t ∈ [0, 1], ft(x) 6= f0(x)} .

Given an ambient isotopy G of N , as above, and its track Ĝ (which is a level
preserving diffeomorphism), consider on N × [0, 1] the constant “vertical” tangent
vector field V defined by

V (x, t) = (0, 1) ∈ TxN × R .

The tangent map TĜ transforms this field into another tangent vector field on
N × [0, 1] of the form

XG(x, t) = (vG(x, t), 1) .

109
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Then the map Ĝ transforms every vertical integral line jx : [0, 1]→ N × [0, 1] of V

such that jx(0) = (x, 0) , into the integral line ĵx : [0, 1] → N × [0, 1] of the field

XG such that ĵx(0) = (x, 0) . In fact, by construction

Ĝ(jx(t)) = ĵx(t) = (gt(x), t)

that is G is the flow of XG, with initial data at N ×{0}. Hence we can reconstruct
the diffeotopy G by integration of the field XG.

On the other hand, if v(x, t), t ∈ [0, 1], is any time depending smooth tangent
vector field on N , let X(x, t) = (v(x, t), 1) be the corresponding field on N × [0, 1].
Let us say that it has complete integral lines if for every initial point (x, 0) ∈
N × [0, 1], the corresponding integral line of X is defined on the whole interval
[0, 1]. If X has complete integral lines then it generates a diffeotopy of N , that is
there is a unique diffeotopy G = GX such that X = XG. This establishes a bijection
between diffeotopies and such tangent vector fields X with complete integral lines.

If N is not compact, not every X has complete integral lines; by local existence
and uniqueness, in general, for every (x, 0) there is a maximal open interval [0, tx) ⊂
[0, 1] on which the corresponding integral line is defined. However, if we assume that
v(x, t) has compact support, then it is not hard to show that X actually has complete
integral lines, and the generated diffeotopy GX has compact support. Recall that
the support of v(x, t) is defined as the closure in N of the set

{x ∈ N | ∃t ∈ [0, 1], v(x, t) 6= 0} .
Viceversa, if a diffeotopy G has compact support, then also vG has compact support.
This restricts the above bijection to diffeotopies and such tangent vector fields
with compact support, and gives us a very flexible way to construct diffeotopies,
under mild compactness assumptions. Finally we can state and prove our extension
theorem (sometimes known as “Thom’s lemma”).

Proposition 7.2. Let F : M × [0, 1] → N be an isotopy of embeddings of the
compact boundaryless smooth m-manifold M into the boundaryless n-manifold N .
Then F extends to an ambient isotopy of N with compact support.

Proof : Consider the track F̂ of the isotopy F . It is a level preserving embedding
of M × [0, 1] onto a compact proper submanifold say M̂ of N × [0, 1]. Consider the
constant vertical tangent vector field on M × [0, 1]

VM (x, t) = (0, 1) ∈ TxM × R .

The tangent map T F̂ sends VM to a vector field XM of the form

XM (y, t) = (vM (y, t), 1), y = ft(x)

defined along M̂ . Then the idea is to extend XM to a tangent vector field X of the
form

X(y, t) = (v(x, t), 1)

defined on the whole of N × [0, 1] and such that v(y, t) has compact support. The
ambient isotopy GX generated by the field X will eventually extend the isotopy
F . Clearly this extension task only concerns the “horizontal” part vM . Under the
assumption made at the beginning of this section, we know from Chapter 5 that
there are a proper compact tubular neigbourhood U of M̂ in N × [0, 1] (which
restricts to a tubular neighbourhood of ft(M) in N × {t} for every t ∈ [0, 1]),
and a compact submanifold with boundary W of N such that U is contained in
Int(W )× [0, 1]. By using the local product structure of U along M̂ , we can cover M̂
by a finite number of smooth closed (n+ 1) balls, each one say B easily supporting

a smooth extension vB of the restriction of vM to B∩ M̂ , and such that their union
is contained in U . Such B’s can be incorporated in a nice covering with collar of
W × [0, 1], say U . Locally extend vM on any open set of such a covering different
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from the B’s by setting it constantly equal to 0. By using a partition of unity
supported by U , we finally get the required smooth extension of vM to a smooth
time depending field v defined on the whole of N , constantly equal to zero on the
complement of W , and with compact support contained in W .

2

Remarks 7.3. (1) For the sake of simplicity, we have proved Thom’s lemma
under the assumption that both the compact manifold M and N are boundaryless.
Mild adaptations of the same construction allow to extend the results under more
general hypotheses. Assuming that both M and N possibly have boundary, we can
cover for instance the following situations, getting a pertinent version of Thom’s
lemma (details are left to the readers):

(a) F is an isotopy of embeddings of M either in N \ ∂N or in ∂N .
(b) F is an isotopy of proper embeddings of (M,∂M) in (N, ∂N).
(c) Every boundary component of ∂M is embedded by every ft either in N \∂N

or in ∂N , being ft(M) transverse to ∂N along ft(M); for instance, this includes the
case when for every t, ft parametrizes a collar of a compact boundary component
of ∂N .

(d) For every t ∈ [0, 1], ft parametrizes a relative tubular neighbourhood of a
compact proper submanifold (Y, ∂Y ) of (N, ∂N).

(2) If M is not compact, in general an isotopy of embeddings of M in N does
not extend to any diffeotopy. For example, take M = R and N = R2, then it is
easy to construct an isotopy of embeddings connecting f0 being the natural inclusion
Rx ⊂ R2

x,y with f1 having as image the set {(x, y); x2+(y−1)2 = 1, (x, y) 6= (0, 2)}.
For basic topological reasons it cannot be extended. On the other hand, what is
really important to achieve the proof of Thom’s lemma is that the isotopy F has
compact support, even if M is possibly non compact.

As a corollary, we have also the following sort of relative extension result.

Corollary 7.4. Let Y be a compact submanifold of the manifold M . Let F be
an isotopy of embeddings of Y into the manifold N such that a version of Thom’s
lemma holds. Assume that f0 can be extended to an embedding h0 : M → N . Then
also f1 can be extended to an embedding h1 : M → N ; moreover we can require that
h0 and h1 are diffeotopic to each other.

Proof : By Thom’s lemma F extends to a diffeotopy G of N , hence h1 := g1◦h0

is an embedding of M in N which extends f1 and is diffeotopic to h0 by construction.
2

7.2. Gluing manifolds together along boundary components

Let M1 and M2 be m-compact manifolds with boundary, V1 and V2 be unions
of connected components of ∂M1 and ∂M2 respectively, and ρ : V1 → V2 be a
diffeomorphism. Consider the compact topological quotient space

M1 qρM2

by the equivalence relation on the disjoint union M1 qM2 which identifies every
x ∈ V1 with ρ(x) ∈ V2; ρ is called the gluing map. Denote by

q : M1 qM2 →M1 qρM2

the projection onto the quotient space, for s = 1, 2,

is : Ms →M1 qM2

the inclusion, and finally set
js = q ◦ is .

It is clear that js is a homeomorphism onto its image. We have:
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Proposition 7.5. The quotient space M1qρM2 can be endowed with a structure
of smooth m-manifold such that for every s = 1, 2, js is a smooth embedding, and

∂(M1 qρM2) = (∂M1 q ∂M2) \ (V0 q V1) .

Proof : Fix a collar c1 : [−1, 0] × V1 → M1 of V1 in M1 and a collar c2 :
V2 × [0, 1]→M2 of V2 in M2. Define ψV : (−1, 1)× V1 →M1 qρM2 by

ψV (t, x) = j1(c1(t, x)) if t ∈ (−1, 0], ψV (t, x) = j2(c2(ρ(x), t)) if t ∈ [0, 1) .

It is clear that ψV is a homeomorphism onto an open neighbourhood U of

V := j1(V1) = j2(V2)

in M1 qρ M2. By composing the charts of a smooth atlas of (−1, 1) × V1 with

φV = ψ−1
V we get a smooth atlas say UV on U such that ψV becomes tautologically

a diffeomorphism. Similarly, let Us be a smooth atlas on js(Ms \ Vs) such that
the restriction of js to Ms \ Vs is tautologically a diffeomorphism. It is immediate
to check that UV ∪ U1 ∪ U2 is a smooth atlas on M1 qρ M2 that determines a
smooth manifold structure with the required properties. An equivalent way to
get such a smooth structure on M1 qρ M2 is as follows: take the disjoint union
(M1\V1)q(M2\V2) and identify the two open sets c1((−1, 0)×V1) and c2((0, 1)×V2)
by identifying (t, x) ∈ (−1, 0)× V1 with (1− t, ρ(x)) ∈ (0,−1)× V2.

2

Let us say that a smooth structure on M1 qρ M2 obtained so far is given by
gluing M1 and M2 together by means of the gluing map ρ. Such a smooth structure
depends on the choice of collars entering the construction. However we have the
following uniqueness up to diffeomorphism. Precisely:

Proposition 7.6. Any two smooth structures given by gluing M1 and M2 to-
gether via the gluing map ρ are diffeomorphic to each other, via a diffeomorphism
which is the identity at the boundary.

Proof : Assume for simplicity that two implementations of the construction
differ by the choice of two different collars c2, c

′
2 : V2 × [0, 1] → M2. Denote by M

and M ′ the respective smooth structures on M1 qρ M2. The isotopy (relative to
V2) of the two collars of V2 in M2 extends to a diffeotopy G of M2. Then the map
h : M →M ′ such that h = idj1(M1) on j1(M1), h = g1 ◦ (j2)−1 on j2(M2) provides
a required diffeomorphism. The general case is achieved by a similar argument.

2

Hence it makes sense to denote by M1 qρ M2 such a diffeomorphism class of
smooth manifolds obtained by gluing M1 and M2 together. In fact we will often do
the abuse to confuse such a class with any representative.

In some cases we can deduce that M1qρM2 and M1qρ′M3 are diffeomorphic,
where ρ : V1 → V2, ρ′ : V1 → V3 are respective gluing maps.

Proposition 7.7. (1) If the diffeomorphism ρ′ ◦ ρ−1 : V2 → V3 extends to a
diffeomorphism h : M2 →M3. Then M1 qρM2 and M1 qρ′ M3 are diffeomorphic.

(2) If two gluing maps ρ0, ρ1 : V1 → V2 are isotopic, then the manifolds obtained
by gluing M1 and M2 together by means of ρ0 and ρ1 respectively are diffeomorphic
to each other.

Proof : A collar of V3 in M3, used to define a smooth structure of M1 qρ′ M3,
can be lifted by h to a collar of V2 in M2; this can be used to define a smooth
structure of M1 qρM2 which by construction is diffeomorphic to M1 qρ′ M3. This
achieves (1).

As for (2), ρ1 ◦ ρ−1
0 is diffeotopic to the identity of V2 which obviously extends

to the identity of the whole M2. By Corollary 7.4, then also ρ1 ◦ ρ−1
0 extends to a

diffeomorphism of M2 and we can apply previous item (1).
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2

Oriented version. Keeping the above setting, assume furthermore that Ms

is oriented and that Vs is part of the oriented boundary ∂Ms. If ρ : V1 → V2 is
a orientation reversing diffeomorphism then M1 qρ M2 is endowed with a struc-
ture of oriented smooth m-manifold such that j1 and j2 are orientation preserving
embeddings. Up to orientation preseving diffeomorphism it is well defined the ori-
ented manifold M1 qρM2 which actually only depends on the isotopy class of the
orientation reversing attaching diffeomorphism ρ.

7.3. On corner smoothing

Of course the notion of smooth manifold with corners (extending Definition
2.30) makes sense in the abstract setting. Making use of tubular neighbourhoods
and collars as in the previous section, it is not hard to see that every compact
smooth m-manifold with corner M verifies the following properties:

• M is a topological m-manifolds and contains a boundaryless compact
smooth (m−2)-manifold L (the corner locus) such that M \L is a smooth
m-manifold with boundary.

• There is a open neighbourhood U of L in M and a homeomorphism

φ : U → L× [0, 1)× [0, 1)

such that for every x ∈ L, φ(x) = (x, 0, 0), and the restriction of φ to U \L
is a diffeomorphism onto L× [0, 1)× [0, 1)) \ L× {(0, 0)}.

By using these data we can prove that

There is a natural corner smoothing procedure that gives a smooth structure on
M which is compatible with the given smooth structures on L and M \ L.

For let us fix a homeomorphism τ : [0, 1) × [0, 1) → B2(0, 1) ∩H2 which is a
diffeomorphism outside (0, 0) (for instance do it by using polar coordinates). Then
set

τ ′ : L× [0, 1)× [0, 1)→ L× (B2(0, 1) ∩H2), τ ′(x, y, z) = (x, τ(y, z))

and take the composition τ ′◦φ : U → L×(B2(0, 1)∩H2). Take on U the differential
structure such that τ ′ ◦ φ is tautologically a diffeomorphism. A smooth atlas of
this structure together with a smooth atlas of M \ L make a smooth atlas on M
which by construction is compatible with the given smooth structures. Note that
the induced smooth structure on ∂M coincides up to diffeomorphism with the one
obtained by gluing the closure of the components of ∂M \ L along the common
boundary. Similarly to Proposition 7.6 the corner smoothing produces a unique
smooth structure up to diffeomorphism (we left the details as an exercise).

7.4. Uniqueness of smooth disks up to diffeotopy

Let M be a smooth boundaryless m-manifold; a smooth embedding

β : Dm →M

of the closed unitary m-disk is called a smooth m-disk in M . If M is oriented, two
smooth m-disks in M are co-oriented if both preserve or reverse the orientation,
provided that Dm inherits the standard orientation of Rm.

We have

Proposition 7.8. Let M be a connected smooth boundaryless m-manifold. Let
βr : Dm → Dr ⊂M , r = 0, 1 be smooth m-disks in M . Then

(1) If M is oriented and β0 and β1 are co-oriented, then there is a diffeotopy of
M which connects β0 and β1. In particular there is an oriented smooth automor-
phism f of M such that β2 = f ◦ β1.
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(2) If M is not orientable then there is a diffeotopy of M which connects β0 and
β1. In particular there is a smooth automorphism f of M such that β2 = f ◦ β1.

Proof : In both cases, thanks to the homogeneity of M , possibly by composing
β1 with a diffeotopy, we can assume that x0 = β0(0) = β1(0). Possibly up to radial
isotopies centred at 0, we can assume that both β0 and β1 have image contained
in a chart φ : W → Rm of M such that φ(x0) = 0. Then we are reduced to the
case M = Rm, βr(0) = 0. Assume that the two disks are co-oriented. Then we can
easily adapt the proof of Proposition 1.17 and conclude that both βr are isotopic to
a same linear embedding of the disk in Rm. By applying Thom’s lemma we achieve
(1).

If M is not orientable, a priori the two disks localized in a chart at x0 as above
might be not co-oriented. However, by the non-orientability of M , we can find a
smooth simple loop λ based at x0 such that by “sliding” say β1 along λ we return
back with the opposite orientation. Then up to isotopy we can always reduce to
two co-oriented disks in Rm and conclude as before.

2

7.5. Connected sum, shelling

Let us describe a further cut-and-paste procedure to construct compact mani-
folds.
• Let M1 and M2 be boundaryless, connected, compact smooth m-manifolds,

m ≥ 1.
• For s = 1, 2, let

δs : Dm → Ds ⊂Ms

be a smooth embedding.
• Consider M̃s = Ms \ Int(Ds). Then M̃s is a compact smooth manifold with

one boundary component Vs diffeomorphic to Sm−1.
• Let ρ : V1 → V2, ρ = ρ(δ1, δ2) being the diffeomorphism obtained by the

restriction of δ2 ◦ δ−1
1 : D1 → D2. Finally consider the compact boundaryless

manifold

W := M̃1 qρ M̃2 .

Here is an equivalent description of the smooth manifold W . Take the disjoint
union

(M1 \ δ1(0))q (M2 \ δ2(0))

and for every (u, t) ∈ Sm−1 × (0, 1) identify δ1(tv) with δ2((1− t)v).
Every W obtained by implementing this procedure is called a connected sum of

M1 and M2.
There is a natural oriented version, where M1 and M2 are oriented and δ2 ◦ δ−1

1

is orientation reversing. The resulting connected sum is naturally oriented in a
compatible way with M1 and M2.

Every connected sum depends on the choice of the smooth m-disks δj . We are
going to analyze to which extent it is uniquely defined up to diffeomorphism.

Proposition 7.9. Let M1 and M2 be boundaryless, connected, compact smooth
m-manifolds. Then

(1) If both M1 and M2 are oriented, then the oriented connected sum M1#M2

is well defined up to oriented preserving diffeomorphism (i.e. it does not depend on
the choice of the embeddings δs, provided that δ2 ◦ δ−1

1 reverses the orientation).
(2) If at least one among M1 and M2 is not orientable, then the connected sum

M1#M2 is well defined up to diffeomorphism (i.e. it does not depend on the choice
of the embeddings δs).
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Proof : If both manifolds are oriented, possibly by pre-composing the smooth
disks with the reflection (x1, . . . , xm) → (−x1, . . . , xm), we can assume that the
m-disks in M1 preserve while the m-disks in M2 reverse the orientation; if at least
one is non orientable, say M1, while M2 is orientable, then we can assume that the
disks in M2 are co-oriented. By Proposition 7.8, in every case the disks in M1 or M2

entering different implementations of the connected sum procedure are diffeotopic
to each other. Then the proposition follows by several applications of Proposition
7.7.

2

Remarks 7.10. (1) When it is well defined, strictly speaking M1#M2 denotes
a diffeomorphism class of smooth manifolds. Again we will do often the abuse to
confuse it with any representative.

(2) In the oriented case, if −M denotes the connected oriented manifold M
endowed with the opposite orientation, then it can happen that M1#M2 is not
diffeomorphic to −M1#M2 via an orientation preserving diffemorphism. They are
diffeomorphic if there is an orientation preserving diffeomorphism between M1 and
−M1.

(3) The discussion about the connected sum works as well for compact manifolds
with boundary, provided that the disks are embedded in their interior.

7.5.1. Thick connected sum, shelling. Let us keep the above setting. As-
sume furthermore that Ms is a boundary component of ∂Ns of the compact (m+1)-
manifold Ns. Then we can consider the topological quotient space

N1 qρ̂ N2

where ρ̂ : D1 → D2 is equal to δ2 ◦ δ−1
1 . Arguing similarly to Section 7.2, it is

not hard to show that this quotient space carries a natural structure of smooth
(m+ 1)-manifold with corners which, by corner smoothing, leads to a well defined
smooth manifolds denoted

N1#̂N2

compatible with the smooth inclusions of Ns; moreover

∂(N1#̂N2) = (∂N1 \M1)q (∂N2 \M2)q (M1#M2) .

Naturally everything is well defined (only) up to diffeomorphism, possibly in the
oriented category.

Definition 7.11. In the above setting, if N2 = Dm+1, then we say that N :=

N1 and Ñ := N#̂Dm+1 are related by a shelling (along M := M1).

We have

Proposition 7.12. If N and Ñ are related by a shelling, then they are diffeo-
morphic, as well as M#Sm is diffeomorphic to M .

The proof involves several applications of the extension of isotopies and the disk
unicity as above. We left the details as an exercise.

2

7.5.2. Weak connected sum, twisted spheres. There is a weak variant of
the connected sum procedure; by keeping the notations of the beginning of Section
7.5, at the end we take

M̃1 qβ M̃2

where
β : V1 → V2

is any diffeomorphism, that is we do not require that it is the restriction of the
composition of m-disks δ2 ◦ δ−1

1 . In the oriented situation we require also that β
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reverses the orientation. The essential difference between the original procedure is

that β does not necessarily extend to a diffeomorphism β̂ : D1 → D2 between the
whole embedded smooth m-disks. If we incorporate this last requirement about
β, the present weak procedure is equivalent to the previous one. Without such a
further requirement, it is definitely different.

We call smooth twisted m-sphere any manifold obtained by implementing the
weak connected sum procedure starting from M1 = M2 = Sm. We collect below a
few (non exhaustive) important facts about this topic.

Proposition 7.13. (1) If 1 ≤ m ≤ 4, then every diffeomorphism β : Sm−1 →
Sm−1 extends to a diffeomorphism β̂ : Dm → Dm; hence every m-weak (oriented)
connected sum is a (oriented) m-connected sum.

(2) For every m ≥ 1, every smooth twisted sphere is homeomorphic to Sm. If
1 ≤ m ≤ 4 it is diffeomorphic to Sm.

(3) There are smooth twisted 7-spheres that are not diffeomorphic to S7.

We limit to a few comments about the proofs, item by item.

(1): For every m, possibly by composing with a reflections along a hyperplane
of Rm+1, it is not restrictive to assume that β preserves the orientation of Sm.

The validity (or not) of item (1) is invariant on the isotopy class of β.
For m = 1, item (1) is immediate via linear parametrizations of the interval

D1.
For m = 2, we prove that β is isotopic to the identity (which obviously extends

to the identity of D2). In fact, up to isotopy it is not restrictive to assume that β is
the identity on an open sub-arc J of S1 (diffeomorphic to (0, 1)). Let J ′ be another
open sub-arc of S1 such that S1 = J ∪ J ′. We get an isotopy of β with the identity
as follows

H(x, t) = x if x ∈ J, H(x, t) = tx+ (1− t)β(x) if x ∈ J ′ .

(Smale Theorem) For m = 3, item (1) is already non trivial and due to Smale
[S1]; as above it is enough to prove that β is isotopic to the identity. A proof can be
built by using special dynamical properties of integration of planar tengent vector
fields, the so called Poincaré-Bendixson Theory. Up to isotopy we can assume that
β is the identity on a hemisphere. So, via the stereographic projection, it is enough
to prove that a diffeomorphism g : R2 → R2 which is the identity outside the unitary
disk D2 is isotopic to the identity through diffeomorphisms sharing this property.
Again up to isotopy it is not restrictive to assume that these diffeomorphisms are
equal to the identity also on a collar of S1 = ∂D2 in D2. Consider the constant
unitary vertical tangent field on R2, v0 = e2, and let v1 its image by means of
the differential dg. These fields can be considered as smooth maps vi : D2 → C∗
(completed by a constant map outside D2). We can lift them to maps ṽi : D2 → C
via the universal covering map exp : C → C∗. By taking the convex combinations
ṽt := tṽ1 + (1− t)ṽ0, t ∈ [0, 1], and projecting them back to C∗, we get a homotopy
vt between v0 and v1 through nowhere vanishing tangent vector fields which are
constant outside D2 minus a collar of S1. Now one would integrate the homotopy
vt to a diffeotopy between g and the identity. This is a rather delicate task. A key
dynamical property is that in the present situation no maximal integral curves of
vt are trapped in (the compact set) D2. In particular an integral line which crosses
the upper hemicircle of S1 pointing inside D2, after a certain time crosses the lower
hemicircle pointing outside. By elaborating on this fact, one eventually constructs
a desired isotopy of diffeomorphisms (for all details se also Section 6.4. of [Mart]).

For m = 4, (1) is difficult (see [Ce]).

(2): It is easy to extend every β as above to a homeomorphism β̂ : Dm → Dm;

we can get such a β̂ by a radial extension sending for every x ∈ Sm−1, the interval
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[x, 0] ⊂ Dm lineraly onto the interval [β(x), 0] (this is also known as the Alexander
trick). By the way, this is a diffeomorphism on Dm \{0}, 0 being in general the only
non smooth point. By using this fact it is easy to show that every twisted m-sphere
is homeomeorphic to Sm. For 1 ≤ m ≤ 4 it is diffeomorphic to Sm thanks to item
(1).

(3): These are the celebrated Milnor’s exotic 7-spheres [M4].

Remark 7.14. Let M be a compact oriented boundaryless smooth m-manifold.
Let Y ⊂ M be a submanifold diffeomorphic to Sm−1 so that M \ Y = M1 qM2

consists of two connected non compact manifolds. The closure M̂s of Ms in M is a
compact manifold M̂s with boundary equal to Y . Let us glue to M̂s a disk Dm via
a diffeomorphism ρs : Sm−1 → Y , obtaining two oriented boundaryless manifolds
M̃s. Then

M = M̃1#M̃2 .

In general this factorization of M is not unique. For example the standard S7 can
be expressed as S7#S7 as well as the connected sum of two exotic 7-spheres.

7.6. Attaching handles

This is a very important procedure. We will see in Chapter 9 that every compact
manifold admits “handle decompositions” that is it can be built (up to diffeomor-
phism) by iterated applications of this basic attaching procedure.

For every m ≥ 0, for every 0 ≤ q ≤ m,

Hq = Hq,m = Dq ×Dm−q

is the standard q-handle of dimension m. If clear from the contest, we will omit to
indicate the dimension; q is also called the index of the handle. Strictly speaking
such a handle Hq is a manifold with corner with boundary

∂Hq = (Sq−1 ×Dm−q) ∪ (Dq × Sm−q−1) ;

up to smoothing it is diffeomorphic to Dm endowed with a determined decomposi-
tion by submanifolds of ∂Dm = Sm−1.

Let us fix a few terminology.
• Σa := Sq−1 × {0} ⊂ Ta := Sq−1 ×Dm−q are called respectively the a-sphere

and the a-tube of Hq.
• Σb := {0}×Sm−q−1 ⊂ Tb := Dq×Sm−q−1 are called respectively the b-sphere

and the b-tube of Hq.
• C := Dq × {0} is called the core of the handle.
• C∗ := {0} ×Dm−q is called the co-core of the handle.

Note that the a-sphere is the boundary of the core, the b-sphere is the boundary
of the co-core; the core and the co-core intersect transversely only at (0, 0). Ta and
Tb intersect at the respective boundaries both equal to Sq−1 × Sm−q−1.

Let N be a compact smooth m-manifold with boundary. Given a q-handle Hq

of dimension m, let h : Ta → ∂N be a smooth embedding. Then Sa := h(Σa) is
the embedded (attaching) a-sphere; Ta := h(Ta) is a tubular neighbourhood of Sa in
∂N , endowed by means of h of a global trivialization. Ta is also called the embedded
(attaching) a-tube. Consider the topological quotient space

N qh Hq

by the equivalence relation on the disjoint unionNqHq which identifies every x ∈ Ta
with h(x) ∈ Ta. Then N qh Hq has a natural structure of manifold with corner
which by smoothing leads to a smooth manifold well defined up to diffeomorphism.
Considered up to diffeomorphism, we say that N qh Hq is the smooth manifold
obtained by attaching a q-handle to N via the attaching map h. At this point it is
routine to apply as above the extension of isotopies to diffeotopies and get:
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Proposition 7.15. Up to diffeomorphism, NqhHq only depends on the isotopy
class of the attaching embedding h.

2

Here is a few complements about attaching handles.

(1) Up to diffeomorphism, the boundary of N qh Hq is given by

∂(N qh Hq) = (∂N \ Int(Ta))qh|∂Tb Tb ;

sometimes we denote it by
σ(∂N, h)

and call it the (m− 1)-manifold obtained by surgery on ∂N with surgery data h.
(2) If N is oriented and q > 1, then also NqhHq can be oriented in a compatible

way. In fact as q > 1, the a-tube is connected and we can take the orientation of
Hq such that the gluing diffeomorphism h : Ta → Ta reverses the orientation. For
q = 1, Ta is not connected and it is not always possible to make h orientation
reversing on both components. Attaching 1-handles is the only case which imposes
some constraints in order to perform the construction within the oriented category.

(3) If N is connected and q > 1, then also N qh Hq is connected. In fact the
connected Ta is contained in one connected component of ∂N and by attaching Hq,
which is connected, connectedness is preserved. By attaching a 1-handle we can
reduce the number of connected components by 1. This happens if the connected
components of Ta belong to different components of ∂N .

(4) The a-tube of a 0-handle is empty; then attaching a 0-handle to N means
to “create” a new connected component diffeomorphic to Dm. The a-tube of a
m-handle is the whole boundary of Dm. Hence by attaching a m-handle we fill a
spherical component of ∂N (if any, otherwise we cannot attach any m-handle).

(5) Up to diffeomorphism, the thick connected sum can be rephased in terms
of attaching a 1-handle to N1 and N2 with one component of Ta in ∂N1 and the
other in ∂N2. Similarly by suitably attaching a 1-handle to

(M1 × [0, 1])q (M2 × [0, 1])

we get a manifold W such that

∂W = (M0 qM1)q (M1#M2)

(possibly in the oriented category).

Remark 7.16. Attaching a handle is an instance of the following more general
gluing procedure: for j = 1, 2, let Yj be a (m− 1) sub-manifold with boundary ∂Yj
of ∂Mj ⊂Mj . Let ρ : Y1 → Y2 be a diffeomorphism. Then M1qρM2 is in a natural
way a m-manifold with corners, hence a well defined smooth manifold up to corner
smoothing (and up to diffeomorphism).

7.7. Strong embedding theorem, the Whitney Trick

The aim of this section is to provide information about the following theorem,
the proof introduces the very important so called “Whitney trick” [Whit2].

Theorem 7.17. Every compact boundaryless smooth m-manifold M can be em-
bedded into R2m.

A sketch of proof. We limit to a rough outline of the proof, stressing anyway
that it is substantially different from the weak immersion/embedding theorem 6.8.
This last is enterely based on so called “general position arguments” or, equiva-
lently, on transversality (concepts that we will develop in Chapter 8 although we
are anticipating a few applications). By pushing the general position arguments
(see Section 8.2), we can at most refine the weak immersion theorem and get that a
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“generic immersion”, say π : M → R2m, of our compact boundaryless m-manifold
in R2m has the further properties:

The inverse image of every point in π(M) ⊂ R2m consists in at most 2 points;
if π(p) = π(p′) = q, then R2m = dpπ(TpM) ⊕ dp′π(Tp′M). Then, by compactness
of M , there is in the image of π a finite number of such “simple normal crossing
points”.

We can start with such a generic immersion. If there are normal crossing points,
they persit under any small perturbation of the immersion. To get an embedding
we must operate a robust modification of π. Basically there are two “moves”:

(1) Introduce if necessary a further crossing point.
(2) Eliminate a couple of double points by applying the so called Whitney

Trick.

As we are going to see, this scheme actually works for m 6= 2; fortunately for
m = 2, the strong embedding theorem holds as a corollary of the classification of
smooth compact surfaces (see Chapter 15). So we definitively assume here that
m 6= 2. Moreover it is not restrictive to assume that M is connected.

• The basic local model for a single self-intersection point is as follows:

α : Rm → R2m, α(t1, t2, · · · , tm) =

(
t1 −

2t1
u
, t2, . . . , tm,

1

u
,
t1t2
u
,
t1t3
u
, · · · , t1tm

u

)
where

u = (1 + t21)(1 + t22) · · · (1 + t2m) .

It is an embedding except for the points (1, 0, . . . , 0), (−1, 0, . . . , 0) which are sent
to 0 ∈ R2m. Moreover, when ||t|| → +∞, α tends to the usual linear embedding
(t1, . . . , tm) → (t1, t2, . . . , tm, 0, . . . 0) of Rm ⊂ Rm × Rm = R2m. To add such a
double point to a given immersion π, we can do it locally in a chart at a point
q ∈ π(M) where at q ∼ 0, π(M) looks like the image of the above linear embedding.
Then by using two suitable bump functions on Rm at 0 and at infinity respectively,
and the associated partition of unity, it is not hard to modify π to get one with one
more self-intersection point.

Remark 7.18. Give Rm and R2m the standard orientation; then the single
self-intersection point has a sign. Its mirror image has the opposite sign.

• The Whitney Trick applies at a Whitney disk D connecting two crossing points
q1, q2 in π(M). This means that the following pattern is realized:

(1) There is an embedded smooth circle γ in π(M) with two corners at q1 and
q2; these divide γ in two arcs with closures γ1 and γ2 respectively; these closed arcs
γj , j = 1, 2, are contained into smooth open m-disks Uj in π(M), their union is an
open neighbourhood of γ in π(M), they intersect transversely each other at {q1, q2},
and do not contain other crossing points of π(M);

(2) There are:
- a 2-disk D in R2 with boundary ∂D with two corners a1, a2 which is contained

in the union of two smooth arcs λ1, λ2 in R2 which intersect transversely at {a1, a2};
- an embedding ψ : U → R2m where U is an open 2-disk in R2 containing

D ∪ (λ1 ∪ λ2), such that

• ψ(λj) ⊂ Uj , j = 1, 2;
• ψ(∂D, {a1, a2}) = (γ, {q1, q2});
• for every x ∈ λj , j=1,2, dxψ(TxU) ∩ Tψ(x)Uj = dxψ(Txλj);

• ψ(Int(D)) ⊂ R2m \ π(M).

We summarize (1) and (2) by saying that the smooth 2-disk with corners D := ψ(D)
is properly embedded into (R2m, π(M)) and connects the crossing points q1, q2.

Moreover, we require:
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(3) We can extend the embedding ψ to a parametrization of a neigbourhood of
D in R2m by a standard model, that is to an embedding

Ψ : U × Rm−1 × Rm−1 → R2m

such that Ψ(λ1 × Rm−1 × {0}) = U1 and Ψ(λ2 × {0} × Rm−1) = U2.

Thanks to such a standard model, it is not hard to realize that a Whitney disk
(if any) can be used as a guide to construct a 1-parameter family of immersions,
with compact support around D, by “pushing M across D”, eventually removing
q1, q2 without modifying the configuration of the other crossing points.

Remark 7.19. We can fix local orientations around a Whitney disk. The
required properties implies that the two crossing points connected by the disk have
opposite signs with respect to such orientations

• To conclude the proof of the embedding theorem, we have to show that for
every generic projection, possibly after having inserted a new crossing point (recall
Remarks 7.18 and 7.19) there is a couple of crossing points connected by a Whitney
disk which can be eliminated. For m = 1 this follows by somewhat subtle but
elementary planar considerations. For m > 2, we will discuss this issue within a
larger range of application of the Whitney trick in Chapter 18 (see Remark 7.20 (2)
and Proposition 18.15).

2

Remarks 7.20. (1) If m = 2, the circle γ can be constructed as well and one
could construct a generically immersed disk D in R4, bounded by γ, but we cannot
exclude the existence of crossing points of D itself or of transverse intersection of
D with π(M) apart from γ.

Figure 1. Whitney’s trick.

(2) The notion of Whitney disk, hence the Whitney trick, can be extended to
eliminate couple of tranverse intersections of two submanifolds P,Q of a given man-
ifold M , such that dimM = dimP + dimQ (the boundary loop γ being formed by
two arcs in P and Q respectively). This technique has been of absolute importance
in the achievement of fundamental results for smooth manifolds of sufficiently high
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dimension (see Chapter 18). The fact noticed above that the scheme does not ap-
ply in the case dimM = 4 has been the ultimate reason for special and astonishing
phenomena occurring in the realm of 4-manifolds. We will develop these comments
much later in the text (see Chapter 20).

7.8. On immersions of n-manifolds in R2n−1

The aim of this section is to provide some information about the following hard
immersion theorem [Whit3].

Theorem 7.21. Every compact boundaryless n-manifold M can be immersed
into R2n−1.

2

It is not restrictive to assume that M is connected. Similarly as in the discussion
about the hard embedding theorem, “hard” means that it is not only based on
general position arguments. This kind of arguments (mostly in the spirit of “multi-
jet-transversality” - see Section 8.2 ) allows to preliminarly determine the generic
maps f : M → R2n−1 which in general are not immersions. For simplicity let us
give a few details for n = 2 (the general case is similar). The local models of such
a generic map are all realized by

g : R2
u,v → R3

x,y.z, x = u2, y = v, z = uv .

The line {v = 0} is the non injectivity locus of this map and its image is a half lines.
The image of every other line {v = c} is the parabole x = (z/c)2 in the hyperplane
{y = c}. The point 0 ∈ R2 is the unique at which the map g is not an immersion
and its image 0 = g(0) is called the Whitney point in the model. The transverse
intersection with the image of g of a small sphere around the Whitney point is a
wedge of two smooth circles. The restriction of g to R2 \{0} is a generic immersion,
that is along the the image of {v = 0} \ {0} there are two transverse branches of
the images of g.

In general, we can describe qualitatively a generic maps f : M → R2n−1 as
follows. Assume first that n ≥ 3. The image say Σ of the non injectivity locus is a
compact 1-dimensional submanifold of R2n−1 possibly with boundary; W = ∂Σ is
formed by the so called Whitney points of f . The restriction of f to W̃ := f−1(W )

is a bijection onto its image and f is not an immersion at every point of W̃ . Σ̃ :=
f−1(Σ\∂Σ) is a smooth (non compact) 1-submanifold of M and the restriction of f

to Σ̃ is a double covering map onto the interior of Σ. The restriction of f to M \ W̃
is a generic immersion, so that locally along every component of the interior of Σ,
there are two transverse branches of the image of f .

If n = 2 the situation is a bit more complicated. In fact beyond the Whitney
points, Σ has in general also a finite set of three branches crossing points (the “triple

points” of the image) at which the local model for the generic immersion of M \ W̃
is given by three hyperplanes of R3 in general position.

These generic maps are stable in the sense that their qualitative features are
preserved up to small smooth perturbations. Starting from a generic map f : M →
R2n−1, we have to perform a robust alteration of it in order to get an immersion

f̂ : M → R2n−1. The Whitney points are partitioned by couples of points which are
connected by a smooth arc contained in Σ. Then we perform a kind of rather subtle
“surgery” along each such an arc γ. To give an idea, assume that n = 2 and that,
for simplicity, the arc γ connecting two Whitney points does not include triple
points. Remove from f(M) the intersection with the interior of a small smooth
“ε-neighbourhood” U (diffeomorphic to D3) of γ in R3 whose boundary intersects
transversely f(M) at two smooth circles; then fill them by two disjoint embedded
2-disks. In this way we get Σ′ from which two Whitney points have been eliminated;
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in fact Σ′ is the image of the non injectivity locus of a generic map f ′ : M ′ → R3,
where M ′ is a surface obtained from M by cutting and pasting. To eventually
restore a map f” : M → R3 ones connects again the above 2-disks by attaching a
suitably oriented 1-handle embedded into the smooth 3-disk U . By doing it along

every arcs γ we eventually get a desired generic immersion f̂ : M → R3. Moreover,

f̂ can be obtained arbitrarily close to the given generic map f in the C0-topology.

7.8.1. On Smale-Hirsch immersion theory. Whitney’s hard immersions
theorem has been reobtained later as a non trivial application of Hirsch immersion
theory [H2]. Extending early Smale’s results in the case when M is a sphere, this
faces the general question of the existence of immersions f : M → N , n = dimN >
dimM = m, and the classification of immersions in a given homotopy class of
maps from M to N up to regular homotopy (two immersions f0, f1 : M → N are
regularly homotopic if they are connected by a homotopy ft such that for every
t ∈ [0, 1], ft is an immersion). Remarkably these questions are translated into
homotopy theoretic problems. When N = Rm+k, k ≥ 1, the existence problem
can be translated as follows. By the easy Whitney immersion theorem, there are
immersions f : M → Rm+m, and by using the standard metric g0 on Rm+m we
have the induced normal map

νf : M → G2m,m, νf (x) = (dxf(TxM))⊥ .

Then there exists an immersion f̂ : M → Rm+k, 1 ≤ k ≤ m if and only if there
exists an immersion f as above and a map

ν̂ : M → Gm+k,k

such that the vector bundle ν̂∗(Vm+k,k) is weakly stably isomorphic to ν∗f (V2m,m).
By the classification of vector bundles on compact manifolds, this is equivalent to
establish a homotopy between classifying maps. Moreover, given such a map ν̂,

there is an immersion f̂ such that ν̂ = νf̂ .

When N = Rm+k, all immersions are homotopic to each other; it turns out
that f0 and f1 are regularly homotopic if and only if the bundle maps [νf0

, ν∗f0
] and

[νf1
, ν∗f1

] are homotopic through bundle maps over a (ordinary) homotopy connect-
ing f0 and f1.

The following corollary is immediate.

Corollary 7.22. If M is parallelizable then it can be immersed into Rm+k for
every k ≥ 1.

2

For every m ≥ 0, let i(m) be the minimum k ≥ 1 such that every compact
boundaryles m-manifold M can be immersed into Rm+k. By the hard Whitney
immersion theorem, we have that i(m) ≤ m − 1. By using the above translation
of the problem into (hard) homotopy theoretic ones, we eventually know the exact
value of i(m), see [1].

Theorem 7.23. For every m ≥ 0, i(m) = m−α(m), where α(m) is the number
of 1 in the dyadic expansion of m.

7.9. Embedding n-manifolds in R2n−1 up to surgery

By construction if we use Whitney’s method or perturbing an immersion f :
M → R2n−1 whose existence is an application of Hirsch results, we can assume
anyway to deal with generic immersions, M being any compact connected bound-
aryless n-manifold. So if n ≥ 3, adopting the above notations, Σ is a compact
boundaryless 1-submanifold of R2n−1. For every component C of Σ, locally along
C we see two transverse branches of the image of f ; C̃ := f−1(C) is a compact
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boundaryless 1-submanifold of M and the restriction of f to C̃ is a 2-folds covering
which a priori can be non trivial (C̃ connected) or trivial (C̃ with two connected
components).

The main aim of this section is to show that starting from a generic immersion
f : M → R2n−1 as above, by attaching suitable “round handles” to M × [0, 1]

at M × {1} we get a (n + 1)-manifolds W such that ∂W = M q M̂ (hence M̂

is obtained by a kind of “surgery” on M) and f can be altered on M̂ to get an

embedding f̂ : M̂ → R2n−1. This construction is due to Rohlin (see the translations
of his papers in [GM]) and will be used in Chapters 19 and 20.

Let us analyze more closely the properties of such a generic immersion. C has
a tubular neighbourhood U ∼ C × Dn in R2n−1 such that Ũ := f−1(f(M) ∩ U)

is a tubular neighbourhood of C̃ in M . A priori there are two possibilities for U .
Either it is identified with the mapping cylinder of

h0 : Dn ×Dn → Dn ×Dn, h0(y, z) = (z, y)

or to the mapping cylinder of

h1 : Dn ×Dn → Dn ×Dn, h1(y, z) = (y, z) .

In both cases, the subset

X := ({0} ×Dn) ∪ (Dn × {0})
is hj-invariant, j = 0, 1, and the mapping cylinder of the restriction of hj to X real-

izes the image f(Ũ) in U . The tubular neighbourhood Ũ can be realized respectively
either as the mapping cylinder of

g0 : {0, 1} ×Dn → {0, 1} ×Dn, g0(u, x) = (1− u, x)

or of
g1 : {0, 1} ×Dn → {0, 1} ×Dn, g1(u, x) = (u, x)

and in both cases, the restriction of f to Ũ can be expressed as

f(u, x, t) = (ux, (1− u)x, t) .

The first case would correspond to the non trivial covering C̃ → C; the second to
the trivial one. However, as R2n−1 is orientable, then also U must be orientable
and one easily sees that this constraint cannot be realized in the first case if n is
even. So we have proved

Lemma 7.24. If n = dimM ≥ 3 is even only trivial coverings C̃ → C can
occur.

2

We are going now to construct W , ∂W = M q M̂ and the embedding f̂ : M̂ →
R2n−1 with the desired features. Let C be a component of Σ. Use the above models
for the neighbourhoods U , Ũ . Consider 1

2 Ũ ⊂ Ũ obtained as the mapping cylinder

of the restriction of gj to {0, 1} × 1
2D

n and set

Ũ ′ := Ũ \ Int
1

2
Ũ .

Define the map

f̂ : Ũ ′ → U

by

f̂(0, x, t) = (φ(|x|)(−x1, x2, . . . , xn), x, t), f̂(1, x, t) = (x, φ(|x|)(−x1, x2, . . . , xn), t)

where x = (x1, . . . , xn) and
φ : [1/2, 1]→ [0, 1]

is a smooth strictly decreasing function which coincides with t → −t + 1/2 near

t = 1/2, φ(1) = 0 and φ is flat at 1. The image of f̂ in U is the mapping cylinder
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of the restriction of hj to an invariant subset X̃ of Dn × Dn wich coincides with

X near the boundary. X̃ is diffeomorphic to two disjoint copies of Dn hence it

“desingularizes” X. The map f̂ extends to the whole of M \ Int 1
2 Ũ by taking

the restriction of f to M \ Ũ . Do it for every component of Σ (by using pairwise

disjoint tubular neighbourhoods). Thus we have obtained a n-submanifold, say M̃ ,

of R2n−1 which is the image of a smooth map f̂ : M0 → R2n−1, where M0 is a
submanifold with boundary of M obtained by removing a system of small open
tubular neighbourhoods of the C̃’s. It turns out that the quotient

M̂ := M0/f̂

is in a natural way a boundaryless compact manifold and the induced map (we keep
the name)

f̂ : M̂ → M̃

is a diffeomorphism. For every component C, the identification induced by f̂ at the
corresponding boundary components of M0 is given by

(u, x1, x2, . . . , xn, t) ∼ (1− u,−x1, x2, . . . , xn, t) .

It remains to describe the “handles” attached to M × [0, 1] at M ×{1} producing a

(n+ 1)-manifold W such that ∂W = M q M̂ . There is one such a handle for every

component C. If C̃ → C is the trivial covering, let H be the mapping cylinder of
the identity of [0, 1]×Dn. Then attach H at M ∼M×{1} along Ũ , by means of the
attaching map which identifies (0, x, t) (resp. (1, x, t)) of H with (0, x, t) ((1, x, t))

of Ũ . If C̃ → C is non trivial (recall that it happens only if n is odd) then we do

similarly by using the mapping cylinder H̃ of the map

k : [0, 1]×Dn → [0, 1]×Dn, k(v, x1, x2, . . . , xn) = (1− v,−x1, x2, . . . , xn) .

This complete the construction. We stress that by the very construction:

If M is orientable then also the (n+ 1)-manifold W constructed so far and the

manifold M̂ embedded in R2n−1 such that ∂W = M q M̂ are orientable.

Remark 7.25. The constructions and the considerations of this section hold
by starting from any generic immersion f : M → W from a compact (possibly
orientable) boundaryless n-manifold into an arbitrary (possibly orientable) (2n−1)-
manifold W .

7.10. Projectivized vector bundles and blowing up

Rn can be considered as a vector bundle over the 0-manifold M = {0}. The pro-
jective space Pn−1(R) can be considered as a fibration over M which “projectivizes”
the given vector bundle. If

ξ := p : E →M

is any vector bundle (for example the tangent bundle), over a compact m-manifold
M with fibre Rn, we can perform the above projectivization fibre by fibre and obtain
a fibration

p : P(E)→M

with fibre Pn−1. Every local trivialization W ×Rn ∼ p−1(W ) of the vector bundle
gives rise to a local trivialization W×Pn−1 ∼ p−1(W ). If (E, p) is defined by means
of a cocycle {µi,j : Wi ∩Wj → GL(n,R)}, then it induces a cocycle with values in
the projectivized linear group PGL(n,R) that defines (P(E),p). The total space
P(E) is a compact manifold of dimension m+n− 1. A point in P(E) is a line lx in
Ex = p−1(x) for some x ∈M . We can pull-back ξ to P(E) via the projection p and
obtain the vector bundle p∗(ξ) over P(E). We note that the restriction of p∗(ξ)
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to every fibre of p is a product (trivial) bundle. Moreover, p∗(ξ) has a canonical
tautological sub-bundle of rank 1 (i.e. a line bundle) λξ : the total space is

Λξ = {(lx, v) ∈ p∗(ξ); v ∈ lx}
with the natural projection onto P(E). Its fibre over lx is the line contained in the
fibre of p∗(ξ) at lx, made by the vectors belonging to lx. By using for instance an
auxiliary riemannian metric on the total space of p∗(ξ) we realize that up to strict
equivalence it canonically splits as a direct sum

p∗(ξ) ∼ λξ ⊕ βξ
where also the bundle βξ is well defined up to strict equivalence. By iterating this
construction starting again from βξ, we eventually get

Proposition 7.26. For every vector bundle ξ : E → M over a compact man-
ifold M , there is a canonical construction (via iterated projectivization of vector
bundles) that produces a smooth compact manifold F (ξ) endowed with a surjective
smooth map

fξ : F (ξ)→M

such that the vector bundle f∗ξ (ξ) over F (ξ) splits as a direct sum of line bundles.
In particular this applies to the tangent bundle of M .

2

7.10.1. Blowing up along smooth centres. Let us start with the blowing
up of Rn, n ≥ 1, with centre the 0-submanifold X = {0}. Consider

Rn ×Pn−1(R)

where Rn is endowed with usual coordinates x = (x1, . . . , xn), while the projective
space is endowed with homogeneous coordinates t = (t1, . . . , tn). Set

B(Rn, 0) := {(x, t) ∈ Rn ×Pn−1(R); xitj = xjti, i, j = 1, . . . , n}
this is well defined because the equations are homogeneous in the t’s. Denote by

ρ : B(Rn, 0)→ Rn

the restriction of the projection onto Rn. These objects verify several interesting
properties:

(1) B(Rn, 0) is a smooth n-manifold.
If Uj is the standard chart of the projective space with non-homogeneous coordinates
yi = ti/tj , tj 6= 0, i 6= j, then one readily checks that B(Rn, 0) ∩ (Rn ×Uj) is given
as the graph of the smooth function xi = xjyi, i 6= j.

(2) The restriction

ρ : B(Rn, 0) \ ρ−1(0)→ Rn \ {0}
is a diffeomorphism.
Assume that ((a1, . . . , an), (y1, . . . , yn)) ∈ B(Rn, 0) with some ai 6= 0. Then for
every j, yj = (aj/ai)yi is uniquely determined as a point of Pn−1(R). This also
shows that

(a1, . . . , an)→ ((a1, . . . , an), (a1, . . . , an)) ∈ B(Rn, 0) \ ρ−1(0)

defined for (a1, . . . , an) ∈ Rn \ {0} is the inverse diffeomorphism.

(3) The inverse image

ρ−1(0) = {0} ×Pn−1(R) ∼ Pn−1(R)

and it is in natural bijection with the set of lines in Rn passing through 0; hence
it is the projectivization of Rn considered as vector bundle over the 0-dimensional
manifold X = {0}.
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Every such a line L has a parametric equation xi = ait, i = 1, . . . , n. Consider
L′ = ρ−1(L\{0}). L′ has parametric equations xi = ait, ti = ait, t 6= 0, i = 1, . . . , n.
As the t’s are homogeneous, equivalently L′ is described by xi = ait, yi = ai, t 6= 0.
These equations extend to define the so called strict transform L̃ of L in B(Rn, 0),

that is the closure of L′; finally L̃ intersects transversely Pn−1(R) at the point
(a1, . . . , an) and

L→ L̃ ∩Pn−1(R)

defines the required bijection (after all, it corresponds to the bijection between
x ∈ Pn−1(R) and the respective fibre in the tautological bundle over Pn−1(R)).

(4) In a more qualitative cut-and-paste fashion, B(Rn, 0) is obtained by gluing
along the boundary the closure of Rn \ Dn with B(Dn, 0) and this last can be
identified with the mapping cylinder of the natural degree two covering map

c : Sn−1 → Pn−1(R)

Sn−1 = ∂Dn.

Consider now Rk ⊂ Rk+n = Rk ×Rn (defined as usual by the equation xi = 0,
i > k). Rk+n = Rk ×Rn can be considered as the total space of the product vector
bundle over the manifold X = Rk, with fibre Rn. Then define the blowing up of
Rk+n with centre X = Rk by

B(Rk+n,Rk) := Rk ×B(Rn, 0)

endowed with the restriction of the natural projection

ρ = ρn,k : B(Rk+n,Rk)→ Rk+n .

The above properties extend directly; set

Dn,k = ρ−1(Rk)

then:
(1) The restriction

ρ : B(Rk+n,Rk) \Dn,k → Rk+n \ Rk

is a diffeomorphism;
(2) Dn,k = Rk×Pn−1(R) and it is the total space of the projectivization of the

above trivial vector bundle;
(3) B(Dn,Rk) is the mapping cylinder of the natural degree two covering map

c : Rk × Sn−1 → Rk ×Pn−1(R)

and B(Rk+n,Rk) can be obtained by gluing B(Dn,Rk) to the closure of Rk+n \
(Rk ×Dn), along the boundary.
Moreover:

(4) If Rk ⊂ Rk+h ⊂ Rk+n, h < n, then the closure in B(Rk+n,Rk) of ρ−1(Rk+h\
Rk) is equal to B(Rk+h,Rk), ρh,k is the restriction of ρn,k, B(Rk+h,Rk) intersects
transversely Dn,k at Dh,k.

(5) Given Rk×Rs×Rh, then B(Rk+s,Rk) and B(Rk+h,Rk) are disjoint subman-
ifolds of B(Rk+s+h,Rk). Note that Rk+s∩Rk+h = Rk ⊂ Rk+s+h, hence Rk+s∪Rk+h

is ‘singular’ along Rk. Blowing up with centre Rk is a way to ‘desingularize’ it.

Let M be a compact boundaryless smooth (k + n)-manifold and X ⊂ M a
proper k-submanifold. We define the blowing up of M with centre X

ρ = ρM,X : B(M,X)→M

as follows: recall that a tubular neighbourhood

π : U → X



7.10. PROJECTIVIZED VECTOR BUNDLES AND BLOWING UP 127

of X in M is by construction isomorphic to a neighbourhood fibred by n-disks of
the 0-section (identified with X) of a rank k vector sub-bundle

p : E → X

of the restriction of T (M) to X, such that

∂π : ∂U → X

is isomorphic to to the unitary bundle

up : UE → X

with fibre Sn−1. There is a natural degree 2 covering map

c : UE → P(E)

such that up = p ◦ c. Then B(M,X) is obtained by gluing the mapping cylinder of
this map c to the closure ofM\U , along its boundary. The above (B(Rk+n,Rk), ρn,k)
provides the local model for (B(M,X), ρM,X), so that

• B(M,X) is a smooth compact (k+n)-manifold as well as ρ is a smooth map;

• Denote by D(M,X) = ρ−1(X). Then the restriction

ρ : B(M,X) \D(M,X)→M \X
is a diffeomorphism;

• The restriction ρ : D(M,X) → X is isomorphic to the projectivized bundle
p : P(E)→ X.

Remark 7.27. If X is a hypersurface of M (dimX = dimM − 1), then ρ :
B(M,X)→M is a global diffeomorphism.

If Y is a subset of M , the strict transform Ỹ of Y in B(M,X) is by definition
the closure of ρ−1(Y \X). Then we have:

• Let M be as above, N ⊂M a proper submanifold of M and X ⊂ N a proper
submanifold of N (whence of M). Then the strict trasform Ñ in B(M,X) is a

proper submanifold diffeomorphic to B(N,X), moreover Ñ intersects transversely
D(M,X) at D(N,X).

• If N and N ′ are proper submanifolds of M which intersect transversely at
X = N ∩ N ′ 6= ∅, then the strict transforms Ñ and Ñ ′ are disjoint in B(M,X).
Note that N ∪N ′ is not a submanifold of M because it is ‘singular’ along X. So by
blowing up the singularity and taking the strict transforms we can ‘desingularize’
it.

When X = {x0} ⊂ M is reduced to one point, blowing up X is related to the
connected sum. We have

Proposition 7.28. (1) If dimM = m is even, then B(M,x0) ∼ M#Pm(R)
(recall that Pm(R) is not orientable).

(2) If M is oriented and dimM = m is odd, then:
(a) B(M,x0) is oriented in such a way that the restriction

ρ : B(M,x0) \D(M,x0)→M \ {x0}
preserves the orientation;

(b) Let us stipulate that Sm is oriented as the boundary of Dm+1 oriented by
the standard orientation of Rn, and that Pm(R) is oriented in such a way that the
standard covering map Sm → Pm(R) preserves the orientation; then

B(M,x0) ∼M#−Pm(R)

where ‘−’ indicates the opposite orietation and we are dealing with the oriented
connected sum.
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Proof : Forget for a while orientation questions. By taking a chart ∼ Rm of
M at x0 ∼ 0, we can assume that Dm is a tubular neighbourhood of x0. Recall
that B(Dm, 0) ⊂ Rm × Pm−1, this last endowed with ‘mixed’ coordinates (x, t).
Let z = (z1, . . . , zm+1) be homogeneous coordinates on Pm(R), take the standard
affine chart U = {tm+1 6= 0}; U ∼ Rm, with coordinate y1 = (z1/zm+1, . . . , ym =
zm/zm+1). Then it is enough to prove that there is a diffeomorphism

φ : B(Dm, 0)→ Pm(R) \Dm

which is the identity on ∂Dm. The diffeomorphism φ can be defined explicitely as
follows:

φ(x1, . . . , xm, t1, . . . , tm) = (t1, . . . , tm, t(

m∑
j=1

x2
j )) ∈ Pm(R)

where t = ti/zi if zi 6= 0, i = 1, . . . ,m. The verifications that φ is well defined, its

image is Pm(R) \Dm and that it is a diffeomorphism are left as an exercise. Coming
back to the orientation question: if m is even then Pm(R) is non orientable, hence
the connected sum with it is well defined. In the oriented case we easily check that
B(Dm, 0) and Pm(R) \Dm induce opposite orientations on the common boundary
∂Dm. Hence the diffeomorphism φ reverses the orientation and (b) follows.

2

7.10.2. On complex blowing up. The (complex) blowing up BC(M,X) can
be performed in the category of complex manifolds as well. At least the basic
BC(Cn, 0) is defined by the very same formulas of B(Rn, 0), in terms of complex
coordinates. Hence we can define the blowing up BC(M,x0) of a complex manifold
at a point x0. More generally, il M is an oriented 2n-smooth manifold, x0 ∈M we
can define BC(M,x0) (up to oriented diffeomorphism) by taking an oriented chart

R2n ∼ Cn at x0 ∼ 0, perform BC(D2n, 0) and glue it to M \D2n. We have

Proposition 7.29. Let M be a compact oriented 2n-manifold, x0 ∈M . Then
BC(M,x0) ∼M#−Pn(C).

Proof : As in the proof of Proposition 7.28, the key point is to construct a
suitable diffeomorphism

φC : BC(D2n, 0)→ Pn(C) \D2n .

In fact the formula that defines φ above works as well, provided that it is considered
in terms of the complex coordinates and we replace each x2

j with |xj |2.
2

Remark 7.30. Blowing up works in the category of (real or complex) regular
algebraic varieties. In fact algebraic geometry is the first source of this construction
and we have just developed a smooth version. Note that in the algebraic setting,
B(M,X) \D(M,X) is a Zariski open set of the regular algebraic variety B(M,X)
as well as M \ X is a Zariski open set of the regular algebraic variety M ; the
restriction of ρ is an algebraic isomorphism between these Zariski open sets, hence
(essentially by definition) M and B(M,X) are birationally equivalent . M is said
to be rational if it is birationally equivalent to the projective space of the same
dimension. Blowing up a projective space along regular centres is a basic way to
construct rational varieties.



CHAPTER 8

Transversality

We have already employed some instances of transversality and related concepts.
Here we will treat this topic more systematically. First we point out so called “basic
transversality theorems” which to a large extent will suffice to our aims. Then we
will develop some complements.

8.1. Basic transversality

We consider the following setting.
• M is a smooth m-manifold with (possibly empty) boundary ∂M ;
• N is a smooth boundaryless n-manifold and Z ⊂ N is a proper r-submanifold

of N , hence Z is both boundaryless and a closed subset of N ;
• f : M → N is a smooth map. If the boundary is non empty, then ∂f denotes

the restriction of f to ∂M .

Definition 8.1. We say that f is tranverse to Z (and we write f t Z) if

(1) For every x ∈M such that y = f(x) ∈ Z, we have

TyN = TyZ + dxf(TxM) .

(2) For every x ∈ ∂M such that ∂f(x) ∈ Z, we have

TyN = TyZ + dx∂f(Tx∂M) ,

in other words, ∂f t Z by itself. Obviously, if ∂M = ∅, then this second
requirement is empty.

We denote by t (M,N ;Z) the subspace of E(M,N) formed by the maps trans-
verse to Z. If A is a subset of M we denote by tA (M,N ;Z) the space of maps
which verify the transversality conditions for every x ∈ A or ∈ A ∩ ∂M , so that
t (M,N ;Z) =tM (M,N ;Z).

Some particular cases:

- If f(M) ∩ Z = ∅, then f t Z ;

- If Z = {y0} a single point then f t Z if and only if y0 is a regular value of
both f and ∂f .

- If also M is a boundaryless submanifold of N and f is the inclusion, then f t Z
(and we write also M t Z) if and only if for every x ∈M ∩Z, TxN = TxM + TxZ;
if dimM + dimZ = dimN , then TxN = TxM ⊕ TxZ.

- The basic local models for M t Z, and in fact for the whole transversality
stuff, is given by the possible mutual position of two affine subspaces, say A and
B, in some Rn. If dimA + dimB < n, then A t B if and only if A ∩ B = ∅. If
A ∩ B 6= ∅, up to translation we can assume that they are linear subspaces which
are transverse if and only if Rn = A+B. Note that A∩B is also a linear subspace
and, by elementary linear algebra dimA ∩B = dimA+ dimB − n ≥ 0.

There are two kinds of basic transversality theorems; roughly speaking, they
respectively claim that transversality implies nice geometric features of the map f ,
and that (at least when M is compact) it is a generic and stable property: up to
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arbitrarily small perturbation every map f becomes transverse, and trasversality
cannot be destroyed by small perturbations.

In the given setting we have:

Theorem 8.2. (First basic transversality theorem) (1) If f : M → N is trans-
verse to Z, then (Y, ∂Y ) := (f−1(Z), ∂f−1(Z)) is a proper submanifold of (M,∂M);
moreover dimM − dimY = dimN − dimZ.

(2) If (M,∂M), N and Z are oriented then Y and ∂Y are orientable and we
can fix an orientation procedure in such a way that ∂Y is the oriented boundary of
Y .

Proof : When Z = {y0} consists of one points, then the theorem is equivalent
to Proposition 2.25. Let us reduce the general to this special case. As Z is a closed
subset then also f−1(Z) and ∂f−1(Z) are closed sets. Being a proper submanifold is
a local property. For every z ∈ Z there is a chart of N , φ : W → U×U ′ ⊂ Rr×Rn−r,
such that φ(z) = 0 ∈ U × U ′, and φ(W ∩ Z) = U × {0}. Let p : U × U ′ → U ′

be the projection. Then it is easy to see that the restriction of f to f−1(W ) is
transverse to Z if and only if p◦φ◦f is transverse to {0}. This is enough to achieve
point (1). As for the orientation, let us orient Rn−r is such a way that the given
orientation of Rn (i.e. of N) is the direct sum of the given orientation of Rr (i.e. of
Z) followed the selected one on Rn−r. Then we can apply to p◦φ◦f the orientation
rule of point (2) of Proposition 2.25 to orient the intersection of (Y, ∂Y ) with W ;
by construction these local orientations are globally coherent.

2

Remark 8.3. It is useful to make explicit the orientation rule in the case
of transverse intersection M t Z of submanifolds of N . For every x ∈ M ∩ Z,
TxN = TxM + TxZ, and by assumption the linear spaces TxN , TxM and TxZ
are oriented (in a globally coherent way) and the last two intersect tranversely in
the first. We have to orient TxM ∩ TxZ. So we have reduced the problem to the
basic situation of two transverse oriented linear subspaces (A,ωA) and (B,ωB) in
Rn (endowed say with the standard orientation ωn). Given any orientation ωA∩B
on the intersection, it can be extented in an unique way to A and B in such a way
that ωA = ωA∩B ⊕ ω′ and ωB = ωA∩B ⊕ ω”. Then ωA∩B ⊕ ω′ ⊕ ω” determines an
orientation on the whole Rn. Finally we select the orientation ωAtB such that the
orientation of Rn obtained so far coincides with the given ωn. Note that in the non
oriented setting M t Z = Z t M , but the orientation depends on the order; this
can be checked straighforwardly in the linear local model; we get

M t Z = (−1)(dimN−dimM)(dimN−dimZ)Z tM .

A very important consequence of Theorem 8.2 is the following parametric transver-
sality theorem. In a sense it represents the bridge between the two kinds of transver-
sality theorems. Keeping the above setting, consider furthermore a boundaryless
“parameter” smooth manifold S, so that M × S has boundary equal to ∂M × S.
We have

Theorem 8.4. Let F : M × S → N be transverse to Z. For every s ∈ S, set
fs : M → N the restriction of F to M ∼ M × {s}. Then the set of parameters
s ∈ S such that fs is not transverse to Z is negligible in S.

Proof : Let (Y, ∂Y ) = (F−1(Z), ∂F−1(Z)) be the proper submanifold of (M ×
S, ∂M × S) accordingly with Theorem 8.2. Set π : Y → S the restriction to Y of
the projection p : M × S → S. We claim that for every regular value s of both
π and ∂π (i.e. such that π t {s}), then fs is transverse to Z. The thesis will
follow from the Sard-Brown theorem. Let us justify the claim. Let x ∈ M be
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such that fs(x) = F (x, s) = z ∈ Z. As F t Z, for every w ∈ TzN , there are
(u, v) ∈ TxM × TsS and t ∈ TzZ such that

w = d(x,s)F (u, v) + t .

The differential

d(x,s)p : TxM × TsS → TsS

is just the projection onto the second factor, and d(x,s)π is obtained by restriction.
As s is a regular value of π, then there exists a vector of the form (u′, v) ∈ T(x,s)Y .
By definition of Y , t′ := d(x,s)F (u′, v) ∈ TzZ. Finally we readily verify that

w = d(x,s)F (u− u′, 0) + d(x,s)F (u′, v) + t = dxfs(u− u′) + (t′ − t) .

This proves that TzN = dxfs(TxM) + TzZ. By using that s is also a regular value
of ∂π, the very same argument shows that ∂fs t Z. This achieves the proof.

2

To state the second transversality theorem, we refine the setting. That is we
assume furthermore that

(1) M is compact;
(2) N can be embedded in some Rh being also a closed subset.

In many application also N and Z will be compact. In any case these assump-
tions allows to apply to N the results of Section 5.12.1. In this refined setting we
have:

Theorem 8.5. (Second basic transversality theorem) (1) The set t (M,N ;Z)
of smooth maps transverse to Z is open and dense in E(M,N).

(2) Let f ∈ E(M,N) be such that ∂f : ∂M → N is transverse to Z. Denote
by E(M,N, ∂f) (resp. t (M,N, ∂f ;Z)) the space of smooth maps that coincide
with ∂f on ∂M (and are transverse to Z). Then t (M,N, ∂f ;Z) is open dense in
E(M,N, ∂f).

(3) For every h ∈ E(M,N) (resp. h ∈ E(M,N, ∂f)) there is g ∈ t (M,N ;Z)
(g ∈ t (M,N, ∂f ;Z)) smoothly homotopic to h.

Proof : Let us consider first the openess in both items (1) and (2). As M is
compact, in early chapters we have already achieved it in the case of summersions;
this easily implies the Theorem when Z = {y0} consists of one point. By using
the local reduction argument to this case as in the proof of Theorem 8.2, for every
f ∈ t (M,N ;Z), we can find a finite covering of M by compact sets K such that
f reduces to the special case on a neighbourhood of each K in M . Then, for every
K, there is a open neighbourhhood UK of f in E(M,N) formed by maps which
verify the transversality conditions at every x ∈ K. Then the intersection of these
finite family of open sets UK is a open neighbourhhood of f in E(M,N) contained
in t (M,N ;Z); hence it is open. The same argument applies to t (M,N, ∂f ;Z).

Let us come now to the density stated in (1). We consider first the special case
when N = Rn = Rr × Rn−r and Z = Rr = Rr × {0}. Let f ∈ E(M,Rn). Then
clearly the map

F : M × Rn → Rn, F (x, s) = f(x) + s

is transverse to Rr (in fact it is a summersion onto the whole Rn) and we can apply
to it the parametric transversality Theorem 8.4. Then for every ε > 0 there is
s ∈ Rn such that ||s|| < ε and fs t Z. As M is compact, by taking ε small enough,
then fs = f + s can be arbitrarily close to f in the C∞-topology.

We are going to apply the same argument in the general case, by means of a more
elabotare construction. Let f ∈ E(M,N). For the moment assume for simplicity
that N ⊂ Rh is compact and take a tubular neighbourhood πN : UN → N of N
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in Rh constructed by means of the standard riemannian metric g0 on Rh and some
ε0 > 0. Consider the restriction of the map defined above

F : M ×Bh(0, ε)→ Rh, F (x, s) = f(x) + s .

The parameter space is now restricted to the open ball of ray ε; as M and N are
compact, then if ε is smalls enough, the image of F is contained in UN and we can
define

F̂ : M ×Bh(0, ε)→ N, F̂ (x, s) = πN (F (x, s)) .

As both F and πN are summersions, also F̂ is a summersion, hence F̂ t Z, and

we can apply again Theorem 8.4. For s generic and small enough, f̂s t Z and is
arbitrarily close to f . If N is not compact, by using the considerations of Section
5.12.1, there is a compact submanifold with boundary N ′ ⊂ N such that f(M) ⊂
Int(N ′) and we can repeat the above argument by using a tubular “neighbourhood”
πN ′ : UN ′ → N ′. Alternatively, we can use (instead of πN ) the projection π : Nε →
N defined on the ε-neighbourhood of N determined by a suitable smooth positive
function ε : N → R, and the modified maps

F̂ : M ×Bh(0, 1)→ N, F̂ (x, s) = π(f(x) + ε(x)s) .

Let us face now the density stated in (2). We follow the same scheme, by

suitably modifying the map F̂ . Let f ∈ E(M,N) be such that ∂f t Z. By
using the same consideration developed to prove the openess, it is easy to verify
that f t Z provided that it is restricted to a small collar C of ∂M . By slightly
modifying the construction of a collar bump function, we can construct a smooth
function γ : M → [0, 1] such that γ is constantly equal to 0 on a smaller closed collar
C ′ ⊂ C, γ is positive on the complement of C ′ and constantly equal to 1 outside
C. Again assume for simplicity that N ⊂ Rh is compact and let πN : UN → N as
above. Then define

F̂ : M ×Bh(0, ε)→ N, F̂ (x, s) = πN (f(x) + γ2(x)s) .

We claim that F̂ t Z, then for generic s small enough, f̂s = πN ◦ (f + γ2s) belongs
to t (M,N, ∂f ;Z) and is arbitrarily close to f . We can complete the discussion

to N non compact as above. It remains to justify that F̂ t Z. The restriction
of F̂ to {x; γ2(x) 6= 0} × Bh(0, ε) is a summersion because for for every fixed x,
s→ γ2(x)s is a diffeomorphism onto its image, the map F (x, t) = πN (f(x) + t) is a

summersion, and F̂ is obtained by composition. It follows that if F̂ (x, s) = z ∈ Z
and γ2(x) 6= 0, then the transversality conditions are verified at (x, s). Assume now

that F̂ (x, s) = z ∈ Z and γ2(x) = 0, that is x ∈ C ′. We note that dxγ
2 = 2γ(x)dxγ,

hence it vanishes on C ′. By using this fact it is not hard to verifies that for every
(u, v) ∈ Tx(M)× TsBh(0, ε),

d(x,s)F̂ (u, v) = dxf(u)

hence these differentials have the same image in TzN . As f restricted to C ′ is
tranverse to Z, then also the restriction of F̂ to C ′ is transverse to Z.

Concerning point (3), referring for instance to f ∈ E(M,N) and to the above

proof of the density, we note that f = f̂0, and it is homotopic to f̂s t Z via the

path f̂σ(t), σ(t) = (1 − t)s, t ∈ [0, 1]. On the other hand, we know in general that
if g is close enough to f , then they are homotopic (recall Lemma 5.16).

The proof is now complete.
2

Remark 8.6. The proof of the openess does not use that N is embedded. We
sketch here an “abstract” (similar) proof of the density of (1) and (2) in Theorem 8.5
too. For semplicity we consider statement (1) and assume that M is boundaryless
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(we left to the reader the task to adapt the discussion to the other situations). Let
f ∈ E(M,N). By compacteness of M there is a nice atlas N of M

{φj : Wj → Bm(0, 1)}j=1,...,s

and a family F of charts of (N,Z) of the form

{αj : (Vj , Z ∩ Vj)→ (Ra × Rn−r,Ra)}
such that for every j, f(Wj) ⊂ Vj so that we have the the family

{fj : Uj → Rr × Rn−r}
of associated representations of f in local coordinates supported by (N ,F). Recall
that every Kj = Bj ⊂Wj is compact and this provides a finite compact covering of
M . The subset AN ,F of E(M,N) formed by the maps admitting local representa-
tions supported by (N ,F) is open and non empty as it contains f . By applying to
every E(Wj , Vj) the special case of the density considered in the proof of Theorem
8.5 (1) and by using the bump function γj in order to extend locally defined maps
to maps in E(M,N), we realize that for every j, tKj (M,N ;Z)∩AN ,F is dense In
AN ,F . We know that it is also open. Then the intersection of these finite family of
open and dense sets is open and dense in AN ,F , and is contained in t (M,N ;Z)
because the Kj cover the whole of M .

2

Remark 8.7. The meaning of the transversality theorems has been precised.
We have already recalled that for example any compact subset K ⊂ Bm(0, 1) can be

realized as K = f−1(0) for some smooth function f : B
m

(0, 1)→ R; compared with
the tame behaviour of K when f t {0}, this shows that non transverse situations
can be really weird. On the other hand, by Theorem 8.5 remarkably any weird non
transversal situation can be made stably tame up to arbitrarily small perturbations
(at least when M is compact).

8.2. Miscellaneous transversalities

Transversality is a profound, potent and pervasive paradigm beyond the basic
results stated in the previous section. Without any pretention of completeness we
collect here a few instances of further applications.

8.2.1. Jet trasversality. First we perform some constructions within the
smooth category of open sets considered in Chapter 1. In particular, we refer to
the Taylor polynomials defined in Section 1.2. Recall that a homogeneus polynomial
maps of degree k ≥ 1

p : Rm → Rn

is of the form p(x) = φ(x, . . . , x), where φ : (Rm)k → Rn is a (necessarily unique)
symmetric k-linear map. The set Pk(m,n) of these homogeneus polynomial maps
has a natural structure of finite dimensional real vector space endowed with a stan-
dard basis so that it is identified with RdimPk(m,n). A polynomial map of degree
≤ r, p : Rm → Rn, is of the form

p = p0 + p1 + · · ·+ pr

where p0 ∈ Rn and for k ≥ 1, pk is homogeneous polynomial map of degree k.
Denote by Jr(m,n) the set of these polynomial maps. We can use the natural
identification

Jr(m,n) =

r∏
k=0

Pk(m,n)

to give it a finite dimensional real vector space structure and Jr(m,n) is identified
with Rdim Jr(m,n).
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Remark 8.8. With some effort one can compute the dimension:

dim Jr(m,n) = n

(
r +m

n

)
.

Let U ⊂ Rm, V ⊂ Rn be non empty open sets. Then we can define the open
set of Rm × Jr(m,n) by

Jr(U, V ) := {(x, p) ∈ U × Jr(m,n); p0 ∈ V } .

Given a smooth map f : U → V , define the smooth map

jrf : U → Jr(U, V ), jrf(x) = Trf(x)

sending every point of U to the Taylor polynomial of f at x of degree ≤ r.
(Composition rule) Let U ⊂ Rm, V ⊂ Rn and W ⊂ Rh be non empty open

sets. Set

Jr(U, V,W ) = {((y, q), (x, p)) ∈ Jr(V,W )× Jr(U, V ); p0 = y} .

Let f : U → V , g : V → W be smooth maps. By a suitable extension to higher
order derivatives of the chain rule, one can find an unique polynomial map (the
explicit expression is called Faa di Bruno formula)

Pr : Jr(U, V,W )→ Jr(U,W )

such that

jr(g ◦ f)(x) = Pr(jrg(y), jrf(x)) .

As a particular application of the composition rule we have:

(Change of coordinates) Let U,U ′ ⊂ Rm, V, V ′ ⊂ Rn be non empty open sets;
φ : U → U ′, ψ : V → V ′ be diffeomorphisms. Then for every r, there is a unique
smooth diffeomorphism

jrψ,φ : Jr(U, V )→ Jr(U ′, V ′)

such that

jrψ,φ(jrf(x)) = jrf ′(x′)

where

x′ = φ(x), f ′ = ψ ◦ f ◦ φ−1 .

Now we can globalize the above local considerations, extending what we have
done for the (co)-tangent map.

Let M , N be smooth manifolds of dimension m and n respectively. Define on
M × C∞(M,N) the following relation:

(x, f) ∼r (x′, f ′) if x = x′, f(x) = f ′(x) and there are compatible representa-
tions in local coordinates of f and f ′ at x = x′, y = f(x), that is defined on the
same charts of M and N respectively:

fU,V , f
′
U,V : U → V, U ⊂ Rm, V ⊂ Rn

such that

jrfU,V (x) = jrf ′U,V (x) .

By using the change of coordinates rule, it is easy to check that this defines an
equivalence relation and that if (x, f) ∼r (x′, f ′), then the above defining property
holds for every pair of compatible representations in local coordinates. We denote
the equivalence class of (x, f) by jrf(x) and it is called the r-jet of f at x, Jr(M,N)
is the space of r-jets from M to N . For every smooth map f : M → N , the map

jrf : M → Jr(M,N)
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is called the r-jet extension of f . Clearly J0(M,N) = M × N . For every r ≥ 1,
Jr(M,N) has a natural structure of smooth manifold of dimension

dim Jr(M,N) = dimM + dim Jr(m,n) .

Local coordinates U and V for M and N carry local coordinates Jr(U, V ) for
Jr(M,N). This provides a smooth atlas of Jr(M,N) and we have already set-
tled the change of coordinates rules. We see above also the local representations
of an extension jrf , which is a smooth map indeed. There is a natural smooth
projection

σr : Jr(M,N)→M

and a sequence of smooth“forgetting” maps which factorize σ:

M ← J1(M,N)← · · · ← Jr(M,N) .

The map σr is a smooth fibration with fibre diffeomorphic to Jr(m,n); note that
in spite of the fact that Jr(m,n) is a vector space with a preferred basis, for r > 1
σr is not a vector bundle. The atlas of Jr(M,N) is fibred but the changes of
coordinates do not preserve the linear structure of the fibre. Every jet extension
jrf : M → Jr(M,N) is a section of such smooth fibre bundle. Also every map
Js(M,N)→ Js−1(M,N) is a smooth fibration with fibre Ps(m,n).

We are ready to state a version of the so called jet transversality theorem. Let
M and N be smooth boundaryless manifolds and Z be a submanifold of Jr(M,N).
Denote by

t jr(M,N,Z)

the set of smooth map f ∈ E(M,N) such that jrf t Z. We have:

Theorem 8.9. Let M be a compact smooth boundaryless manifold and N be a
boundaryless proper smooth submanifold of some Rh. Let Z be a proper submanifold
of Jr(M,N). Then t jr(M,N,Z) is open and dense in E(M,N).

Proof : We limit to an outline. Note that also Jr(M,N) can be embedded
as a proper submanifold of some Rk. When r = 0, Theorem 8.9 incorporates (1)
of Theorem 8.5 (at least when M is boundaryless). Openness is not hard. As
for the density, Theorem 8.5 ensures that every jrf can be approximated by a
smooth map g : M → Jr(M,N) transverse to Z, but the statement of theorem

8.9 requires furthemore that g is the r-jet extension of some map f̃ : M → N .
So jet-transversality is not an immediate consequence of standard transversality.
Nevertheless the structure of the proofs is basically the same. A first, fundamental
case to deal with is when N = Rn. In the proof of Theorem 8.5 the key point
was the application of parametric transversality to the deformations of a given map
f : M → Rn of the form f + s, s ∈ Rn. In the present situation the main difference
consists in using polynomial deformations of the form f + p0 + p1 + · · ·+ pr, where
p = p0 + · · · + pr varies among the polynomial maps p : Rn → Rn of degree ≤ r.
Provided this new ingredient, the proof theorem 8.5 can be repeated with minor
changes.

2

8.2.2. Transversality to stratifications. In several situations it is conve-
nient to extend the notion of “general position” (i.e. of transversality) with respect
to suitable “stratification” either ofN for the standard transversality or of Jr(M,N)
for jet-transversality. We do not intend to present here a consistent treatment of
stratification theory. We limit to a few suggestion. At a first sight a stratification
of a smooth manifold X is a partition S = {Sj} by means of boundaryless, con-
nected not necessarily proper smooth submanifolds of X, called the strata of the
stratification. In fact one usually requires more; reasonable requirements are:

• The stratification is locally finite;
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• (Frontier condition) The frontier S̄j \ Sj of every stratum Sj is union of
strata of strictly lower dimension;
• For every 0 ≤ s ≤ dimX, denote by Xs the s-skeleton of the stratification

that is the union of strata of dimension less or equal to s. Then Xs is a
closed subset of X.

For example if S ⊂ X is a boundaryless proper submanifold, then {X \ S, S}
is a stratification of X; the open simplices of a smooth triangulation of X as it
is described in Section 14.9 form a stratification; in this case every stratum of
dimension geater or equal to 1 is not a proper submanifold.

Given a stratification S of N , denote by t (M,N,S) the subspace of E(M,N)
formed by the map f : M → N wich are transverse to every stratum of S (we write
f t S). Similarly, for every r ≥ 1, given a stratification S of Jr(M,N) we define
t jr(M,N,S).

(Nice stratifications) We define this notion in a quite implicit way. Assume N
satifies the hypotheses of Theorem 8.9. We say that a stratification S as above
is nice if for every compact boundaryless smooth manifold M , t (M,N,S) (resp.
t jr(M,N,S)) is open and dense in E(M,N) and, moreover, for every such a map
f transverse to S, f−1(S) (resp. jrf−1(S)) is a nice stratification of M .

A key question is to determine further explicit (as mild as possible) conditions
in order that a stratification S is nice. Roughly speaking such conditions should
imply that the transversality to any stratum Sj forces at least locally at Sj the
transversality to every stratum Si such that Sj is in the frontier of Si. We will not
face this rather deep question (see also [Wall2]). We limit to state some results
where the stratifications are nice, without justifying this fact.

8.2.3. A classification of map singularities. An important field of appli-
cation of jet-transversality (in the stratified extension) is the study of singularities
of smooth maps (see [A2]). The idea is that, under suitable hypotheses, for a
“generic” map f : M → N , the source manifold M carries a nice stratification such
that the increasing codimension of the strata corresponds to more and more ‘deep’
classes of singular points of f determined by a certain specific lack of transversality.
Moreover, the occurrence of such singular points cannot be eliminated by means of
small perturbations of the map.

(Classification by the differential rank) A first coarse classification is in term of
the rank of differentials. Let M and N be boundaryless manifolds. Let f : M →
N be a smooth map. A point x ∈ M is said of class Σi (with respect to f) if
dim ker dxf = i. For every i, denote by Σi(f) the subset of M of points of class
Σi. They form a partition of M . If f is arbitrary this partition might be weird.
However we have:

Proposition 8.10. Let M and N verify the hypotheses of Theorem 8.9. Then
there is an open dense set R in E(M,N) such that for every f ∈ R, the connected
components of the Σi(f)’s form a nice stratification of M . Moreover, every Σi(f)
is a submanifold of M of dimension given by

dimM − dim Σi(f) = (dimM − r)(dimN − r), r = dimM − i .

In fact one defines a suitable nice stratification SΣ of J1(M,N) and for every
generic f we consider R = (j1f)−1(SΣ). In local coordinates J1(U, V ), SΣ corre-
sponds to the stratification of the matrix space M(n,m,R) by the matrix rank.

2

Example 8.11. (1) If N = R, then J1(M,R) is naturally identified with the
cotangent bundle and df = j1f ; f is a Morse function if and only if j1f is transverse
to the zero section of the bundle. Hence the result about Morse function (at least
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when M is compact boundaryless) of Chapter 5 can be reobtained as a special case
of jet-trasversality.

(2) (Whitney fold) Consider the map f : R2 → R2 defined by

f(x1, x2) = (x3
1 + x1x2, x2) .

The set of singular points is the parabole S := {3x2
1+x2 = 0}. The nice stratification

of the source R2 is given by Σ0(f) = R2 \ S, Σ1(f) = S.

(3) (Whitney umbrella) See also Section 7.8 . Consider the map f : R2 → R3

defined by
f(x1, x2) = (x1x2, x2, x

2
1) .

The point 0 ∈ R2 is the only one at which f is not an immersion; hence the nice
stratification of R2 is given by Σ0(f) = R2 \ {0}, Σ1(f) = {0}.

The above examples show that the stratification by the differential rank is
in general too coarse. In the Whitney fold, 0 ∈ Σ1(f) = S is clearly special:
ker d0f = T0S while for other x ∈ S, R2 = ker dxf +TxS. In the Whitney umbrella
a refinement of the startification can be rather obtained by noticing that the line
{x2 = 0} is the locus where the map is not injective.

If f ∈ R as in Proposition 8.10, a tentative refinement of the stratification
{Σi(f)} would be defined by recurrence as follows: assume that for every multi-
index of length k, I = (i1, . . . , ik) is defined ΣI(f) ⊂M , then for every multi-index

of length k+ 1, Ĩ = (i1, . . . , ik, ik+1), set ΣĨ(f) := Σik+1(f |ΣI(f)). It is not evident
that this eventually produces a nice (sub) stratification. The correct way to do (see
[Bo]) is to extend the above stratification SΣ of J1(M,N), to get a nice stratification

S̃Σ and extend Proposition 8.10.

8.2.4. Multi-transversality. Assume for example that f : M → N is an
immersion, and for simplicity M is connected. Then the nice stratification of M
consists of one stratum Σ0(f) = M . This does not give any information about the
image of f . Clearly this last might be “non generic”. We say that an immersion f
is in general position if for every k ≥ 2, whenever y = f(x1) = f(x2) = · · · = f(xk)
and the points x1, . . . , xk are distinct, then

TyN = dfxk(TxkM) + ∩k−1
j=1dfxj (TxjM) .

For example if dimN = 2 dimM , then the multiple points y are isolated and are
image of exactly two points of M . The following is a basic example of multi-
transversality result.

Proposition 8.12. Let M , N verify the hypotheses of Theorem 8.9. Assume
that the open set Im(M,N) of immersions of M in N is non empty. Then the set
of immersions in general position is open and dense in Im(M,N).

The general concept of multi-jet-transversality was introduced in [Ma2]. One
considers the products Jr(M,N)k, k ≥ 1. Then for every f ∈ E(M,N) we have the
product map (jrf)k : Mk → Jr(M,N)k. So for every submanifold V of Jr(M,N)k

we can consider f such that (jrf)k t V . The submanifolds V of most interest are
as follows:

- Given submanifolds Vi of Jr(M,N), 1 ≤ i ≤ k, consider the product
∏
Vi ⊂

Jr(M,N)k;

- There is a natural projection τk : Jr(M,N)k → Nk. Then take

V = τ−1
k (∆kN) ∩

∏
Vi

where ∆k(N) = {(y, . . . , y)} ⊂ Nk is the (multi) diagonal of Nk.

Multi-transversality to such a manifold V means that the following conditions
are satisfied:
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- If f(xi) = y for every i = 1, . . . k, then f is transverse to Vi at xi with
pre-image say Xi = f−1(Vi);

- The images say Bi of TxiXi in TyN satisfy

(⊕iBi)⊕ T(y,...,y)∆k(N) = (TyN)k .

Finally, in the same hypotheses, one gets [Ma2] a multi-transverse version of
Theorem 8.9.



CHAPTER 9

Morse functions and handle decompositions

Let us call smooth triad a triple (M,V0, V1) where M is a compact smooth
m-manifold with (possibly empty) boundary, V0 and V1 are union of connected
components of ∂M , so that the boundary is the disjoint union

∂M = V0 q V1 .

A boundaryless M corresponds to the triad (M, ∅, ∅). We stress that different
ordered bipartitions of the components of ∂M give rise to different triads. For
example if ∂M 6= ∅, then (M,∂M, ∅) and (M, ∅, ∂M) are different triads. We
know from Proposition 5.38 that generic Morse functions form a dense open set
in E(M,V0, V1), the space of functions f : M → [0, 1] such that Vj = f−1(j),
j = 0, 1 and without critical points on a neighbourhood of ∂M . Let f : M → [0, 1]
be such a generic Morse function on the triad (M,V0, V1). We have a finite set
of non degenerate critical points p0, . . . , ps of indices q0, . . . , qs, and critical values
cr = f(pr), such that 0 < cr < cr+1 < 1, r = 0, . . . , s − 1. For every X ⊂ [0, 1],
denote VX := f−1(X). For every regular value a of f , Va is a compact boundaryless
submanifold of M of dimension m− 1. If 0 ≤ a < b ≤ 1 are regular values, then we
have the subtriad (V[a,b], Va, Vb).

The following lemma ultimately is an instance of a fibration theorem. We give
a “non embedded” proof by assuming a few results of analysis about the existence,
the uniqueness and the regular dependence on the data for ordinary differential
equations.

Lemma 9.1. (Cylinder Lemma) Assume that [a, b] ⊂ [0, 1] does not contain any
critical value of f . Then there is a diffeomorphism ψ : Va × [a, b]→ V[a,b] such that
f ◦ ψ(y, t) = t for every y ∈ Va.

Proof : Fix an auxiliary riemannian metric g on M and let ∇gf the associated
gradient field of f , which is non zero everywhere on V[a,b]. We can normalize it by
taking for every p ∈ V[a,b],

ν(p) = ∇gf(p)/||∇gf(p)||g(p) .
Every integral curve α of ν verifies f(α(s)) = s+ c, c being a constant. Possibly by
means of the change of parameter β(t) = α(t− c), we can assume that f(α(t)) = t.
Since V[a,b] is compact every maximal integral curve is defined on the whole [a, b].
Then for every y ∈ Va there is a unique maximal integral curve of ν

αy : [a, b]→ V[a,b]

such that α(a) = y, and f(α(t)) = t for every t ∈ [a, b]. The required diffeomorphism
is defined by ψ(y, t) = αy(t), with inverse ψ−1(x) = (αx(a), f(x)), where αx is the
unique maximal integral curve passing through x ∈ V[a,b].

2

Remark 9.2. Via the existence of embeddings of compact manifolds in some
Rn, we are currently exploiting the results obtained for compact embedded mani-
folds. However, in several situations we could provide also an “abstract” treatment.
For example, the existence of collars of ∂M in M is an immediate consequence of
Lemma 9.1, provided that one knows that E(M,∂M, ∅) is non empty. This last fact

139
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can be obtained as follows: fix a nice atlas of M . Define local functions as follows:
if (W,φ) is an internal chart, then fj is the constant function equal to 1/2. If

φj : (Wj ,Wj ∩ ∂M)→ (Bm ∩Hm, Bm ∩ ∂Hm)

is a chart at the boundary, then fj is the restriction of the projection of Bm to the
xm-axis. By using the partition of unity subordinate to the atlas, define

f =
∑
j

λjfj .

One can check directly that f has the desired properties.
Strictly speaking in Chapter 5 we have proved the collars uniqueness up to

isotopy only for the ones realized by means of that (embedded) construction. In
fact it holds in full generality (see [Mu]). However we do not really need this fact,
so we omit the somewhat technical proof. Also the density of Morse functions can
be obtained in an abstract way; the result about the generic linear projections to
lines gives us a “local” density for representations in local coordinates, then one
uses nice atlas and partitions of unity to get the global result.

9.1. Dissections carried by generic Morse functions

First we fix a nice atlas with collars on the triad (M,V0, V1) adapted to the
given Morse function f : M → [0, 1]. This means the following facts:

• The collars are of the form V[0,ε0], V[1−ε0,1], for some ε0 > 0, ε0 < c0 =
f(p0), cs = f(ps) < 1− ε0;

• every critical point pr of f is contained in a unique internal normal chart
(Wr, φr), in such a way that Br ∩ Br′ = ∅ if r 6= r′ (recall that Br =
φ−1
r (Bm(0, 1/3));

• Every (Wr, φr) is such that (f ◦ ψr − cr) : Bm(0, 1/3)) → R is in normal
form according to Morse’s Lemma of Section 5.33 at 0 = φr(pr).

Certainly such an adapted atlas exists. Then we take ε > 0 such that

• ε0 < c0 − ε, c0 + ε < c1 − ε, . . . , cs−1 + ε < cs − ε, cs + ε < 1− ε0;
• for every r = 0, . . . , s, Vcr−ε ∩ Br 6= ∅ and Vcr+ε ∩ Br 6= ∅, so that
V [cr − ε, cr + ε] is the union of V [cr − ε, cr + ε] ∩Br and its complement.

So we have the dissection of the triad (M,V0, V1) associated to the Morse func-
tion f :

V[0,c0−ε] ∪ V[c0−ε,c0+ε] ∪ V[c0+ε,c1−ε] ∪ V[c1−ε,c1+ε] ∪ · · · ∪ V[cs−ε,cs+ε] ∪ V[cs+ε,1] .

By applying the cylinder and Thom’s lemmas, we have that

• V[0,c0−ε] ∼ V0 × [0, c0 − ε], V[cs+ε,1] ∼ [cs + ε, 1]× V1;
• for every r = 0, . . . , s− 1, V[cr+ε,cr+1−ε] ∼ Vcr+ε × [cr + ε, cr+1 − ε];
• V[0,cr+ε] ∼ V[0,cr+1−ε].

For every r = 0, . . . , s − 1, (V[cr−ε,cr+ε], Vcr−ε, Vcr+ε) is an elementary triad in
the sense that it carries a Morse function (the restriction of f) with only one critical
point (pr of a given index qr).

Adapted gradient fields. By using the above adapted nice atlas of (M,V0, V1)
with respect to f , we can construct an adapted riemannian metric g on M , so that
for every r = 0, . . . , s, the gradient field ∇f := ∇gf has the normalized expression
in the local coordinates over Br:

2(−x1,−x2, . . . ,−xqr , xqr+1, . . . , xm)

while the collars of V0 and V1 are obtained by integrating such a (normalized) field
as in the proof of Lemma 9.1.
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So the key point will be to understand what happens up to diffeomorphism by
passing from V[0,cr−ε] to V[0,cr+ε] (equivalently to V[0,cr+1−ε]) through such an ele-
mentary triad. It is evident that the choice of the parameters ε0 and ε is immaterial.
An answer is given by the following Proposition. We refer to notions introduced in
Chapter 7. The proof is extracted from [Pa].

Proposition 9.3. Let f : M → [0, 1] be a generic Morse function on the triad
(M,V0, V1) and consider an associated dissection. Let p be a critical point of f of
index q, and c′ be the next critical value of f after c = f(p). Then

(1) V[0,c+ε] is diffeomorphic to V[0,c′−ε].

(2) Up to diffeomorphism, V[0,c+ε] is obtained by attaching a q-handle (of di-
mension m) to V[0,c−ε] along Vc−ε.

Proof : As already remarked, (1) follows from the Cylinder and Thom’s lemmas.
As for (2), take a nice atlas associated to the given Morse dissection of (M,V0, V1).

Take the Morse chart (ψ(B), φ) at p, so that in that local coordinates, φ(p) = 0,
and

f̂ = f ◦ ψ : B → R
has the normal form

f̂(x1, . . . xm) = −(x2
1 + · · ·+ x2

q) + (x2
q+1 + · · ·+ x2

m) + c .

According to our usual conventions, B should beBm(0, 1/3), but up to reparametriza-
tion we can normalize the picture as follows. First we simplify the notations by
setting

(x1, . . . , xq, xq+1, . . . xm) = (X,Y ) ∈ Rq × Rm−q .
Then we can assume that:

- f : M → [a0, a1] for suitable a0 < −1, 1 < a1;

- B = Bm(0, 2), f̂(0) = c = 0, ε = 1;
- B ∩ φ(W ∩ V[a0,−1]) = {(X,Y ) ∈ B; −||X2||+ ||Y ||2 ≤ −1};
- B ∩ φ(W ∩ V[a0,1]) = {(X,Y ) ∈ B; −||X2||+ ||Y ||2 ≤ 1}.
The standard handle Hq = Dq ×Dm−q is contained into

B ∩ φ(W ∩ V[−1,1]) = {(X,Y ) ∈ B; −1 ≤ −||X2||+ ||Y ||2 ≤ 1}

and Hq intersects {−||X2|| + ||Y ||2 = ±1} along the union of its a and b-spheres.
Moreover, if H ′ = (Rq×Dm−q)∩{−1 ≤ −||X2||+||Y ||2 ≤ 1}, then V[a0,−1]∪ψ(H ′) is
a submanifold with corners of V[a0,1] obtained by attaching the q-handle to V[0,−1]

along V−1. The idea is to modify the inclusion of H ′ to an embedding j of Hq

(actually an embedded corner smoothing) in such a way that:

(1) H := j(Hq) ⊂ {(X,Y ) ∈ B; −1 ≤ −||X2||+ ||Y ||2 < 1}.
(2) H ∩ {−||X2||+ ||Y ||2 = −1} = j(Ta), the image of the a-tube.
(3) The embedding j is still equal to the identity at the core of the handle.

(4) M̃ := V[a0,−1] ∪ ψ(H) is a smooth submanifold of V[a0,1] obtained by at-
taching the q-handle to V[0,−1] along V−1, having the restriction of j to Ta
as attaching map.

(5) V[a0,1] \ M̃ is a collar of V1 in V[a0,1].

Take the 1-dimensional bump function γ = γ1/2,1; then define

ĝ : B → R; ĝ(X,Y ) = −||X||2 + ||Y ||2 − 3

2
γ(||Y ||2) .

Clearly

{ĝ ≤ −1} = {f̂ ≤ −1} ∪ ({f̂ ≥ −1} ∩ {ĝ ≤ −1}) := {f̂ ≤ −1} ∪ H

and H intersects {f̂ ≤ −1} at {f̂ = −1}; {ĝ ≤ −1} is contained in the interior of

{f ≤ 1}, and {f̂ ≤ 1} = {ĝ ≤ 1}.
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Claim: H is q-handle attached to {f̂ ≤ −1} along {f̂ = −1}, via a character-
istic map H : Dq ×Dm−q → H which is the identity on the core Dq × {0}.

We are going to write down the explicit formulas establishing the claim. Several
verifications are understood; for all details (in a more general setting) we refer to
[Pa]. The smooth function σ : [0, 1]→ R is uniquely defined by the equation

γ(σ(s))

1 + σ(s)
=

2

3
(1− s) .

The function σ is strictly increasing, σ(0) = 1
2 , σ(1) = 1 and moreover we have that

for every (X,Y ) ∈ H,

||Y ||2 < σ(
||X||2

1 + ||Y ||2
) .

By using σ and its properties, we can give the explicit characteristic map

H : Dq ×Dm−q → H

H(X,Y ) = (
√
σ(||X||2)||Y ||2 + 1 X,

√
σ(||X||2) Y )

which restricts to the attaching map

h : Sq−1 ×Dm−q → ∂H ⊂ {f̂ = −1}

h(X,Y ) = (
√
||Y ||2 + 1 X,Y ) .

Let us consider now

M ′ := [{f ≥ −1} ∩ (M \ ψ(B))] ∪ ψ({(X,Y ) ∈ B; ĝ ≥ −1}) .

By construction, the functions f and ĝ ◦φ match on M ′, giving us a global function
g : M ′ → R, such that

{f ≤ 1} = {f ≤ −1} ∪ ψ(H) ∪ {p ∈M ′; −1 ≤ g ≤ 1} .

The final remark is that [−1, 1] does not contain critical values of g. It is enough
to verify it for ĝ on B. In fact

∇ĝ(X,Y ) = 2(−X,Y )− 2(0, γ′(||Y ||2)Y )

which vanishes only at 0 because γ′ ≤ 0 on (0,+∞). Summarizing, as

{f ≤ −1} ∪ ψ(H)

is obtained by attaching a q-handle to {f ≤ −1} along {f = −1}, by applying the
Cylinder Lemma to g over [−1, 1] we conclude that also {f ≤ 1} is obtained by
attaching a q-handle to {f ≤ −1} along {f = −1}. Ultimately, by restoring the
usual notations, V[0,c+ε] is obtained by attaching a q-handle to V[0,c−ε] along Vc−ε.

2

Remark 9.4. With the notations of (the proof of) Proposition 9.3, we realize
that the coreDq×{0} of the q-handleH is formed by the integral lines of the adapted
gradient field ∇f which start at a point of Vc−ε and end in the critical point p. If
c− ε > δ > 0 is any value such that [δ, c− ε] does not contain any critical value of f ,
then again by the Cylinder Lemma, V[0,c+ε] is also obtained by attaching a q-handle
say H′ to V[0,δ] along Vδ. As well as the core of H and the relative attaching map
h look “simple and local”, the core and the relative attaching map h′ of H′ can be
“far from Vc−ε and complicated”. In fact h′ is obtained by composing h with the
diffeomorphism between Vc′−ε and Vδ provided by the Cylinder Lemma; again the
core of H′ is formed by the integral lines of the adapted gradient ∇f (used in the
Cylinder Lemma) which start at a point of Vδ and end in p.
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9.2. Handle decompositions

Let (M,V0, V1) be a triad a before. By definition, a handle decomposition of
the triad is a sequence of nested triads of the form

(M0, V0, V1,0) ⊂ (M1, V0, V1,1) ⊂ (M2, V0, V1,2) ⊂ · · · ⊂ (Mk, V0, V1,k)

such that

• V1,k = V1, and (Mk, V0, V1) is diffeomorphic to (M,V0, V1) via a diffeo-
morphism which is the identity in a neighbourhood of V0 q V1;

• For every r = 0, . . . , k − 1, (Mr+1, V0, V1,r+1) is obtained by attaching a
q-handle (of dimension m) to (Mr, V0, V1,r) along V1,r (for some q).

Two handle decompositions are diffeomorphic if they are related by a diffeo-
morphism which is the identity near the boundary and respects the sequences of
nested triads. We can also normalize the form of a given handle decomposition by
stipulating that it starts with a “right” collar C0 of V0 and ends with a “left” collar
C1 of V1.

As an immediate Corollary of Proposition 9.3 we have the existence of handle
decompositions for every triad.

Corollary 9.5. Every triad (M,V0, V1) admits handle decompositions.

Proof : Take a dissection carried by any generic Morse function on the triad.
The sequence of nested submanifolds

V[0,c0−ε] ⊂ V[0,c1−ε] ⊂ V[0,c2−ε] ⊂ · · · ⊂ V[0,1]

leads to a desired handle decomposition.
2

Sometimes a handle decomposition of (M,V0, V1) (in normalized form) is for-
mally indicated as

C0 ∪Hq1
1 ∪H

q2
2 ∪ · · · ∪H

qk
k ∪ C1

where C0 and C1 are the respective collars of V0 and V1, and for r = 0, . . . , k − 1,
Mr = C0 ∪Hq1

1 ∪H
q2
2 ∪ · · · ∪Hqr

r , Mr+1 is obtained by attaching the qr+1-handle
H
qr+1

r+1 to Mr, along V1,r. Sometimes we will omit to indicate the index qr.

The dual decompositions. Given a triad (M,V0, V1), the dual triad is by
definition (M,V1, V2). Given a decomposition H of the triad (M,V0, V1) formally
indicated as

C0 ∪Hq1
1 ∪H

q2
2 ∪ · · · ∪H

qk
k ∪ C1

we can consider the dual decomposition H∗ of (M,V1, V0) obtained by going from
C1 to C0 in the opposite direction. Every q-handle Hq of H is converted into a
“dual” (m−q)-handle (H∗)m−q of H∗ where the core and the cocore exchange their
roles. If H is associated to a Morse function f , then H∗ is associated to the function
f∗ = 1− f .

Once we have obtained the existence of handle decompositions, we will develop
our discussion in terms of these last, somehow forgetting the Morse functions. To
this respect Morse functions have been rather a tool in order to produce handle
decompositions. On another hand, one can prove that

For every handle decomposition of a triad, there is a Morse function that re-
covers it, so that every q-handle corresponds to a critical point of index q.

So handle decompositions and Morse functions (with the associated dissections)
basically are equivalent stuff. This means that any manipulation in terms of handle
decompositions should have a counterpart in the realm of Morse functions. One
can find such a purely Morse function approach in [M3]. However, dealing directly
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with handle decompositions is often easier and topologically transparent with re-
spect to its Morse function counterpart which can be demanding. Moreover, handle
technology works as well even for other categories of manifolds (like the piecewise-
linear (PL) one, see [RS]) where there is not a Morse function counterpart. For
these reasons we will not pursue the equivalence between Morse function and handle
approaches, preferring the latter.

9.3. Moves on handle decompositions

There are two basic ways to modify a given handle decomposition of a triad
(M,V0, V1) (up to diffeomorphism equal to the identity on a neighbourhood of
V0 q V1).

Handle sliding. This is a synonymous of modifying the attacching map of a
handle, say Hr, in the decomposition staying in the same isotopy class. We have
already noticed in Chapter 7 that up to diffeomorphism this does not modify Mr,
then we can continue the decomposition by composing the subsequent attaching
maps with such a diffeomorphism, finally obtaining a decomposition diffeomorphic
to the given one (possibly by attaching a final collar of V1 in order to normalize the
form).

Before stating the other modification, let us give a definition.

Definition 9.6. Let

· · · ∪Hqr
r ∪H

qr+1

r+1 ∪ . . .

be a fragment of a handle decomposition of a triad (M,V0, V1). Assume that qr = q,
qr+1 = q + 1. Both the embedded b-sphere Sb of Hq

r (which is diffeomorphic to

Sm−q−1) and the embedded a-sphere Sa of Hq+1
r+1 (which is diffeomorphic to Sq )

are submanifolds of the (m− 1)-manifold V1,r, and dimSb + dimSa = m− 1. Then
the adjacent handles Hr∪Hr+1 form a pair of complementary handles provided that
Sb and Sa intersect transversely in V1,r at exactly one point. Note that under the
above dimensional assumptions, by transversality and up to handle sliding we can
assume anyway that Sb and Sa intersect transversely at a finite number of points.

Cancelling/inserting pairs of complementary handles. We can state the basic
handle cancellation result.

Proposition 9.7. If

· · · ∪Hq
r ∪H

q+1
r+1 ∪ . . .

is a pair of complementary handles in a handle decomposition of (M,V0, V1), then
(Mr−1, V0, V1,r−1) is diffeomorphic to (Mr+1, V0, V1,r+1). Hence we can cancel the
pair and get a handle decomposition of the form

C0 ∪Hq1
1 ∪ · · · ∪H

qr−1

r−1 ∪H
qr+2

r+2 · · · ∪H
qk
k ∪ C1 .

Reciprocally, we can freely insert a pair of complementary handles between any two
adjacent handles into a given decomposition.

We postpone the proof below.

A key problem is to study the handle decompositions of a given triad up to the
move-equivalence relation generated by such basic moves. In fact by using Cerf’s
theory [Ce2] (see [Kirby]), one can prove the following fact.

Theorem 9.8. Any two handle decompositions of a triads (M,V0, V1) are move-
equivalent to each other.
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We will not prove nor use such a rather demanding result. We limit to some
remarks and simple applications.

• For every handle decomposition H of (M,V0, V1) set

χ(H) =
∑
q

(−1)q|Hq|

where |Hq| denotes the number of q-handle of H. Obviously this characteristic of H
is move-equivalence invariant. We will see later that χ(H) has in fact an intrinsic
topological meaning (see Remark 14.2).

• The following is a first important application of sliding handle in order to
specialize the handle decompositions. Let us give first a definition

Definition 9.9. A handle decomposition of (M,V0, V1) is said ordered if

• For every q = 0, . . . ,m − 1, the q + 1 handles are attached after the q-
handles;

• For every q = 0, . . . ,m, the q-handles are attached simultaneously. Pre-
cisely, if Hq denotes the pattern of q-handle, Mq−1 = C0∪H0∪ · · ·∪Hq−1

then the attaching maps of the handles in Hq have disjoint images in
V1,q−1.

Proposition 9.10. (Reordering) By handle sliding, every handle decomposition
of (M,V0, V1) can be transformed into an ordered decomposition.

Proof : Let

· · · ∪Hqr
r ∪H

qr+1

r+1 ∪ . . .
be a fragment of a given handle decomposition H. Set qr = p , qr+1 = q, and
assume that p ≥ q. Then the embedded b-sphere Sb of Hp

r is diffeomorphic to
Sm−p−1 while the embedded a-sphere Sa of Hq

r+1 is diffeomorphic to Sq−1. Then
dimSb+dimSa ≤ m−2 < m−1. Up to handle sliding, we can assume that Sb and Sa
are transverse submanifolds of the (m−1)-manifold V1,r, so that Sb∩Sa = ∅. There
is a tubular neighbourhood U of Sb contained in the b-tube Tb around Sb, such that
Sa ∩ U = ∅; Tb itself is a tubular neighbourhood of Sb. Hence by the uniqueness of
the tubular neighbourhood up to isotopy and the extension of isotopy to diffeotopy,
there is a diffeotopy of V1,r which keeps Sb fixed and pushs the complement of U in
Tb (hence Sa) outside Tb. It follows that up to handle sliding the two handles have
now disjoint attaching tubes so that we can attach them in the inverse order or even
simultaneously. The proposition follows by several applications of this argument.

2

Remark 9.11. In terms of Morse functions, the last proposition corresponds
to the existence of Morse functions such that critical points of the same index share
the same critical value, and the critical values strictly increase together with the
corresponding indices.

Proof of Proposition 9.7. Let us consider first the simplest case q = 0. Attaching
a 0-handle means “create” a new disjoint m-ball component

H0
r = Dm = {0} ×Dm .

The whole boundary Sm−1 forms the b-sphere. If the 1-handle H1
r+1 is complemen-

tary to H0
r , then its attaching map embedds one component of

∂D1 ×Dm−1 = {−1, 1} ×Dm−1

into Sm−1, while the other component is embedded into V1,r−1 = V1,r \Sm−1. The
partial attachment of D1 ×Dm−1 to Dm is a shelling (refer to Section 7.5) of Dm

producing another diffeomorphic copy of Dm. Then the remaining component of
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the attaching map finally produces a shelling of Mr−1 hence a diffeomorphic copy of
it. The same facts hold in the general case by a more elaborate argument. Assume
first that the complementary handles have normalized attaching maps as follows.
Let us decompose the b-sphere Sb of Hq

r as Sb = D+
b ∪ D

−
b , where both D±b are

diffeomorphic to Dm−q−1 and intersect along an equatorial (m − q − 2)-sphere.
Then the b-tube around Sb is given as Tb = Dq × (D+

b ∪ D
−
b ). Similarly for the

a-sphere and the a-tube of Hq+1
r+1 , let Sa = D+

a ∪D−a , D±a ∼ Dq, D+
a ∪D−a ∼ Sq−1,

Ta = (D+
a ∪D−a )×Dm−q−1. Assume that the intersection, say A, between the image

of the attaching map of Hq+1
r+1 and Tb is equal to Dq×D+

b , and that the inverse image

of A, say Â, is equal to D+
a ×Dm−q−1, so that Â ∼ A and Â∩Sa = D+

a is mapped
onto Dq×{x0}, x0 being the ‘centre’ of D+

b . In such a normalized situation, we can
factorize the attachment of the pattern made by the two complementary handles as
follows:

(1) First glue Hq+1
r+1 to Hq

r by using as attaching map the restriction of the

whole attaching map to Â. This is a shelling of a disk, so it results a
smooth m-disk with a residual attaching zone contained in the boundary
and diffeomeorphic to a (m− 1)-disk.

(2) Perform the residual attachment; actually this is a further shelling over
Mr−1.

This achieves the result in the normalized situation. In our hypothesis, a priori
we have such a normalized situation provided we replace the whole b-tube Tb with
a smaller tubular neighbourhood U of Sb contained in Tb. Now, similarly to the
proof of Proposition 9.10, by the uniqueness of the tubular neighbourhood up to
isotopy and the extension of isotopy to diffeotopy, there is a diffeotopy which keeps
Sb fixed and transforms U ∪ Hq+1

r+1 to a pair of complementary handles in normal
situation. This completes the proof.

2

• A measure of the complication of a given handle decomposition is the total
number of handles. For example if it is equal to 0, then (M,V0, V1) is diffeomorphic
to the product triad (V0× [0, 1], V0, V0), in particular V0 and V1 are diffeomorphic; if
a boundaryless M has a decomposition with only one 0-handle and one m-handle,
then M is a twisted sphere. A natural task is to try to reduce such a complication by
applying to a given decomposition some instances of the basic moves. The following
is a first simple but useful step in this direction.

Proposition 9.12. (Cancellation of 0- and m-handles) Assume that M is con-
nected. Then:

(1) For every triad of the form (M, ∅, ∅) (i.e. M is boundaryless), every handle
decomposition H is move-equivalent to an ordered decomposition H′ with only one
0-handle and only one m-handle.

(2) For every triad of the form (M, ∅, ∂M), ∂M 6= ∅, every handle decomposi-
tion H is move-equivalent to an ordered decomposition H′ with only one 0-handle
and without m-handles.

(3) For every triad of the form (M,∂M, ∅), ∂M 6= ∅, every handle decomposi-
tion H is move-equivalent to an ordered decomposition H′ with only one m-handle
and without 0-handles.

(4) For every triad of the form (M,V0, V1), both V0 and V1 being non empty,
every handle decomposition H is move-equivalent to an ordered decomposition H′
without both 0- and m-handles.

Proof : Let us prove (1) and (2) simultaneously. By handle sliding we can
assume that the decompostion is ordered. Assume that we have attached a certain
number of 0-handles, that is we have created a set of disjoint components diffeomor-
phic to Dm. The only way to restore the fact that M is connected is by means of
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the 1-handles. By successive application of elimination of complementary H0 ∪H1

or reordering we eventually rich two possible situations: either we remain with only
one 0-handle and this happens when V0 = ∅ (if there are no longer complementary
H0 ∪ H1 to eliminate then M would be not connected), or we remain with no 0-
handles and this happens when V0 6= ∅ and the 1-handles connect to each other all
the components of C0. To deal with the the m-handles is enough to apply the same
argument to the dual decompostion.

2

Remark 9.13. In terms of Morse functions, for example the first case of the
above proposition corresponds to the existence of functions with only one minimum
and one maximum. Similarly for the other cases.

9.3.1. The CW complex associated to an ordered decomposition. Let
M be boundaryless. Let

H0 ∪ {H1} ∪ {H2} · · · ∪ {Hm−1} ∪Hm

be an ordered handle decomposition of the triad (M, ∅, ∅) with one 0-handle and
one m-handle; {Hj} means a (possibly empty) pattern of ij j-handles attached
simultaneously. Every handle H has a natural retraction

r : H → core(H) ∪ a− tube(H)

which realizes a homotopy equivalence. By using the notations fixed above, we are
going to construct inductively homotopy equivalence

lj : Wj → Kj

where K0 consists of one point and Kj will be obtained by attaching ij j-cells to
Kj−1; we eventually get a homotopy equivalence

l : M → K, K = Km

where (by the very definition of this term) K is a finite CW-complex of dimension
m. So, let K0 be the core of H0; then l0 : M0 → K0 is an instance of retraction r
as above. Assume we have defined lj−1 : Mj−1 → Kj−1. Then

Mj = Mj−1 ∪{hj} {H
j}

is homotopy equivalent (via the retraction lj := lj−1 ◦ {rj}) to

Kj = Kj−1 ∪{gj} {D
j}

where {gj} is the restriction of lj−1 ◦ {hj}.
Assume now that ∂M is not empty and consider the triad (M,∂M, ∅). In

such a case the ordered handle decomposition has no m-handles, hence there is an
homotopy equivalence l : M → K where K is a finite CW-complex of dimension
d ≤ m− 1.

9.4. Compact 1-manifolds

We use the handle technology developed so far in order to classify compact
1-manifolds up to diffeomorphism. This is simple and intuitive; nevertheless it is a
fundamental result with many applications (see Chapter 11). It is not restrictive to
assume that these manifolds are connected.

Proposition 9.14. (1) A compact connected boundaryless 1-manifold is diffeo-
morphic to S1.

(2) A compact connect 1-manifold with non empty boundary is diffeomorphic to
the interval D1.
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Proof : In both cases apply Proposition 9.12. In the second case there is
a handle decomposition of (M, ∅, ∂M) formed by one 0-handle (of dimension 1).
Hence (M, ∅, ∂M) is diffeomorphic to (D1, ∅, {±1}). In the second case there is
a handle decomposition of (M, ∅, ∅) formed by one 0-handle and one 1-handle (of
dimension 1). Hence M is a twisted 1-sphere and we know from Chapter 7 that it
is diffeomorphic to S1.

2



CHAPTER 10

Bordism

For every m ≥ 0, denote by Sm the class of smooth compact (not necessarily
connected) boundaryless m-manifolds. A natural question would be to classify the
elements of Sm up to diffeomorphism. We can also specialize the question to the
class Om of oriented manifolds up to oriented diffeomorphism. Sometimes we will
useMm to indicate indifferently either Sm or Om. It turns out that beyond m ≤ 2
these are very demanding, even hopeless questions. Then it is natural to relax the
diffeomorphism to a suitable equivalence up to (possibly oriented) bordism.

On another hand, homotopy groups πm(X,x0) of any pointed topological space
(X,x0) provide the basic examples of topological/algebraic functors and are con-
structed by implementing the following idea: to get information about a compli-
cated “unknow” space X, continuously map into it “tame” spaces (the m-sphere)
and study the behaviour of these singular tame objects in X up to homotopy which
is a sort of basic prototype of bordism between maps. Note that the singular “tame”
objects are in general not so simple in spite of the tame source spaces because the
maps and their images in X can be complicated. The same idea can be imple-
mented by considering singular smooth m-manifolds in X, that is continuous maps
f : M → X where M ∈ Mm, up to suitable bordism of maps (naturally extending
the bordism of manifolds mentioned above). This leads in a simple way to further
topological/algebraic functors; once also the relative theory for topological pairs
(X,A) has been developed, then one easily checks that these functors verify the so
called Eilenberg-Steenrod axioms which characterize generalized homology theories.
Of course all this specializes to the case when X itself belongs to Mk, for some k.
We will develop this topological/differential specialization mainly in Chapter 11.

10.1. The bordism modules of a topological space

Let X be a topological space. For every m ≥ 0 a singular smooth m-manifold
in X is a continuous map f : M → X where M ∈ Sm Denote by

Sm(X)

the set of such singular manifolds to which we formally add the empty set.

Definition 10.1. (M,f) ∈ Sm(X) is a singular boundary if there are a compact
smooth (m+1)-manifold with boundary (W,∂W ), a diffeomorphism ρ : M → ∂W ,
a continuous map F : W → X such that F ◦ ρ = f .

Let us put on Sm(X) the following relation:

We say that (M0, f0) is bordant with (M1, f1) and we write (M0, f0) ∼b (M1, f1)
if the disjoint union (M0, f0) q (M1, f1) is a singular boundary. It is consistent to
state that (M,f) ∼b ∅ if and only if (M,f) is a singular boundary.

We claim that this is an equivalence relation:

• The cylinder (M × [0, 1], F ) , F (x, t) = f(x) for every t ∈ [0, 1], establishes
that (M,f) ∼b (M,f), ρ : M qM → (M × {0}) q (M × {1}) being the natural
inclusion.

• As the disjoint union is symmetric, then also ∼b is obviously symmetric.

149
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• Transitivity follows by gluing smooth manifolds along boundary components.
Precisely, assume that (W0, F0), ρ0 : M0 qM1 → ∂W0 realize (M0, f0) ∼b (M1, f1),
while (W1, F1), ρ1 : M1qM2 → ∂W1 realize (M1, f1) ∼b (M2, f2). Then F0 and F1

match to define a smooth map F2 on W2 := W0qψW1, where ψ is the composition of

the restriction of ρ−1
0 to ρ0(M1) with the restriction of ρ1 to M1. Finally (W2, F2)

together with the disjoint union of ρ0 restricted to M0 and ρ1 restricted to M2

realize (M0, f0) ∼b (M2, f2).

We denote by ηm(X) the quotient set Sm(X)/ ∼b, by [M,f ] the equivalence
class of (M,f).

The disjoint union is an operation on Sm(X). It is immediate that it descends
to the quotient, that is [M,f ] + [N, g] := [M qN, f q g] is a well defined operation
on ηm(X). We have

Proposition 10.2. (ηm(X),+) is an abelian group.

Proof : The operation + is associative and commutative because the disjoint
union is associative and commutative. [∅] that is the class of the singular boundaries,
is the zero element. For every α = [M,f ], −α = α, in fact by using the cylinder as
above we see that [M,f ] + [M,f ] = 0. 2

Since for every α, α = −α, then (ηm(X),+) can be enhanced to be a Z/2Z-
module, that is a Z/2Z-vector space (ηm(X),+, ·); we call it the unoriented m-
bordism space of X.

10.1.1. The oriented bordism Z-modules. We follow the same sheme by
using oriented manifolds.

We denote by Om(X) the set of oriented singular m-manifolds f : M → X,
that is M ∈ Om.

(M,f) is a singular oriented boundary if (W,F ), ρ : M → ∂W are as above and
we require furthermore that (W,∂W ) is oriented and ρ preserves the orientation.

The relation (M0, f0) ∼ob (M1, f1) on Om(X) is defined by requiring that
(M1, f1) q (−M2, f2) is a singular oriented boundary. The verification that it is
an equivalence relation is similar:

- the cylinder can be naturally oriented in such a way that its oriented boundary
is M q−M .

- To get the symmetry it is enough to replace W with −W .

- As for the transitivity, we glue again W0 and W1 by taking into account that
the gluing diffeomorphism ψ reverses necessarily the orientation: in ∂W0 there is a
copy of −M1 while in ∂W1 there is a copy of M1. Hence the gluing can be performed
in the oriented category.

We denote by Ωm(X) the quotient set. Again the operation + on Ωm(X) is
induced by the disjoint union on Om(X). It results a commutative group (i.e. a
Z-module) (Ωm(X),+). Again 0 = [∅], that is the class of the singular oriented
boundaries. By means of the oriented cylinder we see that −[M,f ] = [−M,f ].
This is the m-oriented bordism module of the topological space X.

There is a natural group homomorphism

σm : Ωm(X)→ ηm(X)

which maps the class of (M,f) in Ωm(X) to its class in ηm(X), just by “forgetting
the orientation”.

As many considerations run formally in the same way for both bordism versions,
sometimes we will indifferently indicate byMm(X) either Sm(X) or Om(X), and by
Bm(X) = Bm(X;R) either the quotient R-module ηm(X) or Ωm(X), R = Z/2Z,Z.



10.3. RELATIVE BORDISM OF TOPOLOGICAL PAIRS 151

Lemma 10.3. Let φ : N → M be a diffeomorphism (preserving the orientation
in the oriented setting); f : M → X, m = dimM . Then [M,f ] = [N, f◦φ] ∈ Bm(X)

Proof : The cylinder (M×[0, 1], f ◦π) (π : M×[0, 1]→M being the projection),
and ρ : M qN → (M ×{0})q (M ×{1}), ρ = idM qφ, realize (M,f) ∼B (N, f ◦φ).

2

Remark 10.4. Let (M,f) be a singular boundary in X. Let ((W,∂W ), F ) and
ρ : M → ∂W realize (M,f) ∼B ∅. By applying Lemma 10.3 we have

(M,f) ∼B (∂W, ∂F )

and this is realized by a cylinder; obviously ((W,∂W ), F ) and id∂W realize

(∂W, ∂F ) ∼B ∅ .

By applying to this situation the gluing argument employed to show the transitivity,
we can conclude that it is not restrictive to require that M = ∂W and ρ = idM

An important special case. When X = {x0} consists of one point, then the
maps are immaterial and, by definition, Bm := Bm({x0}) is the quotient ofMm up
to bordism of manifolds. It follows from Lemma 10.3 that the bordism extends the
diffeomorphism equivalence in the category.

10.2. Bordism covariant functors

We have the following Proposition. All verifications are straighforward conse-
quence of the very definitions.

Proposition 10.5. For every m ≥ 0,

X ⇒ Bm(X)

g : X → Y ⇒ g∗ : Bm(X)→ Bm(Y ), g∗([M,f ]) = [M, g ◦ f ]

is a covariant functor from the category of topological spaces and continuous maps
to the category of R-modules and R-linear maps. That is

(g ◦ h)∗ = g∗ ◦ h∗
(idX)∗ = idBm(X) .

2

In particular if g : X → Y is a homeomorphism, then g∗ is a R-linear iso-
morphism with inverse (g−1)∗. Considered up to linear isomorphism, Bm(X) is an
invariant of the topological type of X. The family introduced above of “forgetting”
linear maps

{σm : Bm(X;Z)→ Bm(X;Z/2Z)}
is functorial, that is they form commutative squares together with the respective
families of g∗’s; in form of a slogan: “g∗ ◦ σ = σ ◦ g∗”.

10.3. Relative bordism of topological pairs

We consider topological pairs (X,A) where A is a subspace of X and the class
M∂

m of compact smooth m-manifolds with boundary (M,∂M). This incorporates
the “absolute situations” by identifying X with the pair (X, ∅) and a boundaryless
manifold M ∈Mm with (M, ∅).

A relative singular m-manifold in (X,A) is a continuous map of pairs

f : (M,∂M)→ (X,A)

where by definition f(∂M) ⊂ A and (M,∂M) ∈ M∂
m. We set Mm(X,A) the

collection of such relative singular m-manifolds.
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Definition 10.6. f : (M,∂M)→ (X,A) is a relative singular boundary if there
are continuous pair maps F : (W,V )→ (X,A), ρ : (M,∂M)→ (Z, ∂Z) such that:

(1) (W,∂W ) ∈M∂
m+1;

(2) (V, ∂V ) and (Z, ∂Z) are smooth m-submanifolds of ∂W such that

∂W = V ∪ Z, V ∩ Z = ∂V = ∂Z ;

(3) ρ : (M,∂M)→ (Z, ∂Z) is a smooth diffeomorphism (preserving the orien-
tation in the oriented case). In particular if ∂M is empty, then V and Z
are also boundaryless, ∂W = V q Z and F (V ) ⊂ A.

We put onMm(X,A) the equivalence relation (M0, ∂M0, f0) ∼B (M1, ∂M1, f1)
if and only if (M0, ∂M0, f0) q (−M1, ∂M1, f1) is a relative singular boundary (in
the unoriented case the sign “−” is immaterial). The verification that it is an
equivalence relation (in particular the transitivity) incorporates some instances of
corner smoothing, accordingly with Remark 7.16.

The disjoint union onMm(X,A) descends to a operation + on the quotient set
that eventually makes it a R-module Bm(X,A) = Bm(X,A;R), called the realtive
m-bordism R-module of the topological pair (X,A).

Proposition 10.5 extends directly:

Proposition 10.7. For every m ≥ 0,

(X,A) ⇒ Bm(X,A)

g : (X,A)→ (Y,B) ⇒ g∗ : Bm(X,A)→ Bm(Y,B), g∗([M∂M, f ]) = [M,∂M, g◦f ]

is a covariant functor from the category of pairs of topological spaces and continuous
pair maps to the category of R-modules and R-linear maps.

10.4. On Eilenberg-Steenrood axioms

The singular homology (sometimes called “Betti homology”) with coefficients
in the ring R is a determined family of functors (indexed by m ≥ 0) of the same kind
of Propositions 10.5, 10.7. The (E-S)-axioms are abstractions of some properties
verified by the singular homology functors and which deserve the name because
all models (no matter how they have been produced) that fulfill such axioms are
isomorphic to each other, at least if one restricts to pairs of compact CW-complexes
(see [Hatch]). It turns out that the most critical one is the so called dimension
axiom; every model which verifies the other axioms (with the possible exception of
“dimension”) is called a generalized homology theory. We are going to check that
this is the case of bordism. The verifications are of geometric/topological nature
and often immediate consequences of the definitions.

The homotopy axiom. If g0, g1 : (X,A) → (Y,B) are homotopic through
pair maps, then g0,∗ = g1,∗.

We have to show that for every [M,∂M, f ] ∈ Bm(X,A),

[M,∂M, g0 ◦ f ] = [M,∂M, g1 ◦ f ] in Bm(Y,B) .

Given a homotopy

G : (X × [0, 1], A× [0, 1])→ (Y,B)

between g0 and g1, then

F : (M × [0, 1], ∂M × [0, 1])→ (Y,B), ft = gt ◦ f

together with the natural inclusion of (M,∂M) q (M,∂M) in ∂(M × [0, 1]) realize
that (M,∂M, g0 ◦ f) ∼B (M,∂M, g1 ◦ f).

2
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This implies that if g : (X,A) → (Y,B) is a relative homotopy equivalence,
then g∗ is a R-linear isomorphism. Up to isomorphism, the bordism modules are
invariants of the homotopy type rather than the topology type.

Direct sum over path connected components. For every topological space
X, Bm(X) is isomorphic to the direct sum of the modules Bm(Xc), where Xc varies
among the path connected components of X. This follows from the fact that con-
tinuous maps send every path connected component of a manifold M into one path
connected component of X. A similar fact holds in the relative version.

Long exact sequence. For every m ≥ 1 there is the natural well defined
R-linear map

∂ : Bm(X,A)→ Bm−1(A), ∂([M,∂M, f ]) = [∂M, ∂f ] .

Denote by i∗ : Bm(A) → Bm(X), j∗ : Bm(X, ∅) → Bm(X,A) the R-linear maps
induced by the inclusions. Then we have a bordism long sequence of linear maps

· · · → Bm(A)
i∗−→ Bm(X)

j∗−→ Bm(X,A)
∂−→ Bm−1(A)→ · · ·

which ends on the right with the 0 R-module.
Recall that a sequence of linear maps

A
α−→ B

β−→ C

is exact in B if ker(β) = α(A). Then we have:

(1)The long sequences are functorial: if g : (X,A)→ (Y,B) then the respective long
sequences together with the family of linear maps {g∗} form commutative squares.
(2) Every bordism long sequence is exact everywhere.

Fuctoriality is immediate consequence of the definitions. The verifications of exact-
ness are simple and useful exercises. Let us show for example that the above long
sequence is exact in Bm(X,A). If [N, g] ∈ Bm(X) then N is boundaryless, so it is
clear that ∂ ◦ j∗([N, g]) = 0 ∈ Bm−1(A). On the other hand, If (M,∂M, f) is in
the kernel of ∂ and (W,∂W,F ) realizes that (∂M, ∂f) is a boundary, then by gluing

W and M along ∂M , we get f̃ : M̃ → X, M̃ being boundaryless, f̃ obtained by
matching f and F , such that j∗([M̃, f̃ ]) = [M,∂M, f ] ∈ Bm(X,A).

2

Excision. Let Z ⊂ A ⊂ X be a triad of topological space. Assume that the
closure Z̄ of Z in X is contained in the interior Å of A. Then we have

For every m ≥ 0, the linear map induced by the inclusion

i∗ : Bm(X \ Z,A \ Z)→ Bm(X,A)

is an isomorphism. We say that Z is excisable.

Let us prove first that it is surjective. Let [M,∂M, f ] ∈ Bm(X,A). The manifold
M can be endowed with a distance d compatible with its topology so that (M,d) is
a compact metric space; for example embedd M in some Rn an take the distance
induced by the euclidean distance. K := f−1(Z̄) is a compact set contained in the

open set Ã := f−1(Å). The distance function from K

δ : M → R

is non negative, continuous and K = {δ = 0}. Then there is a smooth approxi-
mation say g : M → R and a regular value ε > 0 of both g and ∂g, sufficiently
close to 0, such that M̃ := {g ≥ ε} is a compact m-submanifold with corners

such that ∂M̃ = {g = ε} is contained in Ã. Up to smoothing the corners, if f̃

is the restriction of f to M̃ , we finally have that [M̃, ∂M̃, f̃ ] ∈ Bm(X \ Z,A \ Z)

and i∗([M̃, ∂M̃, f̃ ]) = [M,∂M, f ] ∈ Bm(X,A). To prove the injectivity we apply the
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same argument to (W,∂W,F ) which realizes that a (M,∂M, f) ∈Mm(X \Z,A\Z)
is a relative singular boundary in (X,A).

2

About the dimension axiom. This axiom for the singular homology (with
coefficients in R) determines the homoloy modules of a singleton. Precisely, the
0-module is isomorphic to R, while the others are all trivial.

For every X, B0(X) has a clear topological meaning. In fact, by using the
classification of compact 1-manifolds (Proposition 9.14 ), it is easy to check that it
is isomorphic to the direct sum ⊕π0(X)R, where π0(X) is the set of path connected
components of X. In particular B0 = R.

On the other hand, we do not know for the moment if the modules Bm, m > 1
are all trivial. In fact we will see in Section 14.8 that they are not.

The (E-S)-axioms establish in more or less explicit way relations between the
modules H∗(X) in any (generalized) homology theory of a given space and the
ones of the presumably simpler pieces of some suitable decomposition of X. If
also “dimension” holds, then in many cases they allow to compute (up to linear
isomorphism) the modules ofX. Without “dimension” things are more complicated.
The first interesting cases to face are X = Sn or the pair (X,A) = (Dn, Sn−1).
These are the building blocks of CW-complexes.

• As the n-disk is contractible for every n ≥ 0, by “homotopy” Hm(Dn) ∼ Hm
for every m ≥ 0.
• For every n ≥ 1, we can decompose Sn as the union of the closed northern

and southern hemispheres (both diffeomorphic to Dn)

Sn = D+ ∪D−, D+ ∩D− = Sn−1 .

We claim that the inclusion induces isomorpfisms

i∗ : Hm(D+, Sn−1)→ Hm(Sn, D−) .

We cannot apply directly “excision” to Z = D̊−. We can do it by using instead
Z̃ ⊂ D− equal to the complement of a small collar of Sn−1 in D−. Finally we use
“homotopy” and the fact that (Sn \ Z̃,D− \ Z̃) retracts to (D+, Sn−1) to achieve
the required isomorphisms.
• Again for n ≥ 1, we have the exact long sequence of the pair (Dn, Sn−1)

· · · → Hm(Sn−1)
i∗−→ Hm(Dn)

j∗−→ Hm(Dn, Sn−1)
∂−→ Hm−1(Sn−1)→ · · ·

and the one of the pair (Sn, D−)

· · · → Hm(D−)
i∗−→ Hm(Sn)

j∗−→ Hm(Sn, D−)
∂−→ Hm−1(D−)→ · · ·

• If the theory H verifies also “dimension”, by simple algebraic considerations
one realizes that for n ≥ 1,

• ∂ : Hm(Dn, Sn−1)→ Hm−1(Sn−1) is an isomorphism for m ≥ 2;
• ∗ : Hm(Sn)→ Hm(Sn, D−) is an isomorphism for m ≥ 2;
• for every m ≥ 1, Hm(Sn) ∼ Hm−1(Sn−1) (immediately for m ≥ 2, with a

little extrawork for m = 1).

Then by a simple induction we can finally achieve the computation:

For every n ≥ 1, m = 0, n,

Hm(Sn) ∼ Hm(Dn, Sn−1) ∼ R .

For every n ≥ 1, m ≥ 1, m 6= n,

Hm(Sn) ∼ Hm(Dn, Sn−1) = 0 .
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If the theory (like the bordism) does not verify “dimension” the considerations
based on the other axioms hold as well but are not immediately conclusive.

10.5. Bordism non triviality

By combining the axioms with the specific way the bordism has been defined,
we will provide a few evidences that it is not trivial.
• Assume that X is path connected. Consider the long exact sequence of a pair

(X,x0) for some base point in X,

· · · → Bm
i∗−→ Bm(X)

j∗−→ Bm(X,x0)
∂−→ Bm−1 → · · ·

it is immediate by the bordism definition that ∂ = 0 (hence j∗ is onto) and that
i∗ is injective. Hence every Bm(X) contains a submodule isomorphic to Bm which
in general is not trivial. Note that since X is path connected, by “homotopy” this
submodule does not depend on the choice of the base point x0. When R = Z/2Z
(algebra is simpler in the case of vector spaces) we have ηm(X) ∼ ηm ⊕ ηm(X,x0).
• Assume that X is a compact connected boundaryless (possibly oriented)

smooth m-manifolds. Then by the approximation theorems of continuous maps
by smooth maps, it is not restrictive to assume that all maps entering the bordism
treatment are smooth. We have

Proposition 10.8. [X, idX ] ∈ Bm(X) is non trivial and does not belong to
Bm ⊂ Bm(X). In particular dim ηm(X) ≥ 1 + dim ηm.

Proof : Assume that it is trivial; then there is a smooth map F : W → X,
such that ∂W = X and F|X = idX . Let p ∈ X. Clearly it is a regular value
for ∂F . Apply to F the transversality theorems relatively to ∂F . Then we can
assume that F t {p}, Y = F−1(p) is a proper 1-submanifold of (W,X) and p ∈ Y .
By the classification of compact smooth 1-manifolds, p is contained in an interval
component I ⊂ Y , hence there is another p′ ∈ ∂I ⊂ X such that p′ 6= p and ∂F (p) =
p = ∂F (p′) = p′. This is absurd. This proves that [X, idX ] 6= 0. Let c : N → {p} be
a constant map representing some element of Bm ⊂ Bm(X). Let q 6= p so that it is a
regular value for both idX and c. If (W,F ) would realize a bordism between (X, idX)
and (N, c), by applying again the relative first transversality theorem to (W,F ) we
should deduce that ∂F−1(q) = {q} is a boundary; again by the classification of
compact 1-manifolds this is absurd.

2

By a similar argument, we have the following generalization.

Proposition 10.9. In the setting of Proposition 10.8 Let [N ] ∈ Bk be non
trivial, and consider (N × X, idX ◦ π), π being the projection to X. Then [N ×
X, idX ◦ π] ∈ Bm+k(X) is non trivial.

2

The class [X, idX ] ∈ Bm(X) is called the bordism fundamental class of the
(possibly oriented) manifold X. If X has non empty boundary similar facts hold
for [X, ∂X, idX ] ∈ Bm(X, ∂X).

• (On the bordism modules of spheres) For every n ≥ 1, consider X = Sn or
(Dn, Sn−1) as above. If m < n, by transversality we can assume that every class α
in Bm(Sn) is represented by a smooth and non surjective map f : M → Sn; say that
∞ /∈ f(M). Then f factorizes through Rn ⊂ Rn ∪∞ = Sn, hence it is homotopic
to a constant map. By “homotopy” α belongs to Bm ⊂ Bm(Sn), hence if m < n,
Bm(Sn) = Bm.

Referring to the long exact sequence for the pair (Sn, D−), using that D− is
contractible and “homotopy”, we have that ∂ = 0 so that j∗ is onto; and i∗ is
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injective. In particular we have

ηm(Sn) ∼ ηm ⊕ ηm(Sn, D−) ∼ ηm ⊕ ηm(Dn, Sn−1)

where for the last isomorphism we have applied “excision” and “homotopy” as
above.

Referring to the long exact sequence for the pair (Dn, Sn−1), we see that i∗ is
onto, hence j∗ = 0, ∂ is injective. Hence we have in particular that

ηm−1(Sn−1) ∼ ηm−1 ⊕ ηm(Dn, Sn−1) ;

hence

ηm−1(Sn−1)⊕ ηm ∼ ηm(Sn)⊕ ηm−1 .

By a similar inductive argument already used to compute H∗(Sn) when the
theory H verifies also “dimension”, we can eventually achieve the determination of
η∗(S

n).

Proposition 10.10. (1) For every m ≥ 0, ηm(S0) = ηm ⊕ ηm.
(2) For every n ≥ 1, for every 0 ≤ m < n, ηm(Sn) = ηm.
(3) For every n ≥ 1, k ≥ 1,

ηn+k(Sn) = ηk ⊕ ηn+k .

Precisely every class in ηn+k(Sn) either belongs to ηn+k or is of the form [N ×
Sn, idSn ◦ π] as in Proposition 10.9

2

It is already clear from these few remaks that the determination of Bm, for
every m ≥ 0, that is of the actual failure of “dimension” is a key point of this story.

10.6. Relation between bordism and homotopy group functors

Here we assume some familiarity with the homotopy group πm(X,x0), m ≥ 1,
of the pointed topological space (X,x0) (see for instance [Hatch]). When m = 1 it
is called the fundamental group. Let us recall anyway a few facts.
• As a set πm(X,x0) is formed by the classes < f > of pointed continuous

maps f : (Sm, p) → (X,x0) considered up to pointed homotopy. It is endowed
with a natural group operation “·” well defined on any given representatives. The
1 element is the class of the constant pointed map. They are abelian for m ≥ 2
while the fundamental group is not in general. If X is path connected, up to group
isomorphism they do not depend on the choice of the base point.

• Similarly to the bordism, we have for every m ≥ 1 a covariant functor

(X,x0) ⇒ πm(X,x0)

g : (X,x0)→ (Y, y0) ⇒ g∗ : πm(X,x0)→ πm(Y, y0), g∗(< f >) =< g ◦ f >
from the category of pointed topological spaces and pointed continuous maps to the
category of groups (abelian for m ≥ 2) and group homomorphisms.

• There is a relative version for pointed pairs (X,A, x0) (x0 ∈ A) of topological
spaces. Then the elements of πm(X,A, x0) are relative homotopy classes < f > of
maps f : (Dm, Sm−1, p)→ (X,A, x0) As usual the “absolute” theory is incorporated
by identifying (X,x0) with (X,x0, x0). If A 6= {x0}, then πm(X,A, x0) is abelian for
m ≥ 3. Similarly to the bordism, for every m ≥ 2 there is a natural homomorphism

∂ : πm(X,A, x0)→ πm−1(A, x0), ∂(< f >) =< ∂f > .

Together with the homomorphisms

i∗ : πm(A, x0)→ πm(X,x0), j∗ : πm(X,x0)→ πm(X,A, x0)
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induced by the inclusions, they give rise to the homotopy long exact sequence of
the pointed pair (X,A, x0)

· · · → πm(A, x0)
i∗−→ πm(X,x0)

j∗−→ πm(X,A, x0)
∂−→ πm−1(A, x0)→ · · ·

For every m ≥ 1 it is well defined the map (in the oriented case we stipulate
that Dm inherits the standard orientation of Rm)

hm : πm(X,A, x0)→ Bm(X,A), hm(< f >) = [Dm, Sm−1, f ]

obtained by “forgetting the base points”. It is well defined because homotopy is a
special case of bordism where only the cylinders are permitted. In fact

Proposition 10.11. (1) For every m ≥ 1, hm is a group homomorphism.
(2) The family of homomorphisms {hm} is functorial, in a slogan: “g∗ ◦ h =

h ◦ g∗”, and commutes with the respective long exact sequences.

Proof : Both the respective morphisms g∗ and long exact sequences have the
very same definition on representatives. Then (2) follows because the h’s are well
defined. As for (1), for simplicity we consider the absolute case m = 1, but the
argument generalizes without difficulty. Realize an elementary bordism W be-
tween S1

∐
S1 and S1 obtained by attaching a 1-handle to (S1

∐
S1)× [0, 1] along

(S1
∐
S1) × {1}. There is a properly embedded arc D ∼ D1 (essentially the core

of the handle) which intersects (S1
∐
S1) × {0} at two points belonging to dif-

ferent components and a properly embedded arc D′ dual to D (essentially the
co-core of the handle) which intersects the other component of ∂W in two points.
W \ (D ∪D′) is diffeomorphic to the cylinder C := ((S1 \ {p})

∐
(S1 \ {p}))× [0, 1].

Let f0, f1 : (S1, p) → (X,x0). Up to the natural identification, this induces a map
F : C → X, F (x, t) := f0

∐
f1(x) which extends to a continuos map F : W → X,

by setting it constantly equal to x0 on D ∪D′. This establishes a bordism between
(S1, f0)

∐
(S1, f1) and a determined map g : S1 → X. Recalling the definition of

the operation on π1(X,x0) (see [Hatch]) it is immediate that

[S1, g] = h1(< f0 > · < f1 >)

hence
h1(< f0 > · < f1 >) = h1(< f0 >) + h1(< f1 >)

as desired.
2

In general the study of both ker(hm) and its image is a difficult question, even
if X is a compact smooth manifold. We can say something more for m = 1.

On the 1-bordism. It is evident that the homorphism

σ1 : Ω1(X)→ η1(X)

is surjective: given [M,f ] in η1(X) it is enough to arbitrarily orient the components

of M (each diffeomorphic to S1) to get [M̃, f ] in Ω1(X) such that σ1([M̃, f ]) =
[M,f ]. We have

Proposition 10.12. Assume that X is path connected. Then the homomor-
phism h1 : π1(X,x0)→ Ω1(X) is surjective, hence the oriented bordism Ω1(X) is a
abelian quotient group of π1(X,x0). By composition with the surjective homomor-
phism σ1, the same fact holds for η1(X).

Proof : Let [S1, f ] ∈ Ω1(X). Let p ∈ S1 the base point, q = f(p). Up to
isotopy, hence up to bordism, we can assume that f is constantly equal to q on a
closed interval p ∈ J ⊂ S1. Let J = J1 ∪ J2, J1 ∩ J2 = {p}. Let γi : Ji → X
be a continuous path joining q and the base point x0 and such that γi(p) = x0.
Then define f ′ : (S1, p)→ (X,x0) to be equal to γi on Ji and equal to f outside J .
Clearly [S1, f ′] belongs to the image of h1. We claim that [S1, f ] = [S1, f ′]. In fact
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it is not hard to prove that they are homotopic. For a general [M,f ] we can assune
that M is union of a finite number of copies S1

j , of S1. Consider the corresponding

pointed copies (S1
j , pj). Let qj = f(pj). By applying the above construction for

every j, we can assume that [M,f ] is the sum of classes each one being the image
via h1 of some αj ∈ π1(X,x0). Finally by applying inductively on the number of
components the same argument used above to show that h1 is a homomorphism,
we conclude that [M,f ] is the image of the product of such αj ’s.

2

We will complete the analysis of Ω1(X) as a quotient of the fundamental group
in Chapter 15, Proposition 15.3.

10.7. Bordism categories

There is another important way to organize bordism matter. As usual Mm

either denotes Sm or Om, B either denotes η or Ω. For every m ≥ 0, we define the
bordism category CATB(m+ 1).

• Mm is the class of objects (recall that also ∅ is an object).

• For every couple of objects M,N ∈ M, a morphism (“arrow”) M 7→ N is of
the form

([ρ0], [ρ1], [W,V0, V1])

where (W,V0, V1) is a triad of compact smooth manifolds (recall that V0 and V1 are
union of components of ∂W , and ∂W = V0 q V1) considered up to diffeomorphisms
which are isotopic to the identity on a neighbourhood of the boundary; ρ0 : M → V0

and ρ1 : N → V1 are diffeomorphisms (preserving the orientation in the oriented
setting) considered up to isotopy.

• Two arrows f : M 7→ N , g : M ′ 7→ N ′ can be composed if N = M ′. In such
a case if f = ([ρ0], [ρ1], [W,V0, V1]), g = ([ρ′0], [ρ′1], [W ′, V ′0 , V

′
1 ]) then

g ◦ f = ([ρ0], [ρ′1], [W̃ , V0, V
′
1 ])

where

W̃ = W qψ W ′, ψ = ρ′0 ◦ ρ−1
1 : V1 → V ′0 .

It is consistent because W̃ obtained by gluing is defined up to diffeomorphism
relatively to the boundary and only depends on the isotopy class of the gluing
diffeomorphism. Note again that gluing can be performed in the oriented setting.

• For every object M ∈Mm, M 6= ∅, the unit arrow is

1M = ([idM ], [idM ], [M × [0, 1],M × {0},M × {1}]) .

The discussion made in Chapter 9 about Morse functions on triads, dissections
and handle-decompositions can be rephrased within the bordism category: every
arrow is composition of elementary arrows that is supported by triads admitting a
handle decomposition with only one handle (of some index).

10.8. A glance to TQFT

A (m+ 1) topological quantum field theory (TQFT) is a kind of non trivial rep-
resentation of CATB(m+1) in the category of vector spaces on some scalar field K.
In last decades this has emerged as a potent paradigm, the source of a plenty of so
called “quantum invariants” for 3-dimensional manifolds and the right conceptual
framework for deep 4-dimensional invariants. The actual categorial definition in-
volves many subtleties and is technically quite demanding (see for instance [Tur]).
Here we limit to a rough outline of the main features.
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First we note that the objectsMm of a bordism category are endowed with the
disjoint union operation “q”.

Let K be a field and denote by VK the category having as objects the class VK
of finite dimensional K-vector spaces and as morphisms the K-linear maps. Also
VK is endowed with an operation “⊗” given by the tensor product.

A (m+ 1) TQFT is a morphism of categories

CATB(m+ 1) ⇒ VK
which verifies certain conditions:

• To every object M ∈Mm is associated an object Z(M) ∈ VK .
• To every arrow f : M 7→ N in CATB(m + 1) is associated a linear map
Z(f) : Z(M)→ Z(N), in such a way that the composition is respected:

Z(g ◦ f) = Z(g) ◦ Z(f) .

• The correspondence M ⇒ Z(M) respects the operations on the objects:

Z(M qN) = Z(M)⊗ Z(N) .

Moreover there are the following ‘non triviality requirements’:

• Z(∅) = K (the space of “states” of the “quantum” empty set is non trivial).
• Z(1M ) = idZ(M).
• Z(M) is not constantly equal to K and Z(f) is not constantly equal to

idK .

In the oriented setting, on Om there is the involution M → −M . On VK there is
the duality “involution” Z → Z∗ (where Z is canonically identified with its bidual
space (Z∗)∗). Then here we require also

• Z(−M) = Z(M)∗.

One realizes quickly that the existence of such TQFT is not evident at all. A
possible attack could be to associate to all connected M ∈ Sm (possibly equipped
with one fixed orientation) a same vector space Z(M) = V (so that Z(−M) = V ∗ in
the oriented setting). As every M is the disjoint union of its connected components,
Z(M) is the tensor product of some copies of V or V ∗. Then one could try to define
first the elementary Z(e) associated to the elementary arrows in CATB(m + 1),
perhaps in such a way that they depend only on the handle index. A generic
Z(f) should be necessarily a composition of such elementary morphisms. The key
hard point is that the decomposition by elementary arrows in CATB(m+ 1) is far
to be unique (as well as any triad supports a plenty of Morse functions) but the
resulting composite Z(f) should not depend on the choice of the decomposition.
This means that our elementary Z(e)’s must verifies a huge collection of (a priori
implicit) relations. For instace if we take V = Kn for some n, V ∗ = M(1, n,K),
the unknown Z(e)’s in matrix form, we should find non trivial solutions of a huge
system of matrix equations. It is not evident that such a solution exists (even if we
take V = K).

Every TQFT (if any) associates to every M ∈ Mm+1, a scalar µ(M) which is
an invariant up to (possibly oriented) diffeomorphism. In fact as M is compact and
boundaryless, (∅, ∅, [M, ∅, ∅]) is an arrow f[M ] : ∅ 7→ ∅, then Z(f[M ]) : K → K and
µ([M ]) := Z(f[M ])(1).

We will point out a “baby” (non trivial) TQFT in Chapter 14.





CHAPTER 11

Smooth cobordism

We specialize the bordism modules Bm(X,R) introduced in Chapter 10 to X
which varies among the boundaryless compact smooth manifolds. More precisely if
X is not oriented (even non orientable), then we consider ηm(X) = Bm(X;Z/2Z),
if X is oriented, we consider Ωm(X) = Bm(X;Z). A first important fact, already
used in Section 10.5, is that by means of the approximation theorems of continu-
ous by smooth maps, we can assume that all maps entering the definition of the
bordism modules are smooth; moreover, in dealing with functoriality we can also
assume that the maps g : X → Y are smooth. So all discussion will have a dif-
ferential/topolological character. The main issue of this chapter is that by means
of tranversality these “smooth” bordism modules (renamed “cobordism” modules
up to a suitable reindexing) can be embodied into contravariant functors and their
direct sum can be endowed with a functorial graded ring structure. This multiplica-
tive structure is a substantial enrichement of the theory and will lead to several
important applications.

11.1. Map transversality

We consider the following variant of the basic transversality setting (Section
8.1):

• All involved smooth manifolds admit an embedding in some Rn being fur-
thermore a closed subsets. This is certainly the case if a manifold is compact.
• All involved smooth maps are proper (i.e. the inverse image of a compact set

is compact). Of course this is the case if the source manifold is compact. General
topology tells us that proper maps between manifolds are closed (i.e. the image of
a closed set is closed).

•N and Z are boundaryless smooth manifolds, M is a compact smooth manifold
with (possibly empty) boundary ∂M .
• f : M → N , g : Z → N are smooth maps.

In such a situation, we can define the product map

(f × g) : M × Z → N ×N, (f × g)(x, z) = (f(x), g(z))

and denote by
∆N = {(y, y) ∈ N ×N}

the diagonal submanifold of N ×N , which is obviously diffeomorphic to N by the
canonical diffeomorphism

N → ∆N , y → (y, y) .

Recall that ∂(M × Z) = ∂M × Z.

Definition 11.1. We say that f is tranverse to g (and we write f t g) if
(f × g) t ∆N . This incorpotares that ∂f t g.

By using that T(y,y)∆N = ∆TyN ⊂ TyN ⊕ TyN one readily checks that:

Lemma 11.2. f t g if and only if for every (x, z) ∈ M × Z such that f(x) =
g(z) = y, then TyN = dxf(TxM) + dzg(TzZ), and for every (x, z) ∈ ∂M × Z such
∂f(x) = g(z) = y, then TyN = dx∂f(Tx∂M) + dzg(TzZ).

161



162 11. SMOOTH COBORDISM

2

We have the following version of the first transversality theorem:

Theorem 11.3. In the given setting:

(1) If f t g then

(Y, ∂Y ) = ((f × g)−1(∆N ), (∂f × g)−1(∆N ))

is a compact proper submanifold of (M × Z, ∂M × Z). Moreover,

dim(M × Z)− dim(Y ) = dim(N ×N)− dim(N) = dim(N) .

(2) If all involved manifolds are oriented, then Y and ∂Y are orientable and we
can fix an orientation procedure such that ∂Y becomes the oriented boundary of Y .

Proof : With the exception of the compactness of Y , all statements in (1) are
direct consequence of Theorem 8.2 (and they hold also without assuming that g is
proper). On the other hand, the compacteness of Y follows from the compactness
of M and the properness of g. Point (2) is a direct consequence of point (2) of
Theorem 8.2, once N × N is endowed with the product orientation of two copies
of the given orientation on N , ∆N is oriented in such a way that the canonical
diffeomorphism is orientation preserving.

2

Remark 11.4. If Z ⊂ N is a submanifold and g is the inclusion, then

Y = {(x, z) ∈M × Z; f(x) = z}
that is the graph of the restriction of f to f−1(Z). If Z is also a closed subset of
N , then we are in the setting fixed above, and the projection of Y in M is equal
to f−1(Z) and is a proper submanifold of (M,∂M) recovering the conclusion of
Theorem 8.2.

We denote by t (M,N ; g) the subspace of E(M,N) formed by the maps trans-
verse to g. If ∂f t g, then we denote by E(M,N, ∂f) (resp. t (M,N, ∂f ; g)) the
subspace of E(M,N) (t (M,N ; g)) formed by the maps that coincide with ∂f on
∂M . We have the following version of Theorem 8.5.

Theorem 11.5. In the given setting:
(1) t (M,N ; g) is open dense in E(M,N).

(2) t (M,N, ∂f ; g) is open dense in E(M,N, ∂f).

(3) For every h ∈ E(M,N) (resp. h ∈ E(M,N, ∂f)) there is h̃ ∈ t (M,N ; g)

(h̃ ∈ t (M,N, ∂f ; g)) smoothly homotopic to h.

Proof : The proof is not a direct consequence of the statement of Theorem 8.5
but it is a consequence of its proof which can be adapted with minor changes.

2

11.2. Cobordism contravariant functors

Let X be a compact boundaryless smooth manifold. Let [M,f ] ∈ Bm(X;R)
(either R = Z/2Z or R = Z according to the convention fixed at the beginning of
the Chapter). Then we say that [M,f ] is of codimension k in X if

k = codimX [M,f ] := dim(X)−m .

We can consider the modules Bm(X;R) indexed by Z by stipulating that Bm(X;R) =
0 if m < 0. If k is the codimension, set

Bk(X;R) := Bm(X;R)

so we have a formal reidexing by Z of the family of bordism modules of X in terms
of the codimension, so that Bk(X;R) = 0 if k > dimX. To stress it we say that
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Bk(X;R) is the k-cobordism module of X (over R). Formally for every k ∈ Z, there
are tautological reindexing isomorphisms

d : Bdim(X)−k(X;R)→ Bk(X;R), D : Bk(X;R)→ Bdim(X)−k(X;R)

d(α) = D(α) = α.
For every k ∈ Z we want to enhance the object correspondence

X ⇒ Bk(X;R)

with a correspondence

g : X → Y ⇒ g∗ : Bk(Y ;R)→ Bk(X;R)

to build a contravariant functor from the category of compact boundaryless (pos-
sibly oriented) smooth manifolds and smooth maps to the category of R-modules
and R-linear maps. Hence we want that

(g ◦ h)∗ = h∗ ◦ g∗

whenever the composition makes sense, and

id∗X = idBk(X;R) .

We have to define the induced linear maps g∗. We implement the following proce-
dure, basically it is the same “pull-back” construction that we have used for vector
bundles.

• If k > dim(Y ), then g∗ : {0} → Bk(X;R) is uniquely determined.

• Assume that k ≤ dim(Y ) and let α ∈ Bk(Y ;R). Fix a representative

α = [M,f ] .

Hence M is compact boundaryless (possibly oriented) of dimension m = dim(Y )−k.
By the transversality theorems, up to homotopy hence up to bordism, we can assume
that f t g. Then

V = (f × g)−1(∆Y )

is a compact boundaryless (possibly oriented) submanifold of M × X such that
dim(M ×X)− dim(V ) = dim(Y ), that is

dim(X)− dim(V ) = dim(Y )− dim(M) = k .

Hence [V, pX ] ∈ Bk(X;R), where pX is the restriction of the projection M×X → X.
We have

Proposition 11.6. Let g : X → Y be a smooth map between compact boudary-
less (possibly oriented) smooth manifolds. Let α ∈ Bk(Y ;R). Let [V, pX ] ∈ Bk(X;R)
obtained by means of any implementation of the above “pull-back” procedure starting
from a representative α = [M,f ]. Then

(1) The map

g∗ : Bk(Y ;R)→ Bk(X;R), g∗(α) = [V, pX ]

is well defined (it does not depend on the arbitrary choices of a given implementa-
tion).

(2) g∗ is R-linear.
(3) For every X

id∗X = idBk(X;R) .

(4) Whenever the composition makes sense

(g ◦ h)∗ = h∗ ◦ g∗ .

(5) Let n = dimX; if [X, g0] = [X, g1] ∈ Bn(Y ;R), then g∗0 = g∗1 . In particular
this holds if g0 and g1 are homotopic.
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Proof : Assume that g∗ is well defined and prove items (2)-(4). The procedure
distributes on the addends of a dijoint union so (2) follows easily.

As for (3) Every [M,f ] is tranverse to idX , hence V is the graph of f and clearly
[V, pX ] = [M,f ].

Concerning (4), If g∗([M,f ]) = [M ′, f ′], h∗([M ′, f ′]) = [M”, f”] the repre-
sentatives being obtained by iterated application of the pull-back procedure, then
f” t (g ◦ h) and [M”, f”] results from an implementation of the procedure applied
to [M,f ] and g ◦ h.

Let us show now (1), that is g∗ is well defined. Let (V, pX) and (V ′, p′X) be
obtained by implementing the procedure starting from representatives (M,f) and
(M ′, f ′), f t g, f ′ t g; let (W,F ) realizes a bordism of (M,f) with (M ′, f ′).
By applying the transversality theorems we can assume that F t g. Then ((F ×
g)−1(∆Y ), PX) realizes a bordism of (V, pX) with (V ′, p′X).

Finally (5) follows by the very similar argument used for (1): if (W,F ) realizes a
bordism of (X, g0) with (X, g1), then we can assume that F verifies suitable transver-
sality conditions, so that (f×F )−1(∆Y ) leads to a bordism of ((f×g0)−1(∆Y ), pX)
with ((f × g1)−1(∆Y ), pX).

2

11.2.1. Reduction mod(2). When X is oriented, we already known the nat-
ural “forgetting” homomorphisms

σ : Bk(X;Z)→ Bk(X;Z/2Z) .

These are functorial, that is

Proposition 11.7. For every smooth map g : X → Y between oriented compact
boundaryless manifolds, for every α ∈ Bk(Y ;Z) then g∗(σ(α)) = σ(g∗(α)), where
the first g∗ refers to the Z/2Z-cobordism, the second to the Z-cobordism.

Proof : The construction of g∗(σ(α)) is obtained by the one of g∗(α) just by
forgetting the orientation.

2

11.3. The cobordism cup product

Let X be as above. For every r, s ∈ Z, we are going to define a bilinear map

t : Br(X;R)× Bs(X;R)→ Br+s(X;R) .

Let us describe the procedure that defines this “cup” product.

• If at least one among r and s is bigger than dim(X), then α t β = 0.

• Let (α, β) ∈ Br(X;R)×Bs(X;R) and assume that both r and s are ≤ dim(X).
Fix representatives α = [M,f ] and β = [N,h]. We claim that

[M ×N, f × h] ∈ Br+s(X ×X;R) .

In fact

2 dim(X)− (dim(M) + dim(N)) = 2 dim(X)− (dim(X)− r+ dim(X)− s) = r+ s .

• Let δX : X → X ×X, δX(x) = (x, x) be the canonical diffeomorphism onto
the diagonal ∆X . Finally take

δ∗X [M ×N, f × h] ∈ Br+s(X;R) .

We stress that we are actually using the contravariant nature of the cobordism
functors.
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Remark 11.8. If f t h we can explicitly describe representatives of δ∗X [M ×
N, f × h]. In fact in such a case (f × h) t δX . Then δ∗X [M × N, f × h] = [Ṽ , pX ]
where

Ṽ = {(x, p, q) ∈ X ×M ×N ; f(p) = h(q) = x} .
Let

V = (f × h)−1(∆X) = {(p, q) ∈M ×N ; f(p) = h(q)} .
Then Ṽ is the graph of u := f|V = h|V , V and Ṽ are canonically diffeomorphic, and

[Ṽ , pX ] = [V, u] ∈ Br+s(X;R) .

In particular if f and h are the inclusions of two transverse submanifolds M and N
of X and j is the inclusion of M t N , then

δ∗X [M ×N, f × h] = [M t N, j] .

We have

Proposition 11.9. Let X be a compact boundaryless (possibly oriented) smooth
manifolds. Let (α, β) ∈ Br(X;R)× Bs(X;R), δ∗X [M ×N, f × h] ∈ Br+s(X;R) be
obtained by any implementation of the above procedure applied to arbitrary repre-
sentatives α = [M,f ], β = [N,h]. Then:

(1) The class α × β := [M × N, f × h], whence the map α t β := δ∗X [M ×
N, f × h] are well defined (they do not depend on the arbitrary choices of a given
implementation).

(2) t is bilinear.
(3) For every (α, β) ∈ Br(X;R)× Bs(X;R),

α t β = (−1)rsβ t α .

(4) t is functorial, that is for every g : X → Y , for every (α, β) ∈ Br(Y ;R)×
Bs(Y ;R),

g∗(α) t g∗(β) = g∗(α t β) .

Proof : Again assume that t is well defined and prove the other items. By the
transversality theorems the assumption allows us to use representatives which verify
all suitable transversality conditions. The disjoint union distributes to the product
of manifods; (2) follows easily. Item (3) is a local verification and reduces to Remark
8.3. Let (M,f), (N,h) be representatives of α and β such that f t g, h t g and
f t h. It follows that (g× g) ◦ δX t (f ×h). By combining the two procedures that
define g∗ and t starting from such representatives in general position we obtain
representatives for both terms of the equality of (4) that are evidently bordant to
each other (in the same spirit of Remark 11.8). It remains to prove that t is well
defined. As δ∗X is well defined, it is enough to show that

α× β := [M ×N, f × h] ∈ Br+s(X ×X;R)

only depends on the class α and β. By symmetry it is enough to show that it does
not depend on the choice of a representative of α. If (W,F ) realizes a bordism of
(M,f) with (M ′, f ′) then (W ×N,F ×h) realizes a bordism of (M ×N, f ×h) with
(M ′ ×N, f ′ × h).

2

11.3.1. Reduction mod(2). Similarly to Proposition 11.2.1 we have

Proposition 11.10. For every compact oriented boundaryless manifold X, for
every (α, β) ∈ Br(X;Z)×Bs(X;Z), σ(α)tσ(β) = σ(αtβ), where the first t refers
to the Z/2Z-cobordism, the second to the Z-cobordism.

Proof : The construction of σ(α)t σ(β) is obtained by the one of αt β just by
forgetting the orientation.

2
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11.3.2. The cobordism ring. The collection of the above cup products gives
a globally defined product

t : B•(X;R)× B•(X;R)→ B•(X;R)

on the direct sum R-module

B•(X;R) := ⊕k∈ZBk(X;R) .

(B•(X;R),+,t) is called the graded R-cobordism ring of X (it is a graded algebra
when R = Z/2Z).

Similarly the collection of above g∗’s defines a global graded ring homomorphism

g∗ : B•(Y ;R)→ B•(X;R) .

We can summarize the above achievements as follows:

X ⇒ B•(X;R)

g : X → Y ⇒ g∗ : B•(Y ;R)→ B•(X;R)

define a contravariant functor from the category of compact boundaryless (possibly
oriented) smooth manifolds and smooth maps to the category of graded rings and
graded ring homomorphisms.

Remark 11.11. A graded ring verifying the non commutative rule (3) in Propo-
sition 11.9 is sometimes called a “commutative” graded ring.

Remark 11.12. A particular case of the above constructions is when X is
reduced to one point. In this case the product

Br(R)× Bs(R)→ Br+s(R)

for every couple of indices r, s ≤ 0 is just defined by the product of representatives

[M ] t [N ] = [M ×N ] .

Remark 11.13. (Non compact X) Referring to the setting of the tranversality
theorems of Section 11.1, we can extend the range of cobordism functors and product
to the category of boundaryless possibly non compact manifolds X but which can
be embedded anyway in some Rk being also a closed subset, and smooth proper
maps between these manifolds.

11.4. Duality, intersection forms

Assume that X is connected (possibly oriented), dim(X) = n. Then

Bn(X;R) ∼ B0(X;R) ∼ R .

If R = Z/2Z, we have a generator βX of Bn(X;Z/2Z) represented as βX = [x, i]
where x ∈ X and i is the inclusion (it does not depend on the choice of x because X
is path connected). If R = Z we have two generators of the form [±x, i]. As usual
we encode the point sign by associating to +x the orientation on TxX carried by
the global orientation of X and this selects again one generator βX . By this choice
of generators we have fixed in both cases an identification of Bn(X;R) with R.

For every r, s, set p = n− r, q = n− s. Let r, s be such that r + s = n (hence
also p+ q = n, p = s, q = r). Then

t : Br(X;R)× Bs(X;R)→ R .

Note in particular that
d(αX) t βX = 1

where αX = [X, idX ] ∈ Bn(X;R) is the bordism fundamental class of X and d :
Bn(X;R)→ B0(X;R) is the tautological isomorphism.

By using the tautological isomorphisms, all this can be lifted to a bilinear map

• : Bp(X;R)× Bq(X;R)→ R
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or to a bilinear pairing

u : Br(X;R)× Bq(X;R)→ R .

This last induces a linear map (q = r)

φr : Br(X;R)→ Hom(Br(X;R), R), γ → φγ , φγ(σ) = γ u σ .

Recall that by applying the Hom functors we have a basic way to convert the
covariant bordism funtors into cotravariant ones

X ⇒ Hom(Bm(X;R), R)

g : X → Y ⇒ gt∗ : Hom(Bm(Y ;R), R)→ Hom(Bm(X;R), R)

gt∗(γ) = γ ◦ g∗. The homomorphisms φr, gt∗ and g∗ are compatible; in a slogan:
“φr ◦ g∗ = gt∗ ◦ φr”

The map φr is in general not injective nor surjective. A reason is the possible
existence of non trivial submodules of B∗(X;R) isomorphic to B∗ = B∗({x0};R).
The image via the tautological isomorphism of such submodule in Br(X;R) is con-
tained in the kernel of φr. If R = Z/2Z, so that Br can be realized as a direct
addend of Br(X;Z/2Z), then any functional γ which holds 1 on Br and such that
Br(X;Z/2Z) = Br ⊕ ker γ does not belong to the image of φr. If R = Z, then the
torsion submodule of Br(X;Z) is contained in the kernel of φr. For every r we set

Hr(X;R) := Br(X;R)/ ker(φr)

and extending the usual reindexing set

Hn−r(X;R) := Hr(X;R)

where in this last equality only the R-module structure is considered, forgetting the
multiplicative structure. Then the above map φr induces an injective R-linear map

φ̂r : Hr(X;R)→ Hom(Hr(X;R), R) .

If X is connected (possibly oriented), then

H0(X;R) ∼ R

and is generated by the fundamental class. The map u can be formally generalized
by composing t with the tautological isomorphisms

u : Br(X;R)× Bq(X;R)→ B2n−(r+q)(X;R) .

In particular

u : Br(X;R)× Bn(X;R)→ Bn−r(X;R)

and it is a consequence of the definitions that for every σ ∈ Br(X;R)

σ u αX = D(σ) .

If dim(X) = 2m then we can consider

t : Bm(X;R)× Bm(X;R)→ R

or equivalently

• : Bm(X;R)× Bm(X;R)→ R

this second is also called the R-bordism intersection form of X. Note that these
forms are symmetric on Z/2Z, while on Z they are symmetric (resp. antisymmetric)
if m is even (m is odd). The kernel of φr coincides in this case with the radical of
the form, hence the induced form (also called “intersection form”)

t : Hm(X;R)×Hm(X;R)→ R

determines an inclusion of Hm(X;R) as a submodule of its dual module

φ̂m : Hm(X;R)→ Hom(Hm(X;R), R) .
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11.5. Cobordism theory for compact manifolds with boundary

First let us strengthen the notion of map between pairs of spaces

h : (X,A)→ (Y,B) ;

it is a strict pair map if (as usual) h(A) ⊂ B and furthermore h(X \A) ⊂ Y \B.
We consider the category of compact smooth (possibly oriented) manifolds with

(possibly empty) boundary (X, ∂X) and smooth strict pair maps

h : (X, ∂X)→ (Y, ∂Y ) .

For example the inclusion of a proper submanifold (M,∂M) in (X, ∂X) is a typical
example of strict map. We stress that a strict map f : (M, ∅)→ (X, ∂X) sends the
boundaryless M in the interior Int(X) of X.

The non compact manifold Int(X) verifies the conditions of Remark 11.13;
for example if X ⊂ Rk for some k (this is possible because X is compact) and
h : Rk → R is a non negative smooth function such that ∂X = h−1(0), then the
restriction to X \ ∂X of Rk \ ∂X → Rk+1, x → (x, 1/h(x)) is an embedding of
Int(X) onto a closed subset of Rk+1.

The usual definitions of the absolute or relative bordism modules Bm(X;R)
or Bm(X, ∂X;R) can be enhanced by stipulating that all involved pair maps are
smooth and strict. By using the approximation theorem of continuous maps by
smooth maps and the boundary collars to push into the interior what is necessary
in order to make strict any given “singular” smooth manifold in X or in (X, ∂X),
it is not hard check that:

These enhanced modules are actually isomorphic to the original ones and more-
over, Bm(X;R) is naturally isomorphic to Bm(Int(X);R).

The reindexing Bk(X;R) = Bm(X;R) or Bk(X, ∂X;R) = Bm(X, ∂X;R), k =
dim(X)−m is made as usual with respect to the codimension in X.

Let g : (X, ∂X) → (Y, ∂Y ) be a smooth strict map in our category. We want
to extend the definition of the induced linear morphism

g∗ : Bk(Y, ∂Y ;R)→ Bk(X, ∂X;R) .

For every strict pair map h : (N, ∂N)→ (Y, ∂Y ) we denote as usual

∂h : ∂N → Y

the restriction of h to the boundary; then set

∂∂h : ∂N → ∂Y

such that ∂h = j ◦ ∂∂h, where j is the inclusion of ∂Y in Y . Close to Lemma 11.2,
we say that (f, ∂f) t (g, ∂g) if and only if

(1) for every (p, x) ∈ M ×X such that f(p) = g(x) = y, TyY = dpf(TpM) +
dxg(TxX); for every (p, x) ∈ ∂M ×X such that ∂f(p) = g(x) = y, TyY =
dp∂f(Tp∂M) + dxg(TxX); coherently with the notations of Section 11.1,
we summarize this item by “f t g”;

(2) g t f ;
(3) ∂∂f t ∂∂g (in the usual sense).

Let (M,∂M, f) be a smooth and strict representative of a given α ∈ Bk(Y, ∂Y ;R).
By suitably and straighforwardly adapting the transversality theorems, we can as-
sume that (f, ∂f) t (g, ∂g). Set V = {(p, x) ∈M ×X; f(p) = g(x)}. Then

g∗(α) := [V, ∂V, pX ]

well defines our desired linear map g∗.
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Now, by formally using the very same definition given when X is boundaryless,
we (partially) extend the cup product as follows:

t : Br(X, ∂X;R)× Bs(X;R)→ Br+s(X;R)

t : Br(X;R)× Bs(X;R)→ Br+s(X;R) .

Then we have a linear map

φr : Br(X, ∂X;R)→ Hom(Br(X;R), R)

which restricts to (we keep the same name)

φr : Br(X;R)→ Hom(Br(X;R), R) .

Finally we have the induced injective map

φ̂r : Hr(X, ∂X;R)→ Hom(Hr(X;R), R) .





CHAPTER 12

Applications of cobordism rings

In this chapter we will see several, sometimes very classical, applications of the
cobordism theory, especially of its multiplicative structure.

12.1. Fundamental class revised, Brouwer’s fixed point Theorem

Here we recover Proposition 10.8 in terms of cobordism. Let X be a bound-
aryless connected (possibly oriented) smooth n-manifold. Let [X, idX ] ∈ B0(X;R)
(often we will simply write [X]). Let βX ∈ Bn(X;R) the generator given in Section
11.4 in order to fix an identification Bn(X;R) = R. We have already remarked that

[X] t βX = 1 ∈ R
hence in particular [X] 6= 0. On the other hand, if γ belongs to the image via
the tautological isomorphism d : Bn(X;R) → B0(X;R) of the natural submodule
isomorphic to Bn, then

γ t βX = 0

hence [X] 6= γ. If X has non empty boundary ∂X, we can consider

[X, ∂X] ∈ B0(X, ∂X;R)

and we have again
[X, ∂X] ∪ βX = 1 ∈ R .

The following is a very classical topological application of such a fundamental class.

Theorem 12.1. (Brouwer fixed point theorem) For every continuous map

f : Dn → Dn

there is x ∈ Dn such that f(x) = x.

Proof : The case n = 0 is trivial. For n > 0, assume that there is such an
f without any fixed point. Define F : Dn → Sn−1 by setting F (x) equal to the
unique point of intersection between Sn−1 = ∂Dn and the ray emanating from
f(x) and passing through x. As f is continuous, it is easy to verify that also F is
continuous and that ∂F = idSn−1 . Hence [Sn−1] should be trivial in Bn−1(Sn−1)
against Proposition 10.8.

2

12.2. A separation theorem

It is evident that an equatorial Sn−1 ⊂ Sn divides this last into two connected
components. If n ≥ 2, every connected hypersurface in Sn shares the same be-
haviour.

Proposition 12.2. (1) Let M ⊂ Sn be a compact boundaryless connected sub-
manifold, dim(M) = n − 1, n ≥ 2. Then Sn \M has exactly two connected com-
ponents W , W ′ and the closures are compact submanifolds with boundary such that
∂W̄ = ∂W̄ ′ = M .

(2) Let M ⊂ Rn be a compact boundaryless connected submanifold, dim(M) =
n− 1, n ≥ 2. Then Rn \M has two connected components, one say W has compact
closure and ∂W̄ = M .

171



172 12. APPLICATIONS OF COBORDISM RINGS

Proof : The item (2) follows from (1) by considering Rn ⊂ Rn ∪ ∞ = Sn,
such that ∞ does not belong to M . As for (1), we know by Section 10.5 that
[M ] := [M, iM ] ∈ Bn−1(Sn;Z/2Z) ∼ B1(Sn;Z/2Z) (iM being the inclusion) belongs
to the submodule isomorphic to Bn−1. Hence we know that [M ] belongs to the
kernel of the map φ : B1(Sn;Z/2Z) → Hom(B1(Sn;Z/2Z),Z/2Z). Assume that
Sn \ M is connected. Take a small simple arc γ intersecting transversely M at
one point. The endpoints of γ belong to Sn \M , hence γ can be completed to a
smooth simple curve γ̂ in Sn that intersects transversely M at one point. It follows
that φ[M ]([γ̂, iγ̂ ]) = 1 and this is a contradiction. Hence Sn \M is not connected.
A tubular neighbourhood U of M in Sn is diffeomorphic to M × (−1, 1), in fact
M × [0, 1) can be identified with a collar of M in W̄ , where W is a component of
Sn \M . Since U \M has evidently two connected components, then Sn \M has at
most two components and this achieve the proof.

2

12.3. Intersection numbers

Let X be a compact connected (possibly oriented) boundaryless smooth n-
manifold. Let M and N be compact boundaryless (possibly oriented) submanifolds
of X, dimM = p, dimN = q. Assume that p+ q = n. Then

[M ] • [N ] ∈ R
is the R-intersection number of the two submanifolds. Obviously it is invariant up
to isotopy of M or N in X (isotopy is a particular instance of bordism). Hence
if [M ] • [N ] 6= 0, then there is no any isotopy that makes M and N apart. In
particular, if M = N (hence n = 2m), then M •M is called the self-intersection
number of the submanifold M .

12.3.1. Lefschetz’s number and fixed point theorem. Let X be as above
a connected compact boundaryless n-manifold. Let f : X → X be a smooth map.
Consider the submanifolds ∆X and G(f) of X ×X, G(f) being the graph of f . If
n = dim(X), then

L2(f) := [∆X ] t [G(f)] ∈ B2n(X ×X;Z/2Z) = Z/2Z
is called the Lefschetz number of f mod(2). This is invariant (in particular) if f
is considered up to homotopy. As usual this allows us to define this number also
when f is merely a continuous map. It is clear that if ∆X ∩G(f) = ∅ (that is if f
has no fixed points), then L2(f) = 0. Viceversa we have the following “fixed point
theorem”:

If L2(f) 6= 0, then f has a fixed point.

If M is oriented, we can define the Lefschetz number

L(f) ∈ B2n(X ×X;Z) = Z, L(f) = L2(f) mod(2)

in the oriented setting, and repeat verbatim the above considerations.

12.4. Linking numbers

Let X be as in Section 12.3, n ≥ 3. Let (M,∂M) be a (n − k)-compact sub-
manifold (possibly oriented) of X with non empty boundary, n−k ≥ 1. M is called
a R-Seifert surface of T = ∂M in X. Let U be a “small” tubular neigbourhood of
T in X, such that ∂U tM . The closure (Y, ∂Y ) (∂Y = ∂U) of X \U is a compact
n-manifold with non empty boundary; the closure (N, ∂N) of M \ U is a proper
(n− k)-submanifold of (Y, ∂Y ). Then [N, ∂N ] ∈ Bk(Y, ∂Y ;R) (we omit to indicate
the inclusion map). Let Z be a compact boundaryless (possibly oriented) proper
k-submanifold of (Y, ∂Y ). Hence [Z] ∈ Bn−k(Y ;R). Then

lkM (T,Z) := [N, ∂N ] t [Z] ∈ R
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is called the R-linking number of Z with T with respect to the Seifert surface M . By
the uniqueness of tubular neighbourhoods up to isotopy, it is well defined. Moreover,
it is invariant up to isotopy Z in Int(Y ). In some case the linking number does not
depend on the choice of the Seifert surface. For example we have

Proposition 12.3. In the above setting, assume that X = Sn. Then

lk(T,Z) := lkM (T,Z) ∈ R
is well defined, that is it does not depend on the choice of a Seifert surface of T in
Sn.

Proof : Let T = ∂M = ∂M ′. By (abstractly) gluing M and M ′ along T and
taking the union of the inclusions, we get say [W, f ] ∈ Bk(Sn;R). Let us consider
[Z] ∈ Bn−k(Sn). We have already noticed that

[W, f ] t [Z] = 0 ∈ R .

On the other hand, it follows from the very geometric definition of the cobordism
cup product that

[W, f ] ∪ [Z] = lkW (T,Z)− lkW ′(T,Z)

and the Proposition follows.
2

Remark 12.4. A classical example of linking number is the case X = S3

and T , Z (possibly oriented) disjoint knots in S3 (that is disjoint submanifolds
diffeomorphic to S1). It is a classical well-known fact (see [Rolf]) that a knot in S3

admits a Seifert surface. Hence we eventually have

lk(T,Z) = lk(Z, T ) ∈ R .

Another classical situation is when X = Sn, T ∼ Sp, Z ∼ Sq and these last are
unknotted spheres in Sn, that is they are the boundary of embedded (p+1) or (q+1)
smooth disks respectively.

12.5. Degree

Let X and Y be compact connected boundaryless (possibly oriented) smooth n-
manifolds, g : X → Y be a continuous map. Let us fix generators βX of Bn(X;R) =
R and βY of Bn(Y ;R) = R as in Section 11.4. Consider

g∗ : Bn(Y ;R)→ Bn(X;R)

then define the R-degree of g by:

degR(g) := g∗(βY ) ∈ R .

Although we have already given an operative definition of g∗ in full generality, it
is convenient to spell it again in the present situation: fix y0 ∈ Y ; up to homotopy
make g smooth and transverse to y0 (equivalently move a little y0 to make it a
regular value of g); then g−1(y0) = {x1, . . . xr} is a finite set of points; in the
oriented setting they are oriented, that is endowed with signs εj , j = 1, . . . , r; on
R = Z/2Z the degree is equal to r mod(2); on Z the degree is the sum of the signs
εj .

Now we list a few properties of the degree.

• If g is not surjective, then degR g = 0.

• If g : X → Y is a diffeomorphism, then degR(g) = ±1.

• If h ◦ g and the the degrees of all involved maps make sense, then

degR(h ◦ g) = degR(h) degR(g)

that is the degree is multiplicative under composition. This follows immediately
from functoriality.
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• If g and h are homotopic, then

degR(g) = degR(h)

this follows from (5) of Proposition 11.6.

• To define the degree of a map f : X → Y it is not strictly necessary that X is
connected. In fact we can define

degR(f) =
∑
Xc

degR(f|Xc)

where Xc varies among the connected components of X. By extending the above
homotopy invariance, we have: If [X0, f0] = [X1, f1] ∈ Bn(Y ;R) then

degR(f0) = degR(f1) .

• For every oriented X as above, n ≥ 1, for every r ∈ Z there is g : X → Sn such
that degZ(g) = r.

First we prove it when X = Sn, by induction on n ≥ 1. Consider S1 as the
unitary circle of C. The restriction of z → z̄ to S1 has Z-degree equal to −1. For
every r ≥ 1, the restriction of z → zr has Z-degree equal to r. As the degree
is multiplicative under composition this achieves the result for n = 1. For a given
r ∈ Z, let g : Sn → Sn be of degree equal to r; we have to construct ĝ : Sn+1 → Sn+1

having the same degree. Take ĝ which fixes the northern and southern poles and
holds ĝ(x) = tg(x/t) on Sn+1 ∩ {xn+2 = t}, for every t ∈ (−1, 1). One checks that
it has Z-degree equal to r as well. To finish it is enough to construct g : X → Sn

of Z-degree equal to ±1. Fix a smooth Dn contained in a chart of X. By using
a tubular neighbourhood U of ∂Dn in X, it is not hard to construct a smooth
map g : X → Sn such that the restriction of g to Dn is a diffeomorphism onto
D− = {x ∈ Sn| xn+1 ≤ 0}, and holds constantly the northern pole of Sn on the
complement of Dn ∪ U in X. Such a g does the job.

Remark 12.5. For arbitrary oriented X and Y as above, it is in general a hard
question to determine the set of r ∈ Z which can be realized as the Z-degree of
some g : X → Y .

• Again in the case X = Y = Sn, n ≥ 1. If ρ : Sn → Sn is the restriction
of a reflection of Rn+1 along a linear hyperplane, then degZ(ρ) = −1. Denote
by an : Sn → Sn, an(x) = −x the antipodal map; an is the composition of the
restriction of n+ 1 reflections (e.g. the reflections along the hyperplanes {xj = 0},
j = 1, . . . , n+ 1). Then we have

degZ(an) = (−1)n+1 .

• In the setting of Remark 12.4, let Sn = Rn ∪∞, ∞ ∈ Sn \ (T ∪ Z).

L : T × Z → Sn−1, L(t, z) =
t− z
||t− z||

then one can prove that

degZ(L) = ±lk(T,Z)

we left it as a (non trivial) exercise.
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12.5.1. A proof of the fundamental theorem of algebra. The funda-
mental theorem of algebra states that every non constant complex polynomial
p(Z) ∈ C[Z] has a complex root a, p(a) = 0. There are several proofs; here is
a topological/differential one based on the degree.

Let p(Z) of degree m ≥ 1. It is not restrictive to assume that

p(Z) = Zm +

m∑
j=1

ajZ
m−j

is monic. Define the homotopy through polynomial maps:

pt(z) = tp(z) + (1− t)zm = zm + t(

m∑
j=1

ajz
m−j), t ∈ [0, 1] .

By the compactness of [0, 1], the ratios pt(z)/z
m tend uniformly to 1 when |z| →

+∞. Hence there is R bigh enough such that for every t ∈ [0, 1], the roots of pt(Z)
are in the open ball BR = {|z| < R}, with boundary SR ∼ S1. Hence

pt/|pt| : SR → S1

is a well defined smooth map for every t, so that p1/|p1|(z) = p(z)/|p(z)| and
p0/|p0|(z) = zm/Rm are homotopic to each other. It is immediate that

degZ(p0/|p0|) = m

hence also degZ(p/|p|) = m. On the other hand, if p(Z) has no roots, then p/|p| can
be extended to the whole closed ball B̄R, it would be homotopically trivial, hence
degZ(p/|p|) = 0, a contradiction.

2

12.6. The Euler class of a vector bundle

Let

ξ := π : E → X

be a vector bundle of rank k (that is k is the dimension of the fibre) over a compact
boundaryless smooth n-manifold X. X is considered as a submanifold of E via the
canonical zero section s0 : X → E. Then

[X] ∈ Bk(E;Z/2Z)

and set

wk(ξ) := s∗0([X]) ∈ Bk(X;Z/2Z) .

This is called the Euler class of the vector bundle ξ. Let us spell how to get nice
representatives of this last cobordism class.

Lemma 12.6. (1) The subset t Γ(ξ,X) made by the sections s : X → E of ξ
such that s t X is open and dense in Γ(ξ).

(2) Two sections transverse to X are homotopic to each other through sections
of ξ.

Proof : As X is compact, the openess is now a routine fact. Let us show the
density. Let s : X → E be any section. By transversality theorems, there is a map
z : X → E close to s, z t X, z not necessarily a section. If z is close enough to
s, then h = π ◦ z is a diffeomorphism onto X ⊂ E. Then z ◦ h−1 : X → E is
a section close to s and transverse to X. Every section is homotopic to s0 via a
natural fibrewise radial homotopy.

2

Let s : X → E be any section of ξ transverse to X. Then its zero set

Zs = {x ∈ X| s(x) = 0}
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is a proper submanifold of X of dimension n−k. It follows from the very definition
of s∗0 that

Lemma 12.7. For any section s : X → E, s t X, we have

wk(ξ) = [Zs] ∈ Bk(X;Z/2Z) .

2

Proposition 12.8. For every couple ξ, ρ of vector bundles on X of rank r and
s respectively, then

wr+s(ξ ⊕ ρ) = wr(ξ) t ws(ρ) .

Proof : By using sections s and s′ of ξ and ρ transverse to X in E(ξ) and E(ρ)
respectively and such that s⊕ s′ is transverse to X in E(ξ ⊕ ρ), then

Zs⊕s′ = Zs t Zs′

we conclude by means of Lemma 12.7.
2

It is evident that if there exists s such that Zs = ∅, then wk(ξ) = 0. Then:
The non vanishing of the Euler class wk(ξ) is a basic obstruction to the existence

of a nowhere vanishing section of the vector bundle ξ.

If k > n = dimX, then for every s as above Zs = ∅ and this fits with
Bk(X;Z/2Z) = 0. It follows that ξ of rank k > n is strictly isomorphic to η⊕ εn−k,
η being of rank n; in other words

Every vector bundle over X is stably equivalent to a vector bundle of rank ≤
dim(X).

Proposition 12.9. Let g : X → Y be a smooth map between compact bound-
aryless smooth manifolds. Let ξ be a rank k vector bundle over Y . Then

wk(g∗(ξ)) = g∗(wk(ξ)) ∈ Bk(X;Z/2Z) .

Proof : We stress that the first g∗ refers to the vector bundle pull-back while
the second refers to the cobordism pull-back. The two pull-back procedures are
formally very similar and the equality is a direct consequence.

2

Manifolds with boundary. If the compact manifold (X, ∂X) has non empty
boundary then, for every rank k vector bundle ξ on X, the same procedure defines
the relative Euler class

wk(ξ) ∈ Bk(X, ∂X;Z/2Z) ,

if i : ∂X → X is the inclusion then (as a particular case of the above proposition)

i∗(wk(ξ)) = wk(i∗(ξ)) ∈ Bk(∂X;Z/2Z) .

Universal basic cobordism classes. If g : X → Gh,k is any classifying
map of ξ so that ξ is strictly equivalent to g∗(τh,k) then wk(ξ) = g∗(wk(τh,k)),
wk(τh,k) ∈ Bk(Gh,k;Z/2Z). So these last can be considered as the universal Euler
classes of vector bundles.

The total cobordism characteristic classes of projective spaces. Con-
sider the particular case of the real projective space Pn(R) = Gn+1,1 with the
tautological line bundle τn+1,1. Then

γ1 := w1(τn+1,1) = [Z1] ∈ B1(Pn;Z/2Z)

where Z1 ∼ Pn−1(R) is any projective hyperplane in Pn(R). For every s ≥ 1,

γs := tsj=1γ
1 = [Zs]
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where Zs ∼ Pn−s(R) is any codimension s projective subspace of Pn(R). Set
γ0 := [Z0] = [Pn(R)] the Z/2Z-fundamental class. Clearly if s ≤ n,

γs t γn−s = 1

hence they do not belong to ker(φs) and ker(φn−s) respectively. If s > n, γs = 0.
By definition

n∑
s=0

γs ∈ B•(Pn(R);Z/2Z)

is the total Z/2Z-cobordism characteristic class of Pn(R). If necessary we write
γs = γsn in order to stress that it refers to Pn(R). Then if we consider any linear
inclusion j : Pk(R) → Pn(R), k ≤ n, Pk(R) = Zn−k as above, then for every
m ≥ 0,

γmk = j∗(γmn ) .

12.6.1. Oriented vector bundles. A rank r vector bundle ξ over X is ori-
ented if it is defined by a maximal fibred atlas with GL+(k,R) cocycle. If the base
manifold is also oriented, then the total space manifold is naturally oriented itself.
If X is compact boundaryless, then we can repeat the above constructions in the
oriented setting. This define the oriented Euler class

er(ξ) := j∗([X]) ∈ Br(X;Z) .

ωr(ξ) is the image of er(ξ) via the natural forgetting map B(X;Z)→ B(X;Z/2Z).
For every pair of oriented bundles over X of rank r and s respectively

er+s(ξ ⊕ ρ) = er(ξ) t es(ρ) ∈ Br+s(X;Z) ;

for every f : X → Y smooth maps between oriented compact boundaryless mani-
folds, for every oriented rank r vector bundle ξ bundle over Y ,

g∗(er(ξ)) = er(g∗(ξ)) ∈ Br(X;Z) .

Similarly we have relative oriented Euler classes ek(ξ) ∈ Bk(X, ∂X;Z) when X has
non empty boundary

2

A case of main interest is the tangent bundle of X; then

wn(X) := wn(T (X)) ∈ Bn(X;Z/2Z) = Z/2Z
provides a basic obstruction to the existence of nowhere vanishing tangent vector
fields on X.

If we consider the rank 1 determinant bundle of X, then

w1(X) := w1(detT (X)) ∈ B1(X;Z/2Z)

provides a basic obstruction in order that X is orientable. We will see in Corollary
13.4 that it is a complete obstruction.

We will develop the case of (real and complex) rank 1 bundles (also called line
bundles) in Chapter 13. We will develop the study of the Euler class of the tangent
bundle of X in Chapter 14.

12.7. Borsuk-Ulam theorem

By definition a map f : Sn → Sm is antipodal preserving if for every x ∈ Sn,

f(−x) = −f(x) .

Proposition 12.10. For every n ≥ 1, there does not exist any continuous
antipodal preserving map f : Sn → Sn−1.

The following corollary is known as the Borsuk-Ulam theorem.
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Corollary 12.11. For every n ≥ 1, for every continuous map f : Sn → Rn,
there exists x ∈ Sn such that f(x) = f(−x).

For example, assuming that the surface of the earth is a round sphere and that
temperature and pressure vary continuously on it in space and time, then at every
instant there is a couple of antipodal points at which we have the same couple of
temperature and pressure values.

Proof of BUT. By contradiction, if a given f does not verifies the consclusion
of the Corollary, then

g : Sn → Rn, g(x) = f(x)− f(−x)

is continuous, nowhere vanishing, and for every x ∈ Sn,

g(−x) = f(−x)− f(x) = −g(x) .

Then

ĝ : Sn → Sn−1, ĝ(x) = g(x)/||g(x||
is continuous and would be antipodal preserving, against Proposition 12.10

2

Proof of Proposition 12.10. To lighten the notations, in this proof we will use
ηk(∗) instead Bk(∗;Z/2Z), and write Pm instead of Pm(R).

The case n = 1 is evident because S1 is connected while S0 = {±1} is not.

For n = 2 we use some basic facts about the fundamental group of a manifold
and its action on a universal covering space. Assume that there is such a continuous

antipodal preserving map f : S2 → S1. It induces a map f̂ : P2 → P1 ∼ S1 such
that the following diagram commutes, the vertical maps being the natural degree 2
covering maps:

S2 f→ S1

↓p2 ↓p1

P2 f̂→ P1

.

We know that π1(P2, x0) ∼ Z/2Z, generated by the class of a projective line

passing through the base point, while π1(P1, f̂(x0)) ∼ Z, generated by the the

identity loop. Hence the induced homomorphism f̂∗ : π1(P2, x0) → π1(P1, f̂(x0))
is necessarily trivial. On the other hand, take the two antipodal points x,−x ∈ S2

over x0 and an arc σ in S2 that joins them. Then p2(σ) represents a non trivial
element of π1(P2, x0), because it acts non trivially on S2 which is the universal

covering of the projective plane. The class f̂∗(< p2(σ) >) is represented by p1 ◦f ◦σ
and again it is non trivial because it acts non trivially on the universal covering

space of P1 that dominates the covering p1. This is agaist the fact that f̂∗ = 0.

If n > 2 we have a similar commutative diagram

Sn
f→ Sn−1

↓pn ↓pn−1

Pn f̂→ Pn−1

where both vertical maps are now universal covering maps. Both fundamental
groups are isomorphic to Z/2Z and the very same argument used above shows that

f̂∗ : π1(Pn, x0)→ π1(Pn−1, f̂(x0))

is an isomorphism. Any surjective homomorphism g : Z/2Z → G either is an
isomorphism or G = 0 and g is trivial. For every m > 1, the surjective homorphism

ĥ := σ1 ◦ h1 : π1(Pm, x0)→ η1(Pm)
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is non trivial (the class of a projective line Zm−1 passing through the base point

is sent by ĥ to the non trivial class [Zm−1] ∈ η1(Pm), for via the tautological
isomorphism [Zm−1] = γm−1

m ∈ ηm−1(Pm), and we know that γm−1
m t γ1 = 1).

Hence ĥ is an isomorphism anf f̂ induces an isomorphism (we keep the notation)

f̂∗ : η1(Pn)→ η1(Pn−1) .

For every m > 1, Hom(η1(Pm),Z/2Z) ∼ Z/2Z. Then in our situation

f t∗ : Hom(η1(Pn−1),Z/2Z)→ Hom(η1(Pn),Z/2Z)

is also an isomorphism. For every m > 1,

φ̂ : η1(Pm)/ ker(φ)→ Hom(η1(Pm),Z/2Z)

is an isomorphism and η1(Pm)/ ker(φ) is generated by γ1
m. Then on one hand we

would have
f̂∗(γ1

m−1) = γ1
m, f̂∗(φ̂(γ1

m−1)) = φ̂(γ1
m)

on another hand

0 = f̂∗(0) = f̂∗(tms=1γ
1
m−1) = tms=1γ

1
m = 1

and this is a contradiction.
2





CHAPTER 13

Line bundles, hypersurfaces and cobordism

In this chapter X will denote a compact boundaryless smooth manifold and
we also assume that X is connected (in general we can apply the next arguments
to every connected component). We will use indifferently the notations ηj(X) or
Bj(X;Z/2Z) (resp. Ωj(X) or Bj(X;Z)) and so on. Recall also

Hr(X;R) := Br(X;R)/ ker(φr)

defined in Section 11.4. By means of the Euler classes of line bundles over X one
can achieve a good understanding of η1(X) = B1(X;Z/2Z). If X is oriented, we
will get information about Ω1(X) and by using complex line bundles also about
Ω2(X).

13.1. Real line bundles and hypersurfaces

Let X be as above. Denote by

V1(X)

the set of rank 1 real vector bundles on X (also called (real) line bundles) considered
up to strict equivalence. We know from Chapter 4 that

V1(X) ∼ [X,P∞(R)]

where this last is the space of homotopy classes of classifying maps f ∈ E(X,P∞(R)),
and the bijective correspondence is given via the pull back of the tautological line
bundle:

[X,P∞(R)]→ V1(X), [f ]→ [f∗(τ∞,1)] .

Moreover, by Section 5.13.1 we know that we can “truncate” the classifying maps
so that eventually

V1(X) ∼ [X,Pm(n)(R)]

where m = m(n) is big enough only depending on n. Often we will confuse a class
with a given representative (say we write f instead of [f ], ξ instead of [ξ], and so
on). Recall that the tensor product defines an operation

⊗ : V1(X)× V1(X)→ V1(X), (ξ, β)→ ξ ⊗ β .
In Section 12.6, we have defined a map

w1 : V1(X)→ η1(X), ξ → w1(ξ)

which associates to every line bundle its Euler class. Precisely w1(ξ) can be repre-
setended as

w1(ξ) = [Z]

where Z is a smooth compact hypersurface in X given as the zero set Z = Zs of any
section s ∈ Γ(ξ) transverse to X in E(ξ), where X is canonically embedded in the
total space of ξ by the zero section s0. Moreover, if Z0 and Z1 are two such zero
sets, then we can realize the equality of their bordism classes [Z0] = [Z1] ∈ η1(X)
by means of embedded bordisms:

There exists a proper hypersurface (Y, ∂Y ) of (X× [0, 1], (X×{0})q (X×{1}))
such that ∂Y = Z0 q Z1, Zi ⊂ X × {i}. The map which interpolates the two
inclusions ji : Zi → X is the projection onto X.

181
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So we denote by
η1

Emb(X)

the set of proper smooth hypersurfaces of X considered up to embedded bordism.
There is a natural projection

p : η1
Emb(X)→ η1(X)

so that the above map w1 factorizes as

w1 = p ◦ ŵ1

through a well defined map

ŵ1 : V1(X)→ η1
Emb(X) .

We have

Proposition 13.1. (1) The map ŵ1 : V1(X)→ η1
Emb(X) is bijective.

(2) For every couple (ξ, β) ∈ V2
1 ,

w1(ξ ⊗ β) = w1(ξ) + w1(β) .

(3) The projection p maps η1
Emb(X) onto a Z/2Z-submodule, say H1(X;R),

of B1(X; Z/2Z), the one made by the (unoriented) cobordism classes that can be
represented by embedded hypersurfaces).

Proof : Let us describe the inverse map of ŵ1. For every proper hypersurface
Z of X we have to construct a line bundle ξZ on X such that Z = Zs for some
s ∈ Γ(ξZ), s t X. We can find a finite nice atlas of (X,Z), {(Wj , φj)} such that
for every j, there is a summersion fj : Wj → R, such that Wj ∩ Z = {fj = 0}. On
Wi ∩Wj , by Remark 1.10 (2) the ratio fi/fj defined a priori outside the zero set of
fj , extends to a well defined, smooth and nowhere vanishing function

gi,j : Wi ∩Wj → R, gi,j(x) = fi(x)/fj(x) .

Hence
{gi,j : Wi ∩Wj → R∗}

actually defines a cocycle of a line bundle ξZ on X which has the desired properties
by construction.

As for (2), we can assume that ξ and β are defined by means of cocycles {µi,j}
and {νi,j} respectively over a same nice atlas of X. Then {µi,jνi,j} is a cocycle for
ξ⊗β. Then if {si} and {s′i} are representations in local coordinates of sections s and
s′ of ξ and β respectively , such that s t X, s′ t X, s t s′, then {sis′i} detemines
a section say ss′ of ξ ⊗ β such that [Zs] = w1(ξ), [Zs′ ] = w1(β); by perturbing ss′

to get s” t X, eventually Zs” represents w1(ξ ⊗ β) and [Zs”] = [(Zs, i) q (Zs′ , i
′)].

In fact Zs” can be considered as an embedded desingularization in X of Zs ∪ Zs′ ,
which is singular along the codimension 2 submanifold Y = Zs t Zs′ .

Item (3) is a consequence of (1) and (2).
2

13.2. Real line bundles and Rep(π1,Z/2Z)

Recall that we are assuming thatX is connected. We denote by Rep(π1(X),Z/2Z)
the set of group homomorphisms (the base point of X is understood). Recall the
linear map

φ : η1(X)→ Hom(η1,Z/2Z), φγ(σ) = γ u σ .
Recall the surjective homomorphism

ĥ : π1(X)→ η1(X) .

Then we define the map

κ : V1(X)→ Rep(π1(X),Z/2Z), κ(ξ) = φw1(ξ) ◦ ĥ .
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Here is a concrete way to describe κ(ξ). As π1(P∞(R)) = Z/2Z, then V1(S1)
consists of two line bundles: the trivial and the non trivial one which has the total
space diffeomorphic to an open Möbius band. If σ =< f : S1 → X >∈ π1(X), then
κ(ξ)(σ) = 1 if and only if f∗ξ is non trivial. We have

Proposition 13.2. The map κ : V1(X)→ Hom(π1(X),Z/2Z) is bijective.

Proof : We have already remarked in Example 4.11 that P∞(R) is a K(Z/2Z, 1)
space. It is a fundamental property of such a space that for every

σ ∈ Rep(π1(X),Z/2Z)

there is a unique

f ∈ [X,P∞(R)]

such that

σ = f∗ : π1(X)→ π1(P∞(R)) .

Then

σ → ξσ := f∗(τ∞,1)

defines the inverse map of κ. Equivalently, we can describe κ−1 in terms of degree
2 covering maps. It is known that there is a bijection between the degree 2 covering
maps over X (up to strict equivalence) and Rep(π1(X),Z/2Z). For every line bundle
ξ, κ(ξ) corresponds to the double covering of X given by the unitary bundle with
fibre S0 associated to ξ. Viceversa every degree 2 covering of X can be considered
as a fibre bundle defined by a cocycle over a finite open covering of X with values
in the multiplicative subgroup {±1} of R∗. So it can be considered as the unitary
bundle associated to the line bundle determined by the same cocycle.

2

Referring to Proposition 13.1, we have the following immediate corollaries.

Corollary 13.3. (1) The map p : η1
Emb(X) → H1(X;Z/2Z) ⊂ B1(X;Z/2Z)

is bijective.

(2) H1(X;Z/2Z) ∼ H1(X;Z/2Z) ∼ Hom(η1(X),Z/2Z).

(3) V1(X) ∼ H1(X;Z/2Z).

2

Another consequence of the above discussion is that

H1(X;Z/2Z) is finite dimensional.

For as X is compact, then π1(X) is finitely generated, hence η1(X) = ĥ(π1(X)) is
a finite dimensional Z/2Z-vector space as well as H1(X;Z/2Z).

By applying the above results to the determinant line bundle of X we have

Corollary 13.4. A compact connected boundaryless smooth manifold X is
orientable if and only if w1(X) = 0 ∈ H1(X;Z/2Z).

2

13.3. Oriented hypersurfaces and Ω1

Assume that X is oriented. Then we have the Z-linear map

φ : Ω1(X)→ Hom(Ω1(X),Z)

and via the homomorphism

h : π1(X)→ Ω1(X)

we define a map

κ : Ω1(X)/ ker(φ)→ Rep(π1(X);Z) .
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As usual
[X,S1]

is the set of homotopy classes in E(X,S1). Denote by βS1 the usual generator of
Ω1(S1) which fixes the identification Ω1(S1) = Z. We have the Z-linear map

w : [X,S1]→ Ω1(X), f → f∗(βS1) .

In fact
f∗(βS1) = [Z]

where Z is an oriented proper hypersurface of X of the form

Z = f−1(s0)

s0 being any regular value of f . We denote by

Ω1
Emb(X)

the set of of proper oriented hypersurfaces of X considered up to oriented embedded
bordism (this notion is the natural enhancement of the unoriented one given above).
Then we have the projection

p : Ω1
Emb(X)→ Ω1(X)

such that w factorizes as ŵ ◦ p for a well defined map

ŵ : [X,S1]→ Ω1
Emb(X) .

Finally we have the map

r : [X,S1]→ Rep(π1(X);Z), f → f∗ : π1(X)→ π1(S1) = Z .

We have

Proposition 13.5. (1) The map ŵ : [X,S1]→ Ω1
Emb(X) is bijective.

(2) The map r : [X,S1]→ Rep(π1(X);Z) is bijective.

(3) The map κ : H1(X;Z)→ Rep(π1(X);Z) is bijective.

(4) The projection p : Ω1
Emb(X)→ Ω1(X) is injective onto a Z-submodule say

H1(X;Z) ⊂ B1(X;Z) .

(5) H1(X;Z) ∼ H1(X;Z) ∼ Hom(Ω1,Z).

(6) H1(X;Z) is finitely generated.

Proof : Let us define the inverse map of ŵ. This is a first sample of a general
construction that we will study with all details in Chapter 17. So we limit here
to indicate the main points. Let Z be a proper oriented hypersurface of X. As
both X and Z are oriented, we can fix a global trivialization t : Z × (−1, 1) → U
of a tubular neighbourhood of Z in X. Let s− the southern pole of S1, s+ := ∞
the northern one. Let D ∼ (−1, 1) be an open interval in S1 centred at s−. Then
the composition of t−1 with the projection onto (−1, 1) define a local summersion
f : U → D ⊂ S1. By using a suitable partition of unity as usual, we can globally
define fZ : X → S1 such that fZ is constantly equal to ∞ on the complement of U ,
equals f on t((−1/2, 1/2)) and f−1(s−) = Z. One verifies that the homotopy class
of such a map fZ is invariant up to oriented embedded bordism of hypersurfaces,
so [Z]→ [fZ ] eventually defines the inverse map of ŵ. This achieves (1).

As for (2), it is well known that S1 is a K(Z, 1) space. Hence for every σ ∈
Rep(π1(X);Z), there is fσ : X → S1, uniquely defined up to homotopy, such that
σ = fσ∗ : π1(X)→ π1(S1) = Z. This defines the inverse map of κ.

The item (3) follows from (1) and (2) by readly noticing that if [Z] = ŵ([f ]),
then f∗ = φ([Z]). Items (4) and (5) are basically a rephrasing of the previous ones;
(6) follows again from the fact that X is compact, hence π1(X) is finitely generated
and the homomorphism h is surjective.

2
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13.4. Complex line bundles and Ω2

Assume again that X is oriented. Denote by

V1(X,C)

the set of complex line bundles over X considered up to strict equivalence. Similarly
to the real case,

V1(X,C) ∼ [X,P∞(C)]

where this last is the space of homotopy classes of classifying maps f ∈ E(X,P∞(C)),
and the bijective correspondence is given via the pull back of the tautological com-
plex line bundle:

[X,P∞(C)]→ V1(X,C), [f ]→ [f∗(τC∞,1)] .

Moreover, we can “truncate” the classifying maps so that eventually

V1(X,C) ∼ [X,Pm(n)(C)]

where m = m(n) is big enough only depending on n = dim(X). Every complex
line bundle ξ underlies a rank 2 oriented real bundle ξR. Viceversa, every rank 2
oriented real bundle can be endowed with a structure a complex line bundle by
reducing the structural group to SO(1) and by identifying the rotation by π/2 to
the product by

√
−1. Then we can define

e2 : V1(X;C)→ Ω2(X), ξ → e2(ξR)

which associates to every ξ the oriented Euler class of its “realification”. Precisely
e2(ξ) can be represetended as

e2(ξ) = [Z]

where Z is a proper codimension 2 oriented smooth submanifold of X given as the
oriented zero set Z = Zs of any section s ∈ Γ(ξR) transverse to X in E(ξR). If Z0

and Z1 are two such zero sets, then we can realize the equality of their bordism
classes [Z0] = [Z1] ∈ Ω2(X) by means of oriented embedded bordisms via proper
oriented codimension 2 submanifold (Y, ∂Y ) of (X × [0, 1], (X × {0})q (X × {1})).
Similarly as above denote by Ω2

Emb(X) the set of codimension 2 oriented proper
submanifolds of X considered up to embedded oriented bordism, and

p : Ω2
Emb(X)→ Ω2(X)

the natural projection. The map e2 factorizes as p ◦ ê2 where

ê2 : V1(C)→ Ω2
Emb(X) .

Recall the Z-linear map

φ2 : Ω2 → Hom(Ω2(X),Z)

which composed with e2 and the homomorphism

h : π2(X)→ Ω2(X)

leads to the map

κ : V1(C)→ Rep(π2(X),Z) .

Finally, analogously to the real case, P∞(C) is a K(Z, 2)-space ([Hatch]), hence it
is defined and is bijective the map

r : [X,P∞(C)]→ Rep(π2(X),Z), f → f∗ : π2(X)→ π2(P∞(C)) = Z .

By combining these facts similarly to the real case we have
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Proposition 13.6. (1) The map ê2 : V1(C)→ Ω2
Emb(X) is bijective.

(2) For every (ξ, β) ∈ V2
1 (C), e2(ξ ⊗C β) = e2(ξ) + e2(β).

(3) The map κ : V1(C)→ Rep(π2(X),Z) is bijective.

(4) The projection p is injective and maps Ω2
Emb(X) onto a Z-submodule, say

H2(X;Z) of B2(X;Z).
(5) H2(X;Z) ∼ H2(X;Z) ∼ Hom(Ω2(X)/φ2,Z).

2

13.4.1. Relative case. If (X, ∂X) is compact with non empty boundary, pos-
sibly oriented, this is part of of the setting of Section 11.5. So one can elaborate a
relative version of the previous results. We limit to state the existence of isomor-
phisms

H1(X, ∂X;Z/2Z)→ Hom(H1(X;Z/2Z),Z/2Z)

H1(X, ∂X;Z)→ Hom(H1(X;Z),Z)

H2(X, ∂X;Z)→ Hom(H2(X;Z),Z) .

13.5. Seifert’s surfaces

Let X be a compact oriented boundaryless manifold. By applying similar ar-
guments about complex line bundles or rank 2 oriented real bundles, we want to
prove the following proposition.

Proposition 13.7. Let Y ⊂ X be a proper oriented codimension 2 submanifold
of X. Assume that [Y ] ∈ ker(φ), that is [Y ] = 0 ∈ H2(X;Z). Let π : U → Y be a
tubular neighbourhood of Y in X. Let W = X \ Int(U) with boundary ∂W = ∂U .

Then there exists a compact oriented hypersurface with boundary Z̃ of X such that
∂Z̃ = Y . Such a Z̃ is called a Seifert surface of Y . Precisely, Z̃ is transverse to
∂W , (Z, ∂Z) := (Z̃ ∩W, Z̃ ∩ ∂W ) is a proper oriented hypersurface in (W,∂W ),

U ∩ Z̃ is a collar of Y in Z̃.

Proof : Let i : Y → X be the inclusion. Any tubular neighbourhood p : U → Y
of Y in X can be associated to a direct sum decomposition of the form

i∗(T (X)) = T (Y )⊕ ξR
where ξR is the “realification” of a complex line bundle on Y . As [Y ] ∈ ker(φ), then
e2(ξ) = 0, hence ξ is trivial so that U admits global trivializations which induce
trivializations of ∂W . Let us fix one h0 : ∂W → Y × S1. Fix one oriented fibre
D ∼ D2 of π with oriented boundary S ∼ S1. We claim that [S] is of infinite
order in Ω1(W ). By contradiction, let us assume that say p 6= 0 parallel copies
of S are the boundary of a singular manifold g : (V, ∂V ) → (W,∂W ). Then by
gluing V and p parallel copies of D along the boundary, we would get an “absolute”
singular 2-manifold (Ṽ , g̃) in X such that [Y ] t [Ṽ , g̃] = p, against the fact that
[Y ] ∈ ker(φ). As [S] is indivisible in Ω1(W ), there exists ψ ∈ Hom(Ω1(W ),Z)
such that ψ([S]) = 1. We know that ψ is realized by a map fψ : (W,∂W ) → S1

transverse to a given point q ∈ S1. Denote by j : ∂W → W and r : S → ∂W the
two inclusions. Then γ := jt(ψ) is realized by the restriction fγ of fψ to ∂W , while
the restriction of fγ to S realizes (j ◦ r)t(φ) and is homotopic to the identity. Up
to modify the given trivialization h0 by a suitable one say h, fγ factorizes as p ◦ h,
where h : ∂W → Y × S1 and p : Y × S1 → S1 is the projection onto the second
factor. Then (Z, ∂Z) = (f−1

φ (q), f−1
γ (q)) and Z̃ obtained by gluing along ∂Z the

mapping cylinder of the restriction of π to it achieve the proof.
2
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From the last step of the above proof we have the following corollary.

Corollary 13.8. Let X be an oriented compact n-manifold with boundary ∂X.
Let Z be e proper oriented submanifold of dimension n − 2 of ∂X. Assume that
[Z] = 0 in H2(X;Z). Then there is a proper oriented hypersurface (W,∂W ) such
that Z = ∂W .

We have also the following version of Corollary 13.8 when Z is of codimension
2 in ∂X.

Proposition 13.9. Let X be an oriented compact n-manifold with boundary
∂X. Let Z be e proper submanifold of dimension n−3 of ∂X. Assume that [Z] = 0
in H3(X;Z). Then there is a proper codimension-2 oriented submanifold (W,∂W )
of (X, ∂X) such that Z = ∂W .

Proof : The hypotheses put us in a situation analogous to the last step in the
proof of Proposition 13.7, that is to Corollary 13.8. Here S1 is replaced by Pn(C)
(n big enough) in the sense that both carry special instances of the Pontryagin-
Thom’s construction which will be considered in Chapther 17 in full generality. Let
f0 : Z → Pn−1(C) be a classifying map of the oriented normal rank-2 bundle of
Z in ∂X. Note that Pn(C) \ {x0}, x0 ∈ Pn(C) \Pn−1(C), is diffeomorphic to the
total space of the tautological vector bundle on Pn−1(C). Hence f0 extends to a
map f : ∂X → Pn(C) such that f t Pn−1(C) and Z = f−1(Pn−1(C). As [Z] = 0
in H3(X;Z), if n is big enough then f can be extended to a map F : X → Pn(C)
which we can assume transverse to Pn−1(C). Finally W = F−1(Pn−1(C) does the
job.

2

As a corollary we have a weak version of Proposition 13.7 when Y has codi-
mension 3.

Corollary 13.10. Let Y ⊂ X be a proper oriented codimension 3 submanifold
of X. Assume that the normal bundle of Y in X has a non vanishing section s and
let Y ′ = s(Y ) be a copy of Y in the boundary ∂U of a tubular neighbourhood of Y
in X. Assume that [Y ′] = 0 in H3(X \ Int(U);Z). Then there is a proper oriented
codimension-2 submanifold (W,∂W ) of (X \ Int(U), ∂U) such that ∂W = Y ′.

Remark 13.11. (Non orientable Seifert surfaces) In the statement of Proposi-
tion 13.7 do not assume that X and Y are orientable and use H2(X;Z/2Z) instead.
It is natural to inquire about the existence of possibly non orientable Seifert surface.
We see an immediate obstruction: if a Seifert surface exists and i∗(T (X)) = T (Y )⊕ξ
is as above (where ξ is now not necesseraly trivial nor orientable), then ξ has a
nowhere vanishing section. The above proof can be adapted to show that this is
really the only obstruction.





CHAPTER 14

Euler-Poincaré characteristic

X will denote a compact connected oriented boundaryless smooth n-manifold.
Then also the tangent bundle π : T (X) → X is tautologically an oriented rank
n vector bundle on X: the orientation of X determines in a coherent way an ori-
entation on every fibre TpX of T (X). Then we can consider the oriented Euler
class

en(X) ∈ Ωn(X) = Bn(X;Z) = Z .

By a traditional change of notation

χ(X) := en(X) ∈ Z
is called the Euler-Poincaré characteristic of X. If X is not connected, χ(X) is
defined as the sum of the characteristics of its connected components.

Recall that χ(X) is computed by means of any section s of T (X) transverse
to X. In other words, χ(X) is the self-intersection number of X in T (X). Such a
section s t X is a tangent vector fields on X with only non-degenerate zeros: s can
be expressed in local coordinates at every such a zero p ∼ 0 in the form

s(x) = (x, fp(x))

where fp : (Rn, 0)→ (Rn, 0) is a diffeomorphism. The sign ε(p) = ±1 of the zero p,
so that

χ(X) =
∑

p;s(p)=0

ε(p)

is readily computed as
ε(p) = sign(det d0fp) .

14.1. E-P characteristic via Morse functions

Let f : X → R be a Morse function with critical points p1, . . . , pr of index
q1, . . . , qr. Let ∇gf be an adapted gradient field of f as in Section 9.1. Then
p1, . . . , pr are also the zeros of this field. It is easy to check by using the Morse local
coordinates that they are non degenerate zeros and their sign is given by

ε(pj) = (−1)qj .

Hence we have

χ(X) =

r∑
j=1

(−1)qj .

This has the following interesting corollary.

Corollary 14.1. If dim(X) = n is odd, then χ(X) = 0.

Proof : Consider the Morse function 1− f ; f and 1− f have the same critical
points p1, . . . , pr, of index qj and n− qj , j = 1, . . . , r, respectively. Then

χ(X) =

r∑
j=1

(−1)qj =

r∑
j=1

(−1)n−qj

as n is odd, this implies that χ(X) = −χ(X).
2

189
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Remark 14.2. If we consider the handle decomposition of X, say H, associated
to a Morse function f , the above expression of χ(X) can be rephrased in terms of
handle indices, that is χ(X) = χ(H) (see Section 9.3) . The characteristic χ(H) is
defined for every handle decomposition, not necessarily associated (a priori) to any
Morse function. We know that it is invariant for the (handle) move-equivalence.

14.2. The index of an isolated zero of a tangent vector field

We are going to reformulate the sign ε(p) of a non degenerate zero of a tangent
vector field on X in a way which will make sense also for any isolated zero (not
necessarily non degenerate). Let p be an isolated zero of a vector field s. Let us
implement the following procedure:

(1) Take local coordinates of X at p ∼ 0, so that s is of the form

s(x) = (x, fp(x))

where

fp : (Rn, 0)→ (Rn, 0)

is a smooth map such that f−1
p (0) = {0}.

(2) Then it is well defined the smooth map

fp/||fp|| : Sn−1 → Sn−1 .

(3) We can assume that the standard orientation of Rn associated to the
standard basis is coherent with the global orientation of X, so that Sn−1

is oriented as the boundary of the oriented disk Dn ⊂ Rn.
(4) Finally set

ip = deg(fp/||fp||) ∈ Z .

A priori this mights depend on the particular choices made in the imple-
mentation.

We have

Lemma 14.3. (1) ip(s) := ip = deg(fp/||fp||) ∈ Z is well defined (i.e. it does
not depend on the specific implementation of the procedure) and is called the index
of the isolated zero p of the tangent vector field s.

(2) If p is a non degenerate zero of s, then (with the notations fixed above)

ip(s) = ε(p) = sign(det d0fp) .

Proof : Let φ : (Rn, 0) → (Rn, 0) be a change of coordinates relating two
different implementations. Then Dn := φ−1(Dn) is a smooth oriented n-disk around
0, with oriented boundary Σ diffeomorphic to Sn−1. Let s(x) = (x, fp(x)) be the
expression of s in the source local coordinates. Set

g := fp/||fp|| : Rn \ {0} → Sn−1 .

It is clear that ip computed with respect to the target local coordinates is equal to
the degree of the restriction of g to Σ. So we have to prove that this degree equals ip
computed with respect to source local coordinates. There is 1 > ε > 0 small enough
such that the closed n-disk εDn (with boundary εSn−1) is contained in the interior
of Dn. Then the restriction of g to Dn \ Int(εDn) establishes an oriented bordism
of g|Sn−1 with g|εSn−1 ; similarly the restriction of g to Dn \ Int(εDn) establishes a
bordism of g|Σ with g|εSn−1 . Then we can conclude by applying twice the invariance
of the degree up to bordism. This achieves (1).

As for (2), assume that fp is a diffeomorphism. The result is immediate if fp
is a linear isomorphism. Then we can conclude by means of the results of Section
1.14 and the invariance properties of the degree again.

2
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14.3. Index theorem

Let s be a tangent vector field on X with only isolated zeros, say p1, . . . , pr
(there is a finite number because X is compact). Then we can set

χ(X, s) =

r∑
j=1

ipj (s) ;

if s t X, that is all zeros are non degenerate, then we know that

χ(X, s) = χ(X)

has an intrinsic meaning, not depending on the field s. Next theorem extends this
fact to an arbitrary field as above.

Theorem 14.4. For every tangent vector field s on X with only isolated zeros,
we have

χ(X, s) = χ(X) .

Proof : For every zero pj of s fix an implementation of the procedure that

computes ipj (s). Hence ipj (s) = deg(gj : Sn−1
j → Sn−1). We can also assume

that these charts are pairwise disjoint. Let s̃ be a section of T (X), s̃ t X, very
close to s. Then the non degenerate zeros of s̃ distribute in bunches zj,1, . . . , zj,rj ,
contained in the interior of the n-disk Dn

j , j = 1, . . . , r. Fix one of these zeros
p = pj and consider the corresponding z1, . . . , zrj ∈ Dn = Dn

j . We can take a
system of pairwise disjoint small n-disks Dn

i centred at zi, contained in the interior
of Dn. As s and s̃ are homotopic along Sn−1 = ∂Dn, then we can use s̃ instead
of s in order to compute ipj (s) via the degree. On the other hand, we can use the
restriction of s̃ to ∂Dn

i in order to compute the index of the non degenerate zero
zi of s̃. The normalized field is defined on Dn \ (∪iInt(Dn

i )) and this establishes a
bordism between the restriction on the boundary components. By the invariance
of the degree up to bordism, we realize that

ip(s) =
∑
i

izi(s̃) .

By taking the sum over all zeros of s we eventually get

χ(X, s) =
∑
j,i

izj,i(s̃) = χ(X) .

2

14.4. E-P characteristic for non oriented manifolds

Let us fix first the behaviour of χ with respect to the change of orientation. So
let X be as above and −X denotes it endowed with the opposite orientation.

Lemma 14.5. χ(X) = χ(−X).

Proof : Use a same given tangent field s with isolated zeros to compute both
characteristic numbers. As T (X) is tautologically oriented in agreement with the
orientation of X, it is immediate that the index of every zero of s does not depend
on the choice of this orientation.

2

In fact the computation of the index of an isolated zero p of s is a purely local
stuff:

One does not really need a global orientation of X to compute it; a local orien-
tation of X at p suffices and the same argument of the above lemma shows that it
does not depend on the choice of such local orientation.

This suggests that the procedure to compute χ(X) can be extended to every
X not oriented and even non orientable; it is enough to replace in the computation
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of the indices a global orientation of X (if any) with an arbitrary system of local
orientations at the zeros of a given tangent field s with isolated zeros. Then we
have defined in general χ(X, s), which a priori depends on the choice of s. In fact it
does not. If X is orientable we have already achieved this result. Assume that X is
connected and non orientable. Let p : X̃ → X be the degree 2 orientation covering
of X, where X̃ is the connected orientable total space of the unitary determinant
bundle of X. Every field s on X as above lifts to a field s̃ on X̃ so that every
isolated zero p of s lifts to a couple p± of isolated zeros of s̃. It follows from the
very definition that

ip(s) = ip±(s̃)

so eventually

χ(X, s) =
1

2
χ(X̃, s̃) =

1

2
χ(X̃) .

Recall that if X is orientable then X̃ consists of two copies of X so that also in this
case

χ(X) =
1

2
χ(X̃) .

Summing up

χ(X) :=
1

2
χ(X̃) ∈ Z

is always a well defined characteristic number of X, and in every case (X being
orientable or not) can be computed as the sum of indices of any tangent vector field
s on X with isolated zeros.

Recall that we have also the non oriented cobordism Euler class

wn(X) ∈ ηn(X) = Bn(X;Z/2Z) = Z/2Z .

Clearly

wn(X) = χ(X) mod(2)

and sometimes one writes

χ(2)(X) := wn(X) .

14.5. Some examples and properties of χ

• The unit sphere Sn admits a Morse function with just one minimum and one
maximum, then

χ(Sn) = 1 + (−1)n

and it is zero when n is odd (as it must be), while χ(Sn) = 2 if n is even. This
implies that an even dimensional sphere does not admit any nowhere vanishing
tangent vector field. In fact we have

Sn admits a nowhere vanishing tangent vector field if and only if n is odd.

We have to hexibit such a tangent vector field on Sn when n is odd. For n = 1,
let S1 ⊂ R2 the unit circle. For every p = (x, y) ∈ S1, set s(p) = (−y, x),this
does the job. In general for every p = (x1, y1, . . . , xn+1, yn+1) ∈ Sn ⊂ Rn+1, set
s(p) = (−y1, x1, . . . ,−yn+1, xn+1).

• If π : X̃ → X is a degree d covering map, then

χ(X̃) = dχ(X) .

In fact we can argue as made above for the degree 2 covering maps, by lifting to
X̃ any tangent vector field s with isolated zeros on X; every zero p of s lifts to d
isolated zeros of s̃ sharing the same index of ip(s). In particular by considering the
natural degree 2 covering map π : Sn → Pn(R), we have χ(Pn(R)) = 0 if n is odd,
while χ(Pn(R)) = 1 if n is even.
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• Consider the complex projective space Pn(C) as the quotient space of the
unitary sphere S2n+1 ⊂ Cn+1. One verifies (do it by exercise by using the standard
atlas of Pn(C) with n+ 1 complex affine charts) that

f([z0, z1, . . . , zn]) =

n∑
j=0

(j + 1)|zj |2

defines a Morse function on Pn(C) with exactly n+ 1 critical points

p0 = [1, 0, . . . , 0], . . . , pn = [0, . . . , 0, 1]

and every even index between 0 and 2n occurs exactly once. Hence

χ(Pn(C)) = n+ 1 .

• The characteristic χ is multiplicative with respect to the product of manifolds.
That is, if X and X ′ are compact boundaryless manifold as above, then

χ(X ×X ′) = χ(X)χ(X ′) .

In fact if s (s′) is a tangent field on X (on X ′) with non degenerate zeros p1, . . . , pr
(p′1, . . . , p

′
r′), then s × s′ defines a field on X × X ′ with rr′ non degenerate zeros

(pj , p
′
i), j = 1, . . . , r, i = 1, . . . , r′, each one having index

i(pj ,p′i)(s× s
′) = ipj (s)ip′i(s

′) .

For example

χ(X × S1) = 0

for every X (in fact we can explicitly define a nowhere vanishing tangent vector
field on X × S1 which restricts to the avove standard field on every fibre ∼ S1).

Whenever both n and m are even, then

χ(Pn(R)×Pm(R)) = 1 .

14.6. The relative E-P characteristic of a triad, χ-additivity

Here we adopt the setting of Chapter 9. By definition a relative tangent vector
field on a triad (W,V0, V1) of compact smooth manifolds, at the boundary ∂W =
V0 q V1 looks like a gradient of a smooth function f : W → [0, 1] such that Vj =
f−1(j), j = 0, 1, and has no critical points on a neighbourhood of ∂W . Hence it
is ingoing W along V0 and outgoing along V1. An adapted gradient of any Morse
function on the triad is a typical example of such a field. By using these fields we
can develop with minor changes a notion of relative of E-P characteristic for triads.
Assuming first that W is oriented (with oriented boundary), by using relative fields
with only non degenerate zeros we can define the self-intersection number

χ(W,V0) ∈ Z

of W in T (W ) relatively to V0; it is well defined as does not depend on the choice
of the non degenerate field. Then we can extend the Hops index theorem which
allows us to compute χ(W,V0) by means of any relative field with isolated zeros;
finally we can extend the definition of χ(W,V0) ∈ Z to non oriented and even non
orientable triads. Of course every W with non empty boundary gives rise to several
triads (W,V0, V1); among these: (W, ∅, ∂W ) and (W,∂W, ∅). The notation

χ(W ) := χ(W, ∅, ∂W )

is compatible with

χ(W ) = χ(W, ∅, ∅)
when W is boundaryless.
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If f : W → [0, 1] is a Morse function on the triad (W,V0, V1), then f̂ = 1 − f
is a Morse function on (W,V1, V0). By using respective adapted gradient fields to
compute the relative charcteristics we get

Lemma 14.6.
χ(W,V0) = (−1)dim(W )χ(W,V1) .

2

Note that χ(Dn) = 1: use a Morse function on (Dn, ∅, Sn−1) with just one
minimum.

If X is boundaryless and Y is with boundary, then the very same argument
used when also Y is boundaryless allows to extend the multiplicative property.

Lemma 14.7.
χ(X × Y ) = χ(X)χ(Y ) .

In particular
χ(X ×Dn) = χ(X) .

2

14.6.1. Additive property of χ. If (W,V0, V1), (W ′, V ′0 , V
′
1) are triads and

φ : V1 → V ′0 is a diffeomorphism, we get a new composite triad (W”, V0, V
′
1), where

W” = W qφ W ′. Any couple of relative fields v and v′ with isolated zeros on the
given two triads respectively, can be glued together to produce a relative field v”
having as zeros the union of the zeros of v and v′ each one keeping its index. Then
we have

χ(W”, V0, V
′
1) = χ(W,V0, V1) + χ(W ′, V ′0 , V

′
1) .

This additive property of χ has remarkable consequences.

14.6.2. A baby TQFT. In Section 10.8 we have roughly outlined the axioms
of a so called TQFT and posed the question about the existence of any “non trivial”
one. Here we use χ to provide a baby but non trivial example. Consider CATη(n+
1). Associate to every object M the vector space Z(M) = C. To every arrow f
carried by any triad (W,M0,M1), associate the unitary C-linear map

Z(f) : Z(M0)→ Z(M1), z → eiχ(W,M0)z .

By using the additive property of χ it is easy to check that all axioms are verified.
This shows at least that there are not logical contradictions within the given pattern
of axioms.

14.7. E-P characteristic of tubular neighbourhoods and the Gauss map

The above equality χ(X ×Dn) = χ(X) is a special case of the following

Proposition 14.8. Let p : U → X be a closed tubular neighbourhood of a
submanifold X of some Y . Then χ(U) = χ(X).

Proof : It is enough to show the equality for an ε-neighbourhood Nε(X) of
the zero section X of a vector bundle bundle π : E → X endowed with a field of
positive definite scalar products on every fibre. Let v be a tangent field on X with
non degenerate zeros. Define the field on Nε(X)

w(z) = (z − p(z)) + v(p(z)) .

One checks that w is a field on the triad (Nε(X), ∅, ∂Nε(X)), the zeros of w coincide
with the zeros of v, are non degenerate and keep the sign. The Proposition follows.

2

In the special case X ⊂ Rk, assume that U has been constructed by means
of the standard metric on Rk. By removing from the interior of U a system of



14.8. NON TRIVIALITY OF η• AND Ω• 195

pairwise disjoint small open disks Dp around every zero of w, we get a manifold
W with boundary (qpSk−1

p ) q ∂U on which the normalized field w := w/||w|| is

well defined, as well as the map w : W → Sk−1. The restriction of w to ∂U is a
field of unitary vectors pointing out from U (in fact normal to the boundary). This
restriction, say g∂U is called the Gauss map of the hypersurface ∂U . By computing
the characteristic as sum of zero indices and by means of the bordism invariance of
the degree, finally we have

Corollary 14.9. Let p : U → X be a tubular neighbourhood of X in Rk. Then

χ(X) = deg(g∂U )

where g∂U is the Gauss map of the hypersurface ∂U .

2

If X itself is an oriented hypersurface in Rk, we can define its Gauss map
gX : X → Sk−1 as the unitary field of normal vectors along X such that followed
by the orientation of X produce the given (standard) orientation of Rk along X.
In this case ∂U consists of two parallel copies of X with opposite orientations. The
last corollary specializes to

Corollary 14.10. Let X be an oriented hypersurface of Rk then

χ(X) = 2 deg(gX)

where gX is the Gauss map of X.

2

Remark 14.11. We can compute inductively the characteristic of real and
complex projective spaces by decomposing Pn(K) as the union of a tubular neigh-
bourhood of Pn−1(K) ⊂ Pn(K) and its complement, and applying Proposition 14.8
together with the additivity of χ.

14.8. Non triviality of η• and Ω•

The integer E-P characteristic is not invariant up to bordism. For example
[S2] = [S1×S1] = 0 ∈ η2, but χ(S2) = 2 6= 0 = χ(S1×S1). On the other hand the
E-P characteristic mod(2) is bordism invariant.

Proposition 14.12. Let [X] = 0 ∈ ηn. Then χ(2)(X) = 0 ∈ Z/2Z.

Proof : If n is odd, we know in general that χ(X) = 0. Assume that n is even.
Let X = ∂W , W being a compact manifold with boundary. Take the double D(W ).
D(W ) can be presented as the composition of the triad

(X ×D1, ∅, (X × {−1} q (X × {1}))
followed by two copies of the triad

(W,X, ∅)
glued to X ×D1 along X × {±1} respectively. By the additive property

χ(D(W )) = χ(X ×D1) + 2χ(W,X, ∅) .
By Lemmas 14.7, 14.6 and the facts that n+1 is odd and the double is boundaryless
we have

χ(X) = χ(D(W ))− 2χ(W,X, ∅) = 2χ(W ) ∈ Z
so that

χ(2)(X) = 0 ∈ Z/2Z .

2

As an immediate corollary we have the non triviality of η2n and Ω4n.
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Corollary 14.13. For every even n ≥ 1, η2n 6= 0 and Ω4n 6= 0

Proof : We know that χ(P2n(R)) = 1, hence [P2n(R)] 6= 0 ∈ η2n. Similarly
χ(2)(P

2n(C)) = 1, hence [P2n(C)] 6= 0 ∈ Ω4n. 2

By using the multiplicative property of χ and the obvious fact that it is additive
under disjoint union we also have

Corollary 14.14. χ(2) : η• → Z/2Z is a well defined non trivial ring homo-
morphism.

2

In fact every Pa(R) × Pb(R), a, b even, is non trivial in ηa+b. For example in
η4 we have the non trivial [P4(R)], [P2(R) × P2(R)], [P2(C)]. At present we are
not able to decide if they are equal or not. Similarly we have that Pa(C)×Pb(C),
a, b even, is non trivial in Ω2(a+b).

14.9. Combinatorial E-P characteristic

We have treated the E-P characteristic of smooth manifolds in purely differ-
ential/topological terms. However, the reader is probably aware that the name
E-P characteristic is used in other different settings. Probably she/he has at least
encountered a combinatorial formula producing the value 2 = χ(S2) for every poly-
hedral realization of the sphere as the boundary of a convex polytope in R3. In this
very sketchy Section we would outline a few bridges between such different ways to
recover the E-P characteristic.

14.9.1. Piecewise smooth triangulations and the combinatorial char-
acteristic. Recall that a m-simplex σ in some euclidean space Rh, h ≥ m is the
convex hull of m+1 affinely independent points (that is they span an m-dimensional
affine subspace of Rh). These are called the vertices of σ. By removing one vertex,
say p, we detemine a (m − 1) simplex σp which is the (m − 1) face of σ opposite
to the vertex p. By iterating the face operation we get the iterated k-faces of σ,
0 ≤ k ≤ m, where the vertices are the 0-faces and σ itself is the unique m-face. By
definition a finite simplicial complex is a finite family K of simplexes in some Rh
such that

• K is closed with respect to the iterated faces.
• Two simplexes of K may intersect each other only at a common iterated

face.

The union |K| of the simplexes of K is a subspace of Rh called the geometric
support of the complex K.

Let X be a compact boundaryless smooth manifold. A piecewise smooth trian-
gulation of X is given by a homeomorphism

τ : |K| → X

where K is a finite simplicial complex in some Rh and the restriction of τ to every
n-symplex of K is a smooth embedding in X. If ∂X 6= ∅, we require furthermore
that τ|τ−1(∂X) is a triangulation of ∂X.

One can prove

Proposition 14.15. Let τ : |K| → X be a piecewise smooth triangulation of
the compact boundaryless smooth n-manifold X. Then there is a tangent, so called
Whitney vector field vτ on X whose zero set coincides with the set of images of the
barycenters σ̂ of the simplexes σ of K and every zero has index equal to (−1)dim(σ).

As a Corollary of the above Proposition and the Index Theorem, we have
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Corollary 14.16. For every piecewise triangulation τ : |K| → X as above,

χ(X) =

n∑
j=0

(−1)jcj := χ(K)

where cj is the number of j dimensional simplexes of K. In particular the combi-
natorial characteristic χ(K) does not depend on the choice of the triangulation of
X.

2

A few comments about the proof. The Whitney field vτ can be explicitly given
by means of barycentric coordinates on the simplexes of K, see for instance [HT];
every barycenter of a n-simplex of K corresponds to a source of vτ , every vertex of
K corresponds to a pit, in general every barycenter of a j-simplex corresponds to a
saddle point with a j dimensional space of ingoing directions tangent to the simplex
and a n− j-dimensional space of outgoing directions tranverse to the simplex.

For the existence (and a suitable form of “uniqueness up to subdivision”) of
piecewise smooth triangulations see [Mu].

14.9.2. Homological characteristic. Here we want to recover the combina-
torial characteristic in an algebraic/topological setting.

Fix any field F (for example F = Z/2Z,Q,R,C).
Given a triangulation of X as above, we can define the simplicial homology of

K with coefficients in F as follows:

• Give every simplex σ of K an orientation, induced by the choice of an orien-
tation on the affine subspace of Rh spanned by the vertices of σ.

• For every 0 ≤ j ≤ n, set Cj(K;F ) the finite dimensional F -vector space having
as a basis the oriented j-simplexes of K (note that −σ considered as the simplex
endowed with the opposite orientation is confused with −1σ i.e. the product of σ
with the scalar −1 ∈ F ). Hence

dimCj(K;F ) = cj .

• Every (j − 1)-face σ′ of the oriented j-simplex σ of K inherits a boundary
orientation accordingly with our usual convention. Hence σ′ has two orientations,
the one fixed above and the boundary orientation. Give it the sign ε(σ′, σ) = 1
if these orientations agree to each other, the sign −1 otherwise. Then define the
unique F -linear map

∂j : Cj(K;F )→ Cj−1(K, F )

which on every oriented j-simplex σ holds:

∂j(σ) =
∑
σ′

ε(σ′, σ)σ′

where σ′ varies among the (j − 1) faces of σ. It is not hard to verify that

δj−1 ◦ δj = 0

basically because two (j − 1) faces of the oriented j-simplex σ both endowed with
the boundary orientation, induce opposite boundary orientations on their common
(j − 2) face of σ. Hence we can define the quotient F -vector spaces

Hj(K;F ) = ker(δj)/Im(δj+1)

and these are the desired simplicial F -homology spaces of the complex K. By using
the elementary dimension formula for any finite dimensional linear map f : V →W :

dim(V ) = dim(ker(f)) + dim(Im(f))
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it is not hard to check that the F -homological characteristic

χ(H•(K;F )) :=

n∑
j=0

(−1)j dimHj(K;F ) =

n∑
j=0

(−1)j dimCj(K;F )

hence it equals the combinatorial characteristic so that

χ(H•(K;F )) = χ(X) .

Remarkably it does not depend on the choice of the triangulation of X and not
even of the field F . It is a fundamental and basic result of algebraic topology (see
[Hatch], [Mu2]) that even the single dimensions (also called the F -Betti numbers
of X)

dimHj(X;F ) := dimHj(K;F )

do not depend on the choice of the triangulation, although they depend on F .



CHAPTER 15

Surfaces

We are going to apply several tools developed in the previous Chapters in order
to classify the compact surfaces (i.e. smooth 2-manifolds) and also to determine
both bordisms η2 and Ω2.

Let M be a compact connected boundaryless surface.
• We know from Chapter 9 that

M admits a ‘reduced’ ordered handle decomposition with one 0-handle, followed
by say κ disjoint 1-handles and one final 2-handle, where κ := κ(M) is intrinsically
determined by

κ(M) = 2− χ(M) .

In fact recall that for any handle decomposition H of M , its characteristic

χ(H) :=

2∑
j=0

(−1)jb(j)

b(j) being the number of index j handles, is preserved by the basic moves on handle
decompositions; if H is associated to a Morse function on M , then χ(H) = χ(M);
finally we can get a reduced ordered decomposition of M by performing some basic
moves on any given decomposition.

Remark 15.1. For any ordered handle decomposition of M with one 0-handle,
one 2-handle and a few disjoint 1-handles, it is not hard to triangulate M in the
following way: take a vertex internal to every handles; take as further vertices on
the boundary of the 0-handle the union of the boundaries of the attaching 1-disks of
the 1-handles; they also provide a triangulation of the boundary of every 1-handle;
triangulate both the one 0-handle and every 1-handle by the cones on the boundary
with centre at the respective internal vertex; these triangulations match and give a
triangulation of the union of the 0-handle with the 1-handles; the resulting surface
has as boundary a triangulated circle; finally complete it to a triangulation of the
whole of M by means again of the cones with centre at the internal vertex of
the 2-handle. By using the combinatorial computation of χ(M) applied to such a
triangulation one can easily check that the number of 1-handles is always equal to
κ(M).

• Recall from Section 7.5.2 that

In dimension 2 connected sum and weak connected sum are equivalent to each
other; moreover every twisted 2-sphere is diffeomorphic to the standard S2.

So let γ ⊂M be any dividing connected simple curve γ, that is

M \ γ = N1 qN2

where Nj is a non empty connected open set of M and the closure N̄j is a compact
smooth manifold with boundary ∂N̄j = γ; let Mj be the boundaryless surface
obtained from N̄j by filling ∂N̄j with a 2-disk glued along the boundary; then (up
to diffeomorphism)

M ∼M1#M2 .

199
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To be more precise, the result is uniquely determined if at least one among M1

and M2 is non orientable, or both are orientable and admit orientation reversing
diffeomorphisms. In general let us say that M is “a” connected sum of M1 and M2

(this precision will be eventually immaterial). By the additive property of χ, we
have

κ(M) = κ(M1) + κ(M2) .

• Let us consider η1(M) = B1(M ;Z/2Z).

Lemma 15.2. η1(M) is Z/2Z-vector space of finite dimension ≤ κ(M).

Proof : By Section 10.6 there is a surjective homomorphism (a base point being
understood)

π1(M)→ η1(M) .

By using a reduced ordered handle decomposition of M as above and applying (an
elementary version of) Van Kampen theorem we see that π1(M) has a presentation
with κ generators and one relation; for the union of the 0-handle with the κ 1-
handles has the homotopy type of a wedge of κ copies of S1 whose fundamental
group is a free group with κ generators; the defining relation between them is given
by the attaching map of the 2-handle. The Lemma follows.

2

Lemma 15.3. Every α ∈ η1(M) can be represented by a connected simple
smooth curve C traced on M .

Proof : We already know from general results in Chapter 13 that a codimen-
sion 1 class can be represented by hypersurfaces. In the present 2-dimensional
situation we can get an elementary direct proof of this fact as follows. Certainly
α = [f : C̃ →M ] where C̃ is a finite union of copies of S1. By a standard ‘general
position’ argument (see Section 8.2) we can assume that up to homotopy, hence up

to bordism, f : C̃ → M is a generic immersion possibly having only simple double
points in its image f(C̃) ⊂M . In local coordinates every crossing of f(C̃) is of the
form {xy = 0} and has two local ‘simplifications’ of the form {xy ± φ(x, y)ε = 0}
where ε > 0 is small enough and φ is a suitable bump function with support in
a small disk centred at 0. By locally simplifying every crossing of f(C̃) (choose
arbitrarily one way) we get a 1-submanifold C ′ of M . It is not hard to verify that

α = [f : C̃ → M ] = [C ′] ∈ η1(M), this is left as an exercise. In general C ′ is not
connected. In order to modify C ′ to get a connected representative C of α, first
we can remove all dividing components of C ′ (keeping the name); if C ′ is not con-
nected then apply the following argument that decreases the number of components
by 1. We can find two components C1 and C2 of C ′ which can be connected by
a smooth arc I whose internal part is embedded into M \ C ′, one endpoint xj is
on Cj , j = 1, 2, and is tranverse to C1 ∪ C2. I can be thikened to an embedded
1-handle H ∼ I × [−1, 1] which intersects Cj at {xj} × [−1, 1] and is contained in
M \ C ′ elsewhere. Then consider

C” := (C ′ \ (C1 ∪ C2)) ∪ C∗

where
C∗ = ((C1 ∪ C2) \H) ∪ (I × {±1})

up to corner smoothing. Hence C1 ∪ C2 has been replaced by the connected curve
C∗. Again it is not hard to show that [C ′] = [C”] ∈ η1(M). By iterating the
procedure we eventually get a required connected representative C of α.

2

• Consider now the symmetric intersection form (Section 11.4)

• = •M : η1(M)× η1(M)→ Z/2Z .

We have
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Lemma 15.4. The intersection form on η1(M) is non degenerate.

Proof : We have to show that if α 6= 0 in η1(M), then there is β ∈ η1(M) such
that α • β = 1 ∈ Z/2Z. Let C ⊂ M be a connected smooth representative of α
as in Lemma 15.3. As α 6= 0, then M \ C is connected (otherwise C would be the
boundary of the closure of a component of M \C, so that [C] = 0). Take a fibre I,
necessarily tranverse to C at one point, of a tubular neighbourd of C in M . Also
M \ (C ∪ I) is connected, so that the endpoints of the interval I can be connected
by a smooth simple arc γ whose internal part is contained in M \ (C ∪ I). Then
(possibly by corner smoothing) C ′ := I ∪ γ is a smooth boundaryless curve in M
which intersects C transversely at one point, hence [C] • [C ′] = 1.

2

The next Lemma follows from Chapter 13 .

Lemma 15.5. Let C ⊂ M be a connected smooth boundaryless curve. Then
there are two possibilities: either [C] • [C] = 1 and this happens if and only if C has
tubular neighbourhood in M diffeomorphic to a Möbius band, or [C] • [C] = 0 and
this happens if and only if C has a product tubular neighbourhood in M .

2

The following Lemma is obvious

Lemma 15.6. If f : M →M ′ is a surface diffeomorphism, then

f∗ : (η1(M), •M )→ (η1(M ′), •M ′)
is an isometry, that is f∗ is a Z/2Z-linear isomorphism and for every α, β ∈ η1(M),

α •M β = f∗(α) •M ′ f∗(β) .

2

Hence the isometry class of the non degenerate symmetric intersection form on
η1(∗) is an invariant up to diffeomorphism.

In what follows we will make the abuse of confusing a form with its isometry
class. If (V, ρ) and (V ′, ρ′) are finite dimensional Z/2Z-vector spaces endowed with
non degenerate symmetric forms, we can define the orthogonal direct sum (V, ρ) ⊥
(V ′, ρ′) which denotes the non degenerate symmetric form ρ ⊥ ρ′ on V ⊕ V ′ that
restricts to ρ (resp. ρ′) on V (V ′) and such that V and V ′ are orthogonal to each
other. We have

Lemma 15.7. If the surface M is a connected sum

M ∼M1#M2

then (up to isometry)

(η1(M), •M ) = (η1(M1), •M1
) ⊥ (η1(M2), •M2

) .

Proof : We can assume that the connected sum has been realized from a con-
nected dividing curve γ in M as at the beginning of the section (we adopt those
notations). It is easy to see that the linear map i∗ : η1(Nj) → η1(Mj) induced
by the inclusion is an isomorphism, j = 1, 2. Denote by Vj the image of η1(Nj)
in η1(M) by the inclusion. It is evident that V1 and V2 are orthogonal to each
other with respect to •M . It is enough to show that η1(M) = V1 + V2, whence
η1(M) = V1 ⊥ V2 because •M is non degenerate, and that Vj is actually isomorphic
to η1(Nj), j = 1, 2. Let α ∈ η1(M) and C ⊂ M be a smooth representative as
above. By transversality we can assume that C t γ. As [γ] = 0 in η1(M), then
C ∩ γ consists of an even number of points {p1, . . . , p2d}. We can assume that they
are the endpoints of a family {I1, . . . , Id} of pairwise disjoint intervals embedded
into γ. Take a ‘small’ tubular neighbourhood U ∼ γ × [−1, 1] of γ in M . Then
M \ U consists of two connected components W1 and W2 such that Wj ⊂ Nj . The
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boundary of Wj is a parallel copy γj of γ. Denote by Ii,j , j = 1, 2, i = 1, . . . d, the
parallel copy in γj of the interval Ii. Finally for j = 1, 2, set

Cj = (C ∩Wj) ∪ (

d⋃
i=1

Ii,j) .

Up to corner smoothing, Cj is a smooth curve (not necessarily connected) in Nj
and it is easy to see that

[C1 q C2] = [C] ∈ η1(M)

this shows that η1(M) = V1 + V2. Finally let α ∈ η1(N1) ∼ η1(M1) and denote by
α′ its image in η1(M) by the inclusion. If α is not zero, as •M1 is non degenerate,
then there is β ∈ η1(N1) such that α •M1

β = 1; due to the geometric way one
computes the intersection forms, it follows that also α′ •M β′ = 1, whence α′ is non
zero.

2

We are going to see that the isometry class of the intersection form contains all
relevant information about the diffeomorphism class.

15.1. Classification of symmetric bilinear forms on Z/2Z

Here we classify up to isometry non degenerate symmetric bilinear forms on
finite dimensional Z/2Z-vector spaces. We denote by U the unique 1 dimensional
isometry class; by H the isometry class of hyperbolic planes, i.e. 2-dimensional
spaces endowed with a non degenerate symmetric form admitting a basis made by
isotropic vectors (recall that a vector v is isotropic for a form β if β(v, v) = 0).
Note that although H is non degenerate it is totally isotropic (every vector is so),
this depends on the fact that the characteristic of the field Z/2Z is equal to 2, in
characteristic 6= 2 the zero form is the only totally isotropic one by the so called
‘polarization formula’ . For every n ≥ 1, denote by nU (resp. nH) the orthogonal
direct sum of n copies of U (resp. of H). We have

Proposition 15.8. Let (V, β) be a finite dimensional Z/2Z-vector space en-
dowed with a non degenerate symmetric bilinear form, dimV > 0. Then we have
one of the following exclusive occurences:

(1) (V, β) admits an orthogonal basis so that it is isometric to nU, n = dimV ,
and this happens if and only if it is not totally isotropic.

(2) dimV = 2n, (V, β) is isometric to nH, and this happens if and only if it is
totally isotropic.

Proof : Assume first that (V, β) is totally isotropic. Let B = {v1, . . . vk} be
a basis of V , B∗ = {v∗1 , . . . , v∗k} its dual basis, w1 the vector which represents the
functional v∗1 by means of the non degenerate form β. Then the subspaces spanned
by {v1, w1} endowed with the restriction of β is a hyperbolic plane H. As this last
is non degenerate, then (up to isometry)

(V, β) = H ⊥ H⊥

all spaces being endowed with the restriction of β. Clearly also the restriction
to H⊥ is non degenerate and totally isotropic, dim H⊥ = dimV − 2. So we can
achieve the item (2) by induction on the dimension. Assume now that v ∈ (V, β) is
not isotropic. Then the subspace spanned by v endowed with the restriction of β
represents U and (up to isometry)

(V, β) = U ⊥ U⊥ .

By iterating the argument we get that either

(V, β) = nU, n = dimV
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and we have done, or

(V, β) = kU ⊥ T

for some k ≥ 1 where T is totally isotropic, dimT > 0. We apply (2) to T , and get

(V, β) = kU ⊥ hH

for some k, h ≥ 1. Finally item (1) is achieved by means of the following Lemma.
Note by the way that it also shows that ⊥ does not verify the ‘cancellation proper-
ties’.

Lemma 15.9. Up to isometry U ⊥ H = 3U.

Proof : Let D = {u,w, t} be a basis for U ⊥ H adapted to the decomposition
so that {w, t} is a basis of the hyperbolic plane. Let N be the subspace spanned by
{u+w, u+ t}. One readily verifies that this last is a orthogonal basis of N so that
N = 2U. Then U ⊥ H = N ⊥ N⊥ and the last space is 1 dimensional and non
degenerate, so eventually U ⊥ H = 3U.

2

Also the proof of Proposition 15.8 is now complete.
2

15.2. Classification of compact surfaces

We are going to prove the following topological classification theorem.

Theorem 15.10. (0) Let M be a compact connected boundaryless surface. Then
the following facts are equivalent to each other.

• M is diffeomorphic to S2;
• κ(M) = 0;
• dim η1(M) = 0.

(1) For every n ≥ 1, the isometry class nU is realized by the intersection form
of η1(nP2(R)) where nP2(R) denotes the connected sum of n copies of the real
projective plane.

(2) For every n ≥ 1, the isometry class nH is realized by the intersection form
of η1(n(S1 × S1)), where n(S1 × S1) denotes the connected sum of n copies of the
torus.

(3) Two compact connected boundaryless surfaces M and M ′ are diffeomorphic
if and only if the intersection forms on η1(M) and η1(M ′) respectively are isometric
to each other.

This theorem has several interesting corollaries.

Corollary 15.11. In the hypotheses of Theorem 15.2:

(1) dim η1(M) = κ(M) = 2−χ(M). If M is orientable then κ(M) = 2g(M) is
even (g(M) is called the genus of M).

(2) Two surfaces M and M ′ are diffeomorphic if and only if χ(M) = χ(M ′)
and either they are both orientable or non orientable.

(3) Every orientable surface M admits orientation reversing diffeomorphisms.
Hence the connected sum of two surfaces M = M1#M2 is always uniquely defined
up to diffeomorphism.

(4) Every M can be embedded into R4. If M is orientable then it can be em-
bedded into R3.
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Proofs. First item (0) of Theorem 15.10, that is the characterization of the
2-sphere up to diffeomorphism. If κ(M) = 0, then M has a handle decomposition
with only one 0-handle and one 2-handle. So it is a twisted 2-sphere, whence it is
diffeomorphic to S2. Then M is simply connected, hence dim η1(M) = 0. Let us
show now that if κ(M) > 0 then dim η1(M) > 0. Take a reduced ordered handle
decomposition with κ(M) 1-handles. The core of every 1-handle can be completed
with a simple arc embedded into the 0-handle to get a connected simple smooth
curve C in M . There are two possibilities: either for one such a curve [C]•M [C] = 1
or there are two such curves C and C ′ such that [C] • [C ′] = 1 (here we use that
the boundary of the union of the 0-handle with the disjoint 1-handles must be
connected). In any case dim η1(M) > 0. The other implications of item (0) are
evident.

Let us show now that that U and H can be realized. P2(R) can be obtained by
gluing a 2-disk along the boundary of a Möbius band. By Van Kampen theorem we
realize that π1(P2(R)) ∼ Z/2Z and is generated by the core C of the Möbius band.
Another way to check this fact is by means of the orientation covering S2 → P2(R).
Then also η1(P2(R)) ∼ Z/2Z, generated by [C] and [C] • [C] = 1. The above
Möbius band can be realized by attaching one 1-handle to an initial 0-handle, and
we get P2(R) by adding one final 2-handle; this provides a reduced ordered handle
decomposition with κ(P2(R)) = 1 1-handle. By the way we realize also that if
κ(M) = 1 then M is diffeomorphic to P2(R).

The fundamental group π1(S1 × S1) ∼ Z ⊕ Z generated by the simple loops
C1 = S1 × {b0}, C2 = {a0} × S1 with base point (a0, b0). It is immediate that
[C1] • [C2] = 1 in η1(S1 × S1), while [Cj ] • [Cj ] = 0, j = 1, 2. Hence [C1] and [C2]
are non zero and linearly independent, dim η1(S1 × S1) = 2 and the intersection
form realizes H. The union B of a tubular neighbourhood U1 of C1 with a tubular
neighbourhood U2 of C2 can be realized by attaching two disjoint 1-handles to one
initial 0-handle, and we get S1 × S1 by adding one final 2-handle; this provides a
reduced ordered handle decomposition with κ(S1 × S1) = 2 1-handles.

Now items (1) and (2) of Theorem 15.10 follow from Lemma 15.7. Note that
every nP2(R) is not orientable (because it contains a connected curve C such that
[C] • [C] = 1) while every n(S1 × S1) is orientable, and that all items of Corollary
15.11 hold at least if we limit to consider surfaces M , M ′ belonging to the families
of nP2(R)’s or n(S1 × S1)’s.

It remains to prove item (3) of Theorem 15.10. This is the main point. Thanks
to the above characterization of the 2-sphere, we can assume that dim η1(M) > 0.
We will follow the proof of the algebraic classification Theorem 15.8, pointing out
step by step a topological counterpart. We have already obtained the counterpart
of nU and nH. Assume first that (η1(M), •M ) is totally isotropic. Then every
connected smooth simple curve C ⊂M has a product tubular neighbourhood, that
is equivalently [C]•M [C] = 0. Take such a curve C such that [C] 6= 0. By the proof of
Lemma 15.3, there is another connected curve C ′ ⊂M which intersects transversely
C at one point (so that [C] • [C ′] = 1, also [C ′] 6= 0 while [C ′] •M [C ′] = 0).

We check straightforwardly that the union B̃ of a tubular neighbourhood U of C
with a tubular neighbourhoos U ′ of C ′ is diffeomorphic to the union B of tubular
neighbourhoods of the geometric generators of π1(S1×S1) considered above. Hence

the boundary of B̃ is a connected dividing curve in M and this gives rise to a
connected sum decomposition

M ∼ (S1 × S1)#M ′

and we know that

κ(M ′) = κ(M)− 2 .
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Again by Lemma 15.7, (η1(M ′), •M ′) is also totally isotropic. Then we can conclude
by induction on the dimension that in the totally isotropic case

M ∼ n(S1 × S1), 2n = κ(M) = 2− χ(M) .

Assume now that there is α ∈ η1(M) such that α •M α = 1. Let C ⊂ M be
a connected simple smooth representative of α. Then a tubular neighbourhood U
of C is a Möbius band, its boundary is a dividing curve, we have a connected sum
decomposition

M ∼ P2(R)#M ′

and we know that
κ(M ′) = κ(M)− 1 .

By iterating the argument either we get

M ∼ κ(M)P2(R)

and we have done, or
M ∼ kP2(R)#M ′

for some k ≥ 1, where dim η1(M ′) > 0 and •M ′ is totally isotropic. By applying
the above result in this case we eventually get

M ∼ kP2(R)#h(S1 × S1)

κ(M) = k + 2h

for some k, h ≥ 1. We conclude by applying the following final Lemma. Note by
the way that it shows also that # does not verify the ‘cancellation property’.

Lemma 15.12. P2(R)#(S1 × S1) ∼ 3P2(R).

Proof : First we outline a bare hands proof. After we will outline onother (but
actually equivalent) based on a transparent geometric construction by using the
blowing up of Section 7.10.1.

First proof. Consider S1 × S1 with the geometric generators C1 and C2 of
π1(S1 ×S1) transveserly intersecting at the base point (a0, b0) as above. Remove a
open 2-disk D centred at (a0, b0) and glue a Möbius band M along the boundary
to get (S1 × S1)#P2(R). Then (C1 ∪ C2) \D can be completed by means of two
fibres of the natural fibration of M over its core and get two disjoint simple curves
C̃1 and C̃2 in (S1 × S1)#P2(R) which intersect the core of M transversely at
one point respectively. One checks that these curves have disjoint Möbius band
tubular neighbourhoods U1 and U2 respectively which can be filled to give two
copies of P2(R); moreover, (S1 × S1)#P2(R) \ (U1 ∪ U2) is connected. By filling
each boundary component with a 2-disk we get a connected boundaryless surface
Z such that

(S1 × S1)#P2(R) ∼ P2(R)#Z#P2(R)

and κ(Z) = 1 so that eventually Z ∼ P2(R).

Second proof. Consider the product P1(R) × P1(R) ∼ S1 × S1, endowed with
a couple of homogeneous coordinates (t, s) = ((t1, t2), (s1, s2)). Let P3(R) with
homogeneous coordinates x = (x1, x2, x3, x4). Define

ψ : P1(R)×P1(R)→ P3(R)

ψ(t, s) = (t1s1, t1s2, t2s1, t2s2) .

One verifies that ψ is a well defined smooth embedding onto the quadric Q ⊂ P3(R)
defined by the homogeneous equation x1x4 = x2x3. Let p0 = (1, 0, 0, 0) ∈ Q and
consider the “stereographic projection”

φ : V \ {p0} → P

where P ∼ P2(R) is the projective plane P ⊂ P3(R) defined by the equation x1 = 0.
Denote by T the plane tangent to Q at p0. It is defined by the equations x4 = 0.
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The intersection T ∩ Q consists of the union of the two lines passing through p0,
l1 = {x4 = x2 = 0} and l2 = {x4 = x3 = 0}. T ∩ P is the line l0 = {x1 = x4 = 0}
One verifies that the restriction of φ is a diffeomorphism

φ : Q \ (l1 ∪ l2)→ P \ l0 .

Let us blow up P3(R) at the point p0 and take the strict transform Q̃. We know

from the results of Section 7.10.1 that Q̃ ∼ (S1 × S1)#P2(R). Blow up P3(R) at
the two points p1 = l1∩P = (0, 1, 0, 0) and p2 = l2∩P = (0, 0, 1, 0). Take the strict

transform P̃ ∼ 3P2(R). Finally one verifies that φ extends to a diffeomorphism

φ̃ : Q̃→ P̃ .

2

Also the proof of Theorem 15.10 and of Corollary 15.11 is now complete.
2

The above classification extends to compact connected surfaces with boundary.
We limit to a few indications. Details are left to the reader.

• Let M be a compact connected smooth surface with r ≥ 1 boundary compo-
nents. Denote by M̂ the boundaryless surface obtained by filling every boundary
component with a 2-disk. Viceversa M is obtained from M̂ by removing the inte-
rior of r disjoint closed 2-disks. By the uniqueness of the disks up to isotopy, M is
determined up to diffeomorphism by r and the diffeomorphism type of M̂ .

• The radical Rad(•M ) ⊂ η1(M) of the intersection form •M is of dimension
r − 1 and is generated by the boundary components of M . The non degenerate
form •̂M uniquely induced up to isometry by •M on η1(M)/Rad(•M ) is isometric
to •M̂ . Hence M is determined up to diffeomorphism by the isometry class of the
intersection form •M , that is by dim Rad(•M ) and the isometry class of •M̂ .

• Two compact connected smooth surfaces with boundary M and M ′ are dif-
feomorphic if and only if they have the same number of boundary components,
χ(M) = χ(M ′), and either they are both orientable or non orientable.

15.3. Ω1(X) as the abelianization of the fundamental group

Recall that in Proposition 10.12 we have established a natural epimorphism

h1 : π1(X,x0)→ Ω1(X)

X being a path-connected topological space. Now we are able to determine the
kernel of this epimorphism.

Proposition 15.13. The kernel kerh1 coincides with the commutator subgroup
of π1(X,x0), hence Ω1(X) is the abelianization of the fundamental group.

Proof : Let γ : (S1, p) → (X,x0) be a homotopically non trivial loop which
represents 0 ∈ Ω1(X). Then γ can be extended to a map h : Σ → X where Σ
is a compact orientable surface with boundary ∂Σ = S1 such that by attaching a
2-disk along ∂Σ, we get a boundaryless compact orientable surface Σ̃ of genus say
g ≥ 1. By using the concrete models for such a surface provided by the classification
theorem, we see that there is embedded in Σ̃ a wedge of 2g-simple loops based at
p, not intersecting D2 \ {p}, such that by cutting the surface along these loops we
get a 4g-gone and γ retracts onto that wedge within Σ. Finally one realizes that
these loops can be distribute in two family say a1, . . . ag, b1, . . . , bg, in such a way
that the above retraction realizes a homotopy between γ and the composite loop

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga−1
g b−1

g .

The proposition follows.
2
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The above proposition means that every homomorphism φ : π1(X,x0) → G

where G is abelian factorizes as φ = φ̂ ◦ h1, φ̂ : Ω1(X)→ G.

15.4. Ω2 and η2

Here we consider again boundaryless compact surfaces. As a corollary of the
classification we have

Theorem 15.14. (1) Ω2 = 0;

(2) η2 ∼ Z/2Z and is generated by [P2(R)].

(3) ψ : η2 → Z/2Z, φ([M ]) := χ(2)(M) is a well defined isomorphism.

Proof : Recall that

[M1#M2] = [M1] + [M2] ∈ η2

(resp. ∈ Ω2 in the oriented setting). It follows from the classification that every
compact connected oriented surface is the boundary of an oriented 3-manifold (in
fact n(S1 × S1) can be embedded in S3 = R3 ∪∞ and divides it). Hence Ω2 = 0.

On the other hand for every compact connected surface M ,

[M#2P2(R)] = [M ] ∈ η2

and
M#2P2(R) ∼ (κ(M) + 2)P2(R)

by the classification. Hence

[M ] = χ(2)(M)[P2(R)] ∈ η2 .

As [P2(R)] 6= 0 then items (2) and (3) follow.
2

15.4.1. η2 as a Witt group. Apparently Theorem 15.14 is exhaustive. How-
ever the topological classification of surfaces runs parallel to the algebraic classifi-
cation on Z/2Z-symmetric bilinear forms up to isometry. We would like to recast
also the content of Theorem 15.14 within this vein.

Denote by I(Z/2Z) the set of isometry classes of non degenerate symmetric
bilinear forms defined on Z/2Z-vector spaces of arbitrary finite dimension. I(Z/2Z)
is a semigroup provided it is endowed with the operation ⊥. S ∈ I(Z/2Z) is said
neutral if dimS = 2m is even and there is a subspace Z ⊂ S, dimZ = m such
that Z = Z⊥. It follows from Theorem 15.8 that S is neutral if and only if either
S = 2mU or S = mH, for some m. Put on I(Z/2Z) the equivalence relation
X ∼ X ′ if and only if there are neutral spaces S, S′ such that

X ⊥ S = X ′ ⊥ S′ .
Denote by W (Z/2Z) the quotient set. For every X ∈ I(Z/2Z), X ⊥ X is neutral,
hence ⊥ descends to W (Z/2Z) and makes it an abelian group called the Witt
group of the field Z/2Z; 0 ∈ W (Z/2Z) is the class of neutral spaces, and for every
[X] ∈W (Z/2Z), −[X] = [X]. It follows from Theorem 15.8 that

r(2) : W (Z/2Z)→ Z/2Z, r(2)([X]) := dimX mod(2)

is a well defined isomorphism of groups. Finally the content of Theorem 15.14 can
be rephrased as follows

Theorem 15.15.

w : η2 →W (Z/2Z), w([M ]) = [•M ]

is a well defined isomorphism; moreover

r(2) ◦w = χ(2) .

2
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15.4.2. A direct derivation of Ω2 and η2. Theorem 15.14 has been derived
as a corollary of the classification. Here we outline a direct derivation; the mech-
anism is interesting: starting from a 2-dimensional handle decomposition of M it
produces a 3-dimensional handle decomposition in such a way that the surface is
the boundary; somehow M builds its ’simplest bulk’.

For every compact connected M as usual, take a reduced ordered handle de-
composition with κ = κ(M) 1-handles. Hence starting from (M0, ∂M0) = (D2, S1),
we have a sequence (Mi, ∂Mi), i = 1, . . . , κ, obtained by attaching one 1-handle
to (Mi−1, ∂Mi−1); finally M is obtained by attaching a 2-handle to (Mκ, ∂Mκ).
Consider the product 3-manifold W = M × [0, 1]. On the copy M ′ = M × {1}
of M , consider the family of pairwise disjoint non necessarily connected curves
∂Mi, i = 0, . . . , κ. There is a system of pairwise disjoint tubular neighbourhoods
Ui ∼ ∂Mi × [−1, 1] of these curves in M ′. Let us attach to W along M ′ a family of
κ disjoint three dimensional 2-handles, each one attached along Ui, i = 0, . . . , κ. In
this way we get a 3-manifold W ′ such that

∂W ′ = (M × {0})qM”

where M” has κ+2 connected components, each one associated to one of the handles
of the original decomposition of M . It is not hard to see that a component of M”
corresponding either to the 0-handle or the 2-handle of M is diffeomorphic to S2.
For a component associated to a 1-handle there are two possibilities:

(1) Starting from an annulus A ∼ S1 × [0, 1] we attach the 1-handle along
S1 × {1} in such a way that the resulting surface is orientable; then this
surface is a ‘pant’ P and the corresponding component of M” is obtained
by filling every component of ∂P with a 2-disk, so that it is diffeomorphic
to S2.

(2) Starting from an annulus A ∼ S1 × [0, 1] we attach the 1-handle along
S1 × {1} in such a way that the resulting surface is non orientable; then
this surface is a Möbius band M and the corresponding component of
M” is obtained by filling ∂M with a 2-disk, so that it is diffeomorphic to
P2(R).

It follows that M is bordant with the disjoint union of k copies of P2(R) for
some k ≥ 0. This is enough to conclude that η2 ∼ Z/2Z and is generated by
[P2(R)].

Assume now that M is orientable. Hence W is orientable, and also W ′ is
orientable because attaching a 2-handle does not destroy the orientability. Also
∂W ′ is orientable so that M” is a disjoint union of 2-spheres. This is enough to
conclude that Ω2 = 0. But we can say more. Let W” be obtained from W ′ by
filling every component of M” with a 3-disk. By construction, W” is obtained
from W by attaching a few disjoint 2-handles followed by a few 3-handles. By
considering the dual decomposition, we see that W is obtained starting from a few
0-handles followed by a few disjoint 1-handles. By cancellation of 0-handles we can
assume that there is only one 0-handle. By sliding handles, we realize that up to
diffeomorphism W” := Hh is uniquely determined by the number h of 1-handles,
it is called a handlebody of genus h, and M = ∂Hh. By some consideration about
the Euler-Poincaré characteristic, one finally realizes that κ(M) = 2h; in this way
we have re-obtained a classification up to diffeomorphism, at least in the orientable
case.

15.5. Stable equivalence - Rational models (2D Nash’s conjecture)

The classification of surfaces up to diffeomorphism contains a coarse classifica-
tion up to stabilization: let us say that two (compact connected boundaryless, as
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usual) surfaces M and M ′ are stably equivalent if there are n,m ∈ N such that

M#nP2(R) ∼M ′#mP2(R) .

Then we have as an immediate corollary of the full classification that every surface
is stably equivalent to each other. In the orientable setting we have a similar result
up to stabilization by some n(S1 × S1).

This coarse classification deserves to be pointed out because it is a sort of toy
model of phenomena occurring for example in dimension 4 (in spite of the fact
that a full classification is not known in such a case), and also because it has a
different flavour once we interpret #P2(R) as the blowing up at a point, accordingly
to Section 7.10.1. Then a stable equivalence between M and M ′ is realized by
a M̃ which dominates both being obtained by blowing up some points of each
respectively; equivalently we can say that M ′ is obtained from M by firstly blowing
up some points of M and then performing a certain blowing down to M ′.

Recall (Remark 7.30) that a compact real algebraic set X is rational if it bira-
tionally equivalent to the projective space of the same dimension, say Pn(R); that
is X contains a non empty Zariski open set which is algebraically isomorphic to a
Zariski open set in the projective space of the same dimension. If X = B(Pn(R), Y )
is obtained from Pn(R) by some blowing up along a regular algebraic centre (in par-
ticular a finite set of points), then X is a rational regular algebraic set. A so called
“Nash’s conjecture” stated in [Na] asked if every compact smooth manifold admits
up to diffeomorphism any rational regular real algebraic model. We have a rather
complete answer in the case of surfaces:

• Every non orientable surface M ∼ P2(R)#nP2(R) ∼ B(P2(R), Y ), κ(M) =
n+ 1, Y consisting of n points, has a rational model;

• If M is orientable M#P2(R) admits a rational model B(P2(R), Y ) where Y
consists of 2n = κ(M) points. One can ask if Y as above can be chosen in such
a way that a blowing down that returns M can be done in the algebraic setting,
providing a rational model for M itself. For example in the second proof of Lemma
15.12, we see such a mechanism which produces P1(R) × P1(R) ∼ S1 × S1 by
blowing down B(P2(R), {p1, p2}), collapsing to a point p0 the strict trasform of the
line of P2(R) passing through the points p1 and p2. One can prove in general that if
Y = {p1, . . . , p2n} is contained in a projective line l ⊂ P2(R), then by blowing down

to a point p0 the strict transform l̃ of l in B(P2(R), Y ) we get a rational algebraic
set X, which is homeomorphic to M via a algebraic homeomorphism which restricts
to an algebraic isomorphism between regular Zariski open sets

B(P2(R), Y ) \ l̃→ X \ {p0} .

However, if n > 1 X is not regular as it has one isolated singularity at p0. These
rational models with one isolated singularity are the best we can do because it is
known since Comessati [COM] that S1×S1 is the only orientable surface admitting
a regular rational model.

15.6. Quadratic enhancement of surface intersection forms

Let (η1(M), •M ) be as above, where M is a compact connected boundaryless
surface. In several situations one is interested to the embeddings or immersions of
M in a given higher dimensional manifold, considered up to suitable equivalence
relations which often enhance the abstract surface bordism. In such situations
so called quadratic enhancements of the intersection form naturally arise. In this
section we will develop a few aspects of the abstract theory of such structures. Many
proofs are simple exercises and we will omit them. Later in the text we will see
concrete applications (see Sections 17.4.3, 19.8.1, 19.9, 20.6).
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Let (V, β) be a finite dimensional Z/2Z-vector space endowed with a non de-
generate symmetric bilinear form β.

(Totally isotropic case) Assume first that β is totally isotropic, so that (V, β) is
isometric to gH, dimV = 2g.

Definition 15.16. a map q : V → Z/2Z is a quadratic enhancement of (V, β)
(sometimes we simply say “of β”) if for every x, y ∈ V ,

q(x+ y) = q(x) + q(y) + β(x, y) .

We can enhance the equivalence relation “up to isometry” to the set of such
triples:

f : (V1, β1, q1)→ (V2, β2, q2)

is an isometry if and only if

f : (V1, β1)→ (V2, β2)

is an isometry in the usual sense and moreover, for every x ∈ V1, q1(x) = q2(f(x)).
We denote by

IHq (Z/2Z)

the set of isometry classes of these triples. The operation “⊥” gives it a semigroup
structure.

It is rather easy to enhance the results of Section 15.1 (in the totally isotropic
case); as usual sometimes we will confuse representatives with their isometry classes:

- Up to isometry there are exactly two quadratic enhancement of H (endowed
with the standard hyperbolic basis say {e0, e1}):

• q0(e0) = q0(e1) = 0, q0(e0 + e1) = 1; denote by H0,0 the corresponding
equipped space;

• q1(e0) = q1(e1) = q1(e0 + e1) = 1; denote by H1,1 the corresponding
equipped space.

Then every triple (V, β, q) is isometric to

mH0,0 ⊥ nH1,1

for some m,n ∈ N such that 2(m + n) = 2g = dimV . Such integers m and n are
not unique; in fact we have

Lemma 15.17. H0,0 ⊥ H0,0 = H1,1 ⊥ H1,1.

2

Proposition 15.18. (1)

Arf : (IHq (Z/2Z),⊥)→ (Z/2Z,+), Arf([V, β, q]) = n mod(2)

provided that [V, β, q] = mH0,0 ⊥ nH1,1 for some (m,n) ∈ N2, is a well defined
surjective semigroup homomorphism.

(2) Arf([V, β, q]) = 1 if and only if |q−1(1)| > |q−1(0)|; Arf([V, β, q]) = 0 if and
only if |q−1(1)| < |q−1(0)|.

(3) If [V, β] = gH and the j-copy of H is endowed with its standard hyperbolic

basis {ej0, e
j
1}, j = 1, . . . , g, then

Arf([V, β, q]) =
∑
j

q(ej0)q(ej1) .
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2

Arf is called the Arf invariant.
We can define the Witt group associated to the semigroup

(IHq (Z/2Z),⊥) .

[V, β, q] ∈ IHq (Z/2Z), dimV = 2g, is said neutral if there is a subspace Z ⊂ V , such

that dimZ = g, Z = Z⊥ and q vanishes on Z. Put on IHq (Z/2Z) the equivalence
relation X ∼ X ′ if and only if there are neutral spaces S, S′ such that

X ⊥ S = X ′ ⊥ S′ .
Denote by WH

q (Z/2Z) the quotient set. The operation ⊥ descends to WH
q (Z/2Z)

and makes it an abelian group. We have:

Proposition 15.19. The Arf homomorphism passes to the quotient

Arf : WH
q (Z/2Z)→ Z/2Z

and is in fact a group isomorphism. The Witt group is generated by H1,1.

2

We know that (IH(Z/2Z),⊥) is isomorphic to the semigroup of orientable com-
pact connected boundaryless surfaces (considered up to diffeomorphism) endowed
with the “#” operation. The isomorphism is given by associating to every surface
M the class of (η1(M), •M ). So the above algebraic discussion can be rephrased
in such a more topological setting. In particular the bases evoked in item (3) of
Proposition 15.18 can be realized geometrically: if M is a surface of genus g then
we can find two families of g smooth circles {A1, . . . , Ag} and {B1, . . . , Bg} such
that

- Ai ∩Aj = Bi ∩Bj = ∅ if i 6= j,
- Ai and Bj intersect transversely at one point if and only if i = j, otherwise

Ai ∩Bj = ∅.
Then these 2g circles form a basis of η1(M); if q is a quadratic enhancement of

•M , then

Arf(q) =
∑
j

q([Aj ])q([Bj ]) .

WH
q (Z/2Z) can be considered as a formal non trivial refinement of Ω2 = 0.

(General case) Now we consider arbitrary non degenerate spaces (V, β). In this
generality the notion of quadratic enhancement is subtler, due to the presence of
non isotropic elements. The key point is to consider Z/4Z instead of Z/2Z-valued
forms q.

Definition 15.20. A map

q : V → Z/4Z

is a quadratic enhancement of β if for every x, y ∈ V ,

q(x+ y) = q(x) + q(y) + 2β(x, y)

where a→ 2a is the unique non trivial homomorphism Z/2Z→ Z/4Z.

Remark 15.21. Assume that (V, β) is totally isotropic. If q̄ : V → Z/2Z
is a quadratic enhancement of β in the early sense, then q = 2q̄ is a quadratic
enhancement in the new sense. On the other hand, if q : V → Z/4Z is as in
Definition 15.20, then it takes only even values and there is a unique q̄ : V → Z/2Z
such that q = 2q̄. So if we restrict to totally isotropic spaces we recover the previous
setting.
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The set of quadratic enhancement of (V, β) has a structure of affine space over
V . That is we have

Lemma 15.22. There are 2dimV mod (4) quadratic enhancements of (V, β); if
q is one the others are of the form

q′(x) = q(x) + 2β(u, x)

for a unique u ∈ V .

Proof : l(x) := 2−1(q′(x)− q(x)) is linear hence represented by a unique u ∈ V
by means of the non degenerate form β.

2

The notion of isometry of triples extends verbatim and we denote by

(Iq(Z/2Z,Z/4Z),⊥)

the semigroup of isometry classes. We have

- Up to isometry on H there are two Z/4Z-valued quadratic enhancenents, that
is qj = 2qj , j = 0, 1, where qj : H → Z/2Z have been already defined above. We
keep the notations Hj,j for the associated equipped spaces.

- Up to isometry, on U there are two quadratic enhancement q± : U → Z/4Z,
q±(1) = ±1. Denote by U± the corresponding equipped spaces.

Hence for every (V, β) totally isotropic we still have

[V, β, q] = mH0,0 ⊥ nH1,1, 2(m+ n) = dimV ;

If (V, β) is not totally isotropic, then

[V, β, q] = aU− ⊥ bU+

for some (a, b) ∈ N2, a + b = dimV . As above we are not claiming that (a, b) is
unique.

In any case we say that [V, β, q] is neutral if there exists a subspace Z ⊂ V such
that Z = Z⊥ (so that dimV = 2h is even and dimZ = h) and q vanishes on Z. As
above we can define the Witt group denoted by

Wq(Z/2Z,Z/4Z)

as a quotient of the semigroup (Iq(Z/2Z,Z/4Z),⊥).
For every [V, β, q] ∈ Iq(Z/2Z,Z/4Z), for every x ∈ V , define

ψ[V,β,q](x) := exp(
iπ

2
q(x)) = iq(x) .

Finally set

γ([V, β, q]) := (
1√
2

)dimV
∑
x∈V

ψ[V,β,q](x) .

This is called the multiplicative Brown invariant of [V, β, q].
For every k ≥ 2, denote by Uk the multiplicative subgroup of U(1) formed by

the kth-roots of 1. Denote by

αk : (Z/kZ,+)→ Uk

the natural isomorphism of groups.

Lemma 15.23. If (V, β) is totally isotropic so that q = 2q̄ for a unique

q̄ : V → Z/2Z

then

γ([V, β, q]) = α2(Arf([V, β, q̄]) .
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2

Hence the Brown invariant extends the Arf one.
For every X = [V, β, q], set −X := [V, β,−q]. We have

Lemma 15.24. Let X,Y ∈ Iq(Z/2Z,Z/4Z). Then:

(1) γ(X ⊥ Y ) = γ(X)γ(Y );

(2) If X is neutral, then γ(X) = 1;

(3) 4X = 4(−X).

Proof : (1) follows from the very definition.
As for (2), let X = [V, β, q], Z ⊂ V , dimV = 2n, dimZ = n, Z = Z⊥, q

vanishing on Z. For simplicity we omit the index X in denoting ψ. Let V = Z ⊕L
be any direct sum decomposition. Then

γ(q) = (
1√
2

)2n
∑

z∈Z,l∈L

ψ(z + l) = (
1√
2

)2n
∑

z∈Z,l∈L

ψ(l)(−1)β(l,z) =

(
1√
2

)2n[
∑

l∈L\{0}

(
∑
z∈Z

(−1)β(l,z)ψ(l)) + |Z|)] =

(
1√
2

)2n|Z| = 1

where the fourth equality depends on the fact that for every l 6= 0, z → β(l, z)
defines a linear form φ on Z, and dim ker(φ) = dimZ − 1 as β is non degenerate.

As for (3), it is enough to show that 4U+ = 4U−. Let {e1, e2, e3, e4} be the
standard basis of 4C ∼ C4. Let ρj : C→ C4 be the the linear embedding such that
ρj(1) = ej . Then one verifies that the linear isomorphism

ρ = (ρ1, . . . , ρ4) : C4 → C4

induces a required isomorphism

ρ : 4U+ → 4U− .

2

Finally we can state the main result of this matter.

Theorem 15.25. The Brown semigroup morphism γ passes to the quotient and
in fact it determines a group isomorphism

γ̃ := α−1
8 ◦ γ : Wq(Z/2Z,Z/4Z)→ Z/8Z .

The Witt group is generated by U+.

Proof : U+ ⊥ U− is neutral, then the Witt group is cyclic generated by U+.
By the previous lemma, 8U+ is neutral, hence the order of U+ divides 8. Finally
by direct computation γ(U+) = exp( iπ4 ) that is it is a primitive fourth root of 1.

2

The following Corollary is easy.

Corollary 15.26. The Brown invariant of q, the dimension of V and the fact
that β is or not totally isotropic form a complete set of invariants which classifies
[V, β, q] ∈ Iq(Z/2Z,Z/4Z).

2

By rephrasing everything in the topological 2-dimensional setting, we can say
that the Witt group Wq(Z/2Z,Z/4Z) ∼ Z/8Z is a formal enhancement of the Witt
group W (Z/2Z) ∼ η2 ∼ Z/2Z.

We conclude this section by outlining a constructive way to build quadratic
enhancements of (M, •M ) for a given compact boundaryless surface M (see [KT],
Lemma 3.4). It is enough to define a function q which associates an element in Z/4Z
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to every disjoint union of smooth circles on M (considered up to ambient isotopy)
provided that the the following conditions are satisfied:

(1) The function q is additive on disjoint unions: if L1qL2 is again a disjoint
union of circles, then q(L1 q L2) = q(L1) + q(L2);

(2) If K1 and K2 are two circles that cross transversely at r points, then by
resolving (in one of the two possible ways) each crossing we get a disjoint
union L of embedded circles. Then q(L) = q(K1) + q(K2) + 2r mod(4).

(3) If K is is a smooth circle that bounds a 2-disk in M , then q(K) = 0.

In such a situation, a quadratic enhancement of (η1(M), •M ) is defined by
setting q(α) = q(C) where C is any smooth circle representing α.



CHAPTER 16

Bordism characteristic numbers

Let us give a definition of η-characteristic number modeled on the Euler-Poincaré
characteristic mod(2), χ(2). As usual denote by Sn the class of compact boundary-
less smooth n-manifolds. For every X ∈ Sn, let

tX : X → Gm,n

be a “truncated” classifying map of the tangent bundle T (X), where m = m(n) big
enough only depends on n. An η-characteristic number is a function

c : Sn → Z/2Z

such that

(1) It is of the form

c(X) = cα(X) :=
∑
j

t∗X(α) u [Xj ]

for some α ∈ ηn(Gm,n), where Xj varies among the connected components
of X. Clearly such a c(X) is a diffeomorphism invariant.

(2) If [X] = 0 ∈ ηn, then c(X) = 0. It follows that c induces a Z/2Z-linear
map

c : ηn → Z/2Z .

Here is another characteristic η-number besides χ(2). For every X, consider the
nth-power (with respect to the t product)

w1(X)n

of the Euler class of the determinant line bundle of X.

Proposition 16.1. cw1(X)n is a η-characteristic number, different from χ(2).

Proof : To see that it is characteristic, it is enough to show that if X = ∂W is
a boundary, then cw1(X)n(X) = 0. Note that

w1(X) = j∗w1(W ) ∈ η1(W,∂W )

where j : ∂W →W is the inclusion. Then w1(X)n = (j∗(w1(W )))n, and w1(X)n is
represented by the boundary of the proper 1-dimensional submanifold of (W,∂W )
which represents w1(W )n ∈ ηn(W,∂W ), hence it consists of an even number of
points. To see that it is different from χ(2), consider for example w1(P4(R))4 = 1

while we can show (do it by exercise) that w1(P2(R) × P2(R))4 = 0. We know
that both characteristic mod(2) are equal to 1. Hence [P4(R)] and [P2(R)×P2(R)]
are non trivial independent elements of η4. Similarly w1(∗)n distinguishes [P4(R)]
from [P2(C)]. The same argument extends to any couple Pa+b(R), Pa(R)×Pb(R)
(hence to ηa+b) where both a and b are even.

2

215
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16.1. Stable η-numbers

It is not so easy to check directly if a function of the form cα as above is a
characteristic number or not (that is if it vanishes on boundaries). On the other
hand, this becomes almost immediate if we consider so called “stable classes” in the
grassmannian cobordism. Consider the “stabilized tautological bundle”

τm,n ⊕ ε1 ;

this corresponds to an evident classifying map

sn : Gm,n → Gm+1,n+1 .

Then α ∈ ηk(Gm,n) (not necessarily k = n) is by definition a stable class if

α = s∗n(α̃)

for some α̃ ∈ ηk(Gm+1,n+1). The sum and the product of stable classes are stable.
A class of the form α = (sn+j ◦ · · · ◦ sn)∗(α̃) is stable for every j ≥ 0.

For every X ∈ Sn, the classifying map of the stable tangent bundle

T (X)⊕ ε1

is the composite map
sX := sn ◦ tX .

We have

Proposition 16.2. For every n ≥ 0, if α ∈ ηn(Gm,n) is a stable class then cα
is a (stable by definition) η-characteristic number defined on Sn.

Proof : Assume that X = ∂W ; then

j∗(T (W )) = T (X)⊕ ε1

so that sX = sW ◦ j, where jis the inclusion. It follows that

t∗X(α) = j∗(t∗W (α))

hence t∗X(α) is represented by the boundary of a singular proper 1-submanifold of
(W,∂W ) which represents t∗W (α).

2

A construction of stable characteristic classes. In general, if α ∈ ηk(Gm,n)
is a stable class, then t∗X(α) is called a stable characteristic class of X. This can be
extended by dealing with the classifying map of arbitrary vector bundles ξ on X
and leads to the notion of stable characteristic classes of ξ. For simplicity we will
assume that X is connected

For every line bundle ξ on a X, define the total basic cobordism class

w(ξ) =

n∑
j=0

w1(ξ)j ∈ η•(X)

where we stipulate that w(ξ)0 := [X]. If we have the direct sum ξ = ξ1 ⊕ ξ2 of two
line bundles set its total cobordism class

w(ξ1 ⊕ ξ2) := w(ξ1) t w(ξ2) ∈ η•(X)

and define wj(ξ1 ⊕ ξ2) ∈ ηj(X), j = 0, . . . , n, the jth-homogeneous term of w(ξ1 ⊕
ξ2). This can be inductively extended to every direct sum of line bundles on X,
ξ = ξ1 ⊕ · · · ⊕ ξr, r ≤ dimX. As w(εh) = [X], we see that all classes defined so far
are stable classes of ξ.

Remark 16.3. The stable classes defined sofar might depend a priori on the
given splitting of ξ as direct sum of line bundles. It is a non trivial fact that they
do not. This is part of the construction of the so called Stiefel Whitney classes of
vector bundles (see [MS]) which we will not develop.
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For every Pa(R), for every n > 0, denote by β the bundle of rank n on∏n
j=1 Pa(R) given by the product of n copies of the tautological line bundle over

Pa(R). Then β is a direct sum of n line bundles. Assume that m is big enough so
that we have a truncated classifying map of β

hβ :

n∏
j=1

Pa(R)→ Gm,n ;

then for every wj(β) defined as above with respect to the given splitting, every
α ∈ ηj(Gm,n) such that

wj(β) = h∗β(α)

is a stable class. For every direct sum of line bundles on some Y , of the form g∗(β),
then g∗(wj(β)) ∈ ηj(Y ) is stable. If ξ is a vector bundle on X and, referring to
Proposition 7.26 and adopting those notations, fξ : F (ξ) → X such that f∗ξ (ξ) =

g∗(β) (Y = F (ξ)) splits as a sum of line bundles, then every class α ∈ ηj(X) (if
any) such that f∗ξ (α) = g∗(wj(β)) is stable.

Remark 16.4. It is not evident that the construction outlined above leads to
non trivial stable classes. Actual non triviality again is part of the construction of
Stiefel-Whitney classes that we will not develop here.

16.2. Completeness of stable η-numbers

This “completeness” refers to the fact that the necessary condition to be a
boundary stated in Proposition 16.2 is also sufficient. This is an important theorem
due to R. Thom [T]. The original proof is an application of the Pontryagin-Thom
construction that allows to rephrase the study of the cobordism ring η• in terms
of the homotopy theory of certain so called Thom’s spaces (see Chapter 17). Here
we propose an elementary proof extracted from [BH] which ultimately uses only
transversality. Let us state this theorem.

Theorem 16.5. [X] = 0 ∈ ηn if and only if every stable η-characteristic number
vanishes on X.

It is enough to show the “if” implication. This will be an immediate consequence
of the next two lemmas.

By the classification of compact 1-manifolds, if n = 0 then X is a boundary
if and only if it consists of an even number of points, thus it is easy to check that
Theorem 16.5 holds true for n = 0. If dimX > 0, there is a special case such that
the stable characteristic numbers clearly vanish, that is when (X, sX) is bordant
with a costant map (N, c); in other words [X, sX ] belongs to a copy of ηn embedded
in ηn(Gm+1,n+1). First let us prove that X is a boundary under such a stroger
hypothesis.

Lemma 16.6. Let dimX > 0 and F : Q → Gm+1,n+1 realize a bordism of
(X, sX) with a constant map c : N → Gm+1,n+1. Then N (hence X) is a boundary.

Proof : The map F pulls back the tautological bundle over the grassmannian
to a rank (n+1) vector bundle ξ on Q which restricts to τX := T (X)⊕ ε1 on X and
to a trivial bundle εn+1 on N . Denote by D(ξ), S(ξ) = ∂D(ξ), the total spaces of
the unitary (n+1)-disk and n-sphere bundles of ξ respectively. Similarly denote the
restrictions D(τX), S(τX) and D(εn+1), S(εn+1). Let ι be the fibrewise antipodal
involution on ξ. Then S(ξ) is a compact (2n+ 1)-manifold with boundary

∂S(ξ) = S(τX)q S(εn+1)

equipped with the involution ιS (the restriction of ι). Consider the (2n+1)-manifold
with boundary

Y = X ×X × [−1, 1]
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equipped with the involution

σ(x, y, t) = (y, x,−t)
so that ∂Y is an invariant set of σ. The fixed point set of σ is given by

X = ∆X × {0} = {(x, x, 0)} ⊂ Y
which can be naturally identified withX itself. We can find a tubular neighbourhood
U of X in Y such that by removing the interior of U from Y we get a compact
(2n+ 1)-manifold say Z, with boundary

∂Z = ∂U q ∂Y
such that (Z, ∂Z) is invariant for σ and the restriction of σ to ∂U can be identified
with the restriction of ιS to S(τX). Then we can glue Z and S(ξ) along ∂U ∼ S(τX)
and get a compact (2n+ 1)-manifold W with boundary

∂W = ∂Y q S(εn+1)

equipped with a smooth fixed point free involution say σW , which coincides with
σ q ιS on ∂W . Then the quotient space W := W/σW is a smooth manifold with
boundary such that the quotient map

q : W →W
is a degree 2 smooth covering map. We note that the restriction of q to ∂Y is a
trivial covering, while

S(εn+1)/σW ∼ N ×Pn(R)

and the restriction of q to S(εn+1) ∼ N × Sn may be identified with the map
IdN × s, s : Sn → Pn(R) being the standard double covering. The associated real
line bundle on W (see Chapter 13) is the pull back by a classifying map

φ :W → Pa(R)

for some a big enough, considered up to homotopy. By the above remark about
the restriction of the covering to ∂W, we can assume that φ|∂Y is a constant map,
while φ|N×Pn(R) is the composition of the projection N ×Pn(R)→ Pn(R) followed

by the inclusion Pn(R) ⊂ Pa(R). Let Pa−n(R) be a projective subspace of Pa(R)
which intersects Pn(R) transversely at one point x0. We can also assume that
φ(∂Y ) ∩Pa−n(R) = ∅, so that φ|∂W t Pa−n(R) and

φ−1
|∂Y (Pa−n(R)) = N × {x0} ∼ N .

By using usual transversality theorems, finally we can also assume that the whole
map φ is transverse to Pa−n(R) so that the proper (n+ 1)-submanifold (R, ∂R) of
(W, ∂W) given by R = φ−1(Pa−n(R)) is such that N × {x0} = ∂R. This achieves
the proof of Lemma 16.6.

2

As Theorem 16.5 holds true for n = 0, we will argue by induction on the
dimension n ≥ 0. The inductive step is provided by the following lemma combined
with Lemma 16.6.

Lemma 16.7. Let dimX = n > 0. Assume that all stable η-characteristic
numbers of X vanish, and that Theorem 16.5 holds true for all dimensions m smaller
than n. Then (X, sX) is bordant with a constant map c : N → Gm+1,n+1.

Proof : This proof will be somewhat scketchy an definitely not self-contained
within the content of this text. Let us given a triangulation K of Gm+1,n+1 made by
smoothly embedded simplices, whose existence has been evoked in Section 14.9.1
(without a proof). The interior of every such a h-simplex is a submanifold of
Gm+1,n+1 diffeomorphic to Rh and called a (open) h-cell of K. Alternatively one
can use the open cells of the natural cellular decomposition of the Grassmannian



16.2. COMPLETENESS OF STABLE η-NUMBERS 219

depicted in Section 3.5. For every 0 ≤ h ≤ dimGm+1,n+1, the union of the cells
of dimension less or equal to h is called the h-skeleton Kh of K. Fix a base point
xe in every open cells e, call it the “centre” of the cell. For every h as above, by
removing the centre from every h-cell, we get a subspace K̃h of Kh which retracts to
Kh−1. By basic transversality, we may assume that the smooth map sX misses the
centre of every cell of dimension greater than n = dimX; hence, up to (continuous)
homotopy we can assume that

sX : X → Gm+1,n+1

is continuos with values in the n-skeleton Kn, it is smooth on s−1
X (Kn \ Kn−1) and

is transverse to the centre xe of every n-cell e.

We claim that for every n-cell e, the 0-submanifold Y := s−1
X (xe) of X consists

of an even number of points, that is it is a 0-dimensional boundary. In fact, by
collapsing Kn \ {e} to one point, we get a projection

pe : Kn → Sn

which restricts to a smooth embedding of the n-cell e onto Rn ⊂ Rn ∪∞ = Sn, so
that we will confuse xe with pe(xe). Then

Y = (pe ◦ sX)−1(xe)

and one easily realizes that

[Y ] = s∗X(p∗e([xe]) ∈ ηn(X)

which vanishes as it is a stable η-characteristic number of X. Fix a small n-ball D
around xe in e. Then

s−1
X (D) = (D̃1 ∪ D̃2) ∪ · · · ∪ (D̃s ∪ D̃s+1)

and the restriction of sX to every D̃j is a diffeomorphism onto D. Remove from

X the interior of every D̃j and pairwise glue together the boundary components

∂D̃j and ∂D̃j+1, j = 1, . . . , s by means of the above identifications with ∂D. Do it
simultaneously at the centre of every n-cell. Then we get a boundaryless n-manifold
N1 such that the map sX descends to a stable classifying map

s1 = sN1
: N1 → Kn ⊂ Gm+1,n+1

which misses the centres of every n-cell, hence up to homotopy we may assume that
s1 takes values in Kn−1, it is smooth on s−1

1 (Kn−1 \Kn−2) and is transverse to the
centre of every (n − 1)-cell. Moreover, it is not hard to check that by construction
(X, sX) is bordant with (N1, s1), so that also all stable η-characteristic numbers of
N1 vanish.

Now we would proceed by induction on the codimension of the skeleton to
eventually reach (Nn, sn) which takes values in K0 and is bordant with (Nn−1, sn−1)
(hence with the initial (X, sX)). As the grassmannian is connected, (Nn, sn) will
be homotopic the a required constant map (N, c), N = Nn (this last step is not
necessary if we use the natural cellular decomposition which has only one 0-cell).

So let us assume inductively that for some h ≥ 1 we have obtained

sh = sNh : Nh → Kn−h ⊂ Gm+1,n+1

bordant with (X, sX), which is smooth on s−1
h (Kn−h \ Kn−h−1) and transverse to

the centre xe of every (n − h)-cell e. The stable η-characteristic numbers of Nh
vanish. By a similar augument as above, for every such a cell e, there is a collapsing
projection

pe : Kn−h → Sn−h

which restricts to a smooth embedding of the cell e onto Rn−h ⊂ Rn−h ∪ ∞ =
Sn−h; by confusing xe with pe(xe), set Y = (pe ◦ sh)−1(xe). We claim that this
h-submanifold Y of Nh is a boundary. By the inductive assumption of Lemma



220 16. BORDISM CHARACTERISTIC NUMBERS

16.7, it is enough to show that every stable η-characteristic number of Y vanishes.
We note that, by using the terminology defined in Chapter 17, Y is framed that
is it has a trivialized tubular neighbourhood U ∼ Y × Dn−h in Nh such that the
restriction of sh to U can be identified with the projection Y × Dn−h → Dn−h,
where Dn−h is a small disk in e around xe. This implies that a stable classifying
map sY for Y is given by sh ◦ j, where j : Y → Nh is the inclusion. Then it is
enough to show that for every α ∈ ηh(Gm+1,n+1), s∗Y (α)u [Y ] ∈ Z/2Z vanishes. By
the geometric definition of the cobordism products, we realize that as an element
of Z/2Z, s∗Y (α) u [Y ] equals s∗h(p∗e[xe] t α) u [Nh] which vanishes being a stable
η-characteristic number of Nh. Then Y is a boundary of a manifold W . We make
a surgery on Nh by replacing the above product neighbourhood U ∼ Y × Dn−h

with W × ∂Dn−h; do it simultaneously at every (n − h) cell. we get a manifold
Nh+1; the map sh descends to sh+1 : Nh+1 → Gm+1,n+1 which can be identified
with the projection W × ∂Dn−h → ∂Dn−h at every (n − h) cell. By construction
(Nh+1, sh+1) is bordant with (Nh, sh) and this eventually achieves the inductive
step.

The proofs of Lemma 16.7 and of Theorem 16.5 are now complete.
2

16.3. On Ω-characteristic numbers

Recall that a compact boundaryless n-manifold X is parallelizable if the tangent
bundle admits a global trivialization so that its total space is diffeomorphic to
X × Rn; in such a case X is orientable. If X is parallelizable then any classifying
map tX : X → Gm,n of T (X) is homotopic to a constant map as well as any stable
classifying map sX : X → Gm+1,n+1. Then if X is parallelizable and dimX = n > 0
certainly it verifies the hypothesis of Lemma 16.6, hence [X] = 0 ∈ ηn. We can
strenghten this result.

Proposition 16.8. Let X be a parallelizable and oriented compact boundaryless
n-manifold, n > 0. Then [X] = 0 ∈ Ωn.

Proof : It is enough to prove the statement when X is connected. We will
use and refine the proof of Lemma 16.6. If dimX = n is even, we can apply such
a proof starting from a homotopy F : X × [0, 1] → Gm+1,n+1 between sX and a
constant map. Clearly X × [0, 1] is orientable. At the end of the proof we may
assume that both Pa(R) and Pa−n(R) are odd dimensional, hence they are both
orientable. Then we conclude by means of the oriented version of the transversality
theorems.

If dimX = n is odd we modify the construction as follows: we consider

Y = X ×X
endowed with the involution σ(x, y) = (y, x). The fixed point set consists of the
diagonal ∆X which is naturally identified with X itself. A tubular neighbourhood
U of ∆X can be identified with the unitary disk bundle of T (X), hence with the
product X × Dn. By removing the interior of U from Y , we get a compact 2n-
manifold W with boundary ∂W = X × Sn−1; σ restricts to a fixed point free
involution on W , and can be identified with the fibrewise antipodal map on ∂W ,
that is the trivial unitary sphere bundle of T (X). Then the proof runs similarly to
the one of Lemma 16.6. At the end we can assume that both Pa(R) and Pa−n+1(R)
are orientable and conclude again by oriented transversality.

2

Every η-characateric number lifts to an Ω-characteristic number (with the ob-
vious meaning of the term) via the forgetting projection

Ω• → η• .
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If the manifold X is oriented we can consider also the complexification TC(X) of
the tangent bundle: every real vector bundle ξ can be complexified to ξC via the
inclusion R ⊂ C so that every real cocycle defining ξ can be considered as a cocycle
defining ξC. Then TC(X) corresponds to a classyfying map

tX,C : X → Gm,n(C) .

We can apply almost verbatim the above discussion about (stable) characteristic
numbers in the present complexified setting (by replacing in particular real with
complex line bundles). This gives rise to further Ω-characteristic numbers with
values in Z instead of Z/2Z. We call generically stable Ω-characteristic number one
belonging to the union of such two families.

Remark 16.9. The classical treatment of stable characteristic numbers (classes)
takes places in the singular cohomology ring of real or complex grassmannians with
Z/2Z or Z coefficients (see [MS], [BT]); they are called Stiefel-Whitney and Pon-
tryagin numbers respectively. As we do not assume any familiarity with singular
cohomology, above we have just ‘lifted’ some facts of such a theory in terms of
the cobordism rings that we have introduced in a self-contained way. In the case
of η, “to lift” is quite appropriate because one can prove (it is non trivial) that
for every compact boundaryless n-manifold X, the Z/2Z-cohomology Hj(X;Z/2Z)
can be different from 0 only if 0 ≤ j ≤ n, is finite dimensional and coincides with
the quotient space Hj(X;Z/2Z) := ηj(X)/ ker(φj). Hence stable η-characteristic
numbers and Stiefel-Whitney numbers are basically the same. In the oriented case,
Ω-characteristic numbers are not exhaustive. Our presentation of the matter is
necessarily incomplete.

By using Stiefel-Whitney and Pontryagin numbers, we have the following ori-
ented version of Theorem 16.5. The proof [Wall] is more complicated. Parallelizable
manifolds as in Proposition 16.8 represent the basic instance for this theorem.

Theorem 16.10. Let X be a compact oriented boundaryless n-manifold. Then
[X] = 0 ∈ Ωn if and only if all Stiefel-Whitney and Pontryagin numbers of X
vanish.

2





CHAPTER 17

The Pontryagin-Thom construction

The original Pontryagin construction was inventend to rephrase the study of the
homotopy groups of spheres in terms of a certain more geometric (hence presumably
more accessible at that time, about 1938) bordism theory. Viceversa, later Thom’s
extension of Pontryagin construction was mainly intended as a way to rephrase the
study of η• (or Ω•) in terms of the homotopy groups (becomed more accessible
at that time, about 1954, after Serre’s Thesis) of certain so called Thom’s spaces
which in a sense generalize the spheres. So the P-T construction is a powerfull
bridge between two different ways to approach a same “mathematical reality”.

Let us start by describing the Pontryagin construction (introduced in 1938; see
the later exposition in [Pont], and also [M1]) . We are primarily interested here in
the determination of the homotopy groups

πm(Sn, p)

for m,n ≥ 1. By suitable approximation theorems, we know that we can manage
with them in purely differential/topological way. We know that

π1(S1, p) ∼ Z, πm(S1, p) = 1 for m > 1,

πm(Sn, p) = 1 for n ≥ 2, 1 ≤ m < n .

Hence we will assume that m ≥ n > 1. In such a case πm(Sn, p) is abelian, the
base point is immaterial and the group can be identified with [Sm, Sn], the set of
smooth homotopy classes of maps f : Sm → Sn. Moreover, it is convenient to
extend the discussion to [M,Sn] where M is any compact, connected boundaryless
smooth m-manifold, m ≥ n ≥ 1.

17.1. Embedded and framed bordism

We have already encountered instances of embedded bordism within a given
manifold in Chapter 13. Let us state it in general.

Definition 17.1. Let M be a compact connected boundaryless m-manifold.
Let 0 ≤ k < m. Given compact boundaryless smooth k-submanifolds V0, V1 of M ,
we say that V0 is bordant with V1 within M (and we write V0 ∼b,M V1) if there is
a smooth triad (W,V0, V1), properly embedded into M × [a0, a1], for some a0 < a1,
such that for j = 0, 1,

∂W ∩ (M × {aj}) = Vj .

The relation “∼b,M” is an equivalence relation on the set of compact bound-
aryless k-submanifolds of M : every such a V is in relation with itself because the
cylinder V ×[a0, a1] properly embeds into M×[a0, a1]; the relation is obviously sym-
metric; as for the transitivity, up to isotopy we can normalize the proper embeddings
of the triads (W,V0, V1) in such a way that they are locally cylinder-like as above
near the boundary. Given properly embedded triads (W,V0, V1) in M × [a0, a1],
(W ′, V ′0 , V

′
1) in M × [a′0, a

′
1] respectively, such that V1 = V ′0 , then we can construct

(W ′′, V0, V
′
1) in M × [a0, a1 +a′1−a′0] just by stacking M × [a′0, a

′
1] over M × [a0, a1].

223
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We denote by
ηemb
k (M)

the quotient set.

By restriction to oriented k-submanifolds of M , we can get an oriented version
of the above definition leading to a quotient set

Ωemb
k (M) .

Stress that we are not assuming that M is oriented.

Let M be as above.

Definition 17.2. A compact boundaryless k-submanifold V ⊂M is framed if
it is endowed with a framing. This last is of the form

f = (s1, . . . , sm−k)

where

(1) Every sj is a nowhere vanishing section of the bundle i∗V T (M),

iV : V →M

being the inclusion;
(2) For every x ∈ V , the vector s1(x), . . . , sm−k(x) are linearly independent

in TxM ;
(3) For every x ∈ V , TxM = TxV⊕Fx, where Fx := Span{s1(x), . . . , sm−k(x)}.

Hence x → Fx defines a smooth field of transverse (m − k)-planes along V
tangent to M . The framing provides a global trivialization of the bundle i∗V T (M),
hence of every tubular neighbourhood of V in M constructed by means of such a
field. This means in particular that a necessary (and sufficient) condition in order
that V admits a framing is that it has globally trivializable tubular neigbourhoods
in M .

We are going to specialize and enhance the embedded bordism to framed sub-
manifolds. First let us extend the definition of framing to properly embedded triads.
Let (W,V0, V1) be a properly embedded (k + 1)-triad in M × [a0, a1]; from now on
we will assume by default that the embedding is normalized, i.e. cylinder-like near
the boundary as above. A framing of the triad in M × [a0, a1] is of the form

f = (s1, . . . , sm−k)

where these are pointwise linearly independent sections of the bundle

i∗WT (M × [a0, a1]) ,

induce a smooth field of transverse (m−k)-planes along W tangent to M × [a0, a1],
and we require furthermore that the restriction of f to the boundary defines a
framing of Vj in M , j = 0, 1.

Definition 17.3. Let (V0, f0) and (V1, f1) framed k-submanifolds of M . We
say that (V0, f0) is framed bordant with (V1, f1) within M and we write

(V0, f0) ∼fb (V1, f1) ,

if there is a properly embedded framed triad ((W,V0, V1), fW ) in some M × [a0, a1]
such that the restriction of the framing fW to the boundary coincides with the union
of the framings f0 and f1.

Similarly as above, one cheks that this defines an equivalence relation on the
set of framed k-submanifolds of M , and we denote by

ηFk (M)

the quotient set.
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We develop now also an oriented version; we stress that we do it provided that
M itself is oriented. So not only we require that for every framed k-submanifolds
(V, f), V is also oriented; furthermore we impose that for every x ∈ V , the given
orientation of TxV followed by the tranverse orientation of Fx determined by f(x)
coincides with the given orientation of TxM . Hence it is enough to require that
V is orientable because the framing together with the orientation of M select the
preferred orientation of V . Note that this way recovers the orientation procedure
stated in Theorem 8.2. To define the pertinent relation “∼fob” we use oriented and
framed triads ((W,V0, V1), fW ) properly embedded in some M × [a0, a1], so that the
oriented boundary ∂W = V0 q−V1. This leads to the quotient set

ΩFk (M) .

17.2. The Pontryagin map

Let us keep the above setting. We establish the following procedure.

• Fix x0 ∈ Sn. For every α ∈ [M,Sn], thanks to transversality take f : M → Sn

belonging to α and such that f t {x0}.
• V := f−1(x0) is submanifold of M of dimension dimV = k := m − n. Fix

a positive basis B of Tx0
Sn (as usual the unitary sphere is the oriented boundary

of the unit disk Dn+1 of Rn+1 endowed with the standard orientation). For every
x ∈ V , set

f(x) = (dxf)−1(B) ;

by the very definition of transversality, this defines a framing f of V in M . Hence
we have constructed a framed k-submanifold (V, f) of M . We denote by [V, f] its
class in ηFk (M).

• If M is oriented, then V is also orientable and we select a preferred orientation
via the usual rule stated in Theorem 8.2. This eventually leads to

[V, f] ∈ ΩFk (M) .

We have:

Proposition 17.4. (1) If M is oriented, let us associate to every α ∈ [M,Sn]
a class pΩ(α) = [V, f] ∈ ΩFk (M) by means of an arbitrary implementation of the
procedure stated above. Then this actually well defines the Pontryagin map

pΩ : [M,Sn]→ ΩFk (M) .

(2) If M is non orientable, let us associate to every α ∈ [M,Sn] a class pη(α) =
[V, f] ∈ ηFk (M) by means of an arbitrary implementation of the procedure stated
above. Then this actually well defines the Pontryagin map

pη : [M,Sn]→ ηFk (M) .

Proof : Every implementation of the procedure involves a few arbitrary choices.
We have to check that they are immaterial with respect to the framed bordism class
of the resulting framed (possibly oriented) manifold (V, f). Given α ∈ [M,Sn], let us
assume first that two implementions just differ by the choice of the maps f0 and f1

in α and transverse to x0 ∈ Sn. By the basic transversality theorems, we can assume
that a homotopy F : M × [0, 1] → Sn which connects f0 to f1 is also tranverse to
x0 ∈ Sn; hence W = F−1(x0) endowed with the framing x→ (dxF )−1(B) gives rise
to a framed cobordism between (V0, f0) and (V1, f1) constructed by means of f0 and
f1 respectively. Assume now that the two implementations just differ by the choice
of the positive bases B0 and B1 of Tx0

Sn. Then the resulting framed manifolds
(V, f0) and (V, f1) just differ by the framing. As GL(n,R) is connected, there is a
smooth path Bt, t ∈ [0, 1], of such bases connecting B0 and B1. Clearly this gives rise
to a 1-family of framed manifolds of the form (V, ft), and eventually to a framing of
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V ×[0, 1] properly embedded into M×[0, 1] which realizes a framed bordism between
(V, f0) and (V, f1). Finally, let us assume that we deal with two different points
x0, x1 ∈ Sn. By the homogeneity of Sn, there is a diffeotopy ht, t ∈ [0, 1], of Sn

such that h0 = IdSn , h1(x0) = x1. Given f0 ∈ α, f0 t {x0}, clearly also f1 := h1◦f0

belongs to α and f1 t {x1}. Thanks to the above results, it is enough to show that
the framed manifold (V0, f0) constructed by using x0,B, f0 and the framed manifold
(V1, f1) constructed by means of x1,B1 := dx0

h1(B), f1 belong to the same framed
cobordism class. This is easy to achieve by using the 1-parameter family of framed
manifolds (Vt, ft) constructed by means of xt := ht(x0),Bt := dx0ht(B), ft := f0◦ht.
We have understood that all these considerations work as well in the oriented setting,
as it is easy to see. The proposition is proved.

2

We can state the main result of this Pontryagin construction.

Theorem 17.5. Let M be a compact, connected and boundaryless smooth m-
manifold, m ≥ n ≥ 1, k = m− n. Then:

1) If M is oriented, then the Pontryagin map

pΩ : [M,Sn]→ ΩFk (M)

is bijective.

2) If M is non orientable, then the Pontryagin map

pη : [M,Sn]→ ηFk (M)

is bijective.

Before giving a proof, let us state immediately an interesting corollary, early
due to Hopf.

Corollary 17.6. Assume that dimM = dimSn ≥ 1. Then:
1) If M is oriented, then f0, f1 : M → Sn are homotopic to each other if and

only if

degZ(f0) = degZ(f1) .

2) If M is non orientable, then f0, f1 : M → Sn are homotopic to each other if
and only if

degZ/2Z(f0) = degZ/2Z(f1) .

Proof : It is enough to show that if the two maps have the same degree, then
they are homotopic. As M and the sphere have the same dimension, the respective
framed manifolds (V0, f0) and (V1, f1) constructed by means of f0 or f1 consist of a
finite number of (possibly oriented) points. Then it follows from the very definition
of degR, R = Z,Z/2Z, that they are framed bordant (possibly in the oriented
setting) if and only if the two maps have the same degree. The result follows by
Theorem 17.5.

2

Proof of Theorem 17.5: We will deal simultaneously with both Pontryagin’s
maps, understanding the necessary refinement in the oriented setting. Let us show
first that the Pontryagin maps are onto. Let (V, f) be a framed k-submanifold of M .
It is enough to prove that there is a map f : M → Sn such that [(V, f)] is produced by
some implementation of the procedure used to define the Pontryagin maps, starting
from the map f . As usual let us decompose the sphere as Sn = D+ ∪D− such that
D+ ∩D− = Sn−1. By the stereographic projection from the northern pole, we can
identify D− with the unit disk Dn; take x0 = 0 ∈ Dn ⊂ Sn. By using the framing
f, we can define a global trivialization

τ : V ×Dn → U
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of a tubular neighbourhood of V in M , such that the restriction of τ to V × {0} is
the identity. Then we can define the map

f̃ : U → Dn, f̃(u) := π ◦ τ−1

π being the projection V ×Dn → Dn. By construction:

• f̃ t {0}.
• f̃−1(0) = V .
• Up to framed bordism (use again that GL(n,R) is connected), the framing

f can be recovered by the usual construction applied to 0, f̃ and a basis B
of T0D

n.

By using a collar of ∂U in M and a collar bump function, it is not hard to
extend f̃ to a smooth map

f : M → Sn

such that

• f = f̃ on U ;
• The mapf sends the complement of U in D+ and is constantly equal to

the northern pole of Sn, say ∞, on the complement of a slightly bigger
tubular neighbourhood of V in M ;

• f−1(0) = f̃−1(0) = V .

By construction such a map f has the desidered property. So we have proved
that the Pontryagin maps are onto.

Let us prove now that they are injective. Let us say that a map f : M → Sn is
in standard form if it has the qualitative properties of the map f constructed above
in order to prove the surjectivity. Let us prove first the result for the restriction to
the homotopy classes that admit representatives in normal form.

Lemma 17.7. Assume that f0, f1 : M → Sn are in standard form, let α0 and
α1 be the respective homotopy classes, and assume that p∗(α0) = p∗(α1). Then
α0 = α1.

Proof : Let (V0, f0) and (V1, f1) be framed manifolds obtained by implementing
the procedure with respect to 0, B and f0 or f1. By hypothesis there is a properly
embedded framed triad ((W,V0, V1), fW ) in M × [0, 1] which realizes a framed bor-
dism between them. Let us apply to the triad the construction used above to define
f̃ . This produces a suitable map

F̃ : UW → Dn

where UW is properly embedded relative tubular neighbourhood of W in M × [0, 1]
which restricts to tubular neigbourhoods Uj of Vj in M , j = 0, 1. As well as we

have extended above f̃ to f : M → Sn (in normal form), we can extend F̃ to

F : M × [0, 1]→ Sn

in relative normal form with respect to UW . As f0 and f1 are themselves in normal
form by hypothesis, up to diffeotopy we can assume that the restriction of F to
the boundary recovers the given maps f0 and f1. Them F establishes a required
homotopy between them.

2

To achieve the proof of the main theorem, it is enough now to prove that the
assumptions in the above lemma are not restrictive. Let g : M → Sn, it is not
restrictive to assume that g t 0, and let (V, f) obtained by implementing the usual
procedure with respect to 0, B and g. Let f : M → Sn be a map in normal form
obtained as in the proof of surjectivity from (V, f). Up to diffeotopy we can assume

that the tubular neighbourhood U of V which supports f̃ coincides with g−1(D−)
and that eventually g and f coincide on U , both f and g send the complement of
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U in D+ which retracts to ∞. Using this facts it is an exercise to show that f and
g are homotopic. This completes the proof of the main Theorem 17.5.

2

17.3. Characterization of combable manifolds

Recall that a manifold is combable if it carries a nowhere vanishing tangent
vector field. We are now able to characterize this property.

Theorem 17.8. Let M be a compact connected boundaryless smooth manifold.
Then M is combable if and only if χ(M) = 0. In particular if m = dimM is odd,
then M is combable.

Proof : We already know that χ(M) = 0 is a necessary condition. Let us prove
the other implication. Let v any tangent vector field on M with isolated zeros.
By using the homogeneity of M , up to a diffeotopy we can assume that there is a
chart φ : W → Rm such that the zeros x1, . . . , xk of v are contained in W and their
images are contained in the unitary disk Dm ⊂ Rm. For simplicity, let us keep the
name v for its expression in such local coordinates, and xj for the images of the
zero sets in Dm. We can fix an auxiliary riemannian metric g on M which looks
as the standard euclidean metric g0 on a neighbourhood of Dm. Fix a system of
small pairwise disjoint disks Dj ⊂ Dm, centred at the xj , j = 1, . . . , k. The field
v̂ := v/||v||g is well defined on M \ ∪jInt(Dj) and homotopic to the restriction of
v. The restriction of v̂ to Dm \ ∪jInt(Dj) defines a map

ρ : Dm \ ∪jInt(Dj)→ Sm−1 .

Assume at first that M is oriented. By the bordism invariance of the degree we
have

degZ(ρ|∂Dm) =
∑
j

degZ(ρ|∂Dj )

and the second term is equal to χ(M) = 0. By Corollary 17.6, ρ|∂Dm is homo-

topically trivial, hence can be extended to a map ρ̂ : Dm → Sm−1. By matching
this last map with the restriction of v̂ to M \ Int(Dm), we eventually get a nowhere
vanishing vector field on M . If M is not orientable, arguing similarly as in the proof
of Proposition 7.8 we can assume that the local picture at Dm agrees with the one
in the oriented case, so we can conclude as well. 2

The above result extends to triads with a very similar proof.

Proposition 17.9. A smooth triad (W,V0, V1) carries a nowhere vanishing
triad tangent vector field if and only if the relative characteristic χ(W,V0) = 0.

2

17.4. On (stable) homotopy groups of spheres

Accordingly with the basic motivation of the Pontryagin construction, let us
manage with

πm(Sn) ∼ [Sm, Sn] ∼ ΩFm−n(Sm)

for m ≥ n > 1, in terms of framed bordism. The first step is to transport on
ΩFm−n(Sm) the group operation of πm(Sn). Recall that the operation of the ordi-
nary bordism modules is induced by the disjoint union of representatives; moreover
disjoint union and connected sum belong to the same bordism class; this implies
that every ordinary bordism class can be represented by connected manifolds. The
operation of the framed bordisms of the spheres is in fact an embedded version of
the disjoint union, again with the help of connected sum. Let (V1, f1) and (V2, f2)
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oriented framed (m − n)-submanifolds of Sm, then the operation on ΩFm−n(Sm) is
defined by

[V1, f1] + [V2, f2] = [(V1, f1)q (V2, f2)]

where we assume at first that the given framed manifolds are embedded into two
disjoint copies of Sm, and the disjoint union (V1, f1) q (V2, f2) means the framed
submanifold of

Sm = Sm#Sm

understanding that the connected sum is performed at disks which are respectively
disjoint from the two given framed submanifolds. It is not hard to verify that this
operation is well defined and recovers (via the Pontryagin map) the usual operation
of the homotopy group πm(Sn). By forgetting the embedding, we have immediately
a homomorphism of Z-modules

φk : ΩFk (Sm)→ Ωk, k = m− n .

Remark 17.10. In the ordinary setting we have noticed that every class has
connected representatives. By means of embedded connected sums performed by
attaching embedded 1-handles, we can obtain that also every class in ΩFk (Sm) has
representative [V, f] with connected V . This is easy if we forget the framing, a bit
more demanding taking it into account. We left the details by exercise.

As an immediate corollary of Corollary 17.6, we have

Proposition 17.11. For every m ≥ 2, deg : πm(Sm) → Z is an isomorphism
of Z-modules, and [Sm, idSm ] is a generator of πm(Sm).

2

The same result was already known for m = 1.

17.4.1. The J-homomorphism. For every m,n ≥ 1, there is an important
homomorphism early defined by Whitehead

J : πm(SO(n))→ πm+n(Sn)

which can be naturally expressed in terms of

J : πm(SO(n))→ ΩFfm (Sm+n) .

In fact by taking the usual equatorial embedding Sm ⊂ Sm+n, every α ∈ πm(SO(n))
can be considered as a framing fα of Sm in Sm+n; hence J(α) = [Sm, fα].

17.4.2. Freudenthal’s homomorphism and stable homotopy groups.
Let Sm ⊂ Sm+1 be the usual equatorial embedding. Set m = k + n, so that
m + 1 = k + (n + 1). If (V, f) is an oriented framed k-submanifold of Sm, then we
can consider the framed k-submanifold of Sm+1, say (V, sf), where the framing sf
is obtained by completing f with the unitary normal vectors along Sm which point
toward the northern pole of Sm+1. It is easy from the definition of the operation
that this induces a Z-modules homomorphism

s : ΩFk (Sm)→ ΩFk (Sm+1)

whence, via the Pontryagin map,

s : πn+k(Sn)→ πn+1+k(Sn+1)

called Freudenthal suspension homomorphism. By using the same “general position
argument” used for the weak Whitney embedding theorem (Corollary 6.8) we have:
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Proposition 17.12. For every k ≥ 1,
1) If n ≥ k + 1 then

s : πn+k(Sn)→ πn+1+k(Sn+1)

is surjective;

2) If n ≥ k + 2 then

s : πn+k(Sn)→ πn+1+k(Sn+1)

is an isomorphism.

2

One says that for every k ≥ 0, the homotopy groups πn+k(Sn) stabilize for
n ≥ k+2, being all isomorphic to the (by definition) stable homotopy group denoted
by π∞k .

By keeping the above notations, it is convenient to organize the groups

πn+k(Sn) ∼ ΩFk (Sn+k)

as being indexed by the couples of integers (k, n), k ≥ 0, n ≥ 2, endowed with the
lexicographic order. So for every k, by increasing n we encounter a few groups in
the “unstable regime”, until we reach

π∞k ∼ π2+2k(Sk+2) ∼ ΩFk (S2+2k) .

17.4.3. Homotopy groups of spheres for small k. “Small” will mean k ≤
3. Pontryagin himself succeeded to compute by geometric means the cases k ≤ 2
via his own construction. We will limit to a few indications about these cases,
the reader would fill all details by exercise or refer to the exposition [Pont] which
contains detailed proofs.

(k = 0) In agreement with Proposition 17.11, the situation stabilizes immedi-
ately:

π∞0 ∼ π2(S2) ∼ Z .

(k = 1) The group in the unstable regime is

π3(S2) ∼ ΩF1 (S3)

while

π∞1 ∼ ΩF1 (S4) ∼ π4(S3) .

Let us analyse the first one. Every finite family of embedded say r smooth circles in
S3 can be transformed into the boundary of r pairwise disjoint embedded smooth
2-disks by means of a generic homotopy which is an embedding for every t ∈ [0, 1]
with the exception of a finite number of instants at which two branches of two
circles (possibly the same one) cross each other with distinct tangents. Such a
generic homotopy induces an embedded framed bordism. So ΩF1 (S3) is generated
by classes of the form [S1, f], where S1 is the standard S1 ⊂ S2 ⊂ S3 via equatorial
embeddings, hence such representatives only differ by the framings. We can take
as reference framing f0 the one having as first component a transverse field along
a collar of S1 in the standard 2-disk D+ ⊂ S2. In fact [S1, f0] corresponds to
1 ∈ π3(S2). In this way every framing is of the form f = hff0 for a map

hf : S1 → SO(2) .

As SO(2) ∼ S1, the class αf of hf belongs to Z ∼ π1(SO(2)). We claim that
[S1, f1] = [S1, f2] ∈ ΩF1 (S3) if and only if αf1 = αf2 . In fact if f : S3 → S2

corresponds to (S1, f) via the Pontryagin construction, then one realizes that αf

coincides with the linking number of two generic fibres of f over two distinct regular
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values (this is called the Hopf number of f). Two maps with different Hopf number
are not homotopic to each other. Then enventually we have that

π3(S2) ∼ ΩF1 (S3) ∼ Z .

We can also exhibit a geometric very interesting generator. This is the so called
Hopf map: let S3 be realized as the unitary sphere in C2 and recall that

P1(C) ∼ S2

the so called Riemann sphere. Then the mentioned map is

h : S3 → S2

given by the restriction of the natural projection C2 \ {0} → P1(C). One can see
that h is a fibre bundle map with fibre S1; the union of two distinct fibres is the
so called (oriented) Hopf link formed by two simply linked unknotted knots in S2

with linking number equal to 1.
With similar and easier considerations (now every embedding of S1 is “stan-

dard” by dimensional reasons), we see that ΩF1 (S4) is generated by classes of the
form [S1, f], and every framing induces a classifying map αf ∈ π1(S0(3)); we know
that SO(3) ∼ P3(R) (see Example 6.5), so that π1(SO(3)) ∼ Z/2Z, and eventually

π∞1 ∼ ΩF1 (S4) ∼ π4(S3) ∼ Z/2Z .

Again we can exhibit geometric generators. We have

sn−2 : π3(S2)→ πn+1(Sn)

then

sn−2([h]) = [hn]

for a suitable “suspended Hopf map”

hn : Sn+1 → Sn

eventually generates πn+1(Sn) for n ≥ 3.

(k = 2) We have π4(S2) and π5(S3) in the unstable range, while π∞2 ∼ π6(S4).
It turns out that they are all isomorphic to Z/2Z. Again we can exhibit geometric
generators. In fact the class of the map

g := h ◦ h3 : S4 → S2

generates π4(S2), while

sn−2([g]) := [gn]

generates πn+2(Sn) for n ≥ 2.

This is subtler to establish than the previous cases. It follows by the following
steps.

(a) The map

π4(S3)→ π4(S2), [α : S4 → S3]→ [h ◦ α]

is an isomorphism. Assuming it, π2(S4) ∼ π4(S3) ∼ Z/2Z by the case k = 1.

(b) One constructs an explicit isomorphism

δ : π6(S4)→ Z/2Z .

(c) One proves that

s : π4(S2)→ π5(S3)

is onto. Assuming (a) (b), (c) and recalling that s : π5(S3) → π6(S4) is onto by
Proposition 17.12, it follows that also π5(S3) ∼ Z/2Z.

Let us outline now a proof of these steps.
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(a): A basic fundamental tool in homotopy theory is the so called homotopy
long exact sequence of a fibre bundle (see for instance [Hu], [Hatch]). We apply it
to the Hopf fibration h : S3 → S2 with fibre S1; extract from the exact sequence
the strings

· · · → πn(S1)→ πn(S3)→ πn(S2)→ πn−1(S1)→ . . .

where the middle homomorphism is h∗ induced by h. As πm(S1) = 1 for m ≥ 2, we
get that for n ≥ 3,

πn(S3) ∼ πn(S2)

in particular
π4(S3) ∼ π4(S2)

as desired. Note that this also proves again that π2(S3) = π2(S2) ∼ Z.

(b) This is the most interesting step. To construct the isomorphism δ we will
use several facts about surfaces discussed in Chapter 15. Let (V, f) be a framed
surface in S6, representing a class in ΩF2 (S6). Assume that V is connected, then
it is orientable of a certain genus g ≥ 0. By dimensional reasons, up to diffeotopy
V is embedded in a standard way in S3 ⊂ S6. So only the framing contribution
is relevant. Let C be a compact oriented smooth circle on V . The restriction of
the framing f = (s1, . . . , s4) to C can be completed by adding s5 that is a normal
field along C tangent to V which together with an oriented field tangent to C gives
the orientation of TxV at every x ∈ C. In this way we have constructed a framed
circle (C, fC) representing an element of ΩF1 (S6) ∼ Z/2Z. Hence we can associate
to (C, fC) the corresponding value q(C) := q([C, fC ]) ∈ Z/2Z. Actually such a value
does not depend on the orientation of C. If L = qjCj is a disjoint union of smooth
circles on V , set

q(L) :=
∑
j

q(Cj) ∈ Z/2Z .

It is an istructive exercise to check that the function q defined so far verifies the
conditions stated at the end of Chapter 15; hence

Lemma 17.13. The map

q(V,f) : η1(V )→ Z/2Z, q(V,f)(α) = q(C)

provided that C is any smooth circle on V which represents α, is a well defined
quadratic enhancement of (η1(V ), •)

2

Then we can associate to (V, f), the Arf invariant Arf(q(V,f)),∈ Z/2Z. With
more work one eventually realizes (recall also Remark 17.10) that

Proposition 17.14.

δ : ΩF2 (S6)→ Z/2Z, δ(α) = Arf(q(V,f))

provided that (V, f) represents α and V is connected, is a well defined isomorphism.

Thus ΩF2 (S6) is isomorphic to the Witt group WH
q (Z/2Z) and realizes in a

geometric way the formal non trivial enhancement of Ω2 = 0 mentioned in Section
15.6. ΩF2 (S6) is generated by a framed torus S1 × S1 embedded in the standard
way into S3 ⊂ S6, such that the framing realizes H1,1. Let us outline now the key
step in the proof of Proposition 17.14. Let (V, f) be as above, let C be smooth circle
traced on V , and assume that q([C, fC ]) = 0. Abstractly we can attach a 2-handle
to V × [0, 1] at V ×{1} in such a way that the embedded attaching tube is a tubular
neighbourhood of C in V . In this way we have constructed a triad (W,V, V ′) such
that g(V ′) = g(V )− 1. By easy dimensional reasons, we can extend the embedding
V ⊂ S6 to a proper embedding of the triad (W,V, V ′) into S6 × [0, 1]. Then one
realizes that the condition q([C, fC ]) = 0 is sufficient (and necessary) in order that
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this can be enhaced to a framed bordism between (V, f) and (V ′, f′) for some framing
f′. Moreover, Arf(q(V,f)) = Arf(q(V ′,f′)). By applying several times this argument,
starting with an arbitrary (V, f) we eventually reach either a framed sphere which
represents the null class or a generating framed torus.

(c) Here we will be very very sketchy. Given f : S5 → S3, let p, q ∈ S3 regular
values such that both inverse images Vp and Vq are contained in R5 ⊂ S5. As dimS3

is odd, the map

Vp × Vq → S4, (x, y)→ y − x
||y − x||

has vanishing Z-degree. Given [V, f] ∈ ΩF2 (S5), V ⊂ R5, there is a generic projection
of V in R4; we can simplify the crossing points in the image of V in R4 and eventually
get (V ′, f′) framed bordant with (V, f), such that V ′ ⊂ S4 ⊂ S5. Let f : S5 → S3 be
associated to (V ′, f′) via the Pontryagin construction. Assuming that V ′ = Vp, the
vanishing of the degree of the map constructed as above with respect to f eventually
allows us to construct a framing (V ′, f”) representing an element in ΩF2 (S4) whose
suspension equals [V ′, f′].

(k = 3) This remarkably more complicated case was settled (by using the Pon-
tryagin construction) by Rohlin in a series of four papers in 1951-52 of great histor-
ical importance, mostly for the relation with the theory of 4-manifolds. We refer to
[GM] for the translation (in french) of these papers and wide deep commentaries.
Here we limit to state the final results. We will come back on it in Chapter 20,
Section 20.6.

qThere is a quaternionic version of the Hopf map (recall Example 6.5)

hH : S7 → S4

obtained in the following way. Let us identify R4 with H2, with quaternionic coor-
dinates (q0, q1). The unitary sphere S7 is defined by the equation |q0|2 + |q1|2 = 1.
The group of unitary quaternion (|q| = 1) SU(2) acts on S7 by left multiplication.
The quotient space is diffeomorphic to S4 and hH is just the quotient projection.
It is a fibre bundle map with fibre S3. Then we have:

- π6(S3) ∼ Z/12Z;

- π7(S4) ∼ Z×Z/12Z where the first free factor is generated by [hH], the finite
factor is generated by the suspension of a generator of π6(S3);

- For every n ≥ 5, πn+3(Sn) ∼ Z/24Z and is generated by sn−2([hH]).

This geometric way of determining the homotopy groups of spheres has been
worked out only for k ≤ 3 as we have outlined above. Presumably the difficulty
would increase too much with k. On the other hand, the main interest (especially
from the view point of low dimensional differential topology) of such a direct method
consists in the method itself. Since Serre’s thesis ([Se]) powerful tools (including
the use of so called spectral sequences) have been developed in homotopy theory;
being just interested to the final result, the above cases k ≤ 3 become first “triv-
ial” applications of these potent methods. Moreover, one gets general structural
information; for example we have the following Serre’s result:

Proposition 17.15. For every k ≥ 0 and n > 1, the homotopy group πn+k(Sn)
is finite with the following exceptions:

- k = 0, as πn(Sn) ∼ Z;

- k = 2h− 1, n = 2h, h > 0, where πn+k(Sn) ∼ Z⊕ F , F being a finite group.

2

A great amount of researches concerns the determination of the p-components
of these homotopy groups for all primes p ≥ 2.
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Nevertheless, in spite of such powerful tools (see [To]), the full determination of
the groups πn+k(Sn) has been not achieved (not even of the stable groups π∞k ); in
fact their behaviour for increasing k is apparently quite irregular, does not present
any kind of ‘stabilization’.

17.5. Thom’s spaces

Here the purpose is to rephrase for every k > 0 the determination of the bordism
Z/2Z-vector spaces ηk in terms of the homotopy groups of certain so called Thom’s
spaces, say Tη

k. Having as ideal model the Pontryagin construction, Sn would be

the “Thom space” for the framed bordism ΩFk (Sn+k).

To rich a setting closer to the Pontryagin construction, let us recover first the
“absolute” bordism in terms of embedded one into spheres. For every sphere Sm,
m > k, consider the sets ηembk (Sm) defined in Section 17.1. By means of the
embedded disjoint union already used above to define the operation on ΩFk (Sm), we
can endow ηembk (Sm) with a Z/2Z-vector space structure, so that the natural map
obtained by forgetting the embedding is a Z/2Z-linear map:

φk,m : ηembk (Sm)→ ηk .

Via the usual equatorial embedding Sm ⊂ Sm+1, we get linear maps

sk,m : ηembk (Sm)→ ηembk (Sm+1) .

By means of general position considerations as in the weak Whitney embedding
theorem, and dealing also with proper embeddings into Sm × [0, 1], we easily have:

Lemma 17.16. 1) If m ≥ 2k + 1, then φk,m is onto;
2) If m ≥ 2k+ 2, then φk,m is a isomorphism; moreover φk,m = φk,m+1 ◦ sk,m.

2

• From now on we stipulate that for every k > 0 we will take m ≥ 2k + 2, and
set h = m− k.

Let M be a (r + h)-manifold which is the interior of a (possibly boundaryless)
compact smooth manifold with boundary; let Y ⊂ M a boundaryless compact
r-submanifold. The following facts are now wellknown:

If f : Sm → M is transverse to Y , then Vf = f−1(Y ) is a compact boundary-
less k-submanifold of Sm; if f0 and f1 are homotopic and both transverse to the
zero section, then [Vf0

] = [Vf1
] ∈ ηembk (Sm). Then by applying the transversality

theorems we well define the map

[Sm,M ]→ ηembk (Sm), α = [f : Sm →M ]→ [f−1(Y )]

provided that f is any representative of α transverse to Y . Recall that in our situ-
ation

[Sm,M ] ∼ πm(M) .

This would suggest to look for such a pair (M,Y ) (if any) such that the above
map is bijective. Recall that the pair (Sn, {x0}) has played this role with respect
to the framed bordism ΩFk (Sn+k).

With this perspective in mind, let us recall a construction already employed
in Section 5.8. For every (k,m) as above, h = m − k, take the tautological vector
bundle

τ : V(Gm,h)→ Gm,h ,
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the grassmannian Gm,h being identified with the zero section of this bundle. As
usual present the sphere as Sm = Rm ∪∞; up to diffeotopy every compact bound-
aryless k-submanifold V of Sm misses ∞, that is V ⊂ Rm ⊂ Sm. Let

ν : V → Gm,h, ν(x) = (TxV )⊥

be the orthogonal distribution of h-planes along V with respect to a riemannian
metric on Rm, for instance the standard one g0. We can use ν to build a tubu-
lar neighbourhood p : U → V of V in Rm and this can be incorporated into a
commutative diagram of maps

U
f̃→ V(Gm,h)

↓p ↓τ
V

ν→ Gm,h

where the image of f̃ is a tubular neigbourhood of the zero section in V(Gm,h),

f̃ is a fibred map onto its image, hence transverse to Gm,h, and f̃−1(Gm,h) = V .
Although it would be tempting to take (M,Y ) = (V(Gm,h),Gm,h), one immediately

realizes that there are not reasons that f̃ can be extended to the whole of Sm. The
situation is very similar to the step in the proof of the surjectivity of the Pontryagin
map when we have constructed the map also called f̃ : U → Rn, where (Rn, {0})
played the role of (V(Gm,h),Gm,h). The key fact that allowed us to extend that f̃

to a map f : Sm → Sn, was that the complement of the image of f̃ retracts to the
northern pole of Sn; note that Sn = Rn ∪ ∞ can be considered as the one-point
compactification of Rn. This suggests a very simple way to compactify V(Gm,h) in

order to make the extension of the map f̃ possible. Set

Tη
m,h := V(Gm,h) ∪∞

that is the one-point compactification. This space has some remarkable features

• It is no longer a manifold; however the only non manifold point is just the
added point at infinity;

• This point ∞ has a fundamental system of conical neighbourhhoods cen-
tred at it and with base diffeomorphic to the total space of the unitary
bundle of the tautological bundle τ ;

• The one-point compactification (which is isomorphic to the sphere Sh) of
every fibre of τ is embedded into Tm,h which can be considered as the
wedge of such infinite family of h-spheres, based at ∞;

• Tη
m,h \Gm,h retracts to ∞.

So although it is not a manifold, Tη
m,n is a “honest” rather tame path con-

nected compact space (in particular it has a structure of finite CW complex) whose
homotopy groups are suited to be treated by the powerful tools mentioned above.

Then arguing similarly to the Pontryagin construction, we can extend the above
map

f̃ : U → V(Gm,h)

to a map

f : Sm → Tη
m,h

such that the complement of U is mapped into the complement of the image of U
in Tη

m,h, f is constantly equal to ∞ on the complement of a sligthly bigger tubular

neighbourhood say U ′ of V in Sm, f is smooth on U ′. Let us say that a map
sharing these properties of f is in standard form. Similarly to the end of the proof
of Theorem 17.5, we have

Lemma 17.17. Every α ∈ [Sm,Tη
m,h] has representatives in standard form.
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Proof : Let α = [g : Sm → Tη
m,h]. Up to a first homotopy we can assume that

g is smooth on D− ⊂ Sm (as usual D− ∼ Dm), g−1(∞) ∩ D− = ∅ and g|D− is
transverse to Gm,h. Then we can construct f : Sm → Tη

m,h in normal form which

coincides with g on the tubular neighbourhood U of V = g−1(Gm,h) involved in

the construction of f̃ , whence of f itself. Set A = g(U) = f(U). As Tη
m,h \ A is

contractible to ∞, we can conclude that g and f are homotopic.
2

We summarize the above discussion in the following main result of the present
section. Thanks to Lemma 17.17 the proof runs parallel to the one of Theorem
17.5, details are omitted.

Theorem 17.18. For every k > 0, m ≥ 2k + 2, h = m− k, the map

tm,h : [Sm,Tη
m,h]→ ηembk (Sm), tm,h(α) = [f−1(Gm,h)]

provided that f : Sm → Tη
m,h is any representative in normal form of α, is well

defined and eventually establishes group isomorphisms

πm(Tη
m,h) ∼ ηembk (Sm) ∼ ηk .

2

Every such a Tη
m,h is called a Thom spaces for ηk. Sometimes one prefers to

write them as Tη
k+h,h; the homotopy groups πk+h(Tη

k+h,h) stabilize when h ≥ k+2.

17.5.1. On Thom’s spaces for Ωk. First we identify Ωk with Ωembk (Sm),
m ≥ 2k+2. Then we replace the tautological bundle τ with the tautological bundle
of the grassmannian of oriented h-planes in Rm (see Chapter 6)

τ̃ : V(G̃m,h)→ G̃m,h .

Note that the fibres of this bundle are tautologically oriented. Set TΩ
m,h the one-

point compactification of V(G̃m,h). For every [V ] ∈ Ωk(Sm), in a very similar way
as above, we can construct

f̃ : U → V(G̃m,h)

which extends to a map in normal form

f : Sm → TΩ
m,h

in such a way that the given orientation of V coincides with the one obtained by
the usual rule already employed in the Pontryagin construction by means of the
orientation of Sm and the transverse orientation to V induced, in that case, by the
framing. Arguing similarly to the η-case we eventually get:

Theorem 17.19. For every k > 0, m ≥ 2k + 2, h = m− k, the map

t̃m,h : [Sm,TΩ
m,h]→ Ωembk (Sm), t̃m,h(α) = [f−1(G̃m,h)]

provided that f : Sm → TΩ
m,h is any representative in normal form of α, is well

defined and eventually establishes group isomorphisms

πm(TΩ
m,h) ∼ Ωembk (Sm) ∼ Ωk .

2

Every such a TΩ
m,h = TΩ

k+h,h is called a Thom spaces for Ωk; again the homotopy

groups πk+h(TΩ
k+h,h) stabilize when h ≥ k + 2.
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17.5.2. Determination of η•. The homotopy groups πm(Tη
m,h) look quali-

tatively simpler than in the case of spheres as we already know for example that
they are finite dimensional Z/2Z-vector spaces. In fact they can be computed by
advanced homotopy theory methods ([Se]), providing the full determination of

η• = ⊕kηk .
Recall that η• has furthermore a Z/2Z- graded algebra structure where the product
is induced by the cartesian product of manifolds:

[V ] · [W ] = [V ×W ] .

This has been noticed in Remark 11.12; here we omit the cobordism reindexing
ηk = ηk(x0) ∼ η−k(x0) = η−k. In [T] one eventually determines these algebra.
Here we limit to the statement:

Theorem 17.20. The Z/2Z-graded algebra η• is isomorphic to the polynomial
algebra

Z/2Z[Xi; i ∈ J ]

where
J = N \ {2j − 1; j ∈ N} .

2

We can also give explicit geometric generators (see [M5]). For every m ≤ n,
let Hm,n denote the regular real algebraic hypersurface in the product of projective
spaces Pm(R)×Pn(R) defined in terms of the respective homogeneous coordinates
(w0, . . . , wm) and (z0, . . . , , zn) as the locus

Hm,n = {w0z0 + w1z1 + · · ·+ wmzm = 0} .
Set

{X2j := [P2j(R)], j > 1}
{X2k+1+1 := [H2k,2+2k ], k > 1} .

To show that their union is a family of independent generators it is enough to show
that for every i ∈ J there exists a unique representative Xi = [Vi] in the family
and that for every finite product of such Vi, there is a non vanishing (stable) η-
characteristic number (recall Section 16.2). This last task is easy for even indices
2j and the E-P characteristic mod(2) suffices. In general it is easier if one would
dispose of the cohomological formulation in terms od Stiefel-Whitney numbers (see
Remark 16.9).

As a remarkable qualitative consequence we have

Corollary 17.21. For every k ≥ 0, every α ∈ ηk can be represented by regular
real algebraic sets (projective indeed).

The determination of Ω• can be performed in the same vein, however the proof,
even the statement are more complicated (see [Wall]).

17.5.3. On Nash-Tognoli theorem. We have discussed in Chapter 5 how
every compact boundaryless m-submanifold M of Rn can be approximated by a
Nash manifold M ′ (normal if the embedding dimension is big enough). As already
said, in his paper [Na], Nash stated also a few conjectures/questions towards po-
tential improvements of this result (see also Sections 15.5, 19.9). The most natural
conjecture was that M can be approximated by a regular real algebraic set (not only
by some “analytic sheet” of it). A first step was accomplished In [Wa2] by proving
the conjecture under the restrictive hypotheses that the embedding dimension is
big enough (as for normality), and [M ] = 0 ∈ ηm i.e. it is a boundary M = ∂W .
Roughly, one realizes the double D(W ) ⊂ Rn in such a way that M is the trans-
verse intersection of D(W ) with a hyperplane P . Then one show that D(W ) can be
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approximated by a normal Nash manifold N made by regular components of a real
algebraic set X such that X \N is far from the hyperplane. Finally M ′ = P t X
is a required regular real algebraic approximation of M . Corollary 17.21 can be
rephrased by saying that the conjecture hols up to bordism. By using this fact, the
actual conjecture has been proved in general [Tog], again assuming that the embed-
ding dimension is big enough. By that Corollary, there is a regular m-dimensional
real algebraic set Σ such that M q Σ = ∂W . A suitable relative approximation
theorem allows us to refine the above construction in such a way that

P t X = M ′ q Σ ;

as both M ′ q Σ and Σ are regular algebraic sets, it is not hard to conclude that
also M ′ is regular algebraic so that it is a required approximation of M . In [Ki],
one refines the Nash-Tognoli theorem in the projective setting, and proves that
M ⊂ Pn(R) can be approximated by regular algebraic subsets of the projective
space. For more details about this matter see [BCR].



CHAPTER 18

High dimensional manifolds

“High” means of dimension greater or equal to 6. The reason of this specific
opposition “low dimensions less or equal to 5” vs “high dimensions greater or equal
to 6” mainly depends on the fact that in high dimension Smale’s [S2] h-cobordism
theorem holds and, moreover, we have a “stable” differential/topological proof, in
the sense that it works in the same way for every high dimension. Such a proof def-
initely does not work for low dimensions. In dimension 5 the h-cobordism theorem
fails and this reflects specific phenomena of persistent geometric intersection be-
tween surfaces embedded in boundaryless compact simply connected 4-manifolds,
although they have vanishing algebraic intersection number. In dimension 4 the
proof does not apply because of specific geometric linking phenomena between knots
in S3 with vanishing (algebraic) linking number; the validity of the 4-dimensional
h-cobordism theorem still is an open question. The 3-dimensional h-cobordism the-
orem is equivalent to the celebrated Poincaré conjecture; this last has been proved
rather recently by means of deep 3-dimensional methods of geometric analysis. In a
sense dimension 5 is really in the border between the two regimes; as already said,
it is infuenced by the behaviours of four dimensional manifolds; on the other hand,
with some specific additional care, shares some remarkable behaviours with higher
dimensions.

In this Chapter we will not provide a proof of the h-cobordism theorem (see
[M3] for a proof in terms of Morse functions, see [RS] for a proof in terms of handle
decompositions which actually works also for PL manifolds); rather we will focus a
key point where the high dimensional assumption is crucial.

Together with Chapter 15, Chapters 19 and 20 will be devoted to some aspects
of low dimensional theory.

18.1. On the h-cobordism theorem

Let us start with a definition.

Definition 18.1. Let (W,V0, V1) be a smooth m-dimensional triad (m =
dimW ). It is a h-cobordism if both inclusions ji : Vi → W , i = 0, 1, are homo-
topy equivalences (i.e. they have an inverse up to smooth homotopy ri : W → Vi
such that (by definition) ri ◦ ji is homotopic to idVi , ji ◦ ri is homotopic to idW ).

The basic example of h-cobordism is a cylinder (V × [0, 1], V, V ). The general
vague question is under which minimal hypothesis the cylinders are the unique
instance of h-cobordism up to diffeomorphism of triads. We can formulate the
following more specific question:

Question 18.2. (Simply connected m-dimensional h-cobordism question) Let
(W,V0, V1) be a h-cobordism, dimW = m; assume that W (whence both V0 and
V1) is simply connected. Is it true that the triad is diffeomorphic to the cylinder
(V0 × [0, 1], V0, V1), so that, in particular, V0 is diffeomorphic to V1?

Note that the question is empty for m = 2. Assume the positive answer, let us
derive some important consequences.

239
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Proposition 18.3. Assume that m-dimensional simply connected h-cobordisms
are diffeomorphic to cylinders. Then we have:

(1) (Characterization of the m-disk) Every contractible compact m-manifold M
with simply connected boundary is diffeomorphic to the closed disk Dm.

(2) (Generalized Poincaré conjecture) If Σ is a compact m-manifold which is
homotopically equivalent to Sm (i.e. it is a homotopy sphere), then it is homeo-
morphic to Sm.

(3) (Smooth Schoenfliess property) If Σ is a smooth embedded (m − 1)-sphere
in Sm, then there is a diffeotopy of Sm that sends Σ onto the standard equator
Sm−1 ⊂ Sm.

Sketch of proof. Some of the facts claimed below are not so evident; to prove
them one would dispose of more advanced algebraic/topological tools; we limit to
an outline.

(1) Remove fromM am-diskD standarly embedded into a chart ofM . SetW =
M \ Int(D). The triad (W,∂D, ∂M) is a simply connected h-cobordism, hence it is
diffeomorphic to the cylinder (Sm−1×[0, 1], Sm−1, Sm−1) and M is diffeomorphic to
the manifold obtained by gluing D to this cylinder by a diffeomorphism φ : ∂D →
Sm−1 × {1}; it is not hard to conclude that M is diffeomorphic to Dm.

(2) Remove from Σ a standard m-disk D in a chart as above. M = Σ \ Int(D)
verifies the hypothesis of item (1), then it is diffeomorphic to a disk, Σ is eventually
a twisted sphere (see Section 7.5.2 ) and we know that it is homeomeorphic (not
necessarily diffeomorphic) to Sm.

(3) By the separation theorem of Section 12.2, Sm \Σ has two connected com-
ponents, the closure of each one of these components verifies the hypothesis of item
(1), hence it is an embedded smooth m-disk in Sm and we conclude by means of
the uniqueness of disks up to diffeotopy.

2

Remark 18.4. The above proposition shows that the h-cobordism question is
strictly related to (in fact motivated by) basic fundamental questions about the
topology of smooth manifolds. For example for m = 3, if (W,V0, V1) is a simply
connected h-cobordism, then V0 ∼ V1 ∼ S2 by the classification of surfaces. As
a 3-dimensional twisted sphere is a true sphere, it follows that a positive answer
to question 18.2 for m = 3 is equivalent to the validity of the original celebrated
Poincaré conjecture, with furthermore the refinement that for m = 3 every smooth
homotopy sphere Σ is diffeomorphic to S3. Probably the reader is aware that this
has been proved by G. Perelmann at the beginning of the new century, by achieving
the program based on the Ricci flows of riemannian metrics on 3-manifolds, early
introduced by R. Hamilton. We stress that this peculiarly 3-dimensional geomet-
ric/analytic approach is very far from the differential/topological methods discussed
in this text. As the 3-dimensional Poincaré conjecture is true, then if (W,V0, V1)
is a simply connected 4-dimensional h-cobordism, then V0 ∼ V1 ∼ S3. Thus, as a
twisted 4-sphere is a true sphere, a positive answer to question 18.2 for m = 4 is
equivalent to the fact that every smooth 4-dimensional homotopy sphere is actually
diffeomorphic to S4. This still is an open question, as well as the validity of the
4-dimensional smooth Schoenfliess property. On the other hand we recall that the
purely topological 4-dimensional Poincaré conjecture (even dealing with topological
not necessarily smooth 4-manifolds) has been proved in 1982 by M.H. Freedman
[Fr].

Now we can state the high dimensional simply connected h-cobordism theorem.

Theorem 18.5. Let (W,V0, V1) be a simply connected h-cobordism, dimW ≥ 6.
Then it is diffeomorphic to the cylinder (V0 × [0, 1], V0, V0).
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Hence all consequences stated in Proposition 18.3 hold for m ≥ 6. We have
mentioned before that although the h-cobordism theorem fails for m = 5, neverthe-
less this dimension shares some behaviour with higher dimensions. Referring to the
statement of Proposition 18.3, we recall for example (without proof) that:

(1) The characterization of the 5-disk holds under the stronger hypothesis that
the boundary of the contractible 5-manifold M is diffeomorphic to S4;

(2) The 5-dimensional generalized Poincaré conjecture holds true;

(3) The 5-dimensional smooth Schoenfliess property holds true.

18.1.1. On the proof of the high dimensional h-cobordism theorem.
The strategy to prove the h-cobordism theorem is based on handle decompositions
(refer to Chapter 9). Given a simply connected h-cobordism (W,V0, V1), dimW =
m, one can start with an ordered handle decomposition

C0 ∪Hq1
1 ∪ . . . H

qk
k ∪ C1

without 0- and m-handles (Proposition 9.12). If necessary we can also assume that
the handles of a given index q < m are attached simultaneously at pairwise disjoint
attaching tubes. Note also that in the hypothesis of the theorem, all involved
manifolds (W and all submanifolds Wr of W obtained by attaching till the rth-
handle) are orientable. We dispose of two basic handle moves in order to try to
make it simpler and simpler. If we succeed to eventually reach a decomposition
without handles of any index, then the theorem will be proved. A priori the only
way we dispose to reduce the number of handles is the cancellation of pairs of
complementary handles. The core of the proof is a much more flexible cancellation
theorem which applies in the setting of the theorem. Consider a fragment of a given
handle decomposition of the form

· · · ∪Hq
r ∪H

q+1
r+1 ∪ . . .

Then both the (embedded) b-sphere Sb of Hq
r and the a-sphere Sa of Hq+1

r+1 are
submanifolds of ∂Wr and dimSb + dimSa = dim ∂Wr = m− 1. So fixing auxiliary
orientations, we can compute their intersection number in ∂Wr, [Sb] • [Sa] ∈ Z.

Definition 18.6. In the situation depicted above, we say that Hq
r ∪H

q+1
r+1 is a

pair of algebraically complementary handles if [Sb] • [Sa] = ±1.

Obviously this extends the notion of complementary handles. Now we can state
a stronger cancellation theorem.

Theorem 18.7. Let (U,Z0, Z1) be a smooth triad of dimension m which admits
a handle decomposition

C0 ∪Hq ∪Hq+1 ∪ C1

made by two algebraically complementary handles. Assume that both Z0 and Z1 are
simply connected, and that

m ≥ 6, q ≥ 2, m− q ≥ 4 .

Then the given triad is diffeomorphic to the cylinder (Z0 × [0, 1], Z0, Z0).

The idea in order to prove the stronger cancellation theorem is clear. By
transversality and handle sliding, we can assume that Sb t Sa in ∂M , M := C0∪Hq

and that the intersection consists of an odd number of signed points, such that the
sum of the signs is equal to ±1. So by means of handle sliding, one would pro-
gressively cancel pairs of intersection points of opposite sign, so that at the end one
reaches a decomposition made by two genuine complementary handles which can
be cancelled. In the discussion on the strong Whitney embedding theorem (Section
7.7) of compact n-manifolds into R2n, for n ≥ 3, we have already mentioned the
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so called “Whitney trick” as a tool in order to cancel pairs of crossing points. The
hypotheses of the stronger cancellation theorem allow to apply it. This will be
discussed with some care in the next section.

18.2. Whitney trick and unlinking spheres into a sphere

First we state a lemma under the hypotheses of the stronger cancellation theo-
rem.

Lemma 18.8. In the hypotheses of Theorem 18.7, denote by ∂(C0 ∪ Hq) =
Z0 qM , so that the b-sphere Sb of Hq and the a-sphere Sa of Hq+1 are transverse
submanifolds of M . Then M \ (Sb ∪ Sa) is simply connected.

Proof : Set m = n + 1. Denote by S′a the a-sphere of Hq. Its codimension
dimZ0 − dimS′a = n − (q − 1) ≥ 4. Then by transversality also Z0 \ S′a is simply
connected; as both Z0 \S′a and M \Sb retract onto Z0 \ Int(T ′a), it follows that also
M \ Sb is simply connected. The codimension of Sa is dimM − q = n− q ≥ 3. So
by the same transversality argument we have that (M \ Sb) \ Sa = M \ (Sb ∪ Sa) is
simply connected.

2

Referring to the last lemma, we can abstractly formalize some features of the
situation occurring on the manifold M .

By a situation (M,R, S,±x) of type (n, r) ∈ N2 we mean:

- M is a connected oriented boundaryless smooth manifold of dimension n;

- R and S are boundaryless compact connected oriented submanifolds of M
such that dimR = r, dimS = s, n > s ≥ r > 0, r + s = n, R t S.

- M \ (S ∪R) is simply connected;

- x± ∈ R ∩ S are intersection points of opposite sign.

Remarks 18.9. (1) In a situation of type (n, r) as above, if both codimensions
of S and R are greater or equal to 3, then by an usual transversality argument,
M \ (S ∪R) is simply connected if and only if M is simply connected.

(2) In situations arising under the hypotheses of Theorem 18.7, we have furthe-
more that n ≥ 5 and r ≥ 2.

(Whitney disk) Let (M,R, S,±x) be a situation of type (n, r). By a Whitney
disk D for (M,R, S,±x) we mean the realization of the following pattern (recall
Section 7.7)

(1) There is an embedded smooth circle γ in R ∪ S with two corners at ±x;
these divide γ in two arcs with closures say γR and γS respectively; γR (resp. γS)
is contained into an smooth open r-disk (s-disk) UR ⊂ R (US ⊂ S); UR ∪ US is a
neighbourhood of γ in R∪S; UR t US = {±x} and UR∪US does not contain other
points of R ∩ S;

(2) There are:

- a 2-disk D in R2 with boundary ∂D with two corners a1, a2 which is contained
in the union of two smooth arcs say λR, λS in R2 which intersect transversely at
{a1, a2};

- an embedding ψ : U → M where U is a closed 2-disk in R2 containing
D ∪ (λR ∪ λS), such that

• ψ(λ∗) ⊂ U∗, ∗ = R, S;
• ψ(∂D, {a1, a2}) = (γ, {q1, q2});
• for every x ∈ λ∗, dxψ(TxU) ∩ Tψ(x)U∗ = dxψ(Txλ∗);
• ψ(Int(D)) ⊂M \ (R ∪ S).
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We summarize (1) and (2) by saying that the smooth 2-disk with corners D := ψ(D)
is properly embedded into (M,R∪S) and connects the crossing points ±x. Moreover,
we require:

(3) We can extend the embedding ψ to a parametrization of a neigbourhood of
D in M by a standard model, that is to an embedding

Ψ : U × Rr−1 × Rs−1 →M

such that Ψ(λR × Rr−1 × {0}) = UR and Ψ(λS × {0} × Rs−1) = US .

Remark 18.10. We stress that the existence of a Whitney disk (in particu-
lar condition (3)) for a situation (M,R, S, x0, x1) implies that the two points are
necessarily of opposite sign.

(Whitney trick) The Whitney trick applies to (M,R, S,±x) at a Whitney disk
connecting ±x: thanks to the standard model, such a Whitney disk can be easily
used as a guide to construct an isotopy of R in M with support not intersecting the
other points of R ∩ S and carrying R to R′ t S such that R′ ∩ S = R ∩ S \ {±x}
(recall Figure 1 of Chapter 7, by renaming R = P , S = Q).

Definition 18.11. For every type (n, r) as above, we say that WT(n, r) holds
if every situation (M,R, S,±x) of type (n, r) admits a Whitney disk.

We are going to relate the validity of WT(n, r) with a certain unlinking property
of unknotted spheres into a sphere.

A smooth p-sphere Σ ⊂ Sk, k > p ≥ 1, is unknotted if it is the boundary of a
smooth (p + 1)-disk embedded into Sk. The following lemma is easy, by using the
unicity of disks up to diffeotopy.

Lemma 18.12. Let Σ ⊂ Sk be unknotted. Let D be a smooth k-disk in Sk

disjoint from Σ. Then Σ is the boundary of a smooth (p + 1)-disk embedded into
Sk \D.

2

A link of unknotted spheres (Sk,Σ,Σ′) of type (k, p) ∈ N2 consists of two disjoint
unknotted smooth spheres Σ,Σ′ ⊂ Sk such that

p = dim Σ, q = dim Σ′, p ≤ q, k = p+ q + 1 .

Such a link (Sk,Σ,Σ′) is (geometrically) unlinked if the two spheres are the
boundary of disjoint (p + 1)- and (q + 1)-disks respectively. By using again the
unicity of disks up to diffeotopy, we have

Lemma 18.13. Up to diffeotopy there is a unique unlinked link of type (k, p).

2

For every link (Sk,Σ,Σ′), give the spheres auxiliary orientations; then we can
define the linking number (recall Section 12.4 and Remarks 12.4 )

lk(Σ,Σ′) ∈ Z .

A link is algebraically unlinked if

lk(Σ,Σ′) = 0 .

We know (see the end of Section 12.5) that the choice of auxiliary orientations
is immaterial with respect to the vanishing of the linking number; moreover this
property is symmetric: lk(Σ,Σ′) = 0 if and only if lk(Σ′,Σ) = 0. Obviously,
geometrically unlinked links are algebraically unlinked.

Definition 18.14. For every link type (k, p) ∈ N2, we say that the unlinking
property U(k, p) holds, if every link (of unknotted spheres) (Sk,Σ,Σ′) of type (k, p)
which is algebraically unlinked is in fact geometrically unlinked.
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It follows from the above discussion that Theorem 18.7 will be a corollary of
item (1) in the next proposition.

Proposition 18.15. (1) For every type (n, r) such that n ≥ 5 and r ≥ 2,
WT(n, r) holds.

(2) For every link type (k, p) such that k ≥ 4, U(k, p) holds.

Proof : First let us prove that U(k, 1) holds for every k ≥ 4; for consider an
algebraically unlinked link (Sk,Σ,Σ′), dim Σ = 1, dim Σ′ = q = k − 2 ≥ 2. Then
Sk \Σ′ is homotopically equivalent to the standard S1 ⊂ Sk and the embedding of
Σ in Sk \ Σ′ is homotopically trivial; as k > 2 dim Σ + 1 = 3, then Σ is isotopic in
Sk \ Σ′ onto a geometrically unlinked circle.

Next we prove the following claim.

Claim 1 For every n ≥ 5, If WT(n, r) holds, then U(n,min(r, q)), q =
n− r − 1, holds.

Proof of the claim: Consider an algebraically unlinked link (Sn,Σ,Σ′), dim Σ =
r, dim Σ′ = q. Assume for simplicity that r ≤ q. Let D ⊂ Sn be a (q+ 1)-disk such
that ∂D = Σ′. Then the intersection number [Σ] • [D] in Sn \ Σ′ is equal to 0 ∈ Z.
Then as WT(n, r) holds, Σ is isotopic to say Σ” such that Σ” ∩ D = ∅. We can
assume that Σ” is embedded into Sn \ B where B ∼ Dn is a n-disk of Sn which
thickens D. Then we conclude by means of Lemma 18.12.

Next we propose two ways to conclude. The first way consists in a direct proof
of item (1); then item (2) will follow as a corollary of Claim 1 and the case U(k, 1)
already achieved. By the second way both statements will be proved simultaneously
by implementing the concatenated inductive scheme obtained by combining Claim 1
with the following Claim 2 (the case U(k, 1) being the initial step of this induction):

Claim 2 For every k ≥ 4, if U(k, p) holds, then WT(k + 1, p+ 1) holds.

The second way makes fully manifest the strict relationship between WT and
U. The presentation of this second way is very close to Chapter 5 of [RS].

Proof of item (1): As n ≥ 5, by general position we can assume that points
(1) and (2) in the definition of a Whitney disk for (M,R, S,±x) are fulfilled. It
remains to achieve point (3). This is rephrased in terms of a suitable configuration
of subbundles of T (M) over (D, ∂D). We can assume that an auxiliary Riemannian
metric g on M is fixed in such a way that R and S are orthogonal at their inter-
section points, the normal bundles and the associated tubular neighbourhoods are
constructed by means of g. We use the notation νXY to mean the normal bundle
of Y in X. The tangent bundle T (R) splits over γR as

T (R)|γR = T (γR)⊕ ER
where ER is a rank-(r − 1) subbundle of (νMD)|γR. Thus ER is tangent to R and
normal to D. The normal bundle νMS splits over γS as

(νMS)|γS = νDγS ⊕ ES
where ES is a rank-(r − 1) subbundle of (νMD)|γS . Thus ES is normal to both S
and D. ER and ES match at the intersection points ±x, so that we have a rank-
(r−1) bundle E defined over the whole ∂D. By construction E is tangent to R and
normal to S. We claim that E can be extended to a subbundle of the whole νMD.
By means of a trivialization of νMD we can encode E as a map E : ∂D → Gn−2,r−1.
Then E extends if and only if it is homotopically trivial. It is known that under
our dimensional hypotheses (see for instance [Steen])

π1(Gn−2,r−1) = Z/2Z
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and that E as above is homotopically trivial if and only if the corresponding rank-
(r−1) bundle is orientable. This is actually the case because the intersection points
have opposite signs. At this point it is not hard to build compatible trivializations
of the bundles considered so far and achieve point (3) in the definition of a Whitney
disk.

A sketch of proof of Claim 2: Let (M,R, S,±x) of type (k + 1, p + 1), k ≥ 4.
Argue as in the above proof of item (1), so that we can assume that points (1)
and (2) in the definition of a Whitney disk for (M,R, S,±x) are fulfilled. Again it
remains to achieve point (3). Assume that it holds. We analyze the standard model
and then we transport the conclusions in M around the disk D by means of the
embedding Ψ. Up to corner smoothing, B := U ×Dp×Dk−p−1 is a k+ 1-disk, and

(∂B, ∂(λR ×Dp × {0}), ∂(λS × {0} ×Dk−p−1))

is diffeomorphic to an unlinked link of type (k, p). Moreover, the whole B can be
recostructed from such an unlinked link. Assume now that a priori only (1) and
(2) are verified. We can nevertheless find a smooth (k+ 1)-disk B in M around D,
which retracts to D, such that

∂B t UR := ΣR, ∂B t US := ΣS

are smooth spheres in the sphere ∂B ∼ Sk forming a link of type (k, p). In order
to incorporate it in a standard model, by Lemma 18.13 it is enough to prove that
it is unlinked. As ±x have opposite signs, it follows that the link is algebraically
unlinked, and we can conclude because U(k, p) holds by the hypothesis of Claim 2.

The Proposition is proved.
2

Remark 18.16. As for low dimensions we note that:

Figure 1. Whitehead’s link.

- U(3, 1) fails. The simplest counterexample is the so called Whitehead link;
several classical knot invariants show that it is geometrically linked in spite of the
fact that it is algebraically unlinked (see [Rolf]).

- Trying to perform the construction in order to approach WT(4, 2), it is not
hard to realize item (1) in the definition of Whitney disk; however (2) and even
more (3) are very problematic - in fact we will see in Chapter 20 that there are
actual obstructions.





CHAPTER 19

On 3-manifolds

In this chapter we will apply several results estasblished so far to compact 3-
manifolds. We stress that we will develop a few themes based on classical differen-
tial/topological tools, mainly on transversality. In no way we will touch Thurston’s
geometrization approach that has dominated the study of 3-manifolds in last decades.
We will not even touch fundamental results in 3-dimensional geometric topology
such as the decomposition in prime manifolds or the so called JSJ-decomposition.
We will provide elementary and selfcontained proofs of the primary fact that com-
pact orientable boundaryless 3-manifolds are parallelizable. An important amount
of the chapter will be devoted to several proofs of “Ω3 = 0” and of the equiva-
lent Lickorish-Wallace theorem about 3-manifolds up to surgery equivalence respec-
tively. Every proof will illuminate different facets of the matter. We will study the
behaviour of surfaces immersed or embedded in a given 3-manifold M , including
the determination of the bordism group I2(M) of immersed surfaces. An emerging
theme will be the quadratic enhancement of the intersection forms of surfaces im-
mersed in 3-manifolds. This will occur also in the classification of 3-manifolds up
to equivalence relations defined in terms of blowing up along smooth centres.

19.1. Heegaard splitting

Let M be a connected, orientable, boundaryless compact 3-manifold. We know
that there is an ordered handle decomposition H of M with only one 0-handle,
only one 3-handle, and such that both 1- and 2-handles respectively are attached
simultaneously at disjoint attaching tubes. Denote by M1 the submanifolds with
boundary of M obtained by attaching the 1-handles at the boundary of the unique
0-handle. As M is orientable, then also M1 is orientable; by the uniqueness of disks
up to diffeotopy applied to the attaching tubes of 1-handles and handle sliding,
M1 only depends up to diffeomorphism on the number say g ≥ 0 of 1-handles and
is called a handlebody of genus g, denoted by Hg. Its boundary Σ = ∂M1 is a
surface of genus g, that is diffeomorphic to the connected sum of g copies of the
torus S1 × S1. If g = 1, H1 = D2 × S1 is also called a solid torus. Consider the
dual handle decomposition H̃, so that the 2-handles of H become the 1-handles of
H̃. Apply the above discussion to M̃1. Then ∂M1 = ∂M̃1 = Σ and also M̃1 is a
handlebody of genus g. Then

M = M1 ∪ M̃1

is called a Heegaard splitting of M of genus g and the separating surface Σ is the
corresponding Heegaard surface.

So every such an M admits a Heegaard splitting of some genus and we can define
the Heegaard genus gH(M) of M as the minimum g such that M has a splitting of
genus g. As it often happens such an invariant is easy to define but in general hard
to compute or even to estimate.

Up to diffeomorphism, a Heegaard splitting of M can be described equivalently
as follows: fix a standard model Hg of genus g handlebody (for instance embedded
in R3 and endowed with the standard induced orientation); let Σg = ∂Hg with
the boundary orientation. Fix an auxiliary smooth automorphism γ of Σg which

247
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reverses the orientation. Then there is an orientation preserving (say “positive”)
smooth automorphism φ ∈ Diff+(Σg) such that

M = M1 ∪ M̃1 ∼ Hg qγ◦φ Hg .
Moreover, we know that up to diffeomorphism the last term only depends on the
isotopy class of φ; in other words, define

Mod(Σg) := Diff+(Σg)/Diff0(Σg)

that is the quotient group mod the normal subgroup of automorphisms isotopic to
the identity. This is called the mapping class group of Σg (also called its modular
group) and is an object of main importance and interest. Then every splitting is of
the form

M ∼ Hg q[φ] Hg ∼ Hqγ◦φ Hg, [φ] ∈ Mod(Σg) .

Example 19.1. (1) If gH(M) = 0 then M is a twisted hence a true smooth
3-sphere.

(2) The 3-manifolds such that gH(M) = 1 are classified and called lens spaces
[Brod]. Let us recall the main facts. Realize the torus as the quotient manifold
R2/Z2. The matrix group SL(2,Z) acts linearly on R2 by preserving the lattice Z2.
Then the action descends to the quotient. In fact one can prove that

Mod(Σ1) ∼ SL(2,Z) .

Fix an identification of the torus as the boundary Σ1 of H1 in such a way that the
circle image in R2/Z2 of the x-axis of R2 becomes a meridian m that is it bounds a
2-disk properly embedded into (H1,Σ1), while the image of the y-axis is a longitude
l which intersects transversely m at one point; m, l form a basis of Ω1(Σ1) ∼ Z2.
Let A ∈ SL(2,Z), so that A(m) = pm + ql, gcd(p, q) = 1. Denote by Lp,q the
resulting lens space obtained by using A as gluing map. It is not hard to check
via Van Kampen theorem that π1(Lp,q) ∼ Z/pZ. Then L(p, q) is diffeomorphic to
L(p, q′) if and only if

±q′ = q±1 mod(p) .

For higher genus the situation is much more complicated.

19.1.1. Heegaard diagrams and a diagramatic “calculus”. Heegaard
splittings can be encoded by means of suitable Heegaard diagrams.

Definition 19.2. A genus g Heegaard diagram consits of a triple (Σ, C−, C+)
where

(1) Σ is a surface of genus g;
(2) C± = {c±1 , . . . , c±g } is a family of g disjoint simple smooth circles on Σ

whose union does not divide Σ, that is by removing from Σ the interiors
of small pairwise disjoint annular neighbourhoods of these circles we get
a 2-sphere with 2g holes;

(3) C− t C+, that is the union of the c−j ’s is transverse to the union of the

c+j ’s.

Given a Heegaard diagram we can construct a 3-manifold M endowed with an
Heegaard splitting as follows. Take the product Σ × [−1, 1] and stipulate that the
circle of C± are traced on

Σ× {±1} := Σ± .

Σ is identified with the separating surface Σ×{0}. Then take a system of pairwise
disjoint annular neighbourhoods say T±j for C± on Σ±. Consider the T+

j as a

system of attaching tubes of disjoint 2-handle attached to Σ× [0, 1] at Σ+. Thanks
to the properties of the circles in C+ this produces a 3-manifold with boundary
diffeomorphic to Σ q S2. By filling the spherical component with a 3-handle we
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get the piece M̃1 of the desired handle decomposition of M . Doing similarly on the
other side Σ× [−1, 0] we get the piece M1 and eventually the splitting

M ∼M1 ∪ M̃1

with Heegaard surface Σ.

Remark 19.3. The fact that the resulting 3-manifold is unique up to diffeo-
morphim follows from Smale theorem recalled in Proposition 7.13, (1), m = 3.

On the other hand, every Heegaard splitting with Heegaard surface Σ gives rise
to an encoding Heegaard diagram, possibly by handle sliding in order to reach the
transversality requirement of the definition.

(Heegaard diagram moves) The elementary handle moves induce elementary
moves on Heegaard diagrams which keep the resulting manifold M fixed up to
diffeomorphism.

• Handle sliding produces the following diagram moves (called H-diagram
sliding):

1) of course we can modify C± up to ambient isotopy (keeping that
C+ t C−);

2) more substantially we have: let T±j and T±i be disjoint annular

neighbourhoods of two circles of C± as above. Connect these annuli by
attaching an embedded 1-handle H at ∂(T±j qT

±
i ) in such a way that apart

the attaching segments, H is contained in Σ \ ∪gs=1T
±
s . The boundary of

T±j ∪T
±
i ∪H contains a component say c′j which is the embedded connected

sum of a parallel copy of c±j with a parallel copy of c±i . Then get a new

C± just by replacing c±j with c′j .

• Cancellation/introduction of a pair of complementary handles produces
the following diagram move. Consider the diagram

(S1 × S1, c− = S1 × {y0}, c+ = {x0} × S1) .

Given any diagram (Σ, C−, C+) of genus g, replace Σ with Σ#(S1 × S1)
provided that the sum is performed at 2-disks disjoint from C− ∪C+ and
c− ∪ c+ respectively; then add to C± the circle c± to get the new diagram
of genus g + 1. In terms of the resulting 3-manifolds we replace M with
M#S3 ∼M . This move is called elementary stabilization.

The stabilization shows by the way that for every g ≥ gH(M), M admits
Heegaard splitting of genus g. In particular S3 has splittings of every genus. One
can prove (see [Sing]):

Theorem 19.4. Two Heegaard diagrams encode Heegaard splittings of a same
3-manifold M (considered up to diffeomorphism) if and only if they become equal
up to finite sequences of H-diagram sliding or stabilizations.

2

Remark 19.5. Once the existence of Heegaard splitting has been easily estab-
lished, several non trivial questions naturally arise such as:

- For a given M , estimate in effective terms its genus gH(M);
- For every g ≥ gH(M), study the Heegaard splittings of M of genus g up to

ambient isotopy.
Concerning the second question a complete answer is known for the 3-sphere

and lens spaces defined above, that is for manifolds such that gH ≤ 1; we have:

For every g ≥ 1, S3 and every lens space have up to diffeotopy a unique Heegaard
splitting of genus g.
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On the other hand, for g ≥ 2, there are manifolds with non isotopic splittings
of genus g.

We refer to the body and the references of [BO] for more information about
this question.

19.1.2. From Heegaard diagrams to spines and ∆-complexes. The aim
of this section, mainly of technical nature, is to show other ways to present 3-
manifolds derived from Heegaard splittings. We refer to [BP] for a wide treatment
of the topic touched in this section. We will use some of this facts in Section 19.6.

Let (Σ, C−, C+) be a Heegaard diagram of M as above. Up to H-sliding, we
can assume that not only C− t C+, also that every component (called a region) of
Σ \ (C− ∪ C+) is a open 2-disk. By following the reconstruction of the Heegaard
splitting

M ∼M1 ∪ M̃1

of M encoded by the diagram, we see that the core of every 2-handle attached to a
circle c of C+ × {1} can be extented by means of the annulus c× [0, 1] and we get

an embedded 2-disk in M̃1 which intersects tranversely Σ = Σ× {0} at c. Do it for
every c in C+ and similarly for every c in C− getting a disk in M1. Denote by P
the union of Σ with all such disks. P is a kind of singular surface embedded into
M with the following properties:

(1) S(P) := (C− ∪ C+) ⊂ Σ is the singular locus of P;
(2) V (P) := C− ∩C+ is the singular locus of S(P ), its points are the vertices

of P. The components, each diffeomorphic to the open 1-disk (−1, 1), of
S(P)\V (P) are the edges of P; at every vertex there are four edge germs.

(3) The components, each diffeomorphic to an open 2-disk, of P \ S(P) are
the regions of P. Along every edge there are three region germs. At every
vertex there are six region germs.

(4) If B+ and B− are the 0 and 3-handles of the splitting, then P is a retract
by deformation of

M̂ := M \ (Int(B−) ∪ Int(B+) .

In fact there is a normal retraction r : M̂ → P such that: the fibre over
a region point is diffeomorphic to [−1, 1]; the fibre over an edge point is a
tripode that is the wedge of three segments [0, 1] with common endpoint

0; the fibre over a vertex is a wedge of four such segments [0, 1]; M̂ can be
reconstructed as being the mapping cilynder of such normal retraction.

We summarize all this by saying that P is a standard spine of M̂ . By using the
language of CW -complexes, P is the 2-skeleton of such a complex over M which is
obtained by attaching two 3-cells to it.

Now we give P an additional structure called a branching. Give Σ, hence
every region of P contained in Σ, an orientation; give every circle c in C− ∪ C+

an orientation, hence give the region of P bounded by c the orientation with the
prescribed boundary orientation. In this way S(P) is union of oriented circles
crossing transversely on Σ at some vertices; every region of P is oriented in such
a way there is a prevailing orientation induced on every edge of P and this agrees
with the one of the circle c in S(P) which contains the edge. Notice that at every
vertex the four configurations at the edge germes automatically match. We call
this system of region orientations a branching b of P and we summarize by saying
that the standard spine P has be enhanced to be a branched standard spine (P,b).
The terminology is justified because the branching encodes a way to convert P
to be a (oriented) branched surface embedded in M . This means that P can be
moved in M is such a way that, although being singular, nevertheless it is well
defined everywhere on P a smooth field of oriented tangent 2-planes. In our specific
situation, we can keep Σ fixed and isotopically move every other region R bounding
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some circle c to becomes tangent to Σ along c over the side of c in Σ which carries
together with R the prevailing boundary orientation.

The branched spine (P,b) can be considered as the 2-skeleton of the dual cell
decomposition to a ∆-complex structure over M in the sense of [Hatch]. This is a
kind of triangulation of M obtained as follows. Select one base point in each edge,
region of P and in the interior of the 3-balls B±.

Recall that the standard j-simplex ∆j is contained in the affine hyperplane
{x0 + x1 + · · ·+ xj = 1} of Rj+1 and is the convex hull with ordered vertices of the
vectors e0, e1, e2, . . . , ej of the standard basis. Every h-face of ∆j , h = 0, 1, 2, . . . , j,
is the h-simplex with h+ 1 vertices obtained by omitting j + 1− (h+ 1) vertices of
∆j . For every such a h-face F , there is a canonical affine parametrization

φF : ∆h → F

defined on the standard h-simplex and preserving the vertex ordering. A singular
j-simplex in M is a continuous map σ : ∆j →M . For every h-face F of ∆j ,

(∆h, σ ◦ φF )

is the corresponding singular face of the singular simplex.
Then we can associate to every x ∈ V (P) a “dual” singular 3-simplex (∆3, σx)

in such a way that the following properties are verified

(1) For every x, the restriction of σx to the interior of every h-face of ∆,
h = 0, 1, 2, 3, is a smooth embedding into M .

(2) For every vertex x of P, the image by σx of every vertex of ∆3 is one of
the base points of B±; x belongs to the image of the interior of ∆3; the
image of every open edge of ∆3 is transverse to one dual region of P which
has x in its closure, exactly at the region base point; the image of every
open 2-face of ∆3 is trasverse to one edge of P which has x in its closure,
exactly at the edge base point.

(3) Giving every image of an open edge of ∆3 the orientation dual to the
b-orientation of the dual region, and the edge itself the orientation deter-
mined by the vertex order of ∆3, then the embedding of the open edge by
σx is orientation preserving.

(4) If the image of two singular open h-faces by some σx, σx′ (possibly x = x′)
share the same dual (3−h)-cell of P, then the whole singular faces coincide.

(5) Varying x in V (P), the images of the several open h-faces form a partition
of M .

(6) Up to a piecewise smooth homeomorphism, M is obtained by gluing the
abstract 3-simplices associated to the vertices of P at common singular
faces.

We can modify a branched standard spine (P,b) of M̂ , associated as above to
a Heegaard diagram of M , to become a branched standard spine (P0,b0) of M0,
where M0 is of the form

M0 = M \ Int(B)

where B is some smooth 3-ball in M . So in particular P0 will be the 2-skeleton of
a CW -complex over M with a unique 3-cell. Do it as follows. Take a point p on
an edge of P and locally insert an embedded triangle T , whose interior is contained
in M \ P, p is a vertex of T , T intersects transversely P at two edges with p as
common endpoint, contained respectively into germs of regions both inducing the
prevailing orientation on the edge. Then T has a “free” edge l. Attach an embedded
1-handle with core parallel to l, intersecting transversely T along its b-tube at l, with
attaching tube on P. Then P0 results from P by such a surgery. It is easy to see
that the handle has fused the two components of ∂M̂ into one spherical boundary
component of a M0 of the desired form. By construction P0 is a standard spine of
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M0 and it carries a branching b0 which agree with b on the regions that have not
be effected by the surgery. The above considerations apply to (P0,b0) as well, so
that we have a dual ∆-complex structure on M with only one singular 0-simplex.

We know that M is combable. Here we construct a nowhere vanishing tangent
vector field by means of (P0,b0). The tangent oriented 2-planes distribution along
the branched surface P0, has an orthogonal distribution of unitary tangent vector
(with respect to an auxiliary riemann metric on M). This can be extended to
a generic traversing unitary tangent vector field v0 on M0. This means that the
following properties hold:

(1) Every integral line of v0 is a segment with endpoints on ∂M0.
(2) v0 is simply tangent to ∂M0 at the disjoint union S of some smooth circles.

For every y ∈ S, the integral line passing through y is tangent to ∂M0 and
trasverse to S.

(3) Generic integral lines are not tangent to ∂M0; generic tangent integral lines
are tangent to ∂M0 at one point; a finite number of exceptional integral
lines is tangent at exactly two points.

We can assume that the image of every singular edge of the ∆-complex structure
dual to (P0,b0) intersects M0 at the integral line of v0 though the base point of
dual region and that this line is not tangent to ∂M0.

We have

Proposition 19.6. v0 extends to a unitary tangent vector field v defined on
the whole of M .

Proof : We can assume that B is in a chart of M and that the auxiliary metric
looks standard in that coordinates. So the restriction of v0 to ∂M0 ∼ S2 is encoded
by a map h : S2 → S2 and can be extended over B if and only if its degree vanishes.
Assume that M0 is endowed with a framing (we will see later that this is always
true), then the whole v0 can be encoded by a map

H : M0 → S2

which extends h. Usual invariance of the degree up to bordism shows that the
degree of h vanishes indeed.

2

19.1.3. Non orientable Heegaard splitting. If M is compact connected
boundaryless and non orientable, then by using a nice handle decomposition as
above we see that

M ∼M1 ∪ M̃1

where M1 is non orientable and is obtained by attaching say h+1 disjoint 2-handles
to the unique 0-handle at the boundary ∂D3 = S2 (and similarly for M̃1 with respect
to the dual decomposition). Up to handle sliding, we can assume that only one of

these 2-handles destroyed the orientability and that M1 ∼ M̃1 only depend (up to
diffeomorphism) to the nunber h+ 1. Let us call it a non orientable handlebody of
genus h. The separating (non orientable) Heegaard surface is now diffeomorphic to

Σ̃h := (P2(R)#P2(R))#h(S1 × S1) .

The readear would imagine how to develop a non orientable version of Heegaard
diagrams and diagram moves supported by such surfaces. Stabilization extends
verbatim; a bit of care is necessary for the sliding diagram moves.
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19.2. Surgery equivalence

We define a “surgery” equivalence relation on compact connected boundaryless
3-manifolds in terms of certain special 4-dimensional triads; the main application
will be a characterization of 3-dimensional orientable boundary as the manifolds
which are surgery equivalent to the sphere S3.

Definition 19.7. Let M0 and M1 be compact connected boundaryless non
empty 3-manifolds. We say thatM1 can be obtained by (longitudinal) surgery (along
a framed link) of M0 (and we write M1 ∼σ M0) if there exists a 4-dimensional triads
(W,M0,M1) which admits a handle decomposition H consisting only of 2-handles
attached simultaneously at disjoint attaching tubes.

To justify the terminology let us analyze the situation of the above definition.
The decomposition is of the form

C0 ∪ (∪dj=1H
2
j ) ∪ C1

where C0 = M0× [0, 1] and C1 = [−1, 0] are respective collars of M0 and M1 in W .
The union of the embedded attaching spheres of the 2-handles

L = ∪dj=1Ks

is a so called link in M0 ∼ M0 × {1}. Every component Ks is a knot in M0.
Moreover, we have a family of disjoint attaching tubes Ts each one equipped with
a trivialization (also called a “framing”) by S1×D2, so that Ks ∼ S1×{0}. M1 is
obtained from M0 by removing the interior of these attaching tubes and attaching
back a copy of D2 × S1 to every boundary component ∂Ts, in such a way that a
meridian S1×{x0} of D2×S1 is mapped onto a longitude ls ∼ S1×{y0}, y0 ∈ ∂D2

of Ks determined by the framing (such a longitude is unique up to isotopy).
This defines an equivalence relation; in particular M1 ∼σ M0 implies M0 ∼σ M1

because the dual decomposition of such an H also consists of 2-handles only. If
M0 ∼σ M1, then M0 is orientable if and only if M1 is orientable and in such a case
any special triad connecting them is necessarily orientable.

Let us restrict for a while to the orientable case. We have (see [Wa])

Proposition 19.8. Let M0, M1 be compact connected orientable boundaryless
3-manifold. Then M1 ∼σ M0 if and only if there is an orientable 4-dimensional
triad (W,M0,M1); that is for suitable orientations, [M0] = [M1] ∈ Ω3.

Corollary 19.9. M ∼σ S3 if and only if for every orientation of M , [M ] =
0 ∈ Ω3.

Proofs: Let us prove the corollary, assuming the proposition. If M1 ∼σ S3,
then by completing with one 4-handle attached at S3 the dual H∗ of a special
decomposition H of a given triad (W,S3,M), we get a triad (V,M, ∅) so that M =
∂V . On the other way round, assume that M = ∂V for some orientable connected
4-manifold V . Then the triad (V, ∅,M) admits an ordered handle decomposition
with one 0-handle, and no 4-handles. By removing the 0-handle we get an orientable
triad (W,S3,M) and we conclude by applying to it the proposition.

Let us prove now the proposition. One implication is trivial. On the other
hand, let us start with any orientable triad (W,M0,M1). It has an ordered handle
decomposition without both 0 and 4-handles. Moreover, we can assume that all
handles of a given index are attached simultaneously at disjoint attaching tubes.
The idea is to trade first every 1-handle for a 2-handle in such a way that the 4-
manifold W possibly changes but its boundary is kept fixed. Every 1-handle does
not destroy the orientability. Moreover, by the uniqueness of disks up to diffeotopy
we can assume that all attaching tubes of the say d 1-handles are contained in
a smooth 3-disk D in M0 ∼ M0 × {1}; then after having attached the 1-handles
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to C0 = M0 × [0, 1] at M0 ∼ M0 × {1}, we get a 4-manifold W1 such that ∂W1

is the connected sum of M0 with d copies of S2 × S1. A 4-manifold V1 with the
same boundary can be obtained by surgery along a link L in M0 formed by d
unknotted and unlinked components contained in the above disk D, such that each
componentKs is endowed with the framing associated to the distinguished longitude
carried by a collar in a 2-disk Ds in D such that ∂Ds = Ks. The rest of the
handle decomposition is unchanged and we get a 4-dimensional triad (W ′,M0,M1)
having an ordered handle decomposition H′ without 0, 1 and 4-handles. In order to
trade also the 3-handles for some 2-handles, we manage similarly by using the dual
decomposition of H′. Similarly as above we eventually get a triad (W”,M1,M0)
with a handle decomposition H” consisting only of 2-handles. The proposition is
proved.

2

Now we state two main theorems of this chapter.

Theorem 19.10. (Lickorish-Wallace) Every orientable connected compact bound-
aryless 3-manifold M is surgery equivalent to S3 (M ∼σ S3).

Theorem 19.11. Ω3 = 0.

By Corollary 19.9 they can be considered as a corollary of each other. This
actually happened. For example Lickorish proved Theorem 19.10 as an application
of his main results about the generators of the mapping class groups of surfaces, and
by the way he got a (new) proof that Ω3 = 0. On the contrary, Wallace obtained
the result via the above Corollary 19.9, as it was already known (by several different
proofs) that Ω3 = 0. We will develop diffusely this theme.

19.2.1. Non orientable surgery. There is a non orientable version of Corol-
lary 19.9. Denote by M the non orientable 3-manifold which is the boundary of the
non orientable 4-manifold V (unique up to diffeomorphism) with a handle decompo-
sition consisting of one 0-handle and one 1-handle. In fact M is the non orientable
total space of a fibration over S1 with fibre S2. Then we have (the proof is similar
to the orientable case):

Proposition 19.12. Let M be a compact connected boundaryless non orientable
3-manifold. Then M ∼σ M if and only if [M ] = 0 ∈ η3.

2

19.3. Proofs of Ω3 = 0

In this section we discuss a few “direct” proofs of Theorem 19.11, so that
Theorem 19.10 will result as a corollary.

• (Via immersions in R5 and Seifert’s surfaces) This is the first proof of Ω3 = 0
(Rohlin 1950, see his papers translated in [GM]). If a compact connected orientable

boundaryless 3-manifold M̂ is embedded in R5, then by Proposition 13.7 it admits
an orientable Seifert’s surface W so that in particular M̂ = ∂W .

Remark 19.13. Rohlin used a different argument to show the existence of
Seifert’s surfaces based on the estension of a combinatorial method due to Kneser
to desingularize embedded simplicial cycles in triangulated manifolds to the codi-
mension 2 oriented and relative case (see [GM] for an exhaustive discussion of this
point).

In order to prove the theorem it is enough to show that for every orientable M
there is an orientable triad (V,M, M̂) such that M̂ is embedded into R5. It was
known since [Whit3] (1944) (recall Section 7.8) that for every such an M there is
a generic immersion f : M → R5; this also follows from Smale-Hirsch immersion
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theory because we will see in Section 19.6 that M is parallelizable. We can conclude
by applying the “embedding up to surgery” of Section 7.9.

• (Via vanishing of characteristic numbers) In a sense the most “modern” proof
(being a special case of a general determination of bordism groups based on Thom’s
spaces and characteristic numbers) is the one obtained by applying Proposition
16.8, as we will see in Section 19.6 that orientable 3-manifolds are parallelizable.

19.4. Proofs of Lickorish-Wallace theorem

In this section we discuss a few “direct” proofs of Theorem 19.10, so that
Theorem 19.11 will result as a corollary.

These proofs are based on Heegaard splittings.

(Via Dehn twists) This is original Lickorish’s proof [Lick]. A main Lickor-
ish result establishes a distinguished set of generators of the mapping class group
Mod(Σg). Let C be a smooth circle on the surface Σg. Assume that C is essential
that is it is not the boundary of a smooth disk embedded into Σg. Fix an auxiliary
trivialization

ψ : S1 × [−1, 2]→ U

of a tubular neighbourhood of C. Give S1 × [−1, 2] the coordinates (eiθ, t), θ ∈
[0, 2π]. Let ρ : [−1, 2] → [0, 1] be a smooth non decreasing function such that the
restriction to [0, 1] is a diffeomorphism onto the image, it is constantly equal to 0
on [−1, 0], constantly equal to 1 on [1, 2]. Then define the diffeomorphism

τC : Σg → Σg

which is the identity ourside U , and is defined on U as ψ ◦ h ◦ ψ−1, where

h(eiθ, t) = (ei(θ+2πρ(t)), t) .

τC and τ−1
C are called Dehn’s twists along C. Their classes in Mod(Σg) do not

depend on the arbitrary choices we made, including the fact that C is considered
up to ambient isotopy. Let us call Dehn’s twists also these classes. Then we have:

Theorem 19.14. Mod(Σg) is generated by the Dehn twists along essential
smooth circles.

2

In fact the result is more precise because it shows that a determined finite set
of twists suffices. Anyway, we assume this theorem and we show how to deduce
that M ∼σ S3.

Lemma 19.15. Let [ψ] = [τk] ◦ · · · ◦ [τ1] be an element of Mod(Σg) expressed as
composition of k Dehn’s twists. Then there exist two systems of k disjoint solid tori
V1, . . . , Vk and V ′1 , . . . , V

′
k in the interior of the handlebody Hg such that ψ extends

to a diffeomorphism

ψ̄ : Hg \ ∪jInt(Vj)→ Hg \ ∪jInt(V ′j ) .

Proof : If k = 0, then ψ is isotopic to the identity and the statement is trivially
verified. Assume that k = 1, ψ = τ = τ±1

C . Consider a collar C(Σg) ∼ Σg × [0, 1] of
Σg = ∂Hg in Hg. Set V ∼ U(C)× [1/2, 1] ⊂ C(Σ) (up to corner smoothing) where
U(C) is a annular neighbourhood of C in Σg. Set V ′ = V . Then an extension of τ
is obtained by taking a parallel copy of τ on every leaf U(C) × {s}, 0 ≤ s ≤ 1/2,
and setting τ̄ equal to the identity on the remaining part of H1 \ Int(V ). If k = 2
we can extend τ2 along C2 by the same method, provided that the “tunnel” V2 is
more deeply in the interior of Hg so that V1 ∩ V2 = ∅ and τ̄1 = id along V2. Then
set V ′2 = V2, V ′1 = τ̄2(V1), so that τ̄2 ◦ τ̄1 is a desired estension of ψ. By iterating
the same method, by induction we get the resul for every k ≥ 0.

2
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Consider any genus g Heegaard splitting presented as above in the form

M ∼ Hg q[φ] Hg, [φ] ∈ Mod(Σg) .

We know that also S3 admits a genus g splitting say

S3 = Hg q[φ′] Hg .

Set ψ = φ−1 ◦ φ′ = (φ−1 ◦ γ−1) ◦ (γ ◦ φ′). Apply the above lemma to ψ. Then we
get an extension

ψ̄ : Hg \ ∪jInt(Vj)→ Hg \ ∪jInt(V ′j )

which by construction extends to a diffeomorphism

ψ̄ : S3 \ ∪jInt(Vj)→M \ ∪jInt(V ′j )

and this readily shows that M ∼σ S3.
2

(By induction on a Heegaard diagram complexity) Last but not least, we present
the clever proof of [Rourke]. Let us fix an orientation of M ; it is understood that
all manifolds produced by the following construction are oriented and that the
orientations are compatible. Actually we are going to realize that S3 ∼σ M .

Lemma 19.16. If M = M1#M2 and S3 ∼σ Mj, j = 1, 2, then S3 ∼σ M .

Proof : As S3 = S3#S3, the lemma follows immediately.
2

We write

M = M(x, y)

to mean that M is encoded by a genus g Heegaard diagram (Σ, x, y) where x =
{x1, . . . , xg}, y = {y1, . . . , yg} are the two non dividing families of simple smooth
circles on the surface Σ early denoted by C− and C+ respectively. Recall that
x t y.

Let z = {z1, . . . , zg} be another family of g smooth circles on Σ which does not
divide the surface. Assume that z t x and z t y. Recalling the reconstruction of
M = M(x, y) from the diagram, we can assume that z is traced on the Heegaard
surface Σ ∼ Σ× {0}. Give an orientation every zj , fix a system of disjoint tubular
neigbourhoods Uj of every zj in M such that ∂Uj t Σ along a pair of curves parallel
to zj , and select the longitude lj ⊂ ∂Uj given by the component of ∂Uj ∩ Σ whose
orientation is parallel to the one of zj . For every j, up to isotopy there is a unique
framing ρj : S1 ×D2 → Uj so that the longitude lj is carried by ρj ; thus we have
determined a framed link L := ∪j(zj , lj) in M = M(x, y). These trivializations are
used as attaching maps of disjoint 2-handles so that we have constructed a special
triad

(W,M, M̃), M̃ ∼σ M .

The following simple lemma, which is in fact the core of the proof, establishes a key
relationship between surgery equivalence and Heegaard splitting. In the situation
depicted so far we have

Lemma 19.17. M̃ ∼M(x, z)#M(z, y).

Proof : Denote by M0(x, z) the manifold with spherical boundary obtained by
removing from M(x, z) the interior of a smooth embedded 3-disk. Similarly for
M0(z, y). It follows straightforwardly by comparing the reconstruction of M(x, z)

and M(z, y) from the diagrams and the construction of M̃ by surgery on M along

the framed link L := ∪j(zj , lj) that, up to diffeomorphism, M̃ is obtained by gluing
M0(x, z) and M0(z, y) by a diffeomorphism between the boundaries. With the

terminology of Section 7.5.2, M̃ is a weak connected sum of M(x, z) and M(z, y).
Then by Smale theorem (Proposition 7.13, (1), m = 3) it is a true connected sum.
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2

The last ingredient is a suitable measure of the complexity of the Heegaard
diagrams. Let (Σ, x, y) be such a diagram of genus g. Recall that every xi ∩ yj is
a finite set and denote by |xi ∩ yj | the number of elements (we stress that it is the
“geometric” number, no algebraic intersection numbers are involved). Then set

c(ΣM,x, y) := (g, r := min
i,j
|xi ∩ yj |) ∈ N2

where N2 is endowed with the lexicographic order. We will achieve the result by
(double) induction on the complexity c of a given splitting of M .

The initial step is when g = 0; in such a case by the very definition M is a
twisted 3-sphere, so it is a true smooth sphere again by Smale theorem (Proposition
7.13, (2), m = 3); the empty surgery does the job.

Let M = M(x, y) of complexity c = (g, r) and assume that S3 ∼σ M ′ for every
M ′ admitting an encoding diagram of complexity c′ = (g′, r′) < c = (g, r).

If c = (g, 1), then the given diagram is a stabilization of a diagramm of genus
g − 1, hence S3 ∼σ M by the inductive hypothesis.

If c = (g, 0), it is not restrictive to assume that x1 ∩ y1 = ∅.
Caim 1. There exists a non separating circle z1 on Σ which intersects each of

x1 and y1 transvesely at a single point.

Assuming this fact, extend z1 to a non dividing family z of g circles on Σ, z t x
and z t y. Then both M(x, z) and M(z, y) have encoding diagrams with r = 1 and
we conclude by applying the previous case and Lemmas 19.16, 19.17.

Assume that r > 1. It is not restrictive to assume that r = |x1 ∩ y1|.
Claim 2. There exists a non separating circle z1 on Σ which intersects each of

x1 and y1 transvesely at a number of points stricly less than r.

Assuming this fact, extend z1 to a non dividing family z of g circles on Σ,
z t x and z t y. Then both M(x, z) and M(z, y) have encoding diagrams of the
same genus g but with strictly smaller complexity anyway. Then by the inductive
hypothesis S3 is surgery equivalent to both and again we can conclude by applying
Lemmas 19.16 and 19.17.

It remains to prove the two claims. As for Claim 1, there are two possibilities,
either Σ′ := Σ \ (x1 ∪ y1) is connected or non connected. Take a small segment γ in
Σ tranvese to x1 at one point, with endpoints p0, p1; similarly let γ′ be transverse
to y1 at one point, with endpoints p′0, p

′
1. If Σ′ is not connected, up to reordering,

we can assume that the couples of endpoints p0, p
′
0 and p1, p

′
1 belong to different

connected components. Then in both cases a smooth circle z1 in Σ with the required
properties can be obtained of the form

z1 = γ ∪ α ∪ γ′ ∪ α′

where α is a smooth arc which connects p0 and p′0, while α′ is such an arc connecting
p1 and p′1.

As for Claim 2, let A and B two points of x1 ∩ y1 which are adjacent in x1.
Then there is an arc α in x1 which intersects y1 only at its endpoints A and B.
These points also divide y1 in two arcs β and γ. As y1 does not separate Σ, there
is at least one of these arcs, say β, such that α ∪ β does not separates Σ. Then we
can construct z1 made by a parallel copy α′ of α which near A is in the direction
of β, completed by a segment β′ close to β. One realizes that z1 intersects x1 in
at most r − 1 points and intersects y1 in at most one point. So z1 has the desired
properties. This proof of Theorem 19.10 is now complete.

2
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19.4.1. On Kirby’s calculus. We have proved that for every orientable com-
pact, connected, boundaryless 3-manifold M there is a special triad (W,S3,M)
which realizes the surgery equivalence S3 ∼σ M , so that W admits an ordered han-
dle decompositions consisting only of 2-handles. Every such a handle decomposition
with say k handles is encoded by a framed link L in S3 with k constituent knot
Kj , j = 1, . . . , k. For every Kj , its framing is encoded by a parellel longitude lj ;
fixing an auxiliary parallel orientation of both Kj and lj , this last is encoded by
the linking number L(Kj , lj), that is, equivalently, by the intersection number of lj
with any oriented Seifert surface of Kj in S3. The natural question is how two such
framed links are related two each other. Certainly a given handle deconposition
can be modified by handle sliding and this can be translated in terms of the corre-
sponding framed links. Moreover we must consider the possibility of modifying the
special triad without changing its boundary. A distinguished way to do it consists
in attaching a 2-handle with attaching circle contained and unknotted in a 3-ball
disjoint from the other link components, and with framing equal to ±1. One realizes
that this does not modify the boundary while we pass from W to W# ± P2(C).
This is called an elementary blow-up move. We can consider also the inverse (neg-
ative) move of removing such a handle. An important Kirby’s result [Kirby2] can
be formulated, somewhat qualitatively, as follows.

Theorem 19.18. Two framed link L1 and L2 in S3 encode a realization of
S3 ∼σ M if and only if they are related to each other by a finite sequence of modi-
fications which either translate 2-handle sliding or are positive/negative elementary
blow-up moves.

The proof is rather demanding and is based on Cerf’s theory [Ce2]. After
such a qualitative statemet, successive efforts have been devoted to convert it into
an efficient diagrammatic calculus on framed links in S3. Kirby himself found a
generator (called “band move”) for the handle sliding; this is not a ‘local’ move,
and resembles a move described above on Heegaard diagrams. Later in [FR] one
points out an infinite family of local moves generating the whole calculus. Finally
in [Mart2] one has determined a generating finite family of local moves.

19.5. On η3 = 0.

Referring to Section 19.2.1, the following two theorems can be obtained as a
corollary of each other.

Theorem 19.19. Every non orientable compact connected boundaryless 3-manifold
M is surgery equivalent to M (M ∼σ M).

Theorem 19.20. η3 = 0.

19.5.1. On some proofs of η3 = 0. In the spirit of the above discussion
about Ω3 = 0, we give here a few indication about “direct” proofs of Theorem 19.20.
Certainly it is contained in the general statement of Thom’s Theorem 17.20 and
in a sense this is the first proof of this result. However, Rohlin claimed, without
further explaination (see [GM]), that the method he had used to prove Ω3 = 0
allows to prove the same in the non orientable case. This is not so immediate.
Starting from a general immersion of M (non orientable) in R5, the “embedding up
to bordism” works as well and we can assume that M is actually embedded into
R5. However, (recall Remark 13.11), if a tubular neighbourhood U of M in R5

is associated to a splitting T (M) ⊕ ξ of the restriction of T (R5) to M , we cannot
assume in general that ξ has a nonwhere vanishing section and hence we cannot
assume that there is a possibly non orientable Seifert surface. To conclude it would
be enough to find M ′ embedded in some 5-manifold X such that [M ] = [M ′] ∈ η3,
[M ′] = 0 ∈ H2(X,Z/2Z), and there is a splitting T (M) ⊕ ξ′ of the restriction of
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T (X) to M ′ such that ξ′ has a nowhere vanishing section. This can be achieved as
follows (see also the suggestion at pag. 91 of [GM]). Let M embedded in R5 be
as above. Consider the Euler class of ξ belonging to η1(M). This is represented by
smooth circle C on M . Take the blow up say X of R5 along C (see Section 7.10); let
M ′ be the blow up of M along C which is embedded into X as the strict transform
of M . One can check that M ′ ⊂ X verify the required properties. In particular
[M ′] = [M ] + [S1 ×P2(R)] = [M ] ∈ η3.

19.5.2. On some proofs that M ∼σ M. Lickorish extended in [Lick2] his
main result on the generators of the mapping class groups to non orientable surfaces.
This allows him to extend also the proof about the surgery equivalence to the non
orientable case.

In [AG] the simpler clever proof of [Rourke] has been extended to the non
orientable case.

19.6. Combing and framing

A main result of this section will be that every compact connected orientable
boundaryless 3-manifold M is parallelizable. Current modern proofs of this primary
result in 3-dimensional differential topology (originally attributed to Stiefel [Sti])
use either a mixture of spin structures and of Stiefel Whitney classes theory (see for
instance [Ge], Section 4.2), or a refinement due to Kaplan [Ka] of Lickorish-Wallace
theorem by means of the so called Kirby calculus (see also [FM], Section 9.4.). We
do not dispose of this artillery. Nevertheless, by following [BL] we will provide
two selfcontained elementary proofs, revealing by the way different aspects of the
question. The first proof uses some ideas of the last mentioned approach, however it
avoids the use of both Lickorish-Wallace Theorem and Kirby calculus. The second
proof will result from a parallel discussion about combing and framing 3-manifolds.
We will also provide a classification of combings with respect to a given auxiliary
reference framing.

From now on M will denote a compact connected orientable boundaryless 3-
manifold. Alike every odd dimensional manifold, M is combable, then it carries
nowhere vanishing tangent vector fields v. These are considered up to smooth
homotopy through such fields and called combings of M . We will systematically
confuse a homotopy class with suitable representatives. As we know, a framing
F of T (M) is a triple (v, w, z) of pointwise linearly independent tangent vector
fields. Also framings are considered up to homotopy; the three components of F
determine a same combing of M . Fixing any auxiliary riemannian metric g on
M , we can assume that a given combing is (represented by) an unitary field with
respect to g, and every framing is represented by pointwise orthonormal fields. A
framing, if any, determines also an orientation of M (so that orientability of M is
a necessary condition). If M is oriented and parallelizable, then there are framings
which induce the given orientation. From now on we will assume that M is oriented,
by fixing an auxiliary orientation.

19.6.1. Framing via even surgery. The first remark is that it is enough to
prove that M is almost-parallelizable. A quasi-framing of M is a framing of T (M)
over a submanifold of the form

M0 := M \ Int(B)

where B is a smooth 3-disk in M . We say that M is almost-parallelizable if admits a
quasi-framing. In such a case, by the uniqueness of the disk up to ambient isotopy,
we see that the choice of the disk B is immaterial. We have

Lemma 19.21. M is parallelizable if and only if it is almost-parallelizable.
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Proof : An implication is trivial. As for the other implication, we can assume
that B is contained in a chart of M and looks standard therein as well as the
auxiliary metric. Then the restriction of a quasi-framing F ′ to ∂B = S2 is encoded
by a map

ρ : S2 → SO(3) .

We know that SO(3) ∼ P3(R) (Example 6.5), with S3 as universal covering space,

hence π2(SO(3)) ∼ π2(S3) = 0. It follows that ρ extends to β̂ : B → SO(3), and
that F ′ extends to a framing F of the whole T (M).

2

Let M be obtained by longitudinal surgery along a framed link L in S3; we
write

M = χ(S3, L) .

M is the final boundary of a triad (W, ∅, χ(S3, L)) where W is obtained by attach-
ing disjoint 2-handles to D4 at S3 = ∂D4. Every 2-handle D2 ×D2 determines a
constituent knot K of L, so that ∂D2 ×D2 ∼ N(K), N(K) being a tubular neigh-
bourhood of K in S3, ∂D2 × {0} being identified with a longitude lK on ∂N(K)
olong K. The framing of every component K of L is encoded by the linking number
nK ∈ Z between K and the longitude lK , where K and lK are co-oriented in such
a way that the projection of LK onto K is of degree 1. We say that the surgery is
even if for every constituent knot K of L, nK ∈ 2Z. We have

Proposition 19.22. Let (W, ∅,M) be the triad associated to an even surgery
M = χ(S3, L). Then W is parallelizable.

Proof : To simplify the notation, we give the proof for a one-component link but
this generalizes straightforwardly. So let L = (K,n), n ∈ 2Z. Both D4 and D2×D2

are parallelizable, so we have to show that they carry some framings which match on
N(K). Fix a reference framing F0 on D4; the restriction to N(K) of any framing F
on the 2-handle is encoded by a map ρ : N(K)→ SO(4). Viewing S3 as the group of
unit quaternions one can construct a 2-fold covering map S3×S3 → SO(4) showing
that π1(SO(4)) = Z/2Z (see Example 6.5). As the solid torus N(K) retracts to
K ∼ S1, ρ determines an element of Z/2Z, and the two framings coincide on N(K)
if and only if this is equal to 0. It can be readily seen that this element is equal to
the number n mod (2).

2

Corollary 19.23. Let M = χ(S3, L) be an even surgery. Then M is stably-
parallelizable (i.e. T (M)⊕ ε1 is a product bundle).

Proof : Let (W, ∅, χ(S3, L)) be as above. Then T (W )M = T (M) ⊕ ν where ν
is a trivial normal line bundle of M = ∂W in W . We know by the proposition that
T (W ) is a product bundle.

2

Lemma 19.24. If M is stably parallelizable then it is almost-parallelizable.

Proof : As T (M)⊕ ε1 = M × R4, every TxM is an oriented 3-plane in R4. So
we have a smooth classifying map ρ : M → S3 where the sphere is considered as the
space of oriented 3-planes in R4, and T (M) is the pull back of the corresponding
tautological bundle (see Chapter 6). Now we know that M0 retracts onto a 2-
dimensional spine P0 as in Section 19.1.2. Hence the restriction of ρ to P0 is not
surjective, then it is homotopic to a constant map, the restriction of TM to P0

whence to M0 is a product bundle.
2
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Remark 19.25. Lemma 19.24 holds in every dimension n; the key point is that
M \ Int(Bn) has the homotopy type of a CW-complex of dimension less or equal
n− 1 (see Section 9.3.1).

Recall the notion of weak connected sum given in Section 7.5.2. We know by
Smale theorem that 3-dimensional weak connected sums are veritable connected
sums, but we do not need this fact in the present discussion. The following lemma
is trivial.

Lemma 19.26. If there exists M ′ such that a weak connected sum of M and M ′

is parallelizzable, then M is almost parallelizable.

2

A Heegaard splitting (of some genus g) of M can be encoded by a non dividing
family say L of g smooth circles on the boundary ∂Hg of an handlebody Hg. We

can assume that Hg is embedded in a standard way in S3 so that H′g := S3 \ Hg is

also a handlebody of genus g, and we have a Heegaard splitting of S3. Give every
component K of L the framing carried by a tubular neighbourhood of K in ∂Hg.
Then we have a framed link L in S3. By applying the proof of Lemma 19.17 we
readily have

Lemma 19.27. χ(S3, L) is a weak connected sum of M and M ′, for some M ′.

2

So, by combining the above lemmas, in order to show that M is almost paral-
lelizable (hence parallelizable) it is enough to show that we can implement the above
construction in such a way that the surgery χ(S3, L) is even. Fix any embedding
L ⊂ ∂Hg ⊂ Hg ⊂ S3 as above. Fix a system µ = {m1, . . . ,mg} of g meridians
on ∂Hg (which bound 2-disks properly emebedded in Hg) and a dual system of g
meridians λ = {l1, . . . , lg} for the complementary handlebody H′g. A Dehn twist on
∂Hg along a curve mi extends to a diffeomorphism of the whole Hg. Hence we can
modify the family L by applying any finite sequence of such Dehn twists, keeping
the fact that χ(S3, L) is a weak connected sum of M and M ′, for some M ′. We are
reduced to prove the following lemma.

Lemma 19.28. Up to a suitable finite sequence of Dehn twists along the merid-
ians in µ, χ(S3, L) is an even surgery.

Proof : The question can be reduced to Z/2Z-linear algebra on η1(∂Hg). Start
with any surgery χ(S3, L) = M#M ′ as above. The union of curves in the families
µ and λ form a symplectic basis of η1(∂Hg) with respect to the intersection form.
So, by confusing classes mod (2) and representatives and setting L = {K1, . . . ,Kg},
we have the Z/2Z-linear combinations:

Kj =

g∑
i=1

(ajimi + bji li) .

The framing mod (2) of Kj is given by

nj =
∑
i

aji b
j
i ∈ Z/2Z .

A Dehn twist Tj along mi acts on η1(∂Hg) so that

Ti(li) = li +mi

while it is the identity on the other 2g−1 elements of the given basis. All intersection
numbers mod (2) of the curves of L vanish, that is

Kr •Ks = 0, r, s = 0, . . . g .
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This means that the coefficients of the above lnear combinations verify the system
of conditions:

(19.1)

g∑
i=1

(ari b
s
i + asi b

r
i ) = 0, r, s = 0, . . . g .

We allow ourselves to apply twist combinations of the form T x1
1 . . . T

xg
g . Then

we want to show that the Z/2Z-linear non homogeneous system

(19.2)

g∑
i=1

(xi + bri )a
r
i = 0, r = 1, . . . g .

admits a solution in (Z/2Z)g. Note that we tacitly use several times that z = z2

for every z ∈ Z/2Z. If for every r all ari = 0, then every (x1, . . . , xg) is a solution.
Otherwise we can assume that a1

1 = 1. Then the solution of the equation
g∑
i=1

(xi + b1i )a
1
i = 0

are of the form x1 =
∑g
j=2 cjxj . By replacing in the other equations and using the

relations 19.1, we are reduced to solve a system in x2, . . . , xg of the same form

g∑
i=2

(xi + b̃ri )ã
r
i = 0, r = 2, . . . , g

with

ãri = ar1a
1
i + ari , b̃

r
i = ar1b

1
i + br1 .

One ferifies directly that these new coefficients formally satify the corresponding
conditions 19.1. So we can conclude by recurrence.

2

Remark 19.29. It is proved in [Ka], see also [FM], that for every M as above
there is an even surgery M = χ(S3, L). Starting from any surgery presentation of
M with associated triad (W, ∅,M) (which exists by Lickorish-Wallace Theorem),
the proof consists in an algorithm which modifies the triad to some (W ′, ∅,M)
associated to an even surgery. More precisely, by using some notions that we will
define in Chapter 20, one proves firts that every L contains a so called characteristic
sub-link and that the surgery is even if a characteristic sub-link is empty. Then the
algorithm reduces progressively the number of components of a characteristic sub-
link by means of certain moves on the handle decompositions (organized in an
efficient so called ‘Kirby calculus’) which may change the 4-manifold W by keeping
the triad boundary fixed. Note that this proof does not use the harder fact that
Kirby calculus connects any two surgery presentations of M [Kirby2].

Our first proof that M is parallelizable is now complete.
2

Next we will elaborate on the second proof.

19.6.2. On the cobordism ring of an orientable 3-manifold. We spe-
cialize the results of Chapters 13. In the present situation the relevant co-bordism
modules are

Hj(M ;Z/2Z), Hj(M ;Z), j = 0, 1, 2, 3 .

We summarize here some properties which we will use.

- H3(M ;Z/2Z) ∼ H0(M ;Z/2Z) ∼ Z/2Z by the isomorphism which associates
the usual generator ofH3(M ;Z/2Z) to the fundamental class mod (2) [M ]; similarly
over Z.
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- H2(M ;Z/2Z)) = η2(M) = η1(M)

- H2(M ;Z/2Z) ∼ H1(M ;Z/2Z) in a natural way: if α = [F ] ∈ H1(M ;Z/2Z)
we can assume that the embedded surface F ⊂M is connected and does not divide
M if α 6= 0. If γ is a smooth simple arc in M trasverse to F at one point, it can be
completed to a smooth circle c by means of an arc γ′ contained in M \ F so that
[F ] t [c] = 1. Viceversa, if [c] 6= 0 ∈ H2(M ;Z/2Z), then it is part of a basis B of
H2(M ;Z/2Z) which is finite dimensional. The functional [c]∗ belonging to the dual
basis composed with the natural homomorphism π1(M) → η1(M) defines a Z/2Z-
valued representation of the fundamental group that can be realized by a connected
hypersurface F , so that in particular [F ]t [c] = 1. Moreover we can assume that F
intersects transversely c at one point: if F intersects c at an odd number of points,
we can reduce them to one by attaching suitable embedded 1-handles along c and
performing surgeries of F .

- If c is a connected oriented smooth circle in M such that [c] = 0 ∈ H2(M ;Z)
then there is an oriented Seifert surface for c in M ; if [c] = 0 ∈ H2(M ;Z/2Z) then
there is a possibly non orientable Seifert surface for c in M ;

- Consider the natural forgetting morphism H2(M ;Z) → H2(M ;Z/2Z). We
have

Lemma 19.30. A class α ∈ H2(M ;Z) belongs to the kernel of the forgetting
morphism H2(M ;Z)→ H2(M ;Z/2Z) if and only if α is an even class that is there
is β ∈ H2(M ;Z) such that α = 2β.

Proof : We can assume that α is represented by a connected oriented smooth
circle c. By hypothesis c is the boundary of a possibly non orientable connected
compact surface F embedded in M . If F is orientable, then α = 0 and we have
done. If F is not orientable, it follows from the classification of surfaces that there
is a smooth 1-submanifold C on Int(F ) such that a tubular neighbourhood U(C)
of C in F is union of Möbius strips, and F \ C is orientable. Then orient F \ C in
such a way the oriented c inherits the boundary orientation, and orient consequently
C ′ := ∂U(C) ⊂ F \ Int(U(C)). Then [c] = [C ′] ∈ H2(M ;Z) and [C ′] = 2[C”] where
C” is the union of the cores of U(C) oriented in such a way that the restriction of
the projection of C ′ onto every core is of positive degree.

2

19.6.3. Combings and orthogonal plane distributions. Let v be a comb-
ing of M . Fix an auxiliary metric as above. We have the distribution of orthogonal
tangent 2-planes

{Px := span(v(x))⊥}x∈M .

These planes Px are oriented by the unique orientation which added to v(x) agrees
with the given orientation on TxM . This actually defines an oriented rank-2 vector
bundle ξv on M whose strict equivalence class does not depend on the choice of the
combing representative nor of the auxiliary metric. We consider the oriented Euler
class

e2(ξv) ∈ Ω2(M) = Ω1(M) .

In fact e2(ξv) ∈ H2(M ;Z). If ξv has a non vanishing unitary section w orhogonal
to v, then (v, w) extends to the unique orthonormal framing F = (v, w, z) of T (M)
such that the orientations are compatible. So ξv is trivial if and only if it admits a
nowhere vanishing section w as above. We know from section 13.4 that

Lemma 19.31. The bundle ξv has a non vanishing section, if and only if the
Euler class e2(ξv) vanishes.

2
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As usual, ω2(ξv) ∈ H2(M ;Z/2Z) is the image of e2(ξv) via the natural forgetting
map.

Combing comparison class. We can associate to an ordered pair of unitary
combings (v, v′) of M a smooth section v × v′ of ξv as follows. At a point x ∈ M
where v(x) 6= ±v′(x), v× v′(x) ∈ Pv(x) ⊂ TxM is the “vector product” of v(x) and
v′(x), i.e. the only tangent vector such that

• ‖v × v′(x)‖2g(x) = 1− g(v, v′)2;

• v × v′(x) is g(x)-orthogonal to v(x) and v′(x);
• (v(x), v′(x), v × v′(x)) is an oriented basis of TxM .

At a point x ∈M where v(x) = ±v′(x), we set v × v′(x) = 0.
If the two unitary combings v and v′ are generic, the section v × v′ of Fv is

transverse to the zero section and the zero locus

C := {x ∈M | v × v′(x) = 0} ⊂M

is a disjoint collection of simple closed curves. Moreover, C = C+ ∪ C−, where

C+ = {x ∈M | v(x) = v′(x)} and C− = {x ∈M | v(x) = −v′(x)}.

By the very definition of e2(ξv), C can be oriented to represent the Euler class of
ξv. Indeed, let E(ξv) denote the total space of ξv, M0 ⊂ E(ξv) the zero-section
and M1 = v × v′(M) ⊂ E(ξv). Under the natural identification of M with M0 the
submanifold C is identified with M0 ∩M1. By transversality, for each x ∈M0 ∩M1

the natural projection px : TxE(ξv)→ Pv(x) maps isomorphically the image under
(v × v)′∗ of the fiber Nx(C) of the normal bundle of TC ⊂ TM |C onto Pv(x).
Therefore, the given orientation on ξv(x) can be pulled-back to Nx(C) and, together
with the orientation of TxM , it induces an orientation on TxC in a standard way.

Definition 19.32. An ordered pair of unitary combings (v, v′) of M such that
v × v′ is a section of ξv transverse to the zero section will be called a generic pair
of unitary combings. We define the comparison class α(v, v′) ∈ Ω2(M) of a generic
pair of unitary combings as the class [C−] carried by the collection of curves C−
oriented as part of the oriented zero locus of v × v′ : M → ξv representing e2(ξv).

Lemma 19.33. Let (v, v′) be a generic pair of unitary combings of M . Then,

α(v, v′) = −α(v′, v) and α(v,−v′) = α(v′,−v).

Proof : For each x ∈ C the equality ξv(x) = ξv′(x) holds, with the orientations
of ξv(x) and ξv′(x) being the same or different according to, respectively, whether
x ∈ C+ or x ∈ C−. We may choose a tubular neighborhood U = U(C) such that
the restrictions of the tangent plane fields Pv|U and Pv′ |U are so close that there

is a vector bundle isomorphism ϕ : ξv|U
∼=→ ξv′ |U which is the identity map on

the intersections Pv(x) ∩ Pv′(x), x ∈ U , is orientation-preserving near C+ = {x ∈
M | v(x) = v′(x)} and orientation-reversing near C− = {x ∈ M | v(x) = −v′(x)}.
Since ϕ ◦ (v × v′) = v × v′ = −v′ × v and −v′ × v is obtained by composing
the section v′ × v with the orientation-preserving automorphism of Fv′ given by
minus the identity on each fiber, the orientation on C− as part of the zero locus
of v × v′ : M → ξv is the opposite of its orientation as part of the zero locus of
v′ × v = −v × v′ : M → ξv′ . This implies α(v, v′) = −α(v′, v). Similarly, the
orientation on C+ as part of the zero locus of v × (−v′) : M → ξv coincides with
its orientation as part of the zero locus of (−v′)× v = v′ × (−v) : M → ξv′ , which
implies α(v,−v′) = α(v′,−v).

2

Lemma 19.34. Let (v, v′) be a generic pair of unitary combings of M . Then,

e2(ξv)− e2(ξv′) = 2α(v, v′).
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Proof : According to the definitions we have

e2(ξv) = α(v, v′) + α(v,−v′) and e2(ξv′) = α(v′, v) + α(v′,−v).

The statement follows applying Lemma 19.33 after taking the difference of the two
equations.

2

Combing Pontryagin surgery. Let v be a unitary combing of M and C ⊂M
an oriented, simple closed curve such that the positive, unit tangent field along C
is equal to v|C and there is a trivialization

j : D2 × S1 ∼=→ U(C)

of a tubular neighborhood of C in M such that

v ◦ j = j∗(∂/∂φ),

where φ is a periodic coordinate on the S1-factor of D2 × S1. Let (ρ, θ) be polar
coordinates on the D2-factor. Following terminology from [BP], we say that a
unitary combing v′ is obtained from v by Pontryagin surgery along C if, up to
homotopy, v′ coincides with v on M \ U(C) and

v′ ◦ j = j∗

(
− cos(πρ)

∂

∂φ
− sin(πρ)

∂

∂ρ

)
on U(C).

Remark 19.35. A basic fact not used in this paper is that any two combings
of M are obtained from each other, up to homotopy, by Pontryagin surgery [BP].

Lemma 19.36. Let v be a unitary combing of M and β ∈ H2(M ; Z). Then,
possibly after a homotopy of v, there is a unitary combing v′ such that (v, v′) is a
generic pair of unitary combings and

α(v, v′) = β.

Proof : Let C ⊂M be an oriented simple closed curve representing the Poincaré
dual of β and let j : D2 × S1 → U(C) be a trivialization of a neighborhood of C.
Without loss of generality we may assume that the pull-back j∗(g) of the auxiliary
metric g on M is the standard product metric on D2×S1. After a suitable homotopy
of v the assumptions to perform Pontryagin surgery on v along C are satisfied.
Consider a normal disc Dφ0 = j(D2 × {φ0}) and let p = Dφ0 ∩ C. Then, TpDφ0

coincides, as an oriented 2-plane, with Pv(p) as well as with the g(p)-orthogonal
subspace of TpC inside TpM . Let v′ be a unitary combing obtained from v by
first performing a Pontryagin surgery on U(C) and then applying a small generic
perturbation supported on a small neighborhood of M \ U(C). Then, (v, v′) is
a generic pair of unitary combings and C = {x ∈ M | v(x) = −v′(x)}. By the
definition of α(v, v′), to prove the statement it suffices to show that the given
orientation of C coincides with its orientation as part of the zero set of v×v′ : M →
ξv. Near C we have

(v × v′) ◦ j = j∗

(
− sin(πρ)

∂

∂θ

)
= j∗

(
sin(πρ)

ρ

(
y
∂

∂x
− x ∂

∂y

))
,

where x = ρ cos θ and y = ρ sin θ are rectangular coordinates on the D2-factor.
Observe that j∗ sends the pair (∂/∂x, ∂/∂y) to an oriented framing of ξv. Using
the resulting trivialization of ξv we can write locally the restriction of v × v′ to to
the disc Dφ0 followed by projection onto ξv as follows:

v × v′|Dφ0
: (x, y) 7→ sin(πρ)

ρ
(y,−x) = π(y,−x) + higher order terms.
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It is easy to compute that (v× v′)∗ ◦ j∗ sends ∂/∂x to −π∂/∂y and ∂/∂y to π∂/∂x,
and since the matrix

(
0 π
−π 0

)
has determinant π2 > 0 this shows that the restriction

of (v × v′)∗ to the normal bundle to C composed with the projection onto ξv is
orientation-preserving along C, concluding the proof.

2

We are ready to state a main theorem of this section.

Theorem 19.37. Let M be a compact connected oriented boundaryless 3-manifold.
The the following facts are equivalent to each other and all hold true.

(1) M is parallelizable.

(2) There exists a combing v of M such that e2(ξv) = 0.

(3) There exists a combing v of M such that e2(ξv) is an even class that is of
the form e2(ξv) = 2β for some β ∈ H2(M ;Z).

(4) For every combing v of M , e2(ξv) is an even class.

(5) For every combing v of M , ω2(ξv) = 0 ∈ H2(M ;Z/2Z).

Proof : First we prove the equivalence between the five statements. We will
prove (j)⇔ (j + 1) for j = 1, . . . , 4.

(1)⇒ (2): If F = (v, w, z) is a framing of M , then e2(ξv) = 0.
(1) ⇐ (2): we have already remarked above that if e2(ξv) = 0 then v can be

extended to a global framing F = (v, w, z).
(2)⇒ (3): this is trivial.
(2) ⇐ (3): If e2(ξv) = 2β, then by applying the Pontryagin surgery to v and

the class −β, we get v′ such that

e2(v′) = −2β + e2(v) = 0 .

(3)⇒ (4): If e2(ξv) = 2β and v′ is another combing, then by Lemma 19.34

e2(v′) = 2(α(v, v′)− β) .

(3)⇐ (4): this is trivial.
(4)⇒ (5): this is trivial.
(4)⇐ (5): this follows from Lemma 19.30.

The equivalence between the five statements is achieved. Now it is enough to
show that at least one among them holds true. We are going to prove that statement
(5) holds true:

Proposition 19.38. For every combing v of M , ω2(ξv) = 0 ∈ H2(M ;Z/2Z).

Equivalently, we have to show that for every compact closed surface F embedded
in M , possibly F non orientable, then

ω2(ξv) t [F ] = 0 ∈ Z/2Z

that is

ω2(i∗ξv) t [F ] = 0

where i : F → M is the inclusion, and it is not restrictive to assume that F is
connected.

Consider the restriction i∗T (M) of the tangent bundle of M to F . Similarly
consider i∗ξv. Then we have the following two splittings as direct sum:

i∗T (M) = i∗ξv ⊕ ε1 = T (F )⊕ ν

where ν denotes the orthogonal line bundle along F , and ε1 is the restriction to F
of the trivial line bundle which has v as nowhere vanishing section. Here is the key
lemma:
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Lemma 19.39. For every combing v of M and every compact closed embedded
surface F we have

ω2(i∗ξv) t [F ] = ω2(T (F )) t [F ] + (ω1(detT (F )) ∪ ω1(ν)) t [F ] .

Claim: Lemma 19.39 ⇒ Proposition 19.38:

Proof of the Claim: If F is orientable, then the identity of Lemma 19.39 reduces
to

ω2(i∗ξv) t [F ] = ω2(T (F )) t [F ] = χ2(F )

and we conclude because χ(F ) is even. If F is non orientable, then F ∼ hP2(R),
that is the connected sum of h copies of the projective plane. As M is orientable,
then ν is isomorphic to the determinant line bundle detT (F ), hence also in this
case

ω2(i∗ξv) t [F ] = χ2(F ) + (< ω1(F ) ∪ ω1(F )) t [F ] = 2− h+ h = 0 mod(2) .

2

Proof of Lemma 19.39: Consider again the two splittings

i∗T (M) = i∗ξv ⊕ ε1 = T (F )⊕ ν
realized geometrically by a field of splittings

TxM = Px ⊕ l(x) = TxF ⊕ ν(x), x ∈ F
where l(x) is the (oriented) line spanned by v(x), while ν(x) is the (unoriented) line
orthogonal to TxF . Let s be a generic section of i∗(ξv), that is a field of vectors
s = {s(x) ∈ Px}x∈F . For every x ∈ F , the direct sum TxF ⊕ ν(x) induces the
decompositions

s(x) = sF (x) + sν(x), v(x) = vF (x) + vν(x) .

By transversality we can assume that:

(1) {s = 0} is a finite number of points representing ω2(i∗ξv).
(2) sν = {sν(x)} and vν = {vν(x)} are generic sections of ν, so that both

are smooth curves on F representing ω1(ν) and moreover are transverse
to each other in F , so that their intersection represents ω1(η) ∪ ω1(η) =
ω1(detT (F )) ∪ ω1(ν).

(3) {s = 0} ∩ {vν = 0} = ∅.
(4) sF = {sf (x)} is a generic section of T (F ) so that {sF = 0} is a finite

number of points representing ω2(T (F )).

For every finite set X, let #X denote the number of its elements mod (2). Then
we have

< ω2(i∗ξv) t [F ] = #{s = 0}, < ω2(T (F ) t [F ] = #{sF = 0}

(ω1(detT (F )) ∪ ω1(ν)) t [F ] = #({vν = 0} ∩ {sν = 0}) .
So we have to prove that

#{s = 0} = #{sF = 0}+ #({vν = 0} ∩ {sν = 0}) .
On the other hand, obviously

{sF = 0} = ({vν = 0} ∩ {sF = 0})q ({vν 6= 0} ∩ {sF = 0}) .
We claim that

{vν 6= 0} ∩ {sF = 0} = {s = 0}
in fact, by item (3) above

{s = 0} = {vν 6= 0} ∩ {s = 0} ;

clearly
{vν 6= 0} ∩ {s = 0} ⊂ {vν 6= 0} ∩ {sF = 0} ;
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on the other hand if s(x) 6= 0, then sF (x) 6= 0, because the projection Px → TxF is
an isomorphism being vν(x) 6= 0. It remains to check that

#({vν = 0} ∩ {sF = 0}) = #({vν = 0} ∩ {sν = 0}) .
Set C = {vν = 0} and j : C → F the inclusion of this smooth curve; for every
x ∈ C, the line ν(x) is contained in Px an we have the splitting as direct sum

Px = (Px ∩ TxF )⊕ ν(x) .

Hence we have a splitting as direct sum of line bundles

j∗ξv = λ⊕ j∗ν
These two lines bundle are isomorphic to each other; in fact along every component
of C, j∗ξv is trivial because it is oriented, then the two line bundles are both trivial
or both non trivial; eventually

ω1(λ) t [C] = ω1(j∗ν) t [C] .

We conclude by noticing that the restriction of sF and sν are respectively generic
sections of these line bundles.

2

The proof of Proposition 19.38, hence of the main Theorem 19.37 is now com-
plete.

2

Remark 19.40. Lemma 19.34 shows in particular that the class 2α(v, v′) does
not depend on the choice of the generic pair of combing representatives v and
v′. If F = (v, w, z) is a framing of T (M), and v′ is any other combing, then
e2(v′) = 2α(v′, v). Thanks to the framing, v′ is encoded by a map s : M → S2 and
it is not hard to verify (do it by excercise) that α(v′, v) = s∗(u) ∈ Ω2(M), where
u is the usual standard generator of Ω2(S2) ∼ Z. More generally, if ṽ is another
combing encoded by the map say s̃ : M → S2, then α(ṽ, v′) = s̃∗(u)− s∗(u) which
by the way shows that the comparison class itself only depends on the combings as
homotopy classes.

19.6.4. Classification of framings. We provide a classification of the fram-
ings on M with respect to a given reference framing F0. Then any other framing
F is encoded by a map

ρF : M → SO(3)

considered up to homotopy. The set [M,SO(3)] can be endowed with a group
structure by pointwise multiplication. As SO(3) ∼ P3(R) there is a natural homo-
morphism (see Section 13.1)

ψ : [M,SO(3)]→ H1(M ;Z/2Z), [h]→ h∗([P2(R)]) .

Denote by p : S3 → SO(3) ∼ P3(R) the universal covering. Recall that by Corollary
17.6

[M,S3] ∼ ΩF0 (M) ∼ Z
every homotopy class being classified by the common Z-degree of its representative
maps. There is a natural homomorphism

φ : [M,S3]→ [M,P3(R)], [f ]→ [p ◦ f ] .

Finally we can state

Proposition 19.41. The homomorphism sequence

0→ Z φ−→ [M,P3(R)]
ψ−→ H1(M ;Z/2Z)→ 0

is exact.
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Proof : If p ◦ f is homotopic to a costant map, then the homotopy can be lifted
to S3, hence f is homotopically trivial and φ is injective.

Given g : M → SO(3), ψ([g]) = 0 if and only if g lifts to S3, hence the kernel
of ψ is the image of φ.

We are left to prove that ψ is surjective. We use a spine P0 of M0 constructed
in Section 19.1.2. First one proves that every homomorphism α : π1(P0)→ Z/2Z is
induced by a map j : P0 → P2(R). Let a : (S1, e)→ (P1(R), x0), P1(R) ⊂ P2(R),
be a loop which generates π1(P2(R) ∼ Z/2Z. We choose a maximal tree T in
the singular set of the spine P0, and define j : Sing(P0) → P2(R) by setting it
constantly equal to x0 on T , while on every other edge of the singular set it is either
equal to the constant map or to a according to the value of α on the loop determined
by such an edge. On the boundary of every region of P0 there is an even number
of edges at which j is not constant, hence the map j extends to the whole of P0.
Now we consider P2(R) ⊂ P3(R) ∼ SO(3). The map j extends to M0, and finally
to the whole of M because π2(SO(3)) = 0.

2

19.6.5. Classification of combings. Fix a reference framing F0 of M as
above. The set of combings of M can be identified with [M,S2] ∼ ΩF1 (M) by the
Pontryagin construction of Chapter 17. We want to make it explicit. There is a
natural forgetting projection

π : ΩF1 (M)→ Ω1(M) .

In fact π(v) = v∗(u) ∈ Ω2(M) = Ω1(M), where u = [y0] is a standard generator of
Ω2(S2). We have already remarked that

e2(ξv) = 2π(v) .

The projection π is onto. So we have to understand the fibre π−1(x) of every
x ∈ Ω1(M). If we consider the comparison class α(v, v′) as the first obstruction in
order that the combings coincide, to distinguish the combings in a same fibre we
have to point out a secondary comparison invariant. Given an oriented framed knot
(K, f) in M which projects to x, we can modify the framing to (K,nf) by adding n
twists to the given framing. This gives a transitive action of Z on such a fibre. We
have to understand when (K, f) and (K,nf) represent the same element of ΩF1 (M).
Assume this is the case, realized by a framed surface S in M × I. By taking the
double of M × I, diffeomorphic to M × S1, the double Σ of S embedded therein is
an oriented boundaryless surface in M × S1 such that [Σ] • [Σ] = n ∈ Ω0(M × S1).
We have

([Σ]− λ) • [M × {1}] = 0

where λ = [K × S1]. Then

([Σ]− λ]) • ([Σ− λ]) = [λ] • [λ] = 0

n = 2([Σ]− λ) • λ = [Σ− λ] • e2(ξv) .

Then there are two cases:

- π(v) is a torsion element, then also e2(ξv) is so, and then n = 0.
- e2(ξv) is not a torsion element; if d is the biggest integer such that π(v) = dβ

for some β, then

n = 0 mod (2d) .

Summarizing, we have

Proposition 19.42. (1) Every framing F0 on M determines a surjective map

π : ΩF1 (M)→ Ω2(M)

such that for every combing v ∈ ΩF1 (M), 2π(v) = e2(ξv).
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(2) If e2(ξv) is a torsion element, set d = 0; then for every v, v0 ∈ π−1(π(v0)) it
is defined a secondary comparison invariant h(v, v0) ∈ Z/2dZ = Z such that v = v0

iff and only if h(v, v0) = 0.

(3) If e2(ξv) = 2π(v) is not a torsion element, let d be the maximum integer
such that π(v) = dβ for some β, then it is defined a secondary comparison invariant
h(v, v0) ∈ Z/2dZ such that v = v0 iff and only if h(v, v0) = 0.

2

Remark 19.43. If Ω1(M) has no non trivial elements of order 2, then the
map π does not depend on the choice of the framing F0. On the other hand, let
M = P3(R). Fix a trivialization b : UP3(R) → P3(R) × S2 of its unitary tangent
bundle (associated to a framing F0). Identify P3(R) with SO(3). Consider a new
trivialization c defined by c(b−1(p, y)) = (p, py) Let v be a combing encoded by
a constant map with respect to b. Then πb(v) = 0. On the other hand πc(v) is
represented by the loop in SO(3) given by the rotation in a certain plane, hence it
is not trivial.

Finally we want to outline that the Pontryagin surgery acts transitively.

Proposition 19.44. Let v, v0 be combings of M . Then they are connected by
a finite sequence of combing Pontryagin surgeries.

Proof : Up to Pontryagin surgery we can assume that the first comparison
obstruction vanishes: α(v, v0) = 0. Fix a reference framing F0 as above. Then
combings are encoded by [M,S2] ∼ ΩF1 (M), and we can assume that v, v0 belong
to a same fibre of π : ΩF1 (M)→ Ω2(M). It remains to prove that up to further Pon-
tryagin surgeries say on v0 which stay in the given fibre, also the second comparison
invariant h(v, v0) vanishes. As α(v, v0) = 0, we can assume that v and v0 coincide
on M0 = M \ Int(B) where B is a standard 3-disk in a chart of M diffeomorphic
to R3 and moreover they are constantly equal to a base point s0 ∈ S2 on ∂B ∼ S2.
As B/∂B ∼ S3 and is endowed with the base point p0 = [∂B], then v and v0

determines two elements v̄, v̄0 ∈ π3(S2). We know that this last is isomorphic to Z
and is generated by the Hopf map h; then v̄ = nh, v̄0 = n0h. It is not hard to verify
that (with the notations of Proposition 19.42)

h(v, v0) = n− n0 mod (2d)

where d only depends on the given fibre of π. Then we are essentially reduced to
prove that starting from the map c0 : S3 → S2, c0(x) = s0, for every n ∈ Z, we
can realize a map f : S3 → S2 such that [f ] = [nh by means of a finite sequence
of Pontryagin surgeries. Assume that B ⊂ R3 is a suitably big radius; consider the
following loops in R3:

γ± : [0, 2π] 3 φ→ 3(0, cos(φ),± sin(φ)) ∈ R3 .

Parametrize a tubular neighbourhood of γ± as:

j± : [0, 2]× [0, 2π]× [0, 2π] 3 (ρ, θ, φ)→

→ (3 + ρ cos(θ))(0, cos(φ),± sin(φ)) + (ρ sin(θ), 0, 0) ∈ R3 .

Now, by taking convex combinations in S2 on the region 1 ≤ ρ ≤ 2, we can construct
a homotopy between the constant field s0 and the field

e
(0)
± (j±(ρ, θ, φ)) = (0,− sin(φ),± cos(φ)) = γ̇±(φ)/3 .

Up to rescaling the field, we can apply the Pontryagin surgery along the tube
{ρ ≤ 1}. This produces another field e(1) which coincides with e(0) outside the tube
and is given there by:

e
(1)
± (j±(ρ, θ, φ)) =
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= − cos(πρ)(0,− sin(φ),± cos(φ))− sin(πρ)(sin(θ), cos(θ) cos(φ),± cos(θ) sin(φ)) .

The value (−1, 0, 0) is regular and the inverse image is the curve

δ± : [0, 2π] 3 φ→ j±(1/2, π/2, φ) = (1/2, 3 cos(φ),±3 sin(φ)) .

By direct computation one checks that the framing on δ± is given by the normal
field

ν±(φ) = − sin(φ)

π
(1, 0, 0)− cos(φ)

2
(0, cos(φ),± sin(φ))

so that one finally checks that

lk(δ±, δ± + ν±) = ∓1 .

We can therefore conclude that starting from the constant field c0, the element
of π3(S2) which corresponds to the integer n can be realized by |n| Pontryagin
surgeries.

2

19.7. What is the simplest proof that Ω3 = 0?

We have discussed several proofs that Ω3 = 0 and of the equivalent Lickorish-
Wallace theorem on surgery equivalence. By travelling through again these proofs
we can ask about the “simplest one” that is, more precisely, the one with mini-
mal mathematical background. Rohlin’s first proof certainly uses non trivial fact
about immersions of 3-manifolds in R5. Lickorish’s proof arises as a corollary of an
important result on the surface mapping class group which nevertheless is rather
expensive if one is just interested about the corollary. The proof in [Rourke] is
certaily very simple and self-contained, provided one assumes Smale theorem. Then
the most basic proof would be obtained by combining one with minimal background
of parallelizability of 3-manifolds (as in Section 19.6) and the specialization to the
3-dimensional case of Proposition 16.8.

19.8. The bordism group of immersed surfaces into a 3-manifold

Let S be a compact boundaryless surface and M be a connected boundaryless 3-
manifold. As usual [S,M ] denotes the set of homotopy classes of maps f : S →M .
By using Section 7.8 (see in particular Remark 7.25) we know that every class
α ∈ [S,M ] contains generic immersions whose local models are the same as for
immersions in R3 described therein. Generic immersions in a given homotopy class
can be considered up to the finer relation of regular homotopy. This is a particular
case of Smale-Hirsch theory, but the resulting classification is a bit implicit; several
efforts have been made to make it more transparent. Closer to the themes of the
present text, we can consider generic immersions of compact boundaryless surfaces
into a given 3-manifold up to a notion of bordism which extends the one of embedded
bordism. In this section we mainly refer to [HH], [Pi], [BS]. We will refer to these
papers for details of some proofs. Nevertheless, we hope to eventually provide a
substantial report.

Let us recall first the notion of regular homotopy.

Definition 19.45. Let α ∈ [S,M ]; we say that two generic immersions f0, f1 :
S →M belonging to α are regularly homotopic if there are connected by a homotopy
ft, t ∈ [0, 1], such that ft is an immersion for every t. We denote by R[S,M ]α the
set of regular homotopy classes in α, and by [f ]r the class of a generic immersion
belonging to α.

Let us define now the i-bordism.
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Definition 19.46. Let fj : Sj →M , j = 0, 1, be generic immersions of surfaces
into the 3-manifold M . Then f0 is i-bordant with f1 if there is a 3-dimensional triad
(W,S0, S1) and an immersion F : W → M × [0, 1] such that F t M × {0, 1} and
fj × {j} = F|Sj , j = 0, 1.

Some first remarks:

• As usual, i-bordism is an equivalence relation. Denote by [f ]i the equivalence
class of a generic immersion f .
• If φ : S → S is a smooth diffeomorphism, then for every generic immer-

sion f : S → M , f is i-bordant with f ◦ φ: the bordism relation incorporates
reparametrizations of surfaces, so that for every immersion f , the intrinsic object
of interest is rather its image f(S) ⊂M which is a kind of singular surface in M .
• If f0, f1 : S → M are connected by a regular homotopy F : S × [0, 1] → M ,

then

F × id : S × [0, 1]→M × [0, 1]

realizes a i-bordism of f0 with f1. Hence in a sense i-bordism embodies regular
homotopy, but we stress that reparametrization is not included in the definition of
regular homotopy.
• Denote by I2(M) the set of i-bordism classes. The disjoint union defines an

abelian semigroup structure (I2(M),+) with 0 the class of the empty immersion:

[S1, f1]i + [S2, f2]i = [S1 q S2, f1 q f2]i .

A priori it is not evident that it is a group, that is it is not clear how to define the
inverses −[f ]i.
• By using 1-handles embedded in M we can define a connected sum between

immersions f1#f2 : S1#S2 →M such that

[S1#S2, f1#f2]i = [S1, f1]i + [S2, f2]i ∈ I2(M) ;

it follows that every class in I2(M) can be represented as [S, f ]i where S is con-
nected, and the operation + is induced by # as well.

We will be mainly concerned with compact 3-manifolds M and we distinguish
two cases depending onM being orientable or non orientable. WhenM is orientable,
a main ingredient of the discussion will be a certain quadratic enhancement of the
intersection form of surfaces associated to every such an immersion. We will discuss
diffusely the orientable case following [HH], [Pi], [BS]. Later we will give a few
indications about the non orientable one.

An important special case is M = S3 [Pi]. In this case, for every surface S
there is only one homotopy class of maps f : S → S3, and via the usual inclusion
R3 ⊂ R3 ∪ ∞ = S3, we easily see by transversality that R[S, S3] = R[S,R3] and
I2(S3) = I2(R3).

19.8.1. From immersions in orientable 3-manifolds to quadratic en-
hancements of surface intersection forms. Let us recall the current setting:
• M is an orientable connected compact boundaryless 3-manifold;
• S is a compact and boundaryless surface, not necessarily orientable. For a

while we will assume also that S is connected.
• f : S →M is a generic immersion.

We know that M is parallelizable, so let us fix an auxiliary framing F of M ,
that is a trivialization of the tangent bundle T (M), considered up to homotopy of
framings. This includes also the choice of an orientation of M . The framing F can
be equivalently identified with an ordered triple F = (v, w, z) of pointwise linearly
independent tangent vector fields on M . By taking an auxiliary riemannian metric
g on M , we can also assume that these fields are pointwise orthonormal.
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Let K be a smooth knot in M (K ∼ S1). Give K an auxiliary orientation.
The restriction of v along K can be considered as a map v : K → S2, then up to
homotopy of framings we can assume that v coincides along K with the positive
unitary tangent field on K; thus nF := (w, z) is along K an ordered couple of
pointwise orthonormal vectors normal toK, i.e. it is a normal framing; it determines
a tubular neighbourhood N(K) of K in M equipped with a trivialization. If n =
(w1, z1) is any other normal framing along K, then by using nF as a reference,
we encode n by a map ρ : K → SO(2) ∼ S1 and we associate to n the degree
φ(n) := degZ(ρ) ∈ Z, so that obviously φ(nF ) = 0. This number can be equivalently
obtained as follows. The framing nF , that is its first component w, determines a
longitude lF on ∂N(K) oriented in such a way that the projection onto K is of
degree 1. Another framing n also determines a longitude ln. Then

φ(n) = [ln] • [lF ] ∈ Ω0(∂N(K)) ∼ Z

where ∂N(K) is endowed with the boundary orientation.
We say that n differs from nF by φ(n) positive or negative twists along K.

Clearly we can modify n by adding an arbitrary number of twists. We stipulate
that nF is the basic odd normal framing of K determined by F and that a normal
framing is odd if it differs from nF by an even number of twists. Otherwise a
framing is even. So we have distributed the normal framings to K into two classes;
we note that these classes of odd/even framings do not depend on the choice of the
auxiliary orientation on K. If we apply this construction to S1 = ∂D2 ⊂ R2 ⊂ R3

with respect to the standard constant framing of R3, we realize that even (resp.
odd) normal framings along S1 are characterized by the property that they cannot
(they can) be extended to a framing of the restriction of T (R3) to the spanning
2-disk D2. The typical even framing along S1 has as field w the ingoing normals to
S1, tangent to D2; the associated longitude is determined by a collar of S1 in D2.

Consider now a smooth circle C on the surface S. By trasversality we can
assume that the restriction f|C of the immersion is an embedding of C onto a knot
K ⊂ f(S) ⊂ M which extends to an embedding of a tubular neighbourhood U(C)
of C in S onto a band B(K) in f(S), with core K. We can assume that B(K)
is the transverse intersection with f(S) of a neighbourhood N(K) of K in M as
above. We can apply to this knot K the above considerations. Give C, hence
K an auxiliary orientation. Let us orient ∂B(K) in such a way that the natural
projection onto its core K is a degree-2 covering. Fix an even normal framing Fe
along K, with associated longitude lFe . For every normal framing n define as above
φe(n) ∈ Z with respect to Fe. We can consider the integer

[∂B(K)] • [lFe ] ∈ Ω0(∂N(K)) ∼ Z .

Then set

qf (C) := [∂B(K)] • [lFe ] mod(4) .

If U(C) is annular, then a normal framing, say u, of C in S gives rise to a normal
framing nf = (w, z) ofK inM , provided that w is the immage of u by the differential
of f , and (v, w, z) agrees with the given orientation of TxM along K, where v is
tangent to K as above. Then

[∂B(K)] • [lFe ] = 2φe(nf ) .

We can say that qf (C) counts the number mod(4) of half-twists the band B(K)
makes along its core K. The same interpretation makes sense also when U(C) is a
Möbius strip. In this case [∂B(K)] • [lFe ] is odd.

Remark 19.47. If M = R3, qf (C) is the linking number mod(4) between
∂B(K) and the core K of the band (co-oriented as before).
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If L = qjCj is the finite disjoint union of smooth circles on S, set

qf (L) =
∑
j

qf (Cj) .

We have

Lemma 19.48. (1) The procedure described above well defines a function qf
which associates to every finite disjoint union of smooth circles on the surface S
considered up to ambient isotopy, an element qf (C) ∈ Z/4Z.

(2) The function qf verifies the conditions stated at the end of Chapter 15;
hence by setting for every α ∈ η1(S), qf (α) := qf (C), where C is any smooth circle
on S representing α, we well define a quadratic enhancement of (η1(S), •S).

As for item (1), it is a bit complicated to show that qf (C) in invariant up to
ambient isotopy. In fact a generic isotopy between two copies of C which embed in
M by the restriction of f , might pass though non injective immersions and we have
to check that this accidents are immaterial with respect to the value of qf . As for
item (2), basically one is reduced to a local analysis at a single crossing point (by
the way also the choice of the simplification of the crossing turns to be immaterial
out); this is not very hard. We left the details as an exercise.

2

Remarks 19.49. 1) The choice of the framing F is not immaterial, in the sense
that the quadratic form qf mights depend on such a choice. However, it will be
immaterial with respect to the statement of main Theorems 19.50 and 19.54. In the
case of S3 = R3 ∪∞ we will deal with the unique framing (up to homotopy) of R3.

2) The above construction would be placed in a more conceptual framework
in terms of spin structures on M and induced pin− on S. In fact (addressed to
a reader who knows this matter), given f : S → M as above, as M is oriented,
f∗T (M) = T (S) ⊕ Λ(S) where this last is the determinat bundle of S. For every
spin structure Θ on M , we have the pull-back spin structure f∗(Θ) on f∗T (M),
and there is a natural bijection between the spin structures on T (S)⊕Λ(S) and the
pin− structures on S; moreover these last are in natural bijection with the quadratic
enhancements of the intersection form of S. Rather than the framing F itself, above
we have used the spin structure carried by it. In this framework the statement of
last lemma becomes conceptually clear and even simpler to prove. However, to
our present aims we have preferred the above direct operative presentation, without
introducing the general theory. A reader interested to it is mainly addressed to
[KT].

3) The constructions of the present section work as well if M is any framed
3-manifold, not necessarily compact.

19.8.2. Adding kinks. Let f : S →M be a generic immersion, S connected.
Let C be a smooth circle on S such that f restricts to an embedding of a small
tubular neighbourhood U(C) of C in S. We are going to modify the immersion f
by adding a kink along C. This nice and crucial construction has been introduced
in [HH]. Denote by K = f(C), B(K) = f(U(C)). U(C) either is an annulus or a
Möbius strip. As M is orientable, then any tubular neighbourhood N(K) of K in
M is diffeomorphic to the product S1 ×D2. As usual we can assume that ∂N(K)
is transverse to f(S) and that B(K) = N(K)∩ f(S). We have two possible models
for the pair (N(K), B(K)), depending on U(C) being orientable or not. Consider
(D2, X) where X = {(x1, x2) ∈ D2;x1x2 = 0}. X = X1 ∪ X2, X1 = {x2 = 0},
X2 = {x1 = 0}.
• If U(C) is an annulus then the model for (N(K), B(K)) is the mapping

cylinder of id : (D2, X1)→ (D2, X1).
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Figure 1. A kink box.

• If U(C) is a Möbius strip then the model for (N(K), B(K)) is the mapping
cylinder of −id : (D2, X1)→ (D2, X1).

Accordingly there are two models for adding a kink along C. Let X̃1 be the
image of an immersion α : [−1, 1] → D2 such that X̃1 is contained in x2 ≥ 0, is
symmetric with respect to the x2-axis, has one double point, and coincides with the
inclusion of X1 near the end-points. Denote by −X̃1 its image by −id.

If U(C) is an annulus the kink model is very simple: take the mapping cylinder

of id : (D2, X̃1)→ (D2, X̃1).
If U(C) is a Möbius strip, then the kink model is more complicated (see [HH]

pages 104-105); one constructs a so called “kink box” that is a determined immersion
of the 2-disk in D3 with one triple point. A way to visualize this immersion is given
in Figure 1. First we consider the immersion of D2 into D3 = D2 ×D1 described
by the movie in the first two rows; it results the bottom left-hand picture; then we
apply an isotopy to it and reach the eventual kink box of the bottom right-hand
picture. We can consider it as an immersion X1 × [−1, 1] in D2 × [−1, 1] such that
for some ε > 0:

(1) The image of X1 × [−1,−1 + ε] coincides with the embedding of X̃1 ×
[−1,−1 + ε];

(2) The image of X1×[1−ε, 1] coincides with the embedding of −X̃1×[1−ε, 1];
(3) The image along the boundary of D2× [−1, 1] coincides with the inclusion

of X1 × [−1, 1];
(4) There is one triple point in the middle.

Denote by Z the image of this immersion.
Then the kink model is obtained by taking

(D2 × [0, 1], Z)/(x1, x2, 0) ∼ (−x1,−x2, 1) .

Z projects to a new immersion of U(C) which agrees with B(K) along the boundary.
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By using these models we can modify the given immersion f : S →M just along
U(C) and get fC : S →M . It is clear by the construction that fC is homotopic to
f .

19.8.3. Determination of R[S,M ]α. We give here a first remarkable appli-
cation of adding kinks. Let f : S →M be a generic immersion as above and qf the
associated quadratic enhancement of (η1(S), •S). We know by Lemma 15.22 that
every other enhancement is abstractly of the form

q′(x) = qf (x) + 2x • u
for a unique u ∈ η1(S). Adding kinks is a natural way to realize it geometrically, by
keeping the homotopy class α of f fixed. Assume that u = [C], C being a smooth
circle on S to which we can apply the kink construction. If C ′ is another smooth
circle on S which intersects transversely C at one point. Denote as above U(C ′) a
small tubulat neighbourhood of C ′ in S. Then it is immediate that f(U(C ′)) and
fC(U(C ′)) differ by one full twist. Recalling the geometric definition of qf in terms
of counting half twists mod (4), one easily realizes that

qfC ([C ′]) = qf ([C]) + 2[C ′] • [C] mod(4)

as desired.
This result is the key to prove

Theorem 19.50. Let S be a compact connected boundaryless surface, α ∈
[S,M ]. Denote by Q(S) the set of quadratic enhancements of (η1(S), •S). Then
the map

q : R[S,M ]α → Q(S), q([f ]r) = qf

is well defined and bijective.

Proof : An outline: it is not hard to check that it is well defined. We already
know that the map q is onto. The proof that it is injective is non trivial and
consists in rephrasing Smale-Hirsch immersion theory in terms of the quadratic
enhancement. This theory provides a simply transitive action of η1(S) on R[S,M ]α;
a main result of [HH] is that this action can be realized by adding kinks as well as
the one on Q(S); so eventually q is an equivariant bijection.

2

Figure 2. Immersed tori.

Remarks 19.51. (Basic immersed surfaces in R3) We refer to [Pi].
1) By Theorem 19.50, R[S2,R3] is trivial i.e. it is reduced to one point. A

regular homotopy connecting the standard inclusion i of S2 in R3 with −i is called
a sphere eversion whose surprising existence was discovered by S. Smale [S0].

2) The elementary surface bricks, besides the sphere, are the torus S1 × S1

and the projective plane P2(R). We denote by T the standard embedding of the
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Figure 3. Boy’s surface.

torus in R3 bounding a solid torus. We denote by T̃ the immersion obtained by
adding a kink along a meridian of T and then along the priviliged longitude of
T which bounds a 2-disk in the complement of the solid torus. These realize the
two quadratic enhancements of (η1(S1 × S1), •) (up to isometry) - T and T̃ are
illustrated in Figure 2.

There is a famous immersion of the projective plane with one triple point called
Boy’s surface - see for instance the body and the references of [Ap]). Figure 3
suggests how to construct it. Such an immersion denoted by B and B̄ the mirror
of B, that is B composed with a reflection at a hyperplane of R3, realize the two
quadratic enhancements of (η1(P2(R), •).

19.8.4. Determination of (I2(M),+). First we will point out a few invari-
ants up to i-bordism.

The Arf-Brown invariant. Let f : S → M be a generic immersion, S
connected, with the associated qf . Accordingly with section 15.6, we can consider
the Arf-Brown multiplicative invariant

γ(f) := γ(qf ) ∈ U8 ∼ Z/8Z
where for simplicity we have written γ(qf ) instead of γ(S, •S , qf ). If f : S → M ,
where S = qjSj is union of several connected components, then set

γ(f) :=
∏
j

γ(fj)

where fj = f|Sj . We have

Lemma 19.52. Let fj : Sj → M be generic immersions, j = 0, 1. If [f0]i =
[f1]i, then γ(qf0

) = γ(qf1
).

Proof : Let (W,S0, S1), F : W → M × [0, 1] be as in Definition 19.46, and let
t : M × [0, 1] → [0, 1] be the projection. Without loss of generality we can assume
that t ◦ F is a Morse function on the triad. Then consider the possible accidents
when passing though a critical point of t ◦ F . Modifications occur locally in a
chart of M at the critical point. We use the notations of Remark 19.51. At local
minima/maxima a new spherical component appears/disappears. For the other
kinds of critical point, there are three possibilities:

- one performs the immersed connected sum of two components of the surface;
- one performs the connected sum with either a standard torus T or a Klein

bottle immersion B#B̄.
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In every case the value of γ does not change (for all details one can see [Pi], pp.
432-433).

2

So we have detected a first main U8-valued invariant γ([f ]i) defined on I2(M).

From now on we will use the standard isomorphism U8 ∼ (Z/8Z,+) and hence
adopt the additive notation.

Other invariants. Let f : S → M be a generic immersion (S not necessar-
ily connected). It is obvious just by forgetting part of the structure of [f ]i, that
[f ] = [S, f ] ∈ η2(M) is invariant under i-bordism. Recall the quotient module
H1(M,Z/2Z) of η1(M) = η2(M) defined in Corollary 13.3; recall also that the cup
product t descends to this quotient with values in η2(M) = η1(M). Keep the
notation [f ] for its image in H1(M,Z/2Z).

Denote by Σ ⊂ S the non-injectivity locus of f . We claim that the image
Σf := f(Σ) determines an element [Σf ] ∈ η1(M). In fact the components of
f−1(Σf ) are of two kinds:

1) they are member of a couple C̃ = C q C ′ such that f(C) = f(C ′) and f is
generically 1− 1 on such a C. In such a case select one C in each couple;

2) Components C̃ such that C̃ = f−1(f(C̃)) and in such a case f is generically

2-1 on C̃.

Then select one component C in every couple C̃ of the first kind; for the second
kind one finds a quotient C of C̃ such that f induces a map (we keep the name)

f : C →M , such that f(C) = f(C̃) and f is generically 1-1. Then set

[Σf ] :=
∑
C̃

[C, f ] ∈ η1(M) .

The triple points of f(S) determines a class tf ∈ η0(M) ∼ Z/2Z. We have

Lemma 19.53. If [f0]i = [f1]i, then [Σf0 ] = [Σf1 ] ∈ H1(M,Z) and tf0 = tf1 ∈
η0(M).

Proof : Let (W,S0, S1), F : W → M × [0, 1] be as in Definition 19.46. We can
assume that also F is generic. Then F (ΣF ) is a kind of singular surface properly
embedded into M × [0, 1] such that F (ΣF ) ∩ (M × {0, 1}) = f0(Σ0) q f1(Σ1); by
using the regular surface F−1(ΣF )) we can explicitly define a triad which connects
the sum of the components that form [Σf0

] and [Σf1
] respectively. Similarly for the

triple points.
2

Consider the product

Γ(M) = η1(M)×H1(M,Z/2Z)× Z/8Z
endowed with the twisted group structure defined by the operation:

(δ, h, a) + (δ′, h′, a′) := (δ + δ′ + h t h′, h+ h′, a+ a′) .

We can state now the main result of this section.

Theorem 19.54. The map ψ : I2(M)→ Γ(M) well defined by

[f ]i → ([Σf ], [f ], γ(f))

is a semigroup isomorphism. In particular the semigroup (I2(M),+) is a group.
Moreover, the invariant t[f ]i is determined by the others.

The rest of this section is occupied by the proof of Theorem 19.54. It is imme-
diate that φ is a semigroup homomorphism.

The 3-sphere. If M = S3, Theorem 19.54 specializes to
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Theorem 19.55. The map φ : I2(S3) → Z/8Z, φ([f ]i) = γ(f) is a group
isomorphism.

Proof : This is a main result of [Pi] to which we refer for all details. We can
use R3 instead of S3. Note that we know a priori that I2(R3) is a group : inverses
are obtained by mirror image along a hyperplane. By using connected sums (or
disjoint unions) of the basic immersed surfaces of Remark 19.51 it is easy to prove
that φ is onto. By Proposition 19.50 (and the classification of surfaces) one realizes
that every generic immersion f : S → R3 is regularly homotopic to a connected sum
of several copies of the standard embedding T and one among the following eight
surfaces

B, B̄, K0, K+, K−, K+#B, K0#T̃ , K−#B̄

where K0 = B#B̄, K+ = B#B, K− = B̄#B̄. Up to i-bordism the T -components
are immaterial and one eventually gets that eight explicit generators suffice and this
achieves the desired bijection onto Z/8Z.

2

The map ψ is onto. Let us prove now in general that the map ψ is surjective.

Lemma 19.56. The map ψ : I2(M)→ Γ(M) is onto.

Proof : As M = M#S3, we see that I2(M) contains the subgroup I2(S3); it
consists of the classes with a representative contained in a 3-disk of M .

It contains also the subset E(M) given by the classes which are represented by
embedded surfaces. By the description of H1(M,Z/2Z) as the embedded surfaces in
M up to embedded bordism, we see that E(M) is in fact the image of H1(M,Z/2Z)
in I2(M) by a natural quotient map.

Let (δ, h, a) ∈ Γ(M). Represent h by an embedding e : S →M . Represent δ by
a knot K in M . Consider the boundary T ∼ S1×S1 of a tubular neighbourhood of
K in M . Add a kink along a longitude K ′ of K on T and get a generic immersion
j : T → M . By construction δ = [Σj ], while [j] = 0 ∈ H1(M,Z/2Z), hence
[j] t [e] = 0. By the elementary fact that γ is onto in the case of S3, there is
s : S → S3 such that γ(s) = a− γ(e) + γ(j). Clearly [s] = 0 and [Σs] = 0. Finally

ψ([j]i + [e]i + [s]i) = (δ, h, a) .

2

A normal decomposition of i-bordism classes. Now the idea is that every
[f ]i admits a certain normal decomposition modelled on the classes used to prove
that ψ is onto. Precisely we have the following key proposition.

Proposition 19.57. Every [f ]i can be represented by a sum

[f ]i = [j]i + [e]i + [s]i

where j : T →M is obtained by adding a kink along a longitude K ′ on the boundary
T of a tubular neighbourhood of a knot K in M , [e]i ∈ E(M), [s]i ∈ I2(R3) where
R3 is a chart of M . Moreover, we can choose the decomposition in such a way that
qj(K

′) = 0 hence so that γ(j) = 0.

Proof : We will proceed in several steps. We adopt the notations of Remark
19.51, in particular B, B̄ are the two versions of Boy’s surface.

Step 1. [f ]i = [f ′]i + [s]i, where f ′ has no triple points and [s]i ∈ I2(R3).
Notice that K0 = B#B̄ is regularly homotopic to the usual immersion of the

Klein bottle in R3 without triple points (and a plane of symmetry) and recall that
[K0]i = 0. Similarly if x0 is a triple point of f , either f#B or f#B̄ is regularly

homotopic to f̃ with one triple point less than f , and either [f ]i = [f̃ ]i + [B̄]i or

[f ]i = [f̃ ]i + [B]i. So the step is achieved by induction on the number of triple
points.
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Then the double line locus Σf ′ consists of the disjoint union of a finite number
of embedded circles in M . If K is such a circle, then it has a neighbourhood in
f(S) which is a bundle over K, sub-bundle of a tubular neighbourhood of K in M ,
with fibre isomorphic to X = {(x1, x2) ∈ D2; x1x2 = 0}. We can count the number
mod(4) of quarter turns this configuration does when moving along K . Denote it
by l(K) ∈ Z/4Z; it characterizes the bundle. The cases l(K) = 0, 2 correspond to
the situation where f ′ : (f ′)−1(K)→ K is a trivial double covering; if l(K) = 0 then
the two components of this inverse image have annular tubular neighbourhoods in
S′; if l(K) = 2, both have Möbius strip neighbourhoods. The cases l(K) = 1, 3
correspond to a non trivial double covering.

Step 2. [f ]i = [f ′]i + [s]i as in Step 1 and moreover we can require that Σf ′ is
connected.

If Σf ′ is not connected, there are two components K and K ′ and points p ∈ K,
p′ ∈ K ′ belonging to the closure of a same connected component of M \ Im(f ′). So
there is a smooth simple arc σ in M , connecting p and p′ and without any further
intersection with Im(f ′). Locally in chart of M at p, the image of f ′ looks like two
transverse planes P1 and P2. Similarly at p′, with planes P ′1 and P ′2. Remove from
the image of f ′ the intersection, say Bp, of the interior of a small 3-ball centred at
p, with transverse boundary spheres. The closure of Bp is the union D1 ∪ D2 of
two 2-disks, Dj ⊂ Pj , j = 1, 2, which intersect transversely at a segment of K. Do
similarly at p′. Possibly up to reordering the planes, we can attach two embedded
1-handles Hj along the arc σ, j = 1, 2, with attaching tube Ta,j = Dj ∪ D′j , and
transverse b-tubes such that Tb,1 t Tb,2 consists of two disjoint double arcs having
as endpoints the four points of (D1 ∩ D2) ∪ (D′1 ∩ D′2). Ultimately, (up to corner
smoothing) we get the immersed surface

Im(f̃) := (Im(f ′) \ (Bp ∪Bp′)) ∪ (Tb,1 ∪ Tb,2)

which by construction is i-bordant with f ′, alike f ′ has no triple points, the two
knots K and K ′ of Σf ′ have fused into one knot K ′′ of Σf̃ , so that this last has one
compent less. The step is achieved by induction on the number of components of
Σf ′ . We stress that by the above construction we have furthermore that

l(K”) = l(K) + l(K ′) .

Step 3. Let [f ]i = [f ′]i + [s]i be as in Step 2 (i.e. with Σf ′ = K connected)
and assume that l(K) = 0, 2. Then it is not restrictive to assume that l(K) = 0.

By using the results about the group I2(R3) we see that there is an immersion
s0 of the Klein bottle in a chart of M , without triple points and having connected
Σs0 = K0 such that l(K0) = 2. Take

[f ′#s0]i + [s]i − [s0]i = [f ]i

and apply Step 2 to f ′#s0. This achieves the step.

Let [f ]i = [f ′]i + [s]i be as in Step 3, so that l(K) = 0. Set qf (K) := qf (C),
where C is a component of (f ′)−1(K). It is well defined and either qf (K) = 0 or
qf (K) = 2.

Step 4. Let [f ]i = [f ′]i + [s]i be as in Step 3, so that l(K) = 0. Then it is not
restrictive to assume that qf (K) = 0

There is an immersion s1 of the torus in a chart of M , without triple points
and with connected Σs1 = K1 such that l(K1) = 0 and qs0(K1) = 2. If qf (K) = 2,
take

[f ′#s0]i + [s]i − [s0]i = [f ]i

and apply Step 2 to f ′#s0. This achieves the step.



19.8. THE BORDISM GROUP OF IMMERSED SURFACES INTO A 3-MANIFOLD 281

Step 5. Let [f ]i = [f ′]i + [s]i be as in Step 2 (i.e. with Σf ′ = K connected)
and assume that l(K) = 0, 2. Then Proposition 19.57 holds in this case.

By Steps 3 and 4 we can assume that l(K) = 0 and qf (K) = 0. Perform a
Rohlin surgery along K (recall Section 7.9). This splits f ′ in two disjoint immersed
surfaces: an embedding e and the immersion j of torus having as immage a product
sub-bundle of (the interior of) a tubular neighbourhood N(K) of K in M with
fibre a lemniscate; the germ of j along K equals the germ of f ′. It is easy to see
that j is obtained by adding a kink along a longitute C on the boundary T of a
smaller tubular neighbourhood N ′(K) ⊂ N(K) and that qT (C) = qf (K) = 0. By
construction [f ]i = [j]i +[e]i +[s]i. The Proposition is proved under such restrictive
hypotheses.

Figure 4. An auxiliary immersed surface.

To proceed we need the following lemma.

Lemma 19.58. There is an immersion s2 in R3 of a surface F of Euler-Poincaré
characteristic χ(F ) = −1 such that:

1) s2 has one triple point;
2) Σs2 consists of the union of a smooth circle K2 endowed with an X-bundle

neighbouhood in the image of s2 such that l(K2) = 1, and a lemniscate in a 2-disk
D contained in the image of s2, intersecting K at the triple point; D is transverse
to K and the germ of the lemniscate at the triple point is a fibre of the X-bundle
along K.

Proof : First we construct an immersion of a surface G with boundary in
D2 × D1. This is given by the movie of Figure 4. Note that at the initial time
t = −1 and at the final time t = 1 of the movie we see two copies of a same
lemniscate L; in the final configuration L is encircled by a smooth circle c. Finally
we complete G by filling the curve c by a 2-disk, and identifying by the identity of
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R2 the two copies of L over −1 and 1 respectively. One readily check that this is
the image of an immersion of a surface F with the required properties.

2

We denote by s̄2 the mirror image of the immersion s2 as above.

Step 6. Proposition 19.57 holds in full generality.
It remains to prove it when [f ]i = [f ′]i+[s]i is again as in Step 2, but we assume

now that l(K) = 1, 3. Let l(K) = 1. By realizing s2 in a chart of M , take

[f ′#s̄2]i + [s]i + [s2]i = [f ]i

and apply Step 2 to f ′#s̄2. In this way we reach a decomposition [f ]i = [f”]i +[s′]i,
where Σf” is qualitatively similar to the one of s2, that is it consists of the union of a
smooth circle K” endowed with an X-bundle neighbouhood in the image of f” and
a lemniscate in a 2-disk D contained in the image of f”, intersecting K” at one triple
point; D is transverse to K” and the germ of the lemniscate at the triple point is a
fibre of the X-bundle along K”. Moreover, l(K”) = 0. By applying Step 4, we can
also assume that qf”(K”) = 0. Now, although there is a triple point, we can apply
Steps 5 along K”. This produces a decomposition of the form [f ]i = [j]i +[g]i +[s′]i
where [j]i has the required final properties, while Σg is contained in D and consists
of the union of a lemniscate fibre of j an two further simple double circles. We
can eliminate such circle by applying again Steps 4, 5; eventually we get a required
decomposition

[f ]i = [j]i + [e]i + [s”]i .

If at the beginning l(K) = 3, we manage similarly by exchanging the roles of s2

and s̄2 respectively. This achieves Step 6.

Remark 19.59. We stress that when l(K) = 0, 2, the images of j and e in the
normal decomposition obtained above are disjoint. When l(K) = 1, 3, they intersect
producing one triple point. In the first case [Σf ] • [f ] = 0 ∈ η0(M) ∼ Z/2Z, in the
second [Σf ] • [f ] = 1.

The proof of Proposition 19.57 is now complete.
2

The map ψ is injective. We have

Lemma 19.60. The map ψ : I2(M)→ Γ(M) is injective.

Proof : We can use normal decompositions of i-bordism classes. Assume that

ψ([j]i + [e]i + [s]i) = ψ([j′]i + [e′]i + [s′]i) .

As [e] = [e′] ∈ H1(M,Z/2Z) then they are bordant by means of an embedded
bordism, hence γ(e) = γ(e′). As γ(j) = γ(j′) = 0, then γ(s) = γ(s′) and by
Theorem 19.55, we have [s]i = [s′]i. It remains to prove that [j]i = [j′]i. Now
[j]i + [j′]i = [j#j′]i and this last can be obtained from the embedding T #T ′ by
adding kinks along two disjoint circles K ′, K” at which the quadratic enhancement
vanishes. Let C be a smooth circle on T #T ′ such that [K ′] + [K”] = [C] ∈
η1(T #T ′). Then up to regular homotopy j#j′ can be obtained by adding a kink to
T #T ′ along C. It follows from the hypotheses that [C] = 0 ∈ η1(M) and that the
quadratic enhancement of T #T ′ vanishes on C. We claim that in such a situation
[j#j′]i = 0. As the same considerations hold for [j#j]i, we will eventually concude
[j]i = −[j]i and hence that [j]i = [j′]i as desired.

We need the following lemma.

Lemma 19.61. Let F be a compact surface with connected boundary embedded
into a framed 3-manifold N (F might be non orientable and N non compact). Then
the normal framing of C = ∂F determined by a collar in F is even with respect to
the ambient framing.
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Proof : We can extend the embedding of F to a generic immersion of the double
D(F ) of F into N . If F is orientable, up to corner smoothig, we can take the
boundary of a tubular neighbourhood of F in N ; if F is not orientable, we can take
an immersion which looks like in the orientable case along the boundary and have
double lines in the interior of F . We use the ambient framing to define a quadratic
enhancement qD(F ) of the intersection form of the double. As [C] = 0 ∈ η1(D(F )),
then qD(F )(C) = 0. This means exactly that the collar normal framing is even.

2

To simplify the notations, denote by f : S → M the embedding T #T ′, so
that qf (C) = 0. As [C] = 0 ∈ η1(M), then there is a (possibly non orientable)
embedded Seifert surface F ⊂ M such that ∂F = C. Apply Lemma 19.61 to F .
As also qf (C) = 0, then both the normal framings of C determined by a tubular
neighbourhood in S and by a collar in F respectively differ to each othet by an even
number of twists. It follows that we can “roll up” F in a tubular neighbourhhod
U of C in M , in such a way that F is transverse to S along C, and intersects
transversely S outside U .

Assume first that F = D is a 2-disk. Let τ be a Dehn twist on S along C. For
every α ∈ η1(S),

τ∗(α) = α+ ([C] • α)[C] .

As qf (C) = 0, by recalling the geometric definition of qf , we readily see that

qfC = qf◦τ .

We claim that fC and f ◦τ are homotopic (equivalently f and f ◦τ are homotopic).
To prove the last statement, let U denote now a tubular neighbourhhod of C in S;
there is a natural map h : U → D which realizes a homotopy to a point of f|C .
Then f and f ◦ τ are homotopic to maps f ′ and f” such that:

- they coincide outside U ;
- f ′U and f”U factor though h.
Since D is contractible they are homotopic relatively to S \ U . By Theorem

19.50, [fC ]r = [f ◦ τ ]r, hence [fC ]i = [f ]i.

It remains to reduce to such a special case F = D. To this aim, consider a
generic Morse function

r : F → [0, 1]

such that r−1(0) = C and r has no minima and only one maximum. Then we can
find a non critical value λ ∈ [0, 1) such that D = r−1([λ, 1]) is a 2-disk embedded in

M with boundary denoted by Ĉ. By following the level lines of r between 0 and λ we

can modify (S, f, C) into a (Ŝ, f̂ , Ĉ) such that [f ]i = [f̂ ]i. Between two consecutive
critical values we can extend the isotopy between level lines to a diffeotopy of M . At
a critical point the analysis is local in a chart of M : the critical level of r containing
a crossing point x0 is contained in a “critical” surface S′ with one isolated singular
point at x0 isomorphic to a cone centred at x0 and bases at two disjoint circles; F
and S′ intersect along such a critical level, transversely outside x0. By such a local

analysis one realizes that qf̂ (Ĉ) = 0 and that [fC ]i = [f̂Ĉ ]i. So we have reduced to

the special case F = D and the Lemma is proved.
2

The proof of the main Theorem 19.54 is now complete.
2

19.8.5. More quasi-framing. Now we give a further proof of the existence
of a quasi-framing on M based on some constructions established in Section 19.8.1.
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By contradiction, assume that there is v such that

β := ω2(ξv) 6= 0 .

Let K be an oriented knot in M which represents e2(ξv). By forgetting the orien-
tation, K represents ω2(ξv). Then it follows from the hypotheses that (see Section
19.6.2):

(1) There is a framing F ′ of T (M) over M \K.
(2) There is a (possibly non orientable) compact boundaryless surface F em-

bedded into M such that F t K at exactly one points.

Let N(K) ∼ S1 × D2 be a tubular neighbourhood of K in M transverse to
F . By removing the interior of N(K) from F , we can assume to get a surface F0

properly embedded in

M ′ := M \ Int(N(K))

such that C := ∂F0 is a meridian of ∂N(K) bounding a fibre D of N(K). As in
Section 19.8.1, we can use the framing F ′ to construct a quadratic enhancement
of the intersection form of every surface immersed into M ′. By Lemma 19.61, we
see that the normal framing of C determined by a collar of C in F0 - equivalently
by a collar of C in the meridian disk D - is even with respect to F ′, and it is also
even with respect to a framing of a 3-ball containing D. Then the normal framing
determined by F ′ is odd within the 3-ball, consequently F ′ can be extended over a
neighbourhood U ∼ D× [−1, 1] of D in N(K); as the closure of N(K)\U is a closed
3-ball, we have eventually obtained an almost-framing of M . By Lemma 19.21 and
(1) ⇒ (5) of Theorem 19.37, we get that ω2(ξv) = 0 againts the assumption that
ω2(ξv) 6= 0. This is a contradiction.

2

19.8.6. On I2(M) for a non orientable 3-manifold. If M is non orientable
the structure of I2(M) is eventually simpler. Consider the product

Γ0(M) = η1(M)×H1(M,Z/2Z)× Z/2Z

with the twisted group structure given by the operation

(δ, h, a) + (δ′, h′, a′) := (δ + δ′ + h t h′, h+ h′, a+ a′) .

Then we have [G]

Theorem 19.62. Let M be a non orientable compact connected boundaryless
3-manifold. The map

ψ0 : I2(M)→ Γ0(M), ψ0([S, f ]i) = ([Σf ], [f ], χ(2)(S))

is a well defined semigroup isomorphism (hence I2(M) is eventually a group).

To a large extent the proof is an adaptation of the above one when M is ori-
entable, but one has to face several differences (the existence of knots in M with
solid Klein bottle tubular neighbourhoods, the absence of framing of M and so on).
The basic reason for the final simpler form of I2(M) is that the subgroup of the
immersed surfaces in a 3-ball of M is a quotient of I2(R3) ∼ Z/8Z isomorphic to
Z/2Z. For I2(R3) is generated by the Boy surface B and as M is non orientable
there is a diffeotopy of M which sends a 3-disk of M containing a copy of B into
itself reversing the orientation; hence [B]i = [B̄]i = −[B]i.
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19.9. Tear and smooth-rational equivalences

The notion of blowing up a manifold along a smooth centre has been defined in
Section 7.10.1. In Section 15.5 we have interpreted the stable equivalence between
surfaces in terms of blowing up of points which are the only possible smooth cen-
tres in such a case. If M is now a compact boundaryless 3-manifold besides the
points we have also any link of knots in M as a possible smooth centre. In this
section, referring to [BM], we widely study some equivalence relations generated by
blowing up 3-manifolds along smooth centres (and diffeomorphisms). We will dis-
cuss also applications of this study to the so called 3-dimensional Nash’s rationality
conjecture.

19.9.1. 3-dimensional blowing-up-or-down. We denote by M3 the class
of all compact connected boundaryless 3-manifolds. Let M be such a manifold. A
possible smooth centre X of a blow up

π : B(M,X)→M

is either a finite set of points or a link of a finite number of pairwise disjoint knots in
M , L = K1 ∪ · · · ∪Ks. We know that DX := π−1(X) is a hypersurface of B(M,X)
called the exceptional hypersurface. We also say that M is obtained by blowing
down M̃ := B(M,X) along the hypersurface DX .

For simplicity let us analyse connected centres. A connected smooth centre
in M is either a point or a knot K. We know that the effect of blowing up one
point consists (up to diffeomorphism) in performing a connected sumM#P3(R), the
exceptional hypersurface being a one-side projective plane P2(R) that is a projective
plane with oriented tubular neighbourhood.

As M is not necessarily orientable then a knot K either preserves the orien-
tation, that is it has a solid torus tubular neighbourhood in M , or it reverses the
orientation, that is it has a solid Klein bottle tubular neighbourhood in M . In the
first case the exceptional hypersurface DK in B(M,K) is a one-side torus. In the
second it is a one-side Klein-bottle. Reciprocally we have

Proposition 19.63. Let M̃ be in M3 and Y be a hypersurface of M̃ which is
either a projective plane with oriented tubular neighbourhood, a one-side torus or
a one-side Klein bottle. Then there exists M in M3 and a smooth centre X ⊂ M
such that M̃ = B(M,X) and Y = DX .

Proof : If Y ∼ P2(R) with orientable tubular neighbourhood N(K), then

N(K) ∼ P3(R) \ Int(B) where B is a 3-ball. Then M̃ = M#P3(R) for some M so

that M̃ is the blow up of M at a point.
The standard model of a tubular neighbourhood of a one-side torus is obtained

by taking the blow up

π : N := B(D2 × S1, {0} × S1)→ D2 × S1 .

Denote by p : D2 × S1 → S1 the natural projection, D2
x = p−1(x). N is diffeomor-

phic toM×S1,M being a Möbius strip, with natural projection p̃ :M×S1 → S1

such that p̃ = p ◦ π; for every x ∈ S1, Mx = p̃−1(x) = B(D2
x, {0} × {x}). On the

torus ∂N ∼ ∂D2×S1 it is defined the involution τ which restricts to the antipodal
one on every ∂D2

x. N (and coherently every Mx) can be identified with the map-
ping cylinder of τ . The exceptional hypersurface is the torus D = s0 × S1, where
s0 = π−1({0}×{x0}) and x0 is a base point on S1. The mapping cylinder structure
realizes also N as being a tubular neighbourhood of D, endowed with its projection
q : N → D. The restriction of q to ∂N is a fibred double covering of D.

If Y ⊂ M̃ is a one-side torus, there are in fact several ways to fix a parametriza-
tion

φ : (N,D)→ (N(Y ), Y )
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so that the blow down π : N → D2 × S1 gives rise to a blow down π : M̃ → M ,
for some M in M3, where (N(Y ), Y ) is mapped onto (N(K),K), K is a knot in
M which preserves the orientation and N(K) is a tubular neighbourhood of K in
M . To do it assume that N(Y ) is constructed by using a normal line bundle ξ on

Y in M̃ . By hypothesis, the Euler class ω1(ξ) 6= 0. Fix any fibration Fs of Y by
smooth circles parallel to a circle s such that ω2(ξ) t [s] 6= 0. This means that the
restriction of the line bundle ξ to s is not trivial. Then there is a diffeomorphism
φ : (N,D) → (N(Y ), Y ) such that the fibration Fs0 of D by the circles parallel to
s0 is mapped to the fibration Fs. To see it we can transfer the question to the above
standard model. The fibration Fs0 of D lifts by the projection q to the fibration

by meridians of ∂N ∼ ∂D2 × S1; set m0 = ∂D2 × {x0} and denote by F̃m0 such
fibration. Fix on D another fibration Fs parallel to an s with the properties fixed
above. This lifts by the projection q to a fibration F̃s̃ of ∂N by circles parallel to a
s̃ such that [s̃] = [m0] ∈ η1(∂N). Moreover, by construction F̃s̃ is invariant by the
involution τ . We claim that, possibly up to isotopy of s, there is a diffeomorphism
h of the torus ∂N which sends F̃m0

to F̃s̃ and extends to a diffeomorphism of
(N,D) sending the fibrationFs0 of D to Fs. In such a case it is easy to see that
the topological space obtained by collapsing every fibre of Fs to one point results
from another blow down of (N,D) obtained by the flip Fs0 → Fs of fibrations
of the exceptional hypersurface D. To justify the claim, let us identify ∂N with
R2/Z2, endowed with “linear” cordinates such that the line {y = 0} is mapped onto
l0 = {p0} × S1, while the line {x = 0} is mapped onto m0 and the involution can
be expressed as τ(x, y) = (x, y + 1/2); up to isotopy a generic diffeomorphism in
the form h(x, y) = (ax+ by, cx+ dy), with the coefficients belonging to a matrix in
GL(2,Z). Under our hypotheses, h(0, y) = (by, dy) where b is even and d is odd, so
that clearly h ◦ τ = τ ◦ h and this is enough to conclude.

The discussion for the one-side Klein bottle is similar (however, see Remark
19.66).

2

19.9.2. Tears and Dehn surgery. The possibility to flip the fibrations of an
exceptional hypersurface hence to modify the corresponding blowing down (some-
times this modification is called a flop), suggests a way to possibly modify the
topology of 3-manifolds.

Definition 19.64. Let M be inM3 and L = K1∪· · ·∪Ks be a link in M whose
constituent knots preserve the orientation. We say that M ′ inM3 is obtained from
M by a tear along L, if up to diffeomorphism there is blow down flop

M ← B(M,L)→M ′

associated to a system of flips of fibrations of the exceptional hypersurfacesDKi as in
the proof of Proposition 19.63. In other words (B(M,L), DL) = (B(M ′, L′), DL′)
for some link L′ = K ′1 ∪ · · · ∪ K ′s in M ′ whose constituent knots preserve the
orientations.

Lemma 19.65. Tears define an equivalence relation called tear equivalence and
we write M ∼t M ′.

Proof : If we move a centre by an ambient isotopy, the result of a blowing
up does not change up to diffeomorphism preserving the exceptional hypersurfaces.
Given a tear from M to M ′ (with associated links L in M and L′1 in M ′) and a tear
from M ′ to M” (with associated links L′2 in M ′ and L” in M”), by transversality
we can assume that L′1∩  L′2 = ∅, hence there is a copy of L′2 in M , and a copy of L′1
in M” so that L ∪ L′2 and L” ∪ L′1 are links in M and M” respectively, supporting
a tear from M to M”. This proves that the relation is transitive. It is trivially
riflessive and symmetric.
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2

Remark 19.66. A priori one would consider also tear along knots which reverse
the orientation. However, for such a tear M ← M̃ →M ′, it turns out that M ∼M ′;
this happens because on a Klein bottle there is only one isotopy class of smooth
circles with annular tubular neighbourhood. So we consider only tears along knots
preserving the orientation.

It is convenient to rephrase tears in terms of more usual modifications performed
on 3-manifolds. As above, let M be in M3, L = K1 ∪ · · · ∪Ks be a link in M with
constituent knots preserving the orientation. Let N(L) = N(K1)q · · · qN(Ks) be
a tubular neigbourhood of L in M . Consider the manifold with s toric boundary
components

N := M \ IntN(L) .

We say thatM ′ is obtained by a Dehn surgery ofM along L if, up to diffeomorphism,
it is obtained by gluing back every N(Ki) to N along the torus ∂N(Ki) by means of
a diffeomorphism hi : ∂N(Ki)→ ∂N(Ki), i = 1, . . . , s. L ⊂ N(L) determines a link
L′ = K ′1 ∪ · · · ∪K ′s in M ′ and the identity map of N extends to a diffeomorphism
ψ : M \ L → M ′ \ L′. If mi is a meridian of ∂N(Ki), then hi(mi) = si is a
smooth circle on ∂N(Ki). The fibration of ∂N(Ki) by meridians parallel to mi

is mapped by hi to a fibration by circles parallel to si. These are meridians of a
tubular neighbourhood of L′ in M ′. If every si is a longitude of ∂N(Ki) then M ′

is obtained from M by an ordinary surgery already considered above. So Dehn
surgery generalizes the ordinary surgery associated to 4-dimensional triads. The
diffeomorphism φ extends to a diffeomorphism φ : M → M ′ if and only if every si
is a meridian of ∂N(Ki).

Now, up to diffeomorphism, B(M ′, L′) is obtained from B(M,L) by gluing
back every B(N(Ki),Ki) to N along the torus ∂N(Ki) by means of the same
diffeomorphism hi : ∂N(Ki)→ ∂N(Ki), i = 1, . . . , s, as before.

Definition 19.67. We say that a Dehn surgery lifts to a tear if the diffeo-
morphism φ̃ : B(M,L) \ DL → B(M ′, L′) \ DL′ which lifts φ : M \ L → M ′ \ L′,
extends to a diffeomorphism φ̃ : B(M,L) → B(M ′, L′), preserving the exceptional
hypersurface.

We have

Proposition 19.68. A Dehn surgery from M to M ′ lifts to a tear if and only
if for every i = 1, . . . , s, [si] = [mi] ∈ η(∂N(Ki)) = H1(∂N(Ki);Z/2Z).

Proof : The condition is necessary because the meridians generates the kernel
of the unoriented bordism morphism induced by the inclusions ∂N(Ki) → N(Ki).
The other implication rephrases the proof of Proposition 19.63.

2

With respect to ordinary surgery we have the following immediate corollary.

Corollary 19.69. Let M ′, M” be obtained by ordinary (longitudinal) surgery
on M along a same link L = ∪iKi with different normal framings {f′i} and {f”i}
respectively. Let L′ ⊂M ′ and L” ⊂M” be the links corresponding to L respectively.
Then M” is obtained (up to diffeomorphism) from M ′ by a tear of the form

M ′ ← B(M ′, L′) = B(M”, L”)→M”

if and only if every f′i differs from f”i by an even number of twists.

2

Hence tear equivalence can be considered as a specialization of the equivalence
relation generated by Dehn surgery. As this last extends ordinary surgery and
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preserves orientability, then we already know that being or not orientable is a com-
plete invariant for Dehn surgery equivalence. We are going to see that this is no
longer true for tear equivalence. We refine the ‘orientable/non-orientable’ partition
M3 = M+

3 qM
−
3 so that we eventually have three types, completely determined

by the behaviour of ω1(∗):
- ω1(M) = 0 ∈ H1(M ;Z/2Z), that is it is orientable;
- ω1(M) 6= 0 and ω1(M)2 := ω1(M)tω1(M) = 0, then we say that M is weakly

non orientable, that is M ∈Mw
3 .

- ω1(M) 6= 0 and ω1(M)2 := ω1(M) t ω1(M) 6= 0, then we say that M is
strongly non orientable, that is M ∈Ms

3.

Characteristic surfaces: If M is non orientable, every hypersurface F which
represents ω1(M) is called a characteristic surface of M . We can assume that F
is connected and it is necessarily orientable: the boundary ∂N(F ) of a tubular
neighbourhood is connected and orientable as it is the boundary of the orientable
manifold M \ IntN(F ); the projection of ∂N(F ) to F is 2 : 1 and every orientation
on ∂N(F ) descends to F .

We have

Proposition 19.70. Let M ∼t M ′ be realized by a tear

M
π←− B(M,L) = M̃ = B(M ′, L′)

π′−→M ′, L = ∪si=1Ki .

1) For every j = 0, . . . , 3, π∗ : Hj(M ;Z/2Z) → Hj(M̃ ;Z/2Z) is an injective
homomorphism and the similar fact holds for π′.

2) H1(M̃ ;Z/2Z) ∼ H1(M ;Z/2Z) ⊕ (Z/2Z)s where the last factor is generated

by the components DKi of DL; H2(M̃ ;Z/2Z) ∼ H2(M ;Z/2Z)⊕ (Z/2Z)s where the
last factor is generated by the fibres Mi of the fibrations M×Ki → Ki of DKi ;
similarly for π′.

3) For every j = 0, . . . , 3, there is a natural isomorphism

hj : Hj(M ;Z/2Z)→ Hj(M ′;Z/2Z)

such that (π′)∗ ◦ hj = π∗. Moreover h1(ω1(M)) = ω1(M ′) and for every α ∈
H1(M ;Z/2Z), h2(α t ω1(M)) = h1(α) t ω1(M ′).

4) M , M ′ are of the same type.

Proof : Let us justify (1) − (3). For every j, every class in Hj(M ;Z/2Z) can
be represented by an embedded proper (3− j)-submanifold S transverse to the link

L. The corresponding class in Hj(M̃ ;Z/2Z) is represented by the strict transform

S̃ of S via the blow up. If j = 2, 3 in fact S̃ is mapped diffeomorphically onto S
by π. If j = 0, S̃ = M̃ . If j = 1, then S̃ = B(S, S t L). As for (2) notice that
Mi •DKj = δi,j . As for (3) consider the diffeomorphism

φ : M \ L→M ′ \ L′ ,

If j = 2, 3, then hj is determined by the diffeomorphism S ∼ φ(S). If j = 0, then

h0([M ]) = [M ′], and notice that [M̃, π] = [M ], [M̃, π′] = [M ′]. If j = 1, then S is a
hypersurface transverse to L. Then S \ Int N(L) is sent diffeomorphically onto S̄′

properly embedded into M ′ \ IntN(L′); as φ preserves the class of meridians mod
(2), then S̄′ can be completed to a boundaryless hypersurface S′ transverse to L′.
This geometric correspondence S ↔ S′ induces h1. If S is a characteristic surface
of M , as the constituent knots of L preserve the orientation, we can assume that
S ∩ L = ∅, so that the diffeomorphic surface S′ = φ(S) does not intersect L′ and
is a characteristic surface of M ′. The last statements of (3) follow. Clearly (4) is a
corollary of the other items.

2
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In what follows we will say that S′ obtained from S as in the above proof is
obtained by darning S (with respect to the given tear).

Remark 19.71. One would wonder about a graded ring isomorphism in above
statement (3). But this is not true. For example S1×S2 and P3(R) can be obtained
by ordinary surgery olong an unknot K ⊂ R3 ⊂ S3 with the standard even normal
framing f0 and the framing which differs from it by two twists, respectively. By
Corollary 19.69, they are connected by a tear, but their Z/2Z-cobordism rings are
different.

19.9.3. rs-equivalence. We define now a coarser equivalence relation gener-
ated by blowing-up-or-down.

Definition 19.72. Let M , M ′ be in M3. We say that, up to diffeomorphism,
M ′ is obtained from M by a finite chain of blowing-up-or-down if there is a finite
chain of the form:

M →M0 ↔M1 ↔M2 ↔ · · · ↔Mn ←M ′

where:

(1) Every Mi is in M3;
(2) the right and left arrows are diffeomorphisms;
(3) for every i 6= n, Mi ↔Mi+1 either is a a blow up along a smooth centre

Mi ←Mi+1 = B(Mi, Ci)

or a blow-up

Mi = B(Mi+1, Zi+1)→Mi+1

so that Mi+1 is obtained by a blow down of Mi.

This defines another equivalence relation called smooth-rational equivalence
which extends the diffeomorphism one and also the tear equivalence. We write
M ∼sr M ′. Note that noone of the tear invariants pointed out in Proposition 19.70
persists for the sr-equivalence.

Our goals are to fully determine the quotient set of M3 mod ∼sr or mod ∼t.
Tear equivalence preserves the type so we can split the study of M3 mod ∼t type
by type.

The results for M+
3 mod ∼t and for M3 mod ∼sr are easy to state:

Theorem 19.73. For every M , M ′ in M+
3 , then M ∼t M ′ if and only if

dimH1(M ;Z/2Z) = dimH1(M ′;Z/2Z). If dimH1(M ;Z/2Z) = h, then

M ∼t S3#hP3(R) .

Proposition 19.74. For every M in M−3 there exists M ′ ∈ M+
3 such that

M ∼sr M ′.

As a corollary we have

Theorem 19.75. For every M in M3, M ∼sr S3.

Proof : By assuming Theorem 19.73 and Proposition 19.74. If M is in M+
3 ,

then the result follows immediately from Theorem 19.73 as S3#hP3(R) is obtained
by blowing-up S3 at h points. If M ∈ M−3 , Proposition 19.74 reduces it to the
orientable case.

2

The structure of M−3 mod ∼t is intrinsecally more complicated, we will face it
later.
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19.9.4. Disorientated surfaces and weakly trivial knots. Let N be a
compact 3-manifold with possibly non empty boundary ∂N . A connected properly
embedded surface F in N is said disorientated if it is non orientable and has an
orientable neighbourhood in N .

Let M be in M3, and K ⊂ M be a knot which preserves the orientation with
a tubular neighbourhood N(K). Then K is said weakly trivial if there exists a
longitude l on ∂N(K) which bounds a disorientated surface F properly embedded
into M \ IntN(K).

The notion of tear makes sense also for a manifold with boundary N , provided
that the supporting link is contained in the interior of N . The following proposi-
tion shows tear’s power to simplify disorientated hypersurfaces and eventually the
topology of 3-manifolds.

Proposition 19.76. Let S ⊂ N be a disorientated hypersurface. Assume that S
has at most two boundary components. Then there are: a link L ⊂ Int(S) ⊂ Int(N)
with constituent knots preserving the orientation, a tear

N ← B(N,L) = Ñ = B(N ′, L′)→ N ′

and a surface S′ ⊂ N ′ obtaining by darning S (with respect to the tear) such that:

(1) If S is boundaryless then S′ is a disorientated projective plane.
(2) If ∂S is connected then S′ is a disk properly embedded in N ′

(3) If ∂S has two components, then S′ is a two-sides annulus properly embed-
ded in N ′.

Proof : S is diffeomorphic to the connected sum of s copies of P2(R), s ≥ 1, from
which we have removed k disjoint open 2-disks, either k = 0, 1, 2. Let L = K1∪· · ·∪
Ks be formed by the cores of s pairwise disjoint Möbius strips Mi embedded in S.
Each Kj reverses the orientation of S and preserves the orientation of N (because
S has an orientable neighbourhood). Then [∂Mi] is a meridian of ∂N(Ki) mod
(2) and we can consider the corresponding tear N ← B(N,L) = B(N ′, L′) → N ′.
Then every Ki collapses to one point in a dearning surface S′ properly embedded
in N ′ with orientable neigbourhood. If k = 0 then S′ is a 2-sphere; in order to get
a disorientated P2(R) it is enough to remove from L one constituent knot. In the
other two cases we get either a disk or an annulus.

2

Corollary 19.77. For every M ∈M3 there is a chain of the form

M →M0 ↔M1 ↔ · · · ↔Mn ←M ′

such that:

(1) Every Mi is in M3, the right and left arrows being diffeomorphisms;
(2) H1(M ′;Z/2Z) is generated by ω1(M ′);
(3) For every i 6= n, Mi ↔Mi+1 either is:

- a tear;

- a blow up Mi = B(Mi+1, x0)→Mi+1 at a point of Mi+1;

- a blow up Mi = B(Mi+1,K) → Mi+1 along a smooth knot of Mi+1

which preserves the orientation.

Proof : If M already verifies (2), then take M ′ = M . Otherwise there is
a hypersurface S, such that [S] 6= 0 ∈ H1(M ;Z/2Z) and is not a characteristic
surface of M . We can assume that S is connected and that there is a characteristic
surface F such that either

- S ∩ F = ∅, that is S ⊂M \N(F ) for a small tubular neighbourhood of F ;

- S t F along a knot K ⊂ S which does not divide it.
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- In both cases S \ IntN(F ) is properly embedded into M \ IntN(F ), has ori-
ented neighbourhood therein, and there is a smooth circle C ⊂ M \ IntN(F ) with
non trivial intersection number mod (2) with S \ IntN(F ). By adding an embed-
ded 1-handle along a suitable arc of C, we can also assume that S \ IntN(K) is
disorientated. Now, if S is disjoint from F , by Proposition 19.76 there is a tear
which converts S into a disorientated projective plane; this can be considered as
the exceptional hypersurface of a blow up of a point. In the other case there is a
tear converting S \ IntN(F ) into an annulus; together with S ∩N(F ) they form a
one-side torus which can be considered as the exceptional hypersurface of a blow
up along a knot.

2

Corollary 19.78. If M is orientable and dimH1(M ;Z/2Z) = h, then

M ∼t M̃
where

M̃ = hP3(R)#M ′

and H1(M ′;Z/2Z) = 0.

Proof : As M is orientable ω1(M) = 0; hence the statement and the proof of
Corollary 19.77 tell us that H1(M ′;Z/2Z) = 0 and that only blow up of points does
occur. As up to isotopy a point misses any possible already present exceptional
hypersurface, tears and blowing up of points commute and the corollary follows.

2

Corollary 19.79. Let M and M ′ in M3 be such that

H1(M ;Z/2Z) = H1(M ′;Z/2Z) = 0 .

Assume that M ′ is obtained from M by an ordinary (longitudinal) surgery of M
along a weakly trivial knot K ⊂M . Then M ∼t M ′.

Proof : By Proposition 19.76 there is a tear from M to M1 converting K to a
genuine trivial knot K1 ⊂ M1. So up to tear equivalence, we can assume that M ′

is obtained from M by an ordinary surgery along a trivial knot K. As they have
both vanishing H1 the normal framing f of this surgery must be odd with respect
to the framing f0 determined by a collar of K in a spanning 2-disk. On the other
hand M is diffeomorphic to the manifold obtained by using the framing f1 which
differs from f0 by one twist. Hence by Corollary 19.69, there is a tear from M to
M ′.

2

As a further corollary we can prove Proposition 19.74, which we state again

For every M in M−3 there exists M ′ ∈M+
3 such that M ∼sr M ′.

Proof : Assume that M has a connected characteristic surface F of genus
g + 1 > 1. We are going to show that M ∼sr M ′ such that M ′ either has a
characteristic surface F ′ of genus g if g > 0 or it is orientable. Clearly this will
achieve the result by induction on g. First we can assume that F is one-side in M .
In fact let K ⊂ F be a smooth circle which does not divide F . Then the strict
transform F̃ of F in B(M,K) is a one-side characteristic surface of the same genus.
If F is a one-side torus then it is the exceptional hypersurface of a blow down to
an orientable M ′ and we have done. If g > 1, there is a smooth circle C on F
which divides it by a one-side torus T0 with one hole, and a bilateral surface S0

of genus g − 1 with one hole. By adding an embedded 1-handle as in the proof of
Corollary 19.77, we can modify S0 far from C and make it desorientated. Then by
Proposition 19.76 there is a tear from M to say M1 which convert S0 to a 2-disk
so that C becomes a trivial knot in M1. The manifold M2 obtained by ordinary
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surgery along C with normal framing given by a tubular neighbourhood of C in
F is tear equivalent to M1#P3(R), hence it is sr-equivalent to M1 hence to M .
We conclude by noticing that a characteristic surface of M2 is given by the disjoint
union of a surface of genus g and a one-side torus which again can be considered as
the exceptional hypersurface of a blow down.

2

19.9.5. M+
3 mod ∼t and M3 mod ∼sr. We are ready to prove Theorems

19.73 and 19.75. Thanks to Corollary 19.79 and Proposition 19.74, it will enough
to prove the following

Lemma 19.80. For every M in M3 such that H1(M ;Z/2Z) = 0, there exists a
sequence S3 = M0,M1, . . . ,Mn ∼M , such that

(1) For every Mi, H1(Mi;Z/2Z) = 0;
(2) Mi+1 is obtained from Mi by an ordinary surgery along a weakly trivial

knot Ki+1 ⊂Mi.

Proof : We use some notions that we will develop in Chapter 20, Section 20.2.1.
Here we outline the main points. We know that S3 ∼σ M , that is there is a triad
(W,S3,M) with a handle decomposition made by 2-handles only, so that M is
obtained by longitudinal surgery along a framed link L = ∪iKi in S3. The framing
fi is encoded by an integer which express the number of twists with respect to the
framing given by the collar of Ki in a Seifert surface. The intersection form of
H2(W ;Z/2Z) is represented by the linking matrix mod (2) of this framed link L,
so that along the diagonal we have the reduction mod (2) of the above integers. As
H1(M ;Z/2Z) = 0 then the intersection form is non degenerate. Possibly performing
an elementary blow-up move (Section 19.4.1), we can also assume that the form is
not totally isotropic, hence it has an orthogonal basis (see Section 15.1). By realizing
such a change of basis by handle sliding, we get that every Ki is the boundary of a
surface Si disjoint from the rest of the link, and the new normal framings are odd.
So the knot Ki+1 is weakly trivial in the manifold Mi obtained by the surgery along
the partial framed link K1 ∪ · · · ∪Ki.

2

19.9.6. M−3 mod ∼t. This is more demanding. We will give exhaustive state-
ments. For detailed proofs a curious reader is addressed to [BM].

We can manage type by type. For Ms
3 the statement is simpler; alike the

orientable case, the necessary conditions of Proposition 19.70 are also sufficient.

Theorem 19.81. Let M , M ′ be strongly non orientable. Then M ∼t M ′ if and
only if for every j = 0, . . . , 3, there is a natural isomorphism

hj : Hj(M ;Z/2Z)→ Hj(M ′;Z/2Z)

such that h1(ω1(M)) = ω1(M ′) and for every α ∈ H1(M ;Z/2Z), h2(α t ω1(M)) =
h1(α) t ω1(M ′).

2

For weakly non orientable manifolds another tear invariant comes up.

We begin with a construction that makes sense for every orientable compact
boundaryless surface S embedded into any M in M3. Consider the subspace of
η1(S) formed by the 1-boundary in M , that is

B(S,M) = ker i∗

where i : S →M is the inclusion. Let α ∈ B(S,M). Then α = [c] for some smooth
circle c on S. By hypothesis, c bounds a membrane M ⊂ M : by definition M is a
compact surface embedded in M , such that c = ∂M, and moreover M is in “general
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position” with respect to S; this means that S t Int(M) and S ∩M is the union
c∪ d where d is a smooth curve properly embedded in S (i.e. ∂d = ∩∂M). Tubular
neighbourhoods of d, N(d, S) and N(d,M) in S and M respectively, coincide at ∂d
along a tubular neighbourhood of ∂d = d ∩ c in c. Then along the abstract double
D(d) = d+ ∪ d− of d we can define a band N(D(d)) equal to N(d, S) on d+, equal
to N(d,M) on d− glued by the indentity on ∂d+ = ∂d−. Then we can define by
the self-intersection of D(d) in N(D(d))

ρM(c) = D(d) •D(d) ∈ Z/2Z .

We can pose the question under which hypotheses this construction well defines a
homomorphism

ρS : B(S,M)→ Z/2Z, ρ(α) = ρM(c), α = [c] .

This is widely discussed in [BM]. Here we are interested to the application of this
construction to a characteristic surface F of M in M−3 . We have

Proposition 19.82. Let F be a characteristic surface of the non orientable 3-
manifold M . Then ρF : B(F,M)→ Z/2Z is well defined if and only if M is weakly
non orientable (M ∈ Mw

3 ). In such a case ρF is a quadratic enhancement of the
restriction, say β, to B(F,M) of the intersection form on η1(F ).

2

A first point where the vanishing of ω1(M) t ω1(M) is relevant is in showing
that the value of ρM(c) does not depend on the choice of the membrane M. In fact
one verifies that:

(i) σ t σ t ω1(M) + σ t ω1(M)t ω1(M) = 0 for every σ ∈ H1(M ;Z/2Z) if and
only if ω1(M) t ω1(M) = 0;

(ii) given two membranes M and M′ of c, τ = M′ ∪M define a cycle mod (2)
in M and ones verifies that

ρM′ − ρM = [τ ] t [τ ] t ω1(M) + [τ ] t ω1(M) t ω1(M) .

This is the first step to show that ρ(c) only depends on the class [c] ∈ η1(F ).

Let M ∈ Mw
3 , F , ρF , β be as in the above proposition. In general β is de-

generate, that is its radical B(F,M)⊥ 6= {0}. Then there are two possibilities:

- ρF 6= 0 on B(F,M)⊥.

- ρF = 0 on B(F,M)⊥. Set B̂(F,M) = B(F,M)/B(F,M)⊥. Then ρF descends
to a homomorphism

ρ̂F : B̂(F,M)→ Z/2Z

which is a quadratic enhancement of the non degenerate form β̂ induced by β; one
can define its Arf invariant (see Section 15.6)

δF := δ(ρ̂F ) ∈ Z/2Z .

So we can associate to F the symbol

τF ∈ {∅} ∪ Z/2Z

where τF = ∅ if ρF 6= 0 on B(F,M)⊥, τF = δF otherwise. We have

Proposition 19.83. Let F be a characteristic surface of M in Mw
3 . Then

τM := τF

is well defined, that is it does not depend on the choice of F such that [F ] = ω1(M).



294 19. ON 3-MANIFOLDS

2

Hence we have refined the type of weakly non orientable manifolds accordingly
with the value of τM . Finally we can complete the classification up to tear equiva-
lence.

Theorem 19.84. Let M , M ′ be weakly non orientable. Then M ∼t M ′ if and
only if for every j = 0, . . . , 3, there is a natural isomorphism

hj : Hj(M ;Z/2Z)→ Hj(M ′;Z/2Z)

such that h1(ω1(M)) = ω1(M ′), for every α ∈ H1(M ;Z/2Z), h2(α t ω1(M)) =
h1(α) t ω1(M ′) and moreover, τM = τM ′ .

2

Let us give more information about the eventual result. First one finds repre-
sentatives M of every non orientable tear class endowed with a characteristic surface
F with minimal boundary space B(F,M). For every non orientable M , consider the
pairs (M,F ) where F is a connected characteristic surface. For every non orientable
tear equivalence class α, set

g(α) = min{g(F ); (M,F ),M ∈ α} .

We have

Proposition 19.85. Let (M,F ) be such that g(F ) = g(α), α = [M ]t. Then
the boundary dimension

d(α) := dimB(F,M)

is well defined (type by type) and we have:

(1) If M is strongly non orientable, then d(α, s) = 0;

(2) If M is weakly orientable and τα = ∅, then d(α,w, ∅) = 1;

(3) If M is weakly orientable and τα = 0, then d(α,w, 0) = 0.

(4) If M is weakly orientable and τα = 1, then d(α,w, 1) = 2.

2

We have given normal representatives for every orientable tear class α, that
is hP3(R), h = dimH1(M ;Z/2Z), α = [M ]t. By elaborating on the minimizing
representatives of Proposition 19.85, we get normal representatives also for the non
orientable classes. For every non orientable α = [M ]t, define type by type the
integer

h(α, s) = dimH1(M ;Z/2Z)− 2g(α)

h(α,w, τα) = dimH1(M ;Z/2Z)− 2g(α) + d(α,w, τα) .

Proposition 19.86. For every non orientable tear equivalence class α there
are explicitely given manifolds M(α, s) or M(α,w, τα) such that either

α = [h(α, s)P3(R)#M(α, s)]t

or

α = [h(α,w, τα)P3(R)#M(α,w, τα)]t .

2

We have more information about these normal representatives. Let us say that
M is smooth-rational elementary if it is obtained by means of a tower of blowing
up along smooth centres over the standard 3-sphere S3

S3 ←M1 ←M2 ← · · · ←Mk = M .

Then we have
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Proposition 19.87. With the exception of the weakly non orientable class
α0 such that dimH1(M ;Z/2Z) = 1, α0 = [M ]t, and τα0 = 1, the normal rep-
resentative of every tear class α is smooth-rational elementary. In the excep-
tional case, α0 cannot be represented by any smooth-rational manifold, and for
the normal representative say Mα0

there is a smooth-rational M̃α0
and a blow up

M̃alpha0
= B(Mα0

, x0)→Mα0
, where x0 is a point.

19.9.7. On 3-dimensional Nash’s rationality conjecture. By using the
classification up to tear equivalence, in [BM] one gives an answer to the so called
Nash’s conjecture in three dimensions.

Let us say that a non singular 3-dimensional real algebraic set X is rational
elementary if it is obtained by a tower of blow up along real algebraic non singular
centres over the standard sphere S3.

First one proves that every tear equivalence class has an explicitely given ratio-
nal model which is in fact elementary with one exception. Referring to Proposition
19.87, and using variations of Nash-Tognoli theorem (see Section 17.5.3) we have:

Proposition 19.88. With the exception of the weakly non orientable class α0

such that dimH1(M ;Z/2Z) = 1, α0 = [M ]t, and τα0 = 1, the normal representative
of every tear class α can be realized to be a rational elementary real algebraic set
Yα. In the exceptional case, there is

- a rational algebraic set Y0 with one singular point y0,
- a homeomorphism h0 : Y0 →Mα0

which is a diffeomorphism on Y0 \ {y0},
- an “algebraic resolution of singularity” ψ : Ŷ0 → Y0, such that Ŷ0 is rational

elementary and ψ : Ŷ0 \ ψ−1(y0)→ Y0 \ {y0} is an algebraic isomorphism.

2

Then we have:

Theorem 19.89. (ii) For every tear equivalence class α 6= α0, for every M ∈ α,
there is a tear from M to Yα of the form

M
σ←− YM

p←− ỸM = B(Yα, LM )
π−→ Yα

where:
- ỸM is rational elementary obtained by blowing up Yα along a non singular real

algebraic link LM ⊂ Yα;

- YM is rational with regular 1-dimensional singular set Sing(YM ) = p(DLM )
consisting of a union of non singular circles;

- The surjective algebraic map p is a ‘resolution of singularity’, that is

p : ỸM \DLM → YM \ Sing(YM )

is an algebraic isomorphism between regular Zariski open sets;

- σ is a homeomorphism which restricts to a diffeomorphism on YM \Sing(YM )
and on Sing(YM );

- σ ◦ p is a smooth blow down.

(iii) As for M ∈ α0 we have a similar realization of a tear of the form

M
σ←− YM

p←− ỸM = B(Y0, LM )
π−→ Y0

h0−→Mα0

where LM ⊂ R(Y0), and eventually the rational model YM of M has a further
isolated singular point and admits an algebraic resolution of singularity by means
of the rational elementary B(Ŷ0, L̂M ), L̂M = ψ−1(LM ).

2

So the theorem shows that every M in M3 has a singular rational algebraic
model YM with mild controlled singular set which, nevertheless, cannot be avoided
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by the specific blow-up-and-dow way the model has been constructed. The situation
is very similar to what we have done in the case of surfaces (Section 15.5). In the
case of surfaces Comessati tells us that for genus greater than 1, the presence of one
singular point in a rational model of an orientable surface is not only an accident of
the construction, it is intrinsecally unavoidable. The same question has been faced
for threefolds (see [Ko]); roughly summarizing, one realizes that also in dimension
3, orientable manifolds admitting a non singular rational model are very special.
On the other hand, we have the following interesting fact (see [Ko2]):

For every α, for every M ∈ α, there are non singular rational models, pro-
vided that one deals with a category of “abstract” algebraic-like varieties (also called
Moishezon varieties) which are only locally but not globally isomorphic to ordinary
algebraic sets in some Rn.

In fact in this larger setting also the singular blow down p : ỸM → YM can be
realized as a the inverse of an algebraic blow up along a non singular centre.



CHAPTER 20

On 4-manifolds

In this chapter we will apply several results estasblished so far to compact
4-manifolds. Similarly to the attitude of Chapter 19 with respect to the geometriza-
tion of 3-manifolds, we stress that we will develop a few classical differential/topological
themes, in no way (with the exception of a final informative and discorsive section)
we will touch the study of 4-manifolds by means of gauge theory that has domi-
nated the study of 4-manifolds in last decades; for a more up to date treatment of
4-manifolds theory one can refer for example to [Sc]. In particular we will determine
Ω4, present some instances of “classification of simply connected 4-manifolds up to
stabilization”, and Rohlin’s theorem about the signature mod (16) of 4-manifold
intersection forms. The intersection form will be indeed the principal player.

We will deal with oriented 4-manifolds. M will denote a compact, connected,
oriented, boundaryless smooth 4-manifold. By using the notations and the results
of Sections 11.4, 13.4 and 13.5 we have that the intersection form

t : H2(M ;Z)×H2(M ;Z)→ Z

equivalently

• : H2(M ;Z)×H2(M ;Z)→ Z

is symmetric and induces a Z-linear isomorphism

φ̂ : H2(M ;Z)→ Hom(H2(M ;Z),Z) .

Then the free Z-module H2(M ;Z) = H2(M ;Z) is of finite rank say n, and the
intersection form is unimodular: for any basis of H2(M ;Z) the representing ma-
trix A belongs to GL(n,Z) i.e. |detA| = 1. Every class α ∈ H2(M ;Z) can be
represented by an oriented 2-dimensional proper submanifold F ; α = [F ] = 0 if
and only if F is the boundary of an embedded Seifert hypersurface. Clearly the
isometry class of the intersection form is an invariant up to orietation preserving
diffeomorphism. We are in a situation formally similar to the case of compact
boundaryless surfaces S with respect to the intersection form on the Z/2Z-vector
space η1(S;Z/2Z) = H1(S;Z/2Z). In the case of surfaces we have seen in Chapter
15 that this intersection form contains all relevant information; moreover, there
is a perfect parallelism between the abstract algebraic theory of symmetric Z/2Z-
bilinear forms and its 2-dimensional differential/topological realization. We would
try to pursue this analogy as far a possible, obtaining in fact only very partial
results.

20.1. Symmetric unimodular Z-bilinear forms

In analogy to Section 15.1, we face here the question of the classification of
finite rank, symmetric, unimodular Z-bilinear forms up to isometry. It turns out
that this abstract classification is complete only for the class of indefinite forms,
while the definite case is a wide largely unknown territory. This is a main difference
with respect to the Z/2Z-case. For more information and detailed proofs we refer
the reader to [MH].

297
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We consider free Z-modules V of finite rank, endowed with a symmetric uni-
modular Z-bilinear form ρ. This means that the Z-linear map

V → Hom(V,Z), v → fv, fv : V → Z, fv(w) = ρ(v, w)

is an isomorphism. Equivalently, the symmetric matrix A representing ρ with re-
spect to any basis of V belongs to GL(n,Z), n = rankV , that is |detA| = 1.
Isometry is defined in the usual way. Sometimes we will make the abuse of con-
fusing a form with its isometry class. Given (V, ρ) and (V ′, ρ′) we can define the
orthogonal direct sum

(V, ρ) ⊥ (V ′, ρ′)

that is the symmetric unimodular form ρ ⊥ ρ′ on V ⊕ V ′ that restricts to ρ (resp.
ρ′) on V (V ′) and such that V and V ′ are orthogonal to each other.

20.1.1. Some invariants. We point out some isometry invariants besides the
rank.

(Signature) By extension of the coefficients Z ⊂ R, V becomes a lattice in a
R-vector space VR so that dimVR = rankV = n, and ρ extends to a R-bilinear non
degenerate form ρR. We know by Sylvester’s theorem that a complete isometry in-
variant of ρR is given by the pair of positivity and negativity indices (i+(ρR), i−(ρR)),
where i±(ρR) is the maximum of dimensions of R-linear subspaces of VR such that
the restriction of ρR to them is either positive or negative definite. Clearly this pair
of indices is also an isometry invariant for the Z-bilinear form ρ. We set

σ(ρ) = i+(ρR)− i−(ρR)

which is called the signature of ρ (some authors call it the index of ρ). As ; i+ +i− =
n, then σ ≡ n mod (2) and

(i+, i−) = (
n+ σ

2
,
n− σ

2
) .

The signature is additive with respect to orthogonal direct sum:

σ(ρ ⊥ ρ′) = σ(ρ) + σ(ρ′) .

We can distribute the unimodular Z-forms into the following classes which are
clearly invariant up to isometry.

(Definite/indefinite) (V, ρ) is definite either positive or negative if either for
every v ∈ V , v 6= 0, ρ(v, v) > 0 or ρ(v, v) < 0. Otherwise, ρ is indefinite.

(Parity) (V, ρ) is even if for every v ∈ V , ρ(v, v) ∈ 2Z is even. If ρ is not even,
then it is said odd. (V, ρ) is even if and only if there is a basis B = {v1, . . . , vn} of
V such that for every j = 1, . . . , n, ρ(vj , vj) ∈ 2Z; in such a case this happens for
every basis of V .

So we have the combination sub-classes “definite/indefinite and even”, “defi-
nite/indefinite and odd”; the study up to isometry can be made sub-class by sub-
class.

20.1.2. Some basic forms. U+, U− are, up to isometry, the unique rank-1
forms. They are both definite (of opposite sign) and odd, σ(U±) = ±1.

We denote by H the (isometry class of the) form defined on Z2 by

(x, y)→ xtHy

where

H :=

(
0 1
1 0

)
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The form H is indefinite and even; σ(H) = 0.

Let us denote by E8 the (isometry class of the) form defined on Z8 by

(x, y)→ xtEy

where E = (ei,j) is the symmetric matrix 8× 8 such that:

- For every i, ei,i = 2;
- For i = 1, . . . , 6, ei,i+1 = 1;
- e5,8 = 1;
- ei,j = 0 otherwise.

One verifies by direct computation that E8 is unimodular, even, positive defi-
nite; hence σ(E8) = 8. −E8 (that is the isometry class of (Z8,−E)) is even, negative
definite with σ(−E8) = −8. Being even ±E8 is not diagonalizable, that is it is not
isometric to 8U±.

20.1.3. Full classification up to rank 4. We have

Proposition 20.1. Isometry classes of symmetric unimodular Z-bilinear forms
of rank n up to 4 either are diagonalizable (i.e. they admit a orthonormal basis) or
are even with null signature. The normal representatives are respectively:

(1) (Diagonalizable) The normal representative is

|σ|Uε ⊥
n− |σ|

2
(U+ ⊥ U−)

where ε is the sign of the signature σ.

(2) (Even) The normal representatives are either H or 2H.

2

The key geometric fact to get this result is that for every (V, ρ) such that
rank(V ) ≤ 4, there is v 6= 0 in V such that |ρ(v, v)| < 2; this is an application of a
theorem of Minkowski on the volume of lattice in euclidean spaces.

20.1.4. Classification of indefinite forms. This is summarized in the fol-
lowing theorem.

Theorem 20.2. (1) The triple

(rank, signature, parity)

is a complete invariant for the indefinite forms considered up to isometry.

(2) For every indefinite isometry class we have the following distinguished rep-
resentative, depending on the parity:

(Indefinite and odd normal representatives) For every rank n and sig-
nature σ this is

|σ|Uε ⊥
n− |σ|

2
(U+ ⊥ U−)

where ε is the sign of σ. Hence indefinite odd forms are diagonalizable, that is they
admit orthonormal basis.

(Indefinite and even normal representatives) For every rank n and sig-
nature σ, σ ≡ 0 mod (8), n−|σ| is even and non zero and the normal representative
is

σ

8
E8 ⊥

n− |σ|
2

H

where we mean aE8 = −a(−E8) if a < 0.
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2

The key fact for the indefinite classification is the number-theoretic Meyer the-
orem which states that for every indefinite (V, ρ), there is v 6= 0 in V such that
ρ(v, v) = 0. If n ≤ 4 this follows from the above full classification. If n ≥ 5, via
the extension of coefficients Z ⊂ Q, one is reduced to prove that, alike for R-spaces,
a scalar product on a Q-vector space of dimension n ≥ 5 is definite if and only
if for every non zero vector v, ρ(v, v) 6= 0. Note that the last statement fails for
n = 4. The proof is based on Hasse-Minkowski Theorem. Then the indefinite odd
case follows by a rather easy inductive argument. An important relation to achieve
the odd case is:

H ⊥ U± = U∓ ⊥ 2U± .

The classification in the indefinite and even case is more delicate, employs
the already achieved odd classification and involves in the very statement certain
congruence mod (8). We limit to clarify this last point.

20.1.5. Characteristic elements and congruences mod (8). Let (V, ρ)
be as above. An element u ∈ V is by definition characteristic if for every v ∈ V ,
ρ(v, v) ≡ ρ(u, v) mod(2). We have the following so called van der Blij lemma.

Lemma 20.3. (1) For every (V, ρ) there are characteristic elements.
(2) For every characteristic element u, σ ≡ ρ(u, u) mod(8).
(3) If ρ is even then σ ≡ 0 mod(8).

Proof : (1): fix a basis of V , so that V ∼ Zn and let the n×n symmetric matrix
A represent the form ρ. By reducing mod (2), we have the Z/2Z-linear function
(Z/2Z)n → Z/2Z, y → ytAy. As detA = 1 mod(2), there is a unique representing
vector ū ∈ (Z/2Z)n such that for every y, ytAy = ūtAy. Every u ∈ Zn whose
reduction mod (2) is equal to ū is a characteristic element of ρ.

As for (2), if u and u′ are characteristic elements, so that u′ = u+ 2x for some
x ∈ V , then ρ(u′, u′) = ρ(u, u) + 4(ρ(u, x) + ρ(x, x)) ≡ ρ(u, u) mod(8). So ρ(u, u)
is invariant mod (8). It is additive with respect to the orthogonal direct sum and
it holds ±1 on U±. Then item (2) holds for indefinite and odd forms thanks to
the classification in this case. On the other hand, ρ ⊥ U+ ⊥ U− has the same
signature of ρ and is indefinite and odd; so (2) holds in general.

Item (3) is an immediate corollary of (2).
2

20.1.6. Indefinite stabilizations. Given any form ρ there are simple ways to
transform it into an indefinite one. The first is called elementary odd stabilizations:

ρ→ ρ ⊥ Uε

for a suitable ε = ±, the resulting form is indefinite and odd. The signature changes
by σ → σ ± 1.

ρ ⊥ (U+ ⊥ U−)

is always indefinite odd and the signature does not change.
The elementary even stabilization is

ρ→ ρ ⊥ H

the resulting form is indefinite and is even if and only if ρ is even. The signature
does not change.

Then the classification of indefinite odd forms induces a classification of all
forms up to such odd stabilizations. Similarly, the classification of indefinite even
forms induces a classification of all even forms up to even stabilization. In particular
we have:
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For every pair of forms ρ and ρ′ there are m1,m2,m
′
1,m

′
2,m ∈ N such that

ρ ⊥ m1U+ ⊥ m2U− = ρ′ ⊥ m′1U+ ⊥ m′2U− = m(U+ + U−) .

20.1.7. Neutral forms and the Witt group. Similarly to Section 15.4.1,
denote by I(Z) the set of isometry classes of unimodular symmetric Z-bilinear forms
defined on free Z-modules of arbitrary finite rank. The operation ⊥ makes it a
semigroup. S ∈ I(Z) is said neutral if rank S = 2m is even and there is a submodule
Z ⊂ S, rank Z = m such that Z = Z⊥. The following lemma is an immediate
consequence of Theorem 20.2.

Lemma 20.4. An indefinite odd class is neutral if and only if it is of the form
m(U+ ⊥ U−) for some m ≥ 1. An indefinite even class is neutral if and only if it
is of the form mH for some m ≥ 1.

2

Put on I(Z) the equivalence relation X ∼ X ′ if and only if there are neutral
spaces S, S′ such that

X ⊥ S = X ′ ⊥ S′ .
Denote by W (Z) the quotient set. The operation descends to W (Z) and makes it
an abelian group called the Witt group of the ring Z. All this can be restricted to
the set I0(Z) of even classes and gives rise to the restricted Witt group W0(Z). Also
the following proposition is an easy consequence of Theorem 20.2.

Proposition 20.5. Both following maps are well defined group isomorphisms:

σ : W (Z)→ (Z,+),
σ

8
: W0(Z)→ (Z,+) .

Moreover, W (Z) is generated by U+ while W0(Z) is generated by E8.

2

20.2. Some 4-manifold counterparts

In analogy with the surface case, one would like to determine 4-manifold couter-
parts of the above abstract theory, at least for indefinite forms where the arithmetic
classification is complete. In particular one would wonder that every indefinite nor-
mal representative is realized as the intersection form •M of some 4-dimensional
smooth manifold M as above. Unfortunately this is too optimistic.

Notation: We set σ•M = σ(M).

First we establish a topological counterpart of the operation ⊥. This is analo-
gous to surface Lemma 15.7.

Lemma 20.6. Let (M1, •M1
) and (M2, •M2

) be 4-manifolds equipped with the
respective intersection forms and set M = M1#M2. Then, up to isometry,

•M = •M1
⊥ •M2

.

Proof : Let α = [F ] ∈ H2(M ;Z) where F is a proper oriented surface embedded
into M . Up to isotopy we can assume that F t S, where S is a smooth 3-sphere
in M which realizes the connected sum splitting of M . L = F ∩ S is a link in
S ∼ S3. Then M is obtained by gluing M ′j = Mj \ IntD4, j = 1, 2, along the two

boundary components of a tubular neighbourhood N(S) ∼ S3 × [−1, 1] of S in M .

Fj = F ∩ M̂ ′j is a proper submanifold of M ′j with boundary L. Fj can be capped

by means of a Seifert surface of L in S3. So we get boundaryless surfaces F̂j in Mj

which up to isotopy can be embedded into M ′j . Hence, via the isomorphism induced
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by the inclusions and a slight abuse of notation, we have [F ] = [F̂1] + [F̂2]. Doing

in a similar way for another class α′ = [F ′], we get α •α′ = [F̂1] • [F̂ ′1] + [F̂2] • [F̂ ′2].

2

Remark 20.7. We stress that we are not claiming that every direct sum decom-
position of an intersection form •M corresponds to a connected sum decomposition
of the manifold M (see Example 20.11).

It is easy to realize U± and H. In fact:

U± is the intersection form of ±P2(C), where P2(C) is endowed with the nat-
ural orientation as a complex manifold. H2(P2(C);Z) is generated by [P1(C)] that
is represented by any complex line embedded into P2(C). Hence every indefinite
and odd normal representative can be realized.

Notation: To simplify the notation, set P = P2(C) and Q = −P2(C).

H is the intersection form of S2×S2, where S2 has the usual orientation and we
take the product orientation. H2(S2×S2;Z) has as basis [S2×{p}] and [{p}×S2]
for any p ∈ S2.

Remark 20.8. Both P2(C) and S2×S2 are simply connected. By Van Kampen
theorem, the connected sum of two simply connected manifolds is also simply con-
nected. So it makes sense (and we will do it at some point) to restrict the discussion
to simply connected manifolds.

H and U+ ⊥ U− are the basic neutral classes. As for their 4-dimensional
realizations we have

Proposition 20.9. Up to isomorphism of fibre bundles, there are two distinct
fibre bundles over S2 with fibre S2 and orientable total space; S2×S2 and P#Q :=
S2×̃S2 are the respective total spaces.

Proof : By at theorem of Smale [S1] (recall also Section 7.5.2) Diff+(S2) retracts
by deformation to SO(3) ∼ P3(R). Then there are exactly two such fibre bundles
because π1(SO(3)) ∼ Z/2Z (recall Section 5.7). P#Q can be obtained by the
complex blow up of P2(C) at a point. It follows from the proof of Proposition 7.29
that it is the total space of a fibre bundle as in the statement of the proposition.
More precisely, let D be the unitary disk in an affine chart of P at a point x0 ∼ 0.
Then BC(D, 0) is the oriented total space of a fible bundle over the Riemann sphere
S2 ∼ P1(C) with fibre D2; the fibres are given by the strict transform of the
intersection with D of the complex lines through 0. Set P0 := P \ IntD. Also P0

is the total space of a fibre bundle of the same type. Considering P1(C) ⊂ P0, the
fibres are given by the intersection with P0 of the complex lines passing through
0 and x ∈ P1(C). The restriction of these fibres to ∂D induce the Hopf fibration
h : S3 → S2. Then BC(P, x0) is diffeomorphic to the doubleD(P0) = P0q−P0/idS3

and hence to P#Q. The fibration of P#Q with fibre S2 is obtained by gluing “along
the Hopf fibration” the two fibrations with fibre D2 described so far. Finally S2×S2

and P#Q are distinguished by the intersection forms.
2

Now we discuss a topological counterpart of the relation

H ⊥ U± = U∓ ⊥ 2U±

this is analogous to surface Lemma 15.12.

Proposition 20.10. We have

(S2 × S2)#Q ∼ P#2Q, (S2 × S2)#P ∼ Q#2P .
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Proof : As S2 × S2 admits an orientation reversing diffeomorphism, the two
relations are equivalent to each other. The second geometric proof of Lemma 15.12
applies verbatim to prove the first relation, provided that one replaces R with C
everywhere.

2

A realization of indefinite even normal representatives, or of E8 itself, possibly
by means of a simply connected smooth 4-manifold M , is much more subtle and
hard question. We will discuss later the following fundamental Rohlin’s discovery:

If M is simply connected and its intersection form is even, then σ(M) ≡ 0 mod
(16).

Recall that algebra tells us that the signature of an even form is ≡ 0 mod (8).
Then E8 cannot be realized. If M is simply connected with indefinite and even
intersection form, then this is necessarily isometric to a normal representative of
the type

2aE8 ⊥ bH
for some a ∈ Z, b ∈ N \ {0}. It is not evident (and ultimately false) that every such
pair (a, b) can be realized. On the other hand, classical simply connected examples
show the actual occurrence of E8.

Example 20.11. If we relax the requirement of dealing with normal represen-
tatives, it is not hard to make E8 visible. For example, by the indefinite and odd
classification, the form of M = 10P#Q is isometric to

E8 ⊥ U+ ⊥ H .

Nevertheless, this algebraic decomposition does not correspond to any connected
sum decomposition of M .

A more substantial example, realizing a normal representative, is the so called
Kummer variety. Let the 4-torus T 4 = R4/Z4 be realized as the product of two
copies of C/(Z ⊕ iZ) so that T 4 has a complex 2-manifold structure with “uni-
formizing” complex coordinates (w1, w2). The involution τ(w1, w2) = (−w1,−w2)
descends to T 4 and has 16 fixed points. Let us perform the complex blow-up at
such fixed points. We get a complex surface K̃, smoothly diffeomorphic to T 4#16Q.
The exceptional complex surface over each fixed point is a Riemann sphere S with
self-intersection number in K̃ equal to −1. The involution τ lifts to an involution
τ̃ of K̃ which is the identity on each exceptional sphere. We consider the quotient

K := K̃/τ̃ .

One verifies thatK is a smooth complex surface. By means of the natural projection,
every exceptional sphere S maps onto a 2-sphere S′ embedded intoK; the restriction
of the projection on a suitable neighbourhood of each S in K̃ is a double covering
of a neighbourhood in K of the corresponding sphere S′. Then the self-intersection
number of every S′ in K is equal to −2. One can verify that H2(T 4;Z) ∼ Z6 and
is generated by six embedded 2-tori, while H2(K;Z) ∼ Z22 generated by the image
of these tori together with the 16 spheres S′. Eventually the intersection form of K
is idefinite and even with normal representative −2E8 ⊥ 3H.

20.2.1. On the intersection form of 4-manifolds with boundary. If
∂M 6= ∅, the intersection form t : H2(M ;Z) × H2(M ;Z) → Z and the Z-linear
map

φ̂2 : H2(M ;Z)→ Hom(H2(M ;Z),Z)

are defined as well. In general the form is not unimodular. If β := i∗(α) 6= 0 in
H2(M ;Z) for some α ∈ H2(∂M ;Z), then β t γ = 0 for every γ. On the other hand,
it follows from the results of Chapter 13 that

φ̂2 : H2(M,∂M ;Z)→ Hom(H2(M ;Z),Z)
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is an isomorphism. Hence the intersection form of M is unimodular if and only
if j∗ : H2(M ;Z) → H2(M,∂M ;Z) is an isomorphism. For simplicity assume that
M is part of a triad of the form (M, ∅, V = ∂M) admitting an ordered handle
decomposition with one 0-handle, some 2-handles, say k, no 3 and 4-handles. In
other words, by removing the 0-handle, we realize a surgery equivalence S3 ∼σ V .
Hence V is connected and M is simply connected. We claim that every symmetric Z-
bilinear form (not necessarily unimodular) can be be realized by such a 4-manifold.
Let us sketch the argument. By using Section 9.3.1 we see that M retracts to a
wedge of k 2-spheres. By using the bordism homotopy invariance and what we
know about the bordism of S2, we see that H2(S2;Z) has rank k; a geometric basis
α1, . . . , αk can be obtained by completing the core of every 2-handle with a Seifert
surface of the corresponding attaching knot in S3 (provided the handles have been
ordered). The k-components framed link in S3 which encodes the attaching of 2-
handles carries a symmetric linking matrix made by the linking numbers of pairs of
constituent knots and, along the diagonal, by the integers encoding the framing of
every such a knot. With a bit of work one eventually realizes that this matrix equals
the matrix of the intersection form of M with respect to the above geometric basis.
In Figure 1 we show a framed link in S3 which realizes E8; ∂M is the Poincaré
sphere.

Figure 1. A E8-link.

We have

Proposition 20.12. The intersection form of M is unimodular if and only if
H1(V ;Z) = H2(V ;Z) = 0.

Proof : As M is simply connected, H3(M,∂M ;Z) ∼ Hom(H1(M ;Z),Z) = 0.
Hence by using the bordism long exact sequence of (M,∂M), we see that i∗ :
H2(V ;Z) → H2(M ;Z) is injective; hence if the intersection form of M is unimod-
ular, then H2(V ;Z) = 0. On the other hand, if H1(V ;Z) = 0, consider the dual
handle decomposition; the cores of the 2-handles provide a basis of H2(M,∂M ;Z);
by capping each of them with a Seifert surface in V of the corresponding attaching
knot, we get a further geometric basis of H2(M ;Z) dual to the previous one.

2

If the intersection form of M is unimodular, possibly by performing an ele-
mentary blow-up move (which replaces M with M# ± P2(C), without modifying
the boundary V ), we can assume that the unimodular intersection form of M is
diagonalizable. If one 2-handle (corresponding to a costituent knot Ki) is slid over
another, say corresponding to Kj , then the geometric basis as above, changes by
sending αi to αi +αj , and the linking matrix changes by adding the jth row to the
ith row, and the jth column to the ith. It follows that we can realize a diagonalizing
basis by means of handle sliding.

The same discussion can be repeated (with some simplification) by replacing
everywhere Z with Z/2Z.
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20.3. Ω4

We already know that Ω4 is non trivial because χ(2)(P
2(C)) = 1. More precisely

we have a surjective homomorphism defined by

χ(2) : Ω4 → Z/2Z, χ(2)([M ]) := χ(2)(M) .

Pontryagin remarked that there is a subtler homomorphism induced by the
signature. As usual

[M#M ′] = [M qM ′] = [M ] + [M ′] ∈ Ω4

so that every α ∈ Ω4 can be represented by connected 4-manifolds and we can
replace q with # to define the Z-module operation on Ω4. Then we have

Proposition 20.13.

σ : Ω4 → Z, σ(α) := σ(M)

where M is any connected representative of the class α, is a well defined and sur-
jective homomorphism.

Proof : As the signature is additive with respect to the connected sum, σ(M) =
−σ(−M) and σ(P2(C)) = 1, it is enough to show that if [M ] = 0 ∈ Ω4, then
σ(M) = 0. To compute the signature, that is the indices i+, i−, it is enough to
extend the coefficients Z ⊂ Q. For every α ∈ H2(M ;Q) there exists m ∈ Z such
that mα = α′ ∈ H2(M ;Z), and α • α = α′ • α′/(m2). If for every α ∈ H2(M ;Q),
α • α = 0, then σ = 0. Let M = ∂W , i : M → W be the inclusion. If i∗(α) = 0,
then α′ • α′ = 0, hence α • α = 0. So if for every α, i∗(α) = 0, then σ = 0. Assume
that i∗(α) 6= 0. Then there is b ∈ H3(W,M ;Q) such that β := ∂b ∈ H2(M ;Q) and
α • β = 1, i∗(β) = 0. Let V be the subspace of H2(M ;Q) generated by α and β.
The matrix of the restriction of the intersection form on V has det = −1, hence its
signature is equal to zero. As the restriction of the form to V is non degenerate,
also its restriction on the othogonal space V ⊥ is non degenerate. The we can iterate
the construction till one finds classes such that i∗(α) 6= 0. By the additivity of the
signature with respect to the orthogonal direct sum, we conclude that σ = 0.

2

We are ready to state and prove the following theorem due to Rohlin (see
[GM]). We will propose his original argument. This is formally analogous to
surface Theorems 15.14 and 15.15.

Theorem 20.14. The homomorphism induced by the signature σ : Ω4 → Z is
an isomorphism. Hence Ω4 is generated by [P2(C)] and is naturally isomorphic to
the Witt group W (Z).

Proof : The restriction of σ to the submodule of Ω4 generated by [P2(C)] is an
isomorphism onto Z. Hence it is enough to show that Ω4 is generated by [P2(C)].
We will achieve this fact by several steps. Let M be as usual a compact, oriented,
connected and boundaryless 4-manifold.

Step 1. This is similar to the first step in Rohlin’s proof that Ω3 = 0. That is,
up to bordism, it is not restrictive to assume that M ⊂ R7 ⊂ S7. (see also [Kirby]
for a somewhat different conclusion of the proof based on Step 1).

Step 2. We would like to construct along M a field v of unitary tangent vector
to S7 normal to M . This is not possible in general, however we are going to see
that there is M̃ := M#aP#bQ ⊂ S7 for some a, b ∈ N, which carries such a
nowhere vanishing transverse field. A first obstruction is given by the Euler class
e ∈ H3(M ;Z) of a normal bundle to M in S7. On the other hand, [M ] = 0 ∈
H3(S7;Z) and e = i∗([M ]) = 0. This implies that such a field v can be defined on
M0 = M \ IntB4, where B4 is a smooth 4-disk in M ; in fact M0 has a 3-dimensional
spine, v can be always constructed up to the 2-skeleton and the obstruction to
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extend it to the third skeleton belongs to π2(S2) and vanishes because e = 0. The
restriction of v to ∂M0 defines an element of π3(S2) which is in general non trivial.
This is the final effective obstruction to extend v on the whole of M . We know that
π3(S2) = Z is generated by the Hopf map h : S3 → S2. By transversality we can
perturb the field v and assume that it is defined on M ′ obtained by removing from
M the interior of a finite number of disjoint 4-disks Bj embedded into IntB such
that the restriction of v to every boundary ∂Bj is equal to ±h. By using the field v
we get an embedding of M ′ into the boundary ∂N(M) of a tubular neighbourhood
of M in S7. By abstractly gluing to every boundary component of M ′ the mapping
cylinder of the corresponding map ±h, we get the 4-manifold M̃ := M#aP#bQ
for some a, b ∈ N. We claim that we can assume that M̃ ⊂ ∂N(M) by extending
the given embedding of M ′. For if Bj ×D3 is a trivialized chart of N(M) over the
4-ball Bj , the embedding of ∂Bj is for instance of the form x → (x, h(x)) and P0

is the copy of P \ Int(D4) in M̃ corresponding to Bj , then an embedding of P0 is
given (by using suitable homogeneous coordinates (x0, x1, x2)) by:

(x0, x1, x2)→ ((
2x0x1∑2
i=0 |xi|2

,
2x0, x2∑2
i=0 |xi|2

),
x1

x2
) ∈ Bj ×P1(C) .

Clearly, the restriction ṽ to M̃ of a unitary normal field to the hypersurface ∂N(M)

in S7 is nowhere vanishing along M̃ .

Step 3. The field ṽ determines an embedding of a copy M̂ of M̃ into ∂N(M̃)

the boundary of a tubular neighbourhood π : N(M̃) → M̃ of M̃ in S7. Set X :=

S7 \ IntN(M̃). If [M̂ ] would be zero in H4(X;Z), then it should be a boundary
thanks to Proposition 13.9, and finally M bordant with kP2(C) for some k ∈ Z.

However, we cannot assume that [M̂ ] = 0.

Claim 1. There is an oriented surface F in M̃ such that the disjoint union
of inclusions j : M̂ q ∂π−1(F ) → ∂N(M̃) represents zero in H4(X;Z) (the 4-
manifold S := ∂π−1(F ) is oriended by the direct sum of the orientation of F and

the orientation of the normal bundle of M̂ in ∂N(M̃)).

Let us prove the claim. H4(S7;Z) = 0, more precisely Ω4(S7) ∼ Ω4. Hence

there is an oriented triad (W, M̂, V ) and a map h : W → S7 where the restriction to

M̂ is the inclusion and the restriction to V is a constant map. By transversality we
can assume that the restriction of h to an open collar of M̂ in W is an embedding in
X transverse to ∂N(M̃), the image of V is in the interior of X, the restriction of h to

the interior of W is transverse to (N(M̃), ∂N(Ñ) and M̃ . Then F = h(Int(W ))∩M̃
is a surface in M̃ and h(Int(W )) ∩ ∂N(M̃) = ∂π−1(F ) := S. Finally (h−1(X), h)

realizes a bordism between (M̂ q ∂S, j) and (V, h|). The claim is proved.

With a slight abuse of notation we write [M̂ q S] instead of [M̂ q S, j].
Step 4. Let F be as in Claim 1. Clearly S := π−1(F ) is the boundary of a

2-disk bundle. Then it would be enough to prove that [M̂ qS] = 0. We are able to

do it under a more restrictive hypothesis. We can assume that M̂ is transverse to
S in ∂N(M̃) and that M̂ ∩S = F1 where F1 is the copy of F in ∂N(M̃) determined

by the above normal unitary field ṽ along M̃ .

Claim 2. Assume that the oriented normal bundle to F1 in M̂ is isomorphic
to the oriented normal bundle of F1 in S. Then [M̂ q S] = 0.

Let U1 be a tubular neighbourhood of F1 in M̂ , U2 a tubular neighbourhood of
F1 in S. We can construct a manifold Y by gluing M̂ \Int(U1) and S \Int(U2) along
the boundary which are isomorphic by hypothesis. In fact Y can be realized within
∂N(M̃) in such a way that it contains isotopic copies of the original constituent

pieces. It is not hard to check that Y is bordant with M̂ q S and that [Y ] =
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[M̂ ] + [S] = 0 in H4(X;Z). By Proposition 13.9 Y is a boundary and hence also
M q S is so.

Step 5. In general the normal bundles of F1 in M̂ and S respectively are
not isomorphic to each other. The oriented rank-2 normal bundle of F1 in M̂ is
determined up to isomorphism by the self-intersection number of F1 in M̂ . One
realizes that by performing a complex (anti) blow up of M̂ at a point of F1 we get

a manifold M̂ ′ diffeomorphic to M̂#±P2(C) such that the strict transform of F1

in M̂ ′ is equal to F1 and its self intersection number varies by ±1. Moreover, it
is not restrictive to assume that M̂ ′ is realized within ∂N(M̃). By iterating this

construction we eventually get M̂ ′ ∼ M̂#pP#qQ = M#kP#hQ to which Claim 2
applies. Theorem 20.14 is eventually achieved.

2

20.4. Simply connected classification up to odd stabilization

In this section we restrict to simply connected 4-manifolds. We are going to
prove:

Theorem 20.15. For every compact oriented simply connected boundaryless
4-manifold M , there exist (k, h), (m,n) ∈ N×N such that M#kP#hQ = mP#nQ.

By using Proposition 20.10 one can slightly refine the statement in the form:

· · · there exists (k,m) ∈ N×N such that M#(k+ 1)P#kQ = (m+ 1)P#mQ.

Theorem 20.15 is analogous to surface Section 15.5, however we have not here
any a priori information about the integers k, h,m, n. By Theorem 20.14, for every
M as above there is l ∈ Z such that M#lP2(C) and this last is still simply con-
nected; then Theorem 20.15 will readily follow by combining the next proposition
with Proposition 20.10.

Proposition 20.16. Let M be simply connected and a boundary. Then there
are (k0, k1), (h0, h1) ∈ N× N such that

M#k0(S2 × S2)#k1(S2×̃S2) ∼ h0(S2 × S2)#h1(S2×̃S2) .

Proof : As M is a boundary, there is an oriented triad (W,M,S4). Let us take
an ordered handle decomposition of (W,M,S4) without 0- and 5-handles. Hence it
is of the form

(M × [0, 1]) ∪ {H1} ∪ {H2) ∪ · · · ∪ {H4} ∪ ([−1, 0]× S4)

where every Hj , j = 1, . . . , 4, denotes a pattern of aj j-handles attached simultane-
ously at disjoint attaching tubes. We claim that we can modify the 5-manifold W
without changing the boundary M q S4 in such a way that it is not restrictive to
assume that a1 = a4 = 0. To do it we apply the “trading” argument already used
in the proof of Proposition 19.8. We can assume that the attaching tube a every
1-handle is contained in a smooth 4-disk of M . Then the new boundary component
obtained by modifying M can be realized as well by means of a 3-handle trivially
attached to M ; thus we can trade every 1-handle with a 3-handle. By using the
dual handle decomposition we can trade every 4-handle with a 2-handle; so, up to
reordering, we can assume that the ordered handle decomposition of (W,M,S4) con-
tains only 2 and 3 handles. Hence W can be obtained by gluing (M × [0, 1])∪{H2}
and {H3} ∪ ([−1, 0]× S4) along diffeomorphic boundary components. Note that in
terms of the dual decomposition, also {H3}∪ ([−1, 0]×S4) is obtained by attaching
2-handles. Then the following lemma allows us to conclude.

Lemma 20.17. Consider the cylinder (M × [0, 1],M0,M1), Mj = M ×{j}. Let

(Y,M0, M̂1) obtained by attaching a 2-handle to M × [0, 1] along M1. Assume that

M is simply connected. Then either M̂1 ∼M#(S2 × S2) or M̂1 ∼M#(S2×̃S2).
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Proof : As dimM = 4 and M is simply connected, the attaching 1-sphere of
the handle is isotopic to a standard S1 in a chart of M . Then it is easy to check
that M1 ∼ M#F where F is the total space of an oriented fibre bundle over S2

with fibre S2. Then we apply Proposition 20.9. The lemma and Proposition 20.16
are proved.

2

20.5. On the classification up to even stabilization

As in the previous section we deal with simply connected 4-manifolds. Being
very sketchy, we are going to discuss the following deeper result [Wall3], [Wall4].

Theorem 20.18. Let M0 and M1 be compact oriented simply connected bound-
aryless 4-manifolds with isometric intersection forms. Then there is k ∈ N such
that M0#k(S2 × S2) ∼M1#k(S2 × S2).

A few comments are in order:
• In a sense this is the strongest 4-dimensional analogous of surface classification

in terms of the intersection form, which one has obtained by means of classical
differential/topological methods available till the ends of 70’s of the last century.
• Theorem 20.18 implies Theorem 20.15. For up to a suitable odd stabilization

M#±P2(C), this last has the same intersection form of some kP#hQ. By applying
to this couple of manifolds Theorem 20.18 and Proposition 20.10, we get Theorem
20.15. In fact a proof of Theorem 20.18 is much more demanding, it incorporates
the one of Theorem 20.15, together with more advanced tools in homotopy and
homology theory beyond the limits of the present text. So we will give just some
indications. A detailed proof can be found for example in [Sc].
• For our main application in Section 20.6, the simpler classification up to odd

stabilization will suffice.

First one proves the theorem under a stronger hypothesis. The idea is that the
h-cobordism theorem holds also in dimension 5 up to even stabilization.

Proposition 20.19. Let M0 and M1 be compact oriented simply connected
boundaryless 4-manifolds. Assume that they are h-cobordant. Then there is k ∈ N
such that M0#k(S2 × S2) ∼M1#k(S2 × S2).

Sketch of proof: We know that the main difficulty to perform the stable proof of
the h-cobordism theorem in dimension 5 is that we cannot apply the Whitney trick
to eliminate couples of intersection points between the b-sphere Sb and the a-sphere
Sa of two algebraically complementary handles. In particular, trying to construct a
Whitney disk, we cannot avoid that such a generically immersed 2-disk D has self-
intersection points. Let p such a point. Let us make the connected sum with a copy
of S2 × S2. This contains two 2-spheres S1 and S2 which intersect transversely at
one point. By means of a thin embedded 1-handle we connect D with S1 obtaining
a new immersed 2-disk D′ (D′ ∼ D#S1) which intersects transversely S2 at one
point q. Let c be a simple arc on D′ which connects p and q and does not pass
though other self-intersection points. By using another thin embedded 1-handle
along c we connect D′ with a parallel copy of S2 and get D” from which both the
self-intersection points p and q have been eliminated. Hence up to a certain number
of even stabilizations we can assume that D is embedded and eventually provides
a genuine Whitney disk.

2

The classification up to even stabilization is now a consequence of the “if”
implication in the the following deep Wall’s theorem.
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Theorem 20.20. Let M0 and M1 be compact oriented simply connected bound-
aryless 4-manifolds. Then they are h-cobordant if and only if they have isometric
intersection forms.

Being even more sketchy: “if” is the hard implication; it strenghtens a classical
Whitehead theorem (based on CW complex techniques) according to which M0

and M1 have the same homotopy type. If the intersection forms are isometric
then they have in particular the same signature, so that M0 is bordant with M1

by Theorem 20.14 . Arguing as in the proof of Proposition 20.16, we know that
there are triads (W,M0,M1) where W is obtained by gluing some V with boundary
∂V = M0 q (M0#k(S2 × S2)#h(S2×̃S2)) and some V ′ with boundary ∂V ′ =
(M1#k′(S2 × S2)#h′(S2×̃S2))qM1, via a diffeomorphism

φ : M0#k(S2 × S2)#h(S2×̃S2)→M1#k′(S2 × S2)#h′(S2×̃S2) .

As M0 and M1 are simply connected, then also W is so. The key point is to show
that, by fully exploiting the hypothesis, amongs the triads of this kind there are
such that W is homologically trivial; by standard algebraic/topological arguments
this is enough to conclude that the triad (W,M0,M1) is a h-cobordism.

20.6. Congruences modulo 16

To introduce the theme, let us begin with a bit of history. We have recalled in
Section 17.4.3 that by means of the hardest application of Pontryagin method, in
a series of four papers of 1951-52 (see [GM] for the translation in french and wide
deep commentaries) Rohlin eventually computed the stable homotopy group

π∞3 = πn+3(Sn) ∼ ΩF3 (Sn) ∼ Z/24Z, n ≥ 5 .

As a corollary he obtained his celebrated congruence mod(16); a slightly weaker
formulation of it is as follows:

Theorem 20.21. Let M be a compact oriented boundaryless simply connected
4-manifold. Assume that its intersection form is even. Then σ(M) ≡ 0 mod (16).

As σ(M) is even, the arithmetic of unimodular forms tells us that σ(M) ≡ 0
mod(8), so we can reformulate the result as

σ(M)

8
≡ 0 mod(2) .

This improvement by 2 implies in particular that E8 cannot be realized by
any simply connected 4-manifold. The derivation of Theorem 20.21 from stably
πn+3(Sn) ∼ Z/24Z is rather demanding and uses several facts less elementary than
the ones covered by the present text. Just to give an idea, without any pretention to
be understandable, let us sketch the argument by following [MK]. It is shown that
p1(M) = 3σ(M) where p1(M) denotes the first Pontryagin number of T (M) (see
Remark 16.9). This follows because both p1 and σ are bordism invariant, additive
on connected sum and the formula holds for the generator of Ω4 = Z. So it is
enough to prove that p1(M) ≡ 0 mod (48). One can assume that M ⊂ R4+n,
n ≥ 5. In the hypotheses of Rohlin’s theorem, one can prove that M is almost
parallelizable that is the tangent bundle of M \ {x0} admit a global trivialization.
Let f be a non vanishing section of the restriction to M \{x0} of the SO(n) normal
bundle ν of M in R4+n. Let e be the obstruction to extending f ; it is identified
with an element of π3(SO(n)) (which is an infinite cyclic group), as well as the
Pontryagin number p1(ν) is identified with ±2e. Consider the J-homomorphism
(Section 17.4.1) J : π3(SO(n)) → π3+n(Sn). One proves that J(e) = 0, hence e is
divisible by 24. Finally one proves that p1(M) = −p1(ν) because T (M)⊕ν = ε4+n.
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An interesting feature of this history is that in the second paper of the series,
Rohlin outlined a proof of the erroneous result that stably πn+3(Sn) ∼ Z/12Z. Ar-
guing as above this would imply the non surprising congruence σ(M) ≡ 0 mod(8).
In the fourth paper, after having established the isomorphism σ : Ω4 → Z deter-
mined by the signature (i.e. Theorem 20.14), he firstly realized that this combined
with some claims in his early presumed proof produced a contradiction, then he
localized the mistake and corrected it getting the right group Z/24Z. In fact he
pointed out that there was only one substantial mistake: a certain simply connected
4-manifold M has been constructed with a characteristic element ω ∈ H2(M ;Z) of
its intersection form which can be represented by a generic immersion f : S2 →M ;
then by an abusive application of the Whitney trick in dimension 4, he argued erro-
neously that ω was represented by an embedded S2 ⊂M . This was a quite fruitful
mistake: his correction leads to the celebrated congruence mod(16) and provides
a concrete counterexample to the applicability of Whitney’s trick in dimension 4.
Moreover, by elaborating on this counterexample the authors pointed out in [KM]
(1961) an interesting extension. Recall that for every 4-manifolds M and for every
characteristic element ω ∈ H2(M ;Z) of its intersection form

σ(M)− ω t ω ≡ 0 mod(8) .

Then, assuming Theorem 20.21, the following theorem is proved in [KM].

Theorem 20.22. Let M be a compact oriented boundaryless simply connected
4-manifold. Let ω ∈ H2(M ;Z) be a characteristic element of its intersection form
that can be represented by an embedded 2-sphere. Then

σ(M)− ω t ω
8

≡ 0 mod(2) .

If the intersection form is even, then we can take ω = 0 and recover Rohlin’s
theorem. In general a characteristic element ω as above can be represented by
an oriented surface F embedded in M but not necessarily by a 2-sphere. For
example take M = P#8Q. If a0 is the standard generator of H2(P;Z) represented
by a projective complex line, and similarly aj for the jth-copy of Q, then ω :=
3a0 + a1 + · · · + a8 is characteristic and ω t ω − σ(M) = 8, hence ω cannot be
represented by a 2-sphere by Theorem 20.22. This motivates the following somewhat
informal

Guess: (1) Let M be a compact oriented boundaryless simply connected 4-
manifold. Let ω ∈ H2(M ;Z) be a characteristic element of its intersection form
represented by an embedded oriented surface F ⊂ M . Then one expects a formula
of the type

[
σ(M)− ω t ω

8
](2) = α(F )

where α(F ) ∈ Z/2Z represents an obstruction to surgery F “within M” to get an
embedded S2. Moreover, having in mind Pontryagin’s computation of π∞2 depicted
in Section 17.4.3 (recall also the study of immersions of surfaces in 3-manifolds
in Section 19.8), it is predictable that α(F ) is the Arf invariant of some quadratic
enhancement of H1(F ;Z/2Z) (see Section 15.6) associated to the embedding of F
in M .

(2) Assuming the isomorphism σ : Ω4 → Z, in contrast with the above derivation
of Theorem 20.21 from the homotopic result π∞3 = Z/24Z, the definition of α(F )
as well as the proof of the congruence should be geometric and possibly elementary.

Accordingly with Freedman-Kirby [FK] (1978), the realization therein of the
above guess is derived, considerably different in details, from one outlined by Cas-
son in 1974 (unpublished). Accordingly to the historical appendix by Kharlamov
and Viro in [GM], Rohlin announced such a formula at the Moskow IMC 1966
but only in a paper of 1972 he used it to solve a conjecture by Gudkov concerning
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Hilbert’s 16th problem about the configuration of ovals of planar even degree real
algebraic curves. The study of this problem by means of a 4-manifold obtained
as a branched covering of P2(C) ramified along a given non singular real algebraic
curve in P2(R) ⊂ P2(C) was introduced by Arnol’d [A3] (1971). The basic con-
gruences mod(8) already imply non trivial prohibitions for the oval configuration;
the finer formula as in the above guess implies stronger prohibitions. All this holds
under weaker hypotheses relaxing the fact that M is simply connected; for example
Ω1(M) = 0 suffices to define the quadratic enhancement by using “membranes” (see
below) and we can even avoid the use of membranes by means of spin structures
(see [Kirby]). However, we will keep M to be simply connected and follow the
treatment of Matsumoto [Mat] given in a paper available in [GM]; it is the sim-
plest one as it is readily accessible by means of the tools developed in the present
text.

20.6.1. Quadratic enhancement for characteristic surfaces. In this sec-
tion M will be a compact oriented connected smooth 4-manifold such that Ω1(M) =
0 (this holds in particular if M is simply connected) and F ⊂M an orientable sur-
face. Let c be a simple connected smooth circle on F . As Ω1(M) = 0 and using
transversality, there exists a smooth map f : P →M such that:

• P is an oriented compact surface with one boundary component;
• f(∂P ) = c;
• The restriction of f to a collar C of ∂P in P is an embedding;
• f(C \ ∂P ) ⊂M \ F and f(C) is normal to F along c;
• f is a generic immersion of P in M ;
• f |(P \ ∂P ) is transverse to F .

Such a map f is said a membrane along c. We simply write P instead of (P, f).
If M is simply connected we can also assume that P is a 2-disk, but this is not so
important at this point. For simplicity let us identify c with ∂P . The pull-back of
T (M) on P splits as

f∗T (M) = T (P )⊕ ν(f)

where ν(f) is said the normal bundle of the membrane and is an oriented bundle of
rank 2. As P retracts to a wedge of a finite number of S1 (to one point if P is a
disk), then ν(f) is isomorphic to a product bundle. Let us fix a global trivialization
τ . This induces a trivialization of the restriction ν(f)|c. Two trivializations of ν(f)
differ by a map g : P → SO(2). The restriction g|c represents 0 in Ω1(SO(2)),
hence it is homotopically trivial (Section 13.3). Then the restricted trivialization
τc does not depend on the choice of τ . The normal bundle νc of c in F define a
rank-1 orientable sub-bundle of ν(f)|c. Then denote by n(P ) the number of full
twists made by νc with respect to τc, moving along c in the direction given by its
orientation as ∂P . It is not hard to check that [n(p)](2) ∈ Z/2Z does not depend
on the choice of the orientation of P .

Let now a ∈ H1(F ;Z/2Z). We know (Lemma 15.3) that a = [c] for some simple
smooth circle c on F . Given a membrane P along c, set

qF (c, P ) = [n(P )](2) + [P • F ](2) ∈ Z/2Z

where P • F is in fact the intersection number between Int(P ) and F . We have

Proposition 20.23. Let F ⊂ M be an oriented characteristic surface of M ,
that is ω = [F ] ∈ H2(M ;Z) is a characteristic element of the intersection form of
M . Then:

(1) For every simple smooth circle c on F , qF (c) := qF (c, P ) does not depend
on the choice of the membrane P along c.
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(2) For every a ∈ H1(F ;Z/2Z), for every simple smooth circle c representing
a (a = [c]), then qF (a) := qF (c) does not depend on the choice of the
representative c.

(3) The function qF : H1(F ;Z/2Z) → Z/2Z defined so far is a quadratic
enhancement of the intersection form on H1(F ;Z/2Z).

Proof : (1) Let P and P ′ be two membranes along c. Up to “spinning” P ′

along c, we can assume that P and P ′ glue along the common boundary c in such
a way that: (i) Σ = P ∪ P ′ is a boundaryless surface generically immersed into
M ; (ii) a tubular neighbourhood of c in Σ is an embedded annulus normal to F ,
made by two collars C and C ′ in P and P ′ respectively, opposite to each other. The
membranes P and P ′ determine respective trivializations τc and τ ′c which induce
opposite orientations on the fibres of the bundle. The difference between −τ ′c and
τc along c is encoded by an element d ∈ π1(SO(2)) = Z. One verifies that

Σ • Σ = d− 2P • P ′ = d mod(2)

Σ • F = P • F + P ′ • F mod(2)

(recall that the self-intersection of c in F c • c = 0 because F is orientable). As F
is characteristic, then

Σ • Σ = Σ • F mod(2)

hence

d = P • F + P ′ • F mod(2) .

On the other hand,

n(P ′) = n(P ) + d mod(2) .

By combining these relations we eventually get

n(P ) + P • F = n(P ′) + P ′ • F mod(2)

as desired. Item (1) is proved.

To achieve (2) (3) we can implement the method illustrated at the end of Section
quadratic. We have defined a function which associate q(c) ∈ Z/2Z to every simple
smooth circle on F . It is clear that q(c) = 0 if c is the boundary of a 2-disk embedded
in F . We extend additively this function to every not necessarily connected simple
curve c = c1 q · · · q ck on F . If γ is now a curve generically immersed in F with
a number say r(γ) ≥ 0 of normal crossings, every crossing can be simplified in
two ways. Let us call a state s of γ a system of simplifications at every crossing.
Performing these simplifications we get a simple curve cs. Set

qF (γ, s) = qF (cs) + [2r(γ)](2) .

Then it is enough to prove that qF (γ) := qF (γ, s) does not depend on the choice of
the state s. Arguing by induction of r(γ), we localize the question at one crossing.
If s and s′ differ just at one crossing, then we can use membranes P and P ′ along
the components of cs and cs′ which only differ locally at the crossing. By a direct
computation we can compute qF (γ, s) and qF (γ, s′) by using P and P ′ getting the
desired result.

2

For the definition of the Arf invariant of qF we refer to Section 15.6. In the next
proposition we show that the Arf invariant of qF only depends on the characteristic
element ω = [F ] ∈ H2(M ;Z).

Proposition 20.24. Let F, F ′ ⊂ M be oriented characteristic surfaces of M
representing the same characteristic element ω of the intersection form of M . Then
Arf(qF ) = Arf(qF ′), so that α(ω) := Arf(qF ) ∈ Z/2Z is well defined.
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Proof : We repeat an embedded bordism argument already employed in Sections
17.4.3, 19.8.1. We know that there is an orientable 3-dimensional triad (W,F, F ′)
properly embedded into the triad (M × [0, 1],M ×{0},M ×{1}) an we can assume
that the restriction to (W,F, F ′) of the projection onto [0, 1] is a Morse function.
Consider the corresponding handle decomposition of (W,F, F ′) and the successive
surgeries which produce F ′ from F . It is immediate that either attaching a 0-
handle or attaching a 1-handle to different boundary connected components does not
change the value of Arf. By attaching a 1-handle to a same connected component,
the boundary is modified by an embedded connected sum with a copy of T = S1×S1;
we realizes that there is a basis l,m of H1(T ;Z/2Z) such that the intersection form
is represented by the standard matrix H and m is the co-core of the handle, so that
qT (m) = 0. It follows that Arf(qT ) = 0, so that the total Arf does not change also
in this case. Finally we consider the dual handle decomposition to rule out also 2
and 3-handles.

2

20.6.2. A digression in classical knot theory. Let us recall a few facts of
classical knot theory (see for instance [Kau], [Rolf]) that we will use below in the
proof of the main result. Let K be a knot in S3 = ∂D4 considered up to ambient
isotopy. Every orientend proper surface (S, ∂S) ⊂ (D4, S3) such that ∂S = K
is “characteristic” for H2(D4, S3;Z) = 0. So by a similar construction as above
we can define a quadratic form qS : H1(S;Z/2Z) → Z/2Z whose Arf invariant
α(qS) ∈ Z/2Z eventually depends only on the knot K so that the Arf invariant
of the knot Arf(K) := α(qS) is well defined. It can be computed by means of any
oriented planar diagram D of K as follows. We can use as S the surface obtained
by pushing in D4 the Seifert surface of K in S3 constructed by means of the Seifert
algorithm via the oriented simplification of the normal crossings of D. If D′ is a
knot diagram which differs from D just by the over/under branches at one crossing,
denote by K ′ the corresponding knot. Performing the simplification at the given
crossing of D (or of D′, the result is the same) we get a diagram D” of a link with
two oriented components K1 and K2. Then one realizes that the following relation
holds involving the linking number of K1 and K2:

Arf(K) = Arf(K ′) + [L(K1,K2)](2) ∈ Z/2Z .

The linking number mod (2) can be easily computed by means of the diagram D”:
the number c of crossings of D” whose local branches do not belong to a same
constituent knot is even and [L(K1,K2)](2) = [c/2](2). Moreover, it is well known
that one gets a diagram D0 for the unknot K0 by switching some crossings of D;
clearly Arf(K0) = 0; then the above relation allows to compute inductively Arf(K)
starting from D.

Let T ⊂ R3 be the standard torus obtained by rotation of the planar circle
{x = 0, (y − 2)2 + z2 = 1} around the z-axis . For every couple (p, q) of coprime
integers, the torus knot K(p, q) is traced on T turning p times in the direction of
the standard longitude of T , q times in the direction of the meridian. By projection
onto the (x, y) coordinate plane, we get a standard diagram D(p, q) of K(p, q). We
will be interested to the case K(s, s− 1), where s > 1 is odd (so that (1− s2) ≡ 0
mod (8)). It is known in knot theory (for example by applying the above method
to the diagram D(s, s− 1)) that

Arf(K(s, s− 1)) = [
1− s2

8
](2) .

20.6.3. The main results. We ca state now the main result of this section.

Theorem 20.25. Let M be a compact oriented boundaryless simply connected
4-manifold. Let ω ∈ H2(M ;Z) be a characteristic element of the intersection form
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Figure 2. A standard diagram of K(7, 6).

of M . Then

[
σ(M)− ω t ω

8
](2) = α(ω) .

Proof : The proof is based on the classification up to odd stabilization. First
note that if M = M1#M2 is the connected sum of two simply connected manifolds,
then a characteristic element ω of M is the sum ω = ω1 + ω2 of characteristic
elements of M1 and M2 respectively. So if the theorem holds for two members of
the triple (M,ω), (M1, ω1), (M2, ω2), then it holds also for the third. By Theorem
20.15 we have that

M#(kP#hQ) = mP#nQ
for some k, h,m, n ∈ N. Then by applying inductively the above remark, it is
enough to prove the theorem for P and Q. If P1(C) ⊂ P is a complex line, then
every characteristic element of P is of the form ω = s[P1(C)], where s is an odd
integer; to our aims it is not restrictive to assume that s ≥ 1. The theorem clearly
holds for s = 1, so let us assume s > 1. Then ω = [F ] where F is any non singular
complex projective curve in P defined as the zero set of a homegeneous polynomial
of degree s in the homogeneous complex coordinates (z1, z2, z3) on P. One can
prove indeed (by using the fibration theorem 5.14) that all these curves are isotopic
to each other but this is not so important for the present discussion. Let us consider
the family of projective complex curves

Fε = {zs1 + zs−1
2 z3 − εzs3 = 0}

where ε ∈ R, ε ≥ 0. For ε = 0, F0 has one isolated singularity at the point
x0 = (0, 0, 1) and in the affine coordinates such that z3 6= 0, it is defined by the
equation xs+ys−1 = 0. The best reference for the study of such isolated singularities
of complex planar curves is celebrated Milnor’s book [M6]. Our case is particularly
simple and the following facts are verified. There is a small round 4-disk D around
x0 = (0, 0) in such affine chart, such that:

(1) S3 = ∂D is tranverse to F0 and K := F0 ∩ S3 is a torus knot K(s, s− 1).
(2) The pair (D,F0 ∩ D) is homeomorphic to the pair (D, cK) where cK

denotes the cone with base K and centre at x0.
(3) F0 ∩ (P \ Int(D)) is a smooth properly embedded 2-disk. Hence F0 is

homeomorphic to S2.

If ε > 0 is small enough, then
(i) Fε is non singular.
(ii) Fε t S3 is an isotopic copy of K(s, s− 1) and Fε ∩D is properly embedded.
(iii) Fε ∩ (P \ Int(D)) is a smooth properly embedded 2-disk.
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Then it is clear that

α(ω) = Arf(qFε) = Arf(K(s, s− 1)) = [
1− s2

8
](2) = [

σ(P)− ω t ω
8

](2)

and this achieves the case M = P. By taking into account the change of orientation,
the same argument holds as well for M = Q and the proof is complete.

2

20.6.4. On an extension to non orientable characteristic surfaces. We
have mentioned a 4-dimensional approach to Hilbert’s 16th problem where the con-
gruences mod(16) give non trivial information. In this setting it is quite current to
deal with non orientable characteristic surfaces that is representing the reduction
mod(2) of any characteristic element of the intersection form of some 4 manifold M .
This strongly motivates the search for a further generalization of Theorem 20.25.
We limit to state it.

Let F ⊂ M be a not necessarily orientable characteristic surface. Assume
that Ω1(M) = 0. Similarly to Section 19.8 and using membranes as in the above
definition of qF , we can define a quadratic enhancement

q̂F : H1(F ;Z/2Z)→ Z/4Z

of the intersection form by setting

q̂F ([c]) = q̂F (c, P ) = [n̂(P )](4) + 2 · ([P • F ](2) + c • c) ∈ Z/4Z

where n̂(P ) is the number of half-twists made by νc with respect to τc, moving along
c. The fact that is is well defined is a bit more complicated but not so much.

Similarly to the discussion made to define the integer Euler-Poincaré char-
acteristic also for non orientable manifolds, we can define geometrically the self-
intersection number F • F ∈ Z by identifying F with the zero section of its normal
bundle in the oriented manifold M and fixing arbitrary compatible local orienta-
tions of F and F ′ at every point of F t F ′, F ′ being a section transverse to F .
By usual arguments this number does not depend on the arbitrary choices made to
compute it. Recall the Arf-Brown invariant of q̂F defined in Section 15.6. Here we
denote it by α̂(F ) ∈ Z/8Z. Recall that the multiplication by 2 determines injective
homomorphisms Z/2Z→ Z/4Z→ Z/8Z→ Z/16Z. Finally we can state:

Theorem 20.26. Let M be a compact oriented boundaryless simply connected
4-manifold. Let F ⊂ M be a possibly non orientable surface which represents the
reduction mod(2) of any characteristic element ω of the intersection form of M .
Then

[σ(M)− F • F ](16) = 2 · α̂(F ) .

If F is oriented we recover Theorem 20.25, because F • F = ω t ω, q̂F = 2 · qF ,
α̂(F ) = 4 · α(ω).

Theorem 20.26 is due to Guillou-Marin [GM]. There are several difficulties
to overcome. When F is non orientable, F • F ∈ Z cannot be identified with the
intersection number of any bordism classes of M . So it is not clear how to refor-
mulate Proposition 20.24. The reduction mod(2), say ω(2), of any characteristic
number ω does not depend on the choice of ω. So we should rather prove that
[F •F + 2 · α̂(F )](16) does not depend on the choice of the (possibly non orientable)
surface F representing ω(2). Note also that dealing with non orientable surfaces, the
embedded bordism argument used in the proof of Proposition 20.24 is not immedi-
ately available (recall Remark 13.11). In the already cited paper [Mat], Matsumoto
gives another proof which by an inductive argument reduces the general statement
to forms Theorem 20.25. In both proofs there are two other basic cases besides P
and Q, that is S4 with suitably embedded real projective spaces as characteristic
surface.
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20.7. On the topological classification of smooth 4-manifolds

From Rohlin’s theorem (1952) to Donaldson’s work in 1982 [Do], no further
prohibitions to the realizability of unimodular forms by boundaryless smooth 4-
manifolds appeared. On the other hand Wall’s Theorem 20.18 was the strongest one
about the extent which the intersection form determines the differential topology
of a boundaryless 4-manifold. At the beginning of the 80’s two parallel new waves
have revolutionated the subject. Since Donaldson’s work, the introduction of new
methods derived from gauge theory, of differential-geometric/analytic nature and
strongly influenced by ideas of theoretical physics, have produced amazing new
prohibitions and powerful smooth invariants distinguishing homeomeorphic but non
diffeomorphic smooth 4-manifolds. Let us recall a few new prohibitions.

(Donaldson 1982 [Do]) If the intersection form of a simply connected, bound-
aryless smooth 4-manifold is definite then it is diagonalizable, that is of the form
kUε.

Donaldson’s result means that the arithmetic complication of definite forms
does not concern the intersection forms of smooth 4-manifolds; hence the problem
of four dimensional smooth realizability is reduced to the indefinite and even case.
To this respect we recall:

(Furuta 2001 [Fu]) If the intersection form of a simply connected, boundary-
less smooth 4-manifold is indefinite and even, that is of the type 2hE8 ⊥ aH, then
a ≥ 2|h|+ 1.

The following still is an open conjecture.

The so called “11/8” Conjecture: If the intersection form of a simply
connected, boundaryless smooth 4-manifold is indefinite and even, that is of the
type 2hE8 ⊥ aH, then a ≥ 3|h|.

If the conjecture holds true, then the rank must be at least 11/8 times |σ|.
Furuta theorem means that the rank is at least 10/8 times |σ|. If the form is
indefinite and even we may assume that it is of nonpositive signature by changing
orientations if necessary, in which case h ≤ 0. If a ≥ 3|h|, then the form can be
realized by means of |h|K#(a − 3|h|)(S2 × S2), where K is the Kummer complex
surface of Example 20.11. Hence a confirmation of the conjecture would achieve the
realizability problem.

The other wave had a somewhat more conservative motivation. It was clear
at least since Rohlin’s ‘mistake’, that there were in general actual obstructions in
order to apply the Whitney trick in dimension 4; nevertheless one wondered if such
a ‘technical’ difficulty could be circunvented in some way in order to prove the
5-dimensional h-cobordism theorem. For example in Wall’s theorem 20.19 this is
done by paying the price of performing even stabilizations. In this vein, in 73-74
A. Casson introduced so called “flexible handles” later currently called “Casson
handles” (see Lecture I in the second part of [GM]). Let M be a boundaryless
simply connected 4-manifold and let α, β ∈ H2(M ;Z) such that α • α = β • β = 0,
α •β = 1. Then, by means of a certain ‘infinite construction’, he produced an open
set V of M such that

• V has the proper homotopy type of S2 × S2 \ {pt};
• H2(V ;Z) carries the submodute of H2(M ;Z) generated by α and β

Moreover, he argued (Lecture III of the second part of [GM]) that

If flexible handles V are diffeomorphic to the true S2 × S2 \ {pt}, then we
could carry out the Whitney process and cancel handles to trivialize five dimensional
simply connected h-cobordisms.

More information about the flexible handles (at least about its ‘end’) would be
also of main importance with respect to the realizability problem:
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- If such a flexible handle V would be diffeomorphic to the true S2 × S2 \ {pt},
then we could split M = M ′#(S2 × S2) where M ′ is simply connected and passing
from W to W ′ we have surgered out a factor H of the intersection form of M .

- If V is diffeomorphic to N \ {pt} where N is a compact boundaryless 4-
manifold, then M = M ′#N where N has the homotopy type of S2 × S2 and again
carries α and β; so M ′ has the same properties as above.

- If the end of V coincides with the end of an open contractible manifold V ∗,
then by replacing V with V ∗ we get again W ′ with α and β killed.

Notice that before Donaldson’s result, there were not known obstructions in order
that the arithmetic splitting of an indefinite and even form 2hE8 ⊥ aH of some sim-
ply connected 4-manifold M could be realized by a splitting M ′#a(S2×S2). After
Donaldson we know that the above underlying hope was too optimistic, nevertheless
the main achievement of [Fr] (1982) was that

A flexible handle is a ‘true’ S2 × S2 \ {pt}, provided one works in the more
flexible setting of almost smooth 4-manifolds.

A topological manifold N is almost smooth if N \ {pt} has a smooth structure
(which in general cannot be extended over the whole N). Remarkably, more or less
at the same time it was proved in [Q]:

Every boundaryless simply connected topological 4-manifold is almost smooth.

This opens the way (via the solution of other hard technical issues) for a com-
plete classification of topological simply connected 4-manifolds, which includes the
fact that every unimodular symmetric form can be realized as the intersection form
of a boundaryless simply connected almost smooth 4-manifolds. Here we limit to
state a few corollaries in our favourite smooth setting.

(1) Topological five dimensional h-cobordism: Every smooth simply con-
nected 5-dimensional h-cobordism (W,M0,M1) is homeomorphic to the product
M0 × [0, 1]. In particular M0 and M1 are homeomorphic to each other.

(2) A classification of smooth 4-manifolds up to homemorphism: Two
smooth simply connected boundaryless 4-manifolds are homeomorphic if and only if
they have isometric intersection forms.

The new gauge theoretical prohibitions and smooth invariants, together with
the above topological classifications, lead to a dramatic failure of the smooth five
dimensional h-cobordism theorem and to the existence of a plenty of non diffeo-
morphic smooth structures on certain topological 4-manifolds. In particular we
recall that the Kummer complex surface of Example 20.11 admits countably many
non diffeomorphic smooth structures [FS]. Finally we recall that the classification
of topological 4-manifolds includes the solution of the four dimensional topological
Poincaré conjecture: Every boundaryless topological 4-manifold which is homotopi-
cally equivalent to S4 is homeomorphic to S4. It is not known if every smooth
boundaryless 4-manifold which is homotopically equivalent to S4 is diffeomorphic
to S4. This smooth four dimensional Poincaré conjecture presumably is the main
basic open question about smooth 4-manifolds.
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Appendix: baby categories

Along the text we make some (very moderate indeed) use of the language of
categories. We collect in this appendix the few necessary notions.

A category C consists of three things:

(1) A class of objects X;
(2) For every ordered pair of objects (X,Y ), a set Hom(X,Y ) of morphisms

(also called arrows) f : X 7→ Y ;
(3) For every ordered triple (X,Y, Z) of objects, a composition function of

arrows

◦ : Hom(X,Y )×Hom(Y, Z)→ Hom(X,Z), (f, g)→ g ◦ f .

We require that the following properties are satisfied:

(1) (Associativity) Whenever the involved compositions make sense, we have
h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

(2) (Existence of the identity) For every object X, there is a (necessarily
unique) arrow 1X ∈ Hom(X,X) such that 1X ◦ f = f , g ◦ 1X = g,
whenever the compositions make sense.

A morphism f ∈ Hom(X,Y ) is an equivalence in the category C if there exists a
(necessarily unique) morphism g ∈ Hom(Y,X) such that f ◦g = 1X and g ◦f = 1Y .

A fundamental example is the category of sets, denoted by SET, which has as
objects the class of all sets, while Hom(X,Y ) consists of the set of all maps from
X to Y . 1X is the identity map, while the equivalences are the bijective maps.
We know a lot of sub-categories of SET obtained by specializing both objects and
arrows: the categories of groups and group homomorphisms, of vector spaces (on a
given scalar field) and linear maps, of topological spaces and continuous maps, of
smooth manifolds and smooth maps . . . . The equivalences are the isomorphisms,
the homemorphisms, the diffeomorphisms, . . . .

A single group G can be considered as a category with just G as unique ob-
ject, while Hom(G,G) ∼ G, by associating to every h ∈ G the morphism by left
multiplication by h, Lh : G → G, g → hg. In this category all morphisms are
equivalences.

Not every category is a subcategory of SET. For example, starting from the
category of topological spaces and continuous maps we can construct a new category
with the same class of objects, and as arrows the homotopy classes of continuous
maps from X to Y . The fact that associativity holds is left as an exercise.

If X is a path connected topological space, we can consider the category whose
objects are the points of X and Hom(x, y) consists of the homotopy classes [α] of
paths in X connecting x and y. One can verify that every morphism in this category
is an equivalence (we say that it is a groupoid).

Given two categories C and D, a covariant functor F : C ⇒ D fron C to D
assigns to every object X of C, an object F(X) of D, to every arrow f ∈ Hom(X,Y )
of C, an arrow F(f) : F(X) 7→ F(Y ) of D in such a way that the following
properties are satisfied:

319
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(1) For every object X of C, F(1X) = 1F(X);
(2) F(g ◦ f) = F(g) ◦ F(f), whenever the composition is defined.

A contravariant functor assigns to every f ∈ Hom(X,Y ), an arrow F(f) ∈
Hom(F(Y ),F(X)) in such a way that F(g ◦ f) = F(f) ◦ F(g). A basic example of
contravariant functor if the functor from the category of vector spaces (on a given
scalar field) to itself such that for every V , F(V ) = V ∗ the dual space, and for
every linear map f : V → W , F(f) = f t the transposed map of f , f t : W ∗ → V ∗,
f t(φ) = φ ◦ f .

Let F and G be two say covariant functors from C to D. A natural trans-
formation T from F to G is a rule assigning to every object X of C, a morphism
TX : F(X) 7→ G(X) such that for every f ∈ Hom(X,Y ) of C, G(f)◦TX = TY ◦F(f).
If for every X, TX is an equivalence, then T is called a natural equivalence of func-
tors.

For example a ∆-complex mentioned in the text can be abstractly defined as
being a contravariant functor from the category ∆ to the category SET, where ∆
has as objects the ordered sets ∆n = {0, 1, . . . , n − 1}, n ∈ N, and as arrow the
strictly increasing maps ∆k → ∆n, k ≤ n. Maps beteween ∆-complexes would be
defined as natural trasnformations of the corresponding functors.
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de rationalité en dimension trois, Commentarii Math. Helvetici 67, (1993), 514–545;

[BP] R. Benedetti, C. Petronio, Branched standard spines of 3-manifolds, Lectures Notes in Math.
1653, Springer, 1997;

[BS] R. Benedetti, R. Silhol, Spin and Pin− structures, immersed and embedded surfaces and a

result of Segre on real cubic surfaces, Topology, Vol. 34, No.3, 651-678, 1995;
[BR] R. Benedetti, J-J. Risler, Real algebraic and semi-algebraic sets, Actualités Mathématiques,
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