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Let M(n) be the space of square complex matrices. The complex unitary 
group U(n) by conjugation acts in a natural way on M(n): if A E M(n) and 
P E U(n) the action is ‘%lP. The first purpose of this paper is to classify the 
conjugacy classes (the orbits) in M(n) with respect to that action. Set O(A) 
for the orbit of any A E M(n). Actually in the first section we found an 
algorithm which yields: 

(i) a map A: M(n) + M(n) such that for every A E M(n): 

(a) d(A) is upper triangular; 

(b) d(A) = A@‘) iff O(A) = O(A’); 

(c) d(A) belongs to O(A). 

(ii) the stabilizer of A(A), that is, 

st(A(A)) = {P E u(n) IQ%i(A)P = d(A)}. 

Roughly speaking A(A) is a normal formed representative for O(A). 
In the second section we consider the (local) normal form problem for 

families of matrices (smoothly or analytically) depending on parameters 
(clearly, with respect to unitary conjugation again). We solve the problem by 
constructing a versal deformation with a minimum number of parameters of 
each A(A); we obtain these deformations by means of another algorithm, 
parallel to the previous one, and they have the form 

A(A) + L(a,,..., a,) ai E F?, L is [R-linear. 

* The authors are members of GNSAGA Research Group of CNR. 
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Here we describe briefly the structure of the first algorithm: let A be any 
matrix in M(n). The first step consists in finding A r E O(A) upper triangular 
of a distinguished type (which depends merely upon the Jordan type of A. 
see Sect. 3.A) and St,(A), that is, the subgroup of U(n) preserving this upper 
triangular form. At step 2 one considers the action of St,(A) on its A,-obit 
O,(A,)= (*PA,PIPESt,(A)} and finds A, E O,(A ,) which gets a certain 
minor in a specialized form. Moreover one gets St,(A) the subgroup of 
St,(A) preserving this special form for the minor. At step p, St,- r(A) acts on 
the A,-,-orbit 0,-r (Ape,), thus one finds A, E O,-,(A,-,) with a further 
specialized minor and St,(A) the subgroup of St,_,(A) preserving the new 
specialization. After a finite number of steps (say d) the process stabilizes 
and we may define d(A) =A,. It results also St@(A)) = St,(A). All 
specializations as above come from four elementary moves based on rather 
simple facts such as the rank of the minor, its Jordan type (if it is square), or 
its polar decomposition (if it is nonsingular). 

Moreover, all steps of the algorithm depend only upon the orbit O(A). 
Thus by collecting in the same bundle all orbits which determine formally 
the same types of steps (eventually with different “parameters”: the eigen- 
values...) one obtains a good real semialgebraic stratification of M(n) in 
trivial tibre bundles which is naturally related to the action of U(n) and is 
refinement of the Jordan bundles stratification (see [ 1 I). We do this in the 
third section and we study some first properties of the stratification (by 
means of the versa1 deformations of 2). Also examples and remarks are in 
Section 3. We recall that the analogous program as in Section 2 and 3 is 
developed in [l] and [2] for the action of the general linear groups. At last 
we notice that the method seems easily adaptive to further actions: for 
instance, the conjugacy action of U(n) on M(n)‘( or the conjugacy action of 
the real orthogonal group on M(n, R). All arguments in proofs are 
elementary and refer to 13-61 or any other classical book on matrices 
theory. 

1. NORMAL FORMS 

A. Some Definitions 

We denote by M(n, m) the set of all complex n x m matrices, and 
M(n) = M(n, n); I,, is the identity of M(n). If A E M(n, m), A’ is its jth 
column; we shall sometimes consider A as a linear map A: 6” + C”. We 
write G/(n) c M(n) for the complex general linear group and U(n) for the 
complex unitary group. We fix on C a lexicographic total order relation > 
and always consider C” endowed with the canonical hermitian product. We 
say that A and B E M(n) are conjugated (or similar) if A = P-‘BP for some 
P E Gl(n) and that they are unitary conjugated if the same holds for 
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P E U(n). For every A E M(n), O(A) is its orbit under the conjugacy action 
of U(n) on M(n), and St(A) = {P E U(n) 1 ‘PAP = A} is the stabilizer of A. 

Let n E N, n > 0. 

1.1. DEFINITION. Zi is the set of all finite ordered sequences of positive 
natural numbers S = (sr ,..., s,J such that 

Every 5’ of Zz induces in a natural way a partition of any A E M(n) in 
minors m(i,j, A)s E M(si, sj), j, i = l,..., k, as the matrix shows (we set 
m(i, A)s = m(i, i, A),): 

1.2. DEFINITION. We define on Zi the following partial order relation: if 
S, T E ZE, we say that S is smaller than T, and write S 4 T, iff the 
partition defined by S on any matrix A E M(n) is a refinement of the 
partition defined by T (i.e., every m(i,j, A)s is contained in some 
NP, 9, A IT). 

1.3. DEFINITION. We say that A E M(n) is of type S E Zi if 
m(i, j, A)s = 0 whenever i # j. 

1.4. DEFINITION. Z, is the set of all pairs (S, f), where S = (sr ,..., s,J 
belongs to Zz and f: {l,..., k) + (0, l,..., p} is a map such that: (i) iff(i) # 0, 
then there exists j # i such that f(i) = f(j); (ii) f(i) = f(j) # 0 implies 
si = sj ; (iii) the restriction off to the set of minima 

(min f -‘f(i) If(i) # 0) is an increasing map and is onto {l,..., p). 

We shall use the notation (S,f) = (s~,~~,),..., skqfCk)) and we shall say that 
si and sj (i, j) are coupled if i = j or i # j and f(i) = f( j) # 0. 

1 S. DEFINITION. We say that A E M(n) is of type (S,f) E Z, if: 

(i) A is of type S E Zt ; 

(ii) f(i) = f(j) # 0 implies m(i, A)s = m(j, A)s. 

For example, PE M(16) is of type (3,, 2,, 3,, 3,, 3,, 2,) E Z,, iff P is the 
diagonal block matrix P = D(A, B, C, D, C, B), where A, C, D E M(3), 
B E M(2). 
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We remark that there exists a natural inclusion of 2: into Z, identifying 
any (s, ,..., s,J with (sr ,0 ,..., s,J. We want now to define a partial order 
relation on Z, which is an extension of the relation Q defined in 
Definition 1.2 and such that any matrix of type (S, j’) E Z, is a fortiori of 
type (T, g) whenever (S,f) is “smaller” than (T, g). 

1.6. DEFINITION. (S,f) = (s,~(~ ,,..., SkfCkJ is smaller than (T, g) = 
(t I&(l),“‘, t,,,(,J, and we write again (S,f) u (T, g), if: (i) S u T in ZE; 
(ii) S induces on any pairs of coupled ti and tj the same partition (in the 
sense of Definition 1.2) with the natural couplings: ti = (s~,~, s,, ,,P+ I ,...) 
and tj = (s U,P,sU+l,P+l ,... ), p > 0 whenever i#j. For example: (2,, I,, 2,, 
lo,&, 1,)a (3,,3,, 311, (ll,l,, 13,133 l,,l,) 4 (2,,1,, 10, w, (2,, 123 123 2,) 
93 (319 31). 

We are going to introduce a further notion. Let nEN as above. 

1.7. DEFINITION. N, is the set of all finite ordered sequences of positive 
natural numbers of the type 

N = (nf , n; ,..., n;,;...;...; n; ,..., n;,,) 

such that nj,>nj,>-.. 
n’ t . . . +nh=n. 

> njk and if nj = n{ + .a- t njki then one has 

Notice that there exists a natural forgetting map N + fl from N, in Zf . 
We use N, to define a special class of upper triangular matrices as we do 
below. 

1.8. DEFINITION. A E M(n) is called upper triangular of type NE N,, if: 

(i) it is upper triangular and has h distinct eigenvalues 
A, > ... > 1, E Cc of multiplicity n’,..., nh; 

(ii) it has along the main diagonal the blocks: All,;. 
3,,1,1)...) L,Z,;, ;**.; . ..) 2 AhZng, as in the matrix A 

l,Z,, B; 

’ A,Z”1 2 

A= 

0 
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(iii) every minor Bj E M(n{_, , n:) of A lying above AjIn,, 2 < i < kj, 
has maximal rank ni. 

1.9. DEFINITION. A is called upper triangular of distinguished type 
NE N, if it is as in Definition 1.8 and, more, every B-j has the first &, - n{ 
rows zero. 

B. Elementary Operations 

Let G = U(n) x U(m) and H = {(P, Q) E G ( P-’ = Q}. G acts on M(n, m) 
and H acts on M(n) in the natural way: (P, Q) . A = P. A . Q. Let 
A E M(n, m); we shall consider four kinds of action of G or H on A, which 
we call elementary operations, which put A into a more simple form. 

(I) Suppose m < n, rank(A) = r < IZ. We say that (P, Q) E G performs 
on A an elementary operation of type I iff the first n - r columns of P lie in 
the orthogonal of the image of A in 6”. Given A, with an elementary 
operation of type I, we get a matrix PAQ of rank r whose first n - r rows are 
zero, which we call in normal form of type I. This normal form is preserved 
exactly by the subgroup of G: 

St ,,n-r = {(P, Q) E G / P is of type (n - r, r) E Z”,}. 

(II) Suppose m > II, rank(A) = r. We say that (P, Q) E G performs on 
A an elementary operation of type II iff the first m - r columns of Q lie in 
Ker A. With an elementary operation of type II we get a matrix PAQ of rank 
r whose first m - r columns are zero, which we call in normal form of 
type II. This normal form is preserved exactly by the subgroup of G: 

St II,,,--r = IV’, Q> E G I Q is of type (m - r, r) E Z”,}. 

(III) Assume m = n = rank(A). 

1.10. LEMMA. In situation III there exist (P, Q) E G and an unique real 
diagonal matrix A’ having c, > c2 >, ... > c, > 0 along the main diagonal, 
such that: PAQ = A’. Moreover, if d, > .a. > d, are the distinct eigenvalues 
of A’ and have multiplicity n, ,..., nz, then (P, Q) E G and PA’Q = A’ iff Q is 
of we (n,,..., nJ E 2: and P = ‘Q. 

ProoJ It is well known (polar decomposition) that every nonsingular 
matrix A can be decomposed as the product A = UK, U being unitary and K 
being hermitian positive definite; moreover, such a decomposition is unique 
(actually U = AR - ‘, K = R, where R2 = ‘XA). Let T E U(n) such that -- 
‘?KT= A’. Setting P = ‘T’U and Q = T, clearly PAQ = A’. The unicity of 
A’ and the last point of the statement easily follow from the unicity of the 
polar decomposition. 
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If (P, Q) E G is chosen as in Lemma 1.10 we say that it performs an A an 
elementary operation of type III and the resulting normal form (of type III) 
is preserved exactly by the subgroup of G: StI,IqCn,,...,npJ = {(‘Q, Q) E HI Q is 

of We (n, ,..., n&l. 

In the next case we use the following 

1.11. Remark. Let Q = (Q’,..., Qfl) E U(n), A EM(n), and ‘QAQ = 
B = (b,); we have b,= ‘(Qi) AQj. Fix natural numbers 1 < r0 < r, < n, 
1 <s,, < s, < n. The linear function from the space having Q”“,..., Qsi as a 
basis to the space whose basis is QrO,..., Qrl, obtained by the composition of 
the restriction of A to the first one with the orthogonal projection to the 
second, is represented with respect to the above bases by the minor of B 
(bij), ro<i<rl, S,<j<Sl. 

(IV) Suppose m = n. We need the following: 

1.12. LEMMA. In situation IV there exists a unique NE N, such that 
‘QAQ = B is upper triangular of type N for some (‘0, Q) E H. If Q E U(n), 
‘QBQ is upper triangular of type N iff Q is of type fi. Moreover, we can 
choose (‘Q, Q)E H in such a way that ‘QAQ is upper triangular of 
distinguished type N. 

Proof To prove the first assertion we use induction on n. The case n = 1 
is obvious; suppose the assertion is true for k < n - 1. Let A, ,..., A,, be the 
distinct eigenvalues of A and n’,..., nh be their multiplicities. Let V: be the 
eigenspace of Al, and n: be its dimension. 

Let P = (PI,..., P”) E U(n) such that PI,..., P”: form a basis of Vi. Then 

A@:) * 
‘PAP = 

H I 

__ 3 
0 Wti 

where A(n:) =L,Z,;. In the sense of Remark 1.11, C(n t) represents a 
function from (Vi)’ into itself, whose eigenvalues are A1 (eventually), 
A A *,***, n, with multiplicities n’ - ni, n’,..., nh. By the inductive hypothesis 
we find Q, E U(n - n:) such that A,, = ‘Q,C(ni) Q, is upper triangular of 
type N,, E N,-,I, where I 

No = (m: ,..., m:,;...;...; rn: ,..., rnfh) if n:<n’, 

N,, = (m: ,..., rnf-;...;...; m: ,..., m$ if n: = n’. 

Let N= (n:, rni ,..., m:,;...;...; rn: ,..., m:J in the first case and N = 
(n:; rnf ,..., mf2;...;...;m: ,..., m$ in the second. 

We remark that in the first case n: > mf , since otherwise, looking at 
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m(l,2, ‘FAP)fl, there would be a nonzero kernel and we could choose 
Pn:+’ E I’:, contradiction. 

Thus NE N,. Let Q = (PI,..., Pn:,P,:+l ,..., pn), where (pi”,..., p) = 
(P n;+ 1 ,..., P”) . Q,. Then B = ‘@IQ is upper triangular of type N (in the first 
case m( 1,2, B)G must have maximal rank for the same reason as before). 

The unicity of N follows by a similar inductive argument. 
The proof of the second assertion is straightforward; to see the third, by 

induction it suffices to consider m( 1,2, B)fi. If its cokernel dimension is >O, 
perform an elementary operation of type I on this minor, choosing a suitable 
basis in V:, to get the required distinguished form. Q.E.D. 

If (‘0, (2) E H is chosen as in Lemma 1.12, we say that (‘0, Q) performs 
on A an elementary operation of type IV. With such an operation we get a 
matrix B = ‘QAQ, of distinguished type NE N,, which we call in normal 
form of type IV. We want to determine the subgroup St,,,N of H which 
preserves this normal form; the second assertion of Lemma 1.2 is not 
enough. 

Given N = (n{) E N,, 
N: E Zi as follows: 

l<j<h, l<i<kj, for any such i,j define 

(i) if i = kj then N{ = N; 

(ii) if 1 < i < kj and n$ = n{+, , then N{ = Z?; 

(iii) if 1 < i < kj and H: > n{+ i, then 

N:: = (n: ,..., n: ,,..., nj, ,..., n; - nj+ 1, nj+, , n;+, ,..., njki ,..., n; ,,.., n;,) E z;. 
In case (iii), N{ has one element more than a. Consider 

D={SEZ~ISCIN~, l<jjh, l,<i<Kj].Dhasamaximum,whichwe 
denote by N’. Then 

St ,V,N = {(‘c, Q) E H 1 Q is of type N’ E Zi). 

C. The Normal Form 

1.13. DEFINITION. Let A E M(n) be upper triangular of type NE N, (N 
is unique by Lemma 1.12). If S E Zi, S (I#, then we call (A, S)-special 
minors those minors m(i, j, FI)~ which are contained in some m(s, t, A)a with 
s < t (hence i < j). 

1.14. DEFINITION. Let A be as in Definition 1.13 and (S, f) E Z,, 
S 4 N. We say that the (A, S)-special minor m(i, j, ,4)S is (S,f)-stable iff 
for any Q E U(n) of type (S,f) we have: m(i, j, ‘OAQ), = m(i, j, A),. 

1.15. Remark. If m(i, j, ,4)S is (S,f)-stable and (T, g) a (S,f), then 
any m(s, &A), contained in m(i,j,A), is (T, g)-stable (see Definition 1.8). 
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1.16. Remark. Let A be upper triangular of type NE N,,, S E Zi, 
s u 8, and Q E U(n) of type S; then m(i, j, ‘OAQ), = 

‘m(i, Q>,m(i,j,A)sWy Q>,. 
We shall now define inductively the algorithm which provides the normal 

form. Fix a total order relation a on N X N. Let A E M(n). 

Step 0. Perform an elementary operation of type IV on A and get 
A(0) = ‘GAQ upper triangular of distinguished type N E N,. Set (S(O), f,) = 
(N’, @> E Z, > where 0 is identically zero. 

Step d + 1, d > 0. Suppose to have defined A(d) E O(A) upper 
triangular of distinguished type N and (S(d),f,) E Z, such that: 

(-%,) (W),f,) 4 W - l),fd-I) Q NQfJ; 

(BJ at least d (A(d), S(d))- p s ecial minors are (S(d),&)-stable. 

We want to construct A(d + 1) E O(A) upper triangular of distinguished 
type N and (S(d + l), fd+ ,) E Z, such that (Ad+ r) and (B,, r) hold. 

Let 4, j, A (d))ScdJ be the first (with respect to a) (A(d), S(d))-special 
minor which is not (S(d), &)-stable. Let k(i, j, A(d)),,,, and c(i, j, A(d)),o, 
be, respectively, its kernel and cokernel dimensions. In the sense of 
Remark 1.16 we shall perform on m(i, j, A(d)),,,, an elementary operation 
with a matrix Q(d) E U(n) of type (S(d),f,). This matrix is defined as 
follows: 

m(k Q(dNscd, = m(i3 Q(4)s,d, iff h is coupled with i by fd ; 

m(k QG%,, = m(.h QWstd, iff h is coupled with j by fd ; 

m(h, Q(d)),(d, = identity otherwise. 

The minors m(i, Q(d)),(d, and m(j, Q(d)),,,, are chosen as below. Two 
situations may arise. 

(1) Suppose i and j are not coupled by fd. Then exactly one of the 
cases I, II, III may occur. Perform the corresponding elementary operation 
yielding m(j, Q(4),cd, and m(.L Q(4),cd,. 

(2) Suppose i and j are coupled by fd. Perform on m(i, j, A(d),o, an 
elementary operation of type IV, yielding m(i, Q(d)),Cd, = m(j, Q(d)),o,. 

In both cases we have defined Q(d) E U(n) of type (S(d), fd). Let 
A(d + 1) = ‘Q(d) A(d) Q(d); then A(d + 1) is upper triangular of 
distinguished type N, since S(d) CI S(0) = N’, and at least d 
(A(d + l), S(d))-special minors are (S(d), f,)-stable. 

From Remark 1.15 it follows that for any (T, g) 4 (S(d), fd) there exists 
at least d ((A(d + 1)) 7’) s p ecial minors which are (T, g)-stable and are not 
contained in m(i. j, A(d + I)),,,,. Hence, to conclude step d + 1, we must 
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construct (S(d + l), fd+ i) E Z,, (S(d + l), fd+ J U (S(d), fJ, such that 
there is at least one (A(d + l), S(d + 1))~special minor which is 
(S(d + I),&+ ,)-stable and is contained in m(i, j, A(d + l)),,,, . We do this 
in the sequel, supposing S(d) = (..., Si,..., Sj,...). 

If the performed elementary operation was of type I, then the new stable 
special minor correspond to the first c(i, j) = c(i, j. A(d + l)),o, rows of 
m(i, j, A(d + l)),o, which are zero. 

We define S(d + 1) thinking to St,,rCi,jJ and hence substituting in S(d) to 
all the sk which are coupled to si by fd the pair c(i, j), sk - c(i, j). We define 

f d+, in order to couple all the first terms of these pairs, to couple all the 
second terms of these pairs, and to retain all the other couplings defined by 
fd not involving si. 

If the elementary operation was of type II, the new stable special minor 
corresponds to the first k(i, j, A(d + l)),o, columns of m(i, j, A(d + l))s,dJ 
which are zero; S(d + 1) and fd+, are defined in a similar way. 

If the elementary operation was of type III and n I ,..., np are the related 
multiplicities, n i + . . . + nP = si = sj, then the new stable special minors are 
all the special minors of A(d+ 1) which are contained in 
m(i, j, A (d + 1 ))s(d). We define S(d + 1) substituting in S(d) to any sk 
coupled to si or sj by fd the p-tuple n,,..., nP. We define fd+, in order to 
couple all the corresponding terms of these p-tuples, and to retain all the 
other couplings defined by fd not involving those sk. 

If the elementary operation was of type IV, let m(i, j, A(d + l)),o, be 
upper triangular of distinguished type ME N,/. The new stable special 
minors are the main diagonal blocks of m(i, j, A(d + l))S(d,, the zero minors 
which lie below them and the zero rows of its maximal rank minors, in the 
sense of Definition 1.9. Thinking of St,,,M define S(d + 1) substituting in 
S(d) in any sk coupled with si or sj by fd the element M’ E Zzi. Define fd+, 
in order to couple all the corresponding terms of these M’ and to retain all 
the other couplings defined by fd and not involving those sk. This concludes 
step d t 1. 

Conclusion of the algorithm. After at most in(n - 1) steps, we get 
A(k,) E O(A), upper triangular of distinguished type N, and (S(k,), fko) E Z, 
such that all the (A(k,), S(k,))-special minors are (S(k,), f,J-stable. This 
means ‘eA(k,)Q = A(k,) for any Q E U(n) of type (S(k,), fk,). 

1.17. DEFINITION. We define the map d, : M(n) + M(n): d,(A) = A(k,) 
(which depends upon the given order relation a). 

We can summarize the above results in the following: 

1.18. THEOREM. (i) d,(A) E O(A) and d,(A) =d,(A’) z@T O(A) = 
W’); 
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00 W,(~)) = IQ E u(n) I Q is of (we (Wo)~fi,>l; 
(iii) if S(k,) = (s, ,..., SJ andf,” : { l,..., t) + {O ,..., p} then 

dim St@,(A)) = 1 + \‘ s; 
iefko-'(0) j=min/- l(n) 

n=l,....p 

and dim O(A) = n* - dim St@,(A)). 

ProoJ Assume A and B lie in the same orbit V. Let A(d), (S” (d),fi) 
and B(d), (S’(d), fz), d > 0, be the sequences defined performing the normal 
form algorithm on A and B, respectively. By induction on d, the following 
assertion p(d) is true: 

(SA(d),fj) = (SE(d), ffl); A(d) and B(d) are conjugated by a 
matrix Q(d) E U(n) of type (F’(d),fj); all the (,4(d), S”(d))- 
special minors which are (SA(d),fi)-stable are equal to the 
corresponding (B(d), P(d))-special minors. 

Then (i) follows from p(k,). 
Next, let St@, d) be the subgroup of those Q E U(n) which satisfy: 

(9 '@W>Q . P is u per triangular of distinguished type N; 

(ii) if m(r, s, A(d)&, is a (A(d), S(d))-special minor (S(d), &)-stable 
then 

m(r, s, ‘@l(d) Q)scd, = m(r, sq A (d)h . 

By induction it follows that: 

St@, d) = {Q E U(n) 1 Q is of type (S(d),&)}. 

One inclusion is immediate; the other follows by the inductive hypothesis 
and the form of the stabilizer of the performed elementary operation. Since 
St(‘4O) = St@, k,), (“) p 11 is roved; (iii) is a consequence. Q.E.D. 

1.19. Remark. A, depend on the order relation (r. There should not be 
canonical choices for a. In the sequel we choose the following: (i, j) a(s, t), 
that means (i, j) precedes (s, t), iff j > t or j = t and i < s. The reason will be 
clear in Remark 3.3. In the sequel we shall omit to mention a, so we shall 
write A instead of A,. 

2. VERSAL DEFORMATIONS 

In the sequel, regular means infinitely differentiable or real analytic. 
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2.1. DEFINITION. If A E M(n), we call a k-parameter deformation of A 
the germ g of regular function g: (IR”, 0) + (M(n), A). M(n) has the real 2n2 
dimensional structure. Equality of deformations means equality of germs. 

2.2. DEFINITION. We say that the k-parameter deformations g and h of 
A are equivalent if there exists a germ of regular function 
a: (lRk, 0) --$ (U(n), I) such that the k-parameter deformations g and 
a - ’ . h 1 a of A are equal. U(n) has the structure of n2 dimensional real 
analytic manifold. 

2.3. DEFINITIONS. Let o: (IRS, 0) + (Rk, 0) be a germ of regular function, 
and let g be a k-parameter deformation of A. Then we define the s-parameter 
deformation of A p*g as the germ g o cp. 

2.4. DEFINITION. We say that the k-parameter deformation g of A is 
versa1 if for any s-parameter deformation h of A there exists a germ of 
regular function rp: (RS, 0) -+ (Rk, 0) such that the s-deformations h and q*g 
are equivalent. 

The trivial versa1 deformation of A is the 2n2-parameter deformation by 
t(X)=X+A, XEM(n)=iR’“‘. We want to construct a versa1 deformation 
for a given A E M(n) with minimum number of parameters. The basic tool 
we use is the following: 

2.5. THEOREM. The k-parameter deformation g of A is versa1 iff g is 
transversal to O(A) in 0 E iRk. 

The proof is similar to that of Lemma 2.2 in ( 11. 
If g is a versa1 deformation of A and Q E U(n), then QP ’ . g . Q is a 

versa1 deformation of Q-’ . A . Q. So it is enough to construct a versa1 
deformation with minimum number of parameters of the normal form 
d(A)=A’ofA. 

Let J: U(n)-+M(n) be defined by J(Q) = Q-‘A”Q, so that O(A) = 
O(A “) = J( U(n)). Let r = dJ, : TU(n), + TM(n),0 ; after the canonic iden- 
tification TM(n),,, = M(n), we have: TU(n), = {C E M(n) 1 ‘C = -c). We 
have --T(C) = [C, A’] = CA0 - A’C, so that 

Kerr= TSt(A’),, Im r= TO(A’),,. 

2.6. Remark. The minimum number of parameters of a versa1 defor- 
mation of A0 is: dim, M(n) - dim O(A”) = n2 + dim St(A’). 

We want to construct a linear versa1 deformation, so we need a linear real 
subspace W of M(n) such that Im r@ W = M(n). We shall do this induc- 
tively. Let A(d), (S(d),f,), 0 < d < k,, be the sequence defined by the 
algorithm which yields the normal form A’. For any d, 0 < d < k,, we want 
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to define p(d) E N and a linear function n(d): M(n) -+ Rptd’ which satisfy the 
following conditions: 

(id) z(d) 0 P rU(n), + RPcd’ is surjective: 

(iid) ker z(d) o I-= (C E XJ(n), / C is of type S(d), &)}. 

Suppose we have got such p(d), z(d). Let p = p(k,) and II = rr(kJ. Then 

ker 71 o r = (C E TU(n), / C is of type (S(k,), fkJ} = T St@‘), = Ker r. 

It follows easily Im rn Ker z = (0) and dim Im r + dim Ker rc = 
dim M(n), so that Im r@ ker z = M(n), and the required W is the solution 
space of the linear system with maximal rank n(Z) = 0, Z E M(n). 

We shall now construct the sequence p(d), z(d) for 0 < d < k,. In order to 
simplify the versa1 deformation, we shall define z(d) as a canonic projection, 
obtained by taking suitable real and imaginary parts of the entries zii of 
Z E M(n). Instead of defining p(d) and z(d), we shall write the linear system 
+w-(q = 0, c E ~w),, which we call L(d), which defines p(d) and 
n(d) in the natural way. 

Step 0. If NEN,, is the type of A’, N=(nf), l<i<h, l<j<ki, 
C,$ 1 rzj = n’, we set N” = (n’,..., nh) E ZL. We define L(0) to be: 

(a) for any s > t: m(s, t, r(qv,, = 0; 
(b) foranyi,jsuchthat l<i<h, l<j<k,,Nj==N: 

(c) foranyi,jsuchthat l<i<h, l<j<k,,Nj#N: 

m j+l+lk,., 
i 

‘-,’ for 1 <s<j+ 1, 
r=, I 

i-l i-l 

m j+ x k,,j+2+ x k,,r(C) =O. 
r=l i-=1 N; 

We claim that (ii,) holds, that is, given C E 23(n),, we have 
7c(O)(T(C)) = 0 iff m(s, t, C),, = 0 for any s # t. Observe that ‘C = -c, so 
m(s, t, C),, = 0 iff m(t, s, C),, = 0. 

First we remark that Eqs. (a) are equivalent to m(s, t, C),,, = 0 for s # t. 
To see this, consider the following order relation on the minors of T(C): 
me m’ iff m lies strictly on the left of m’, or, if this does not happen, m is 
below m’. Then solve Eq. (a) in increasing order, starting from the minimum. 

It remains to show that Eqs. (b) and (c) are equivalent to m(s, t, C),+, = 0 
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for any s # t such that m(s, t, c),~, is contained in some m(i, i, C),,,. We may 
assume h = 1, which means there is only one eigenvalue. Then it suffices to 
solve Eqs. (b) and (c) in increasing order, with respect to the above order 
relation on the minors of T(C), starting from the minimum. In this 
computation it is essential that A’ is in distinguished upper triangular form. 

As an example, if h = 1, N = (3, 2, 2, 1). the order of solving Eqs. (b) and 
(c) is showed by Fig. 1. 

Property (i,) follows by computation of dimensions: if N’ = (s, ,..., s,), 
then 

2 (number of equations) + x sj = n2. 

This can be seen in the following way: moving opportunely the minors 
involved in the equations, adding the minors which are symmetric with 
respect to the main diagonal, and adding the minors m(i, i)N,, we cover the 
whole n x n matrix. 

Stepd+ 1. Suppose we have defined L(d), d 2 0, such that (id) and (iid) 
are satisfied. We want to construct L(d + l), satisfying (i,, ,) and (iid+ i), 
taking the system L(d) and adding to it further equations which depend on 
the elementary operation performed on the minor m(i, j, A(d)),o, in Step 
d + 1 of the normal form algorithm. 

If the elementary operation was of type I, then m(i, j, A(d + l)),,,, is the 
union of certain m(u, v, A(d + l)&+ ,, = 0 and (U + 1, U, A(d + l)),o+ ,) of 
maximal rank. The equations to be added are m(u, U, T(C)),,,+,, = 0. 
Likewise in case II. 

If the operation was of type III, m(i, j, A(d + l)),o, is the union of 
m(s,,t,,A(d+ l))s(d+l),nq= L..., r, which are 0 if p # q and are positive 
real scalar multiples of the identity if p = q. 

We introduce the following notation: if B = (b,) E M(k) then 
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HB = (Im bii, b,,), 1 < i < k; s < t. Note that HB depends on k* real 
parameters and if ‘B= -B, HB = 0, then B = 0. 

The equations to be added are: 

m(sp~ t,, m))s,d+ I) = 0 for pzq; 

fw% $2 W))s,,+ I) = 0 for 1 < p < P. 

Let up be the order of m(sP, tp, r(C))S(d+l,. Then (i,, ,) holds since 
p(d + 1) - p(d) and the decrement of the kernel dimension are both equal to 
c; v; + 4 c,,, Vp”qi (iidtl) follows from direct computation, using (iid). 

If the operation was of type IV, then the minors corresponding to the 
equations to be added are all contained in m(i, j, T(C)),,,, and are defined 
like in Step 0; (id+ i) and (iid+ i) hold for the same reason as (iO) and (ii& 

Let p = p(k,) and Z= n(k,) be defined by the above procedure. If 
Z = (Zjk) E M(n), Zjk = Xjk + iyj,, let 

n(z) = CXj(l)k(l)3 Yj(l)k(l)r***5 x’ J(r)k(r) 9 Yj(r)k(r) 3 Yh(l)r(l) )...) Yh(s)r(s) 13 

where p = 2r + s. Let x = (x0 E R2”2-p and G(x) E M(n) be the matrix 
whose (j, k) entry is 0 if (j, k) E {(j(l), k(l)),..., (j(r), k(r))}; is x1 if (j, k) E 
((h(l), t(l)),..., (h(s), t(s))}; and x, + ix, otherwise, so that G: R2”‘Pp + M(n) 
is linear and injective. Then we can conclude that a versa1 deformation with 
minimum number of parameters of A0 is the germ defined by 
A(x) =A0 + G(x). 

3. REMARKS AND EXAMPLES 

A. Connection with Jordan Normal Form 

LetN=(nj)EN,, l<i<h, l<j<k,,n’=~n~,anda=(a, ,..., a,)E 
Ch, a, > a2 > ... > ah. We denote by a: E M(p) the p Xp Jordan block 
with eigenvalue a,. We define the following two matrices: 

J(N, a) E M(n) is the matrix in Jordan normal form whose diagonal 
blocks are, respectively, 

a:: ,..., a$;...; a”: 4 h ,..., ah h. 

K(N, a) E M(n) is the upper triangular of distinguished type N matrix whose 
eigenvalues are a, ,..., ah, respectively, with multiplicities n’,..., nh, whose 
maximal rank square minors are identity matrices, and whose special minors 
are all zero. 

For example, if h = 1, N = (3, 2, 1) as in Fig. 2. If the Jordan normal form 
of A E M(n) is J(N, a), then we call NE N, the Jordan type of A; if the 

607/54/3-l 
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normal form A0 of A is upper triangular of distinguished type S E N,, we 
call S the upper triangular type of A. We want to find the relation between 
the Jordan type and the upper triangular type of a given matrix A E M(n). 

We denote by rP the set of tables of triangular form as shown in Fig. 3, 
having p boxes and such that if qj is the number of boxes of thejth row, then 
s1>q*>q3>-*** If T E rP, then the transpose ‘T is naturally defined and 
‘TE zP. 

To a given NE N, we associate the element (Tk,..., Ti) E t,,[ X ..a X tnh in 
the following way: Th E rni is the table having nj boxes in the jth row. Now 
define fl E N, to the unique element of N, corresponding to (‘Ti,..., ‘Ti). 
ye remark that the so-defined function -: N, + N,, is a bijection and that 
N=N for any NE N,. 

3.1. Remark. (a) If B E M( 12 is upper triangular of type NE N, and ) 
has a = (a, ,..., ah) as ordered eigenvalues with multiplicities n’,..., nh, then B 
is similar to K(N, a); 

(b) K(N, a) is similar to J(fi, a). 

In (a) we may assume h = 1; then a suitable coordinate change provides 
the result. In (b) the similarity is given by a permutation of coordinates 

(Z 1 ,***, zn> -+ (z,(1)- %d w  h ere cr is defined by N and is easy to describe. 
Suppose for simplicity h = 1, N = (3, 2,4); then the situation is illustrated by 

3.2. COROLLARY. Let A E M(n). Then the upper triangular type of A is 
N E N, sff the Jordan type of A is m E N,. 

3.3. Remark. For any NE N,,, /?= (/I ,,..., Ph) E Ch, /I, > /I2 > ..’ > Ph, 
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FIGURE 3 

we have A(O(K(lv’, p))) = K(N, p), that is, K(N, p) is in normal form. This 
fact motivates the choice of a in Remark 1.19. 

B. Stratl>cation of M(n) 

We shall see that the action of U(n) defines a natural stratification of 
M(n) based on the type of the normal form, which refines the Jordan bundle 
stratification [ 11. Denote 0, = {O(A) 1 A E M(n)}. 

3.4. DEFINITION. We denote by Z,* the set of all elements of the type 

6 * If(l) 3***3 sif(i) 2***3 sj$(j) 2***3 S&f(k) ), where (slJcl)~-..~ skfck) >EZ,? i#j, and 

exactly two elements are starred. We define 2, = 2, U Z,*. 

For any k E N a natural forgetting function pk: (Z”#( -+ (ZJk is defined. 

3.5. DEFINITION. We denote by P, the set consisting of all elements of 
the type (cl ,..., Ed), where 1 < t ,< n and sj E (0, 1 ), and of the element 0. 

To any orbit V E 0, we associate N, E N,, C, = (C,) E (Z,)kvt’, CO, = 

GJ = Pkv+ I(C,L E, = (EP’~) E (P,)kv+l, in the following way: 

(1) N, is the upper triangular type of A(V). 

(2) Let CLj= (S(j),h) E Z,, 0 <j< k,, be the sequence obtained 
performing the normal form algorithm on A( v>. Then C, is obtained starring 
the rth and the sth components of CFj if at step j + 1 we operate on 

m(rj, sj, A(Q)cf). 
(3) E, is defined as follows. If at step j we perform an operation of 

type I, II, or III, svj= 0. If the operation is of type IV, let a{ > ai > -.- > czjh 
be the distinct eigenvalues of A(V) if j= 0 and of m(rj-,, sj-,, A(V)),;--, if 

1 ,< j. Then svj = (E;.~ ,..., sV, 
otherwise. 

hP’),where~~j=OifRea{>Reaj+,,and~~j=l 

3.6. Remark. It follows from proposition p(j) of the proof of 
Theorem 1.18 that the N,, C,, cy are well defined. 

3.7. DEFINITION. If V E 0, we set x(V) = (NY, C,, sY). We say that P’, 
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WE 0, are equivalent iff x(V) =x(W), and we call a bundle of orbits any 
equivalence class of 0,. 

3.8. DEFINITION. For any j, 0 < j < k,, let Hj” E {I, II, III, IV} be the 
type of operation we perform at step j of the algorithm. We set r; = 0 iff 
Z$’ E {I, II] and otherwise qy = number of distinct eigenvalues of d(V) if 
j = 0 and of m(rj-, , sj- i, A( v>),g 

1.1-I 
ifj > 0. 

3.9. Remark. CL determines Hy, vy, 0 <j < k,; but CL does not 
determine C,, as the following example shows. 

I 1 1 1 

v3 0 2 1 1 , c,,= ((I*, 1, I”), (11, l”, l;“), (11, I,, 11)); 
0 0 3 

v3 [ 

1 1 1 

0 2 0 1 ) c,.= ((I”, 1, 1*>, (I?, l”, I,), (I,, I,, 1,)). 
0 0 3 

3.10. DEFINITION. We denote by MJ, 0 < j < kV, then union of the 
following minors of d(V): 

(a) if j = 0, the minors m(r, s, A( V)),p o with r > s and the zero minors 
described in Definition 1.9; 

(b) if j > 0 and Hi” E {I, II}, the new stable zero minor contained in 
m(ri-,,sj-I,d(V)),Pj-I; 

(c) if j > 0 and HJ” = III, the minor m(rjp,, sj-, , d(V)),;, jar ; 

(d) if j > 0 and Hj”‘= IV, the minors contained in 

m(rj~,,sj-,,d(l/)),~j~, corresponding to those described in (a). 

MT is the union of the new stable minors which are described at step j of 
the algorithm. We remark that LJo<s<j Mr is contained but not necessarily 
equal to the union of minors of d(v) which are CF,;stable. 

3.11. DEFINITION. We denote by &, 1 Q j < k,, the ith among the 
(d(v), c",,j-l>- P s ecial minors which precede m(rj- i, sj- i , A ( V>),,S~~, and are 
not contained in UoGs,jMrU (JOGS< j,t y,“,,. We denote by yL”y+ i,i the ith 
among the (d(V), CE,J-special minors which are not contained in 
U o<s&fsVu UO<s<kv,t Y,“.** We denote by H~i E {I, II, III, IV} the type of 
operation which corresponds to y,yi. 

3.12. LEMMA. (a) Every yj”.i is C~,j-,-stable. 

(b) C, determines yj”.i and HJ’i. 
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(c) HLi E {I, II, IV}; if HIi E {I, II}, then yIi = 0; if HIi = IV, then 
y~i=~lp, ~ E C. 

ProoJ (a) and (b) are clear; (c) holds since every other hypothesis would 
contradict (a). Q.E.D. 

3.13 DEFINITION. For any p E N we set 

rpR= {(x I)...) xp)EIRp~X,>X*>~*~>Xp>O}. 

For any E = (ei,..., EJ E P, we set 

r;= {(z 1 ,..., z,)EC’lz, > -.- >z,,Rezi>Rezi+, ifci=O, 

Re zi = Re zi+ i if ei = I}. 

We remark that rP, is open in IRp; r: is naturally homeomorphic to some 
open set in IRq, q < 2t. We are now able to describe the stratification. 

3.14. PROPOSITION. Let T be a bundle of orbits and$x VC T an orbit. 
Then T is the total space of a smooth trivialfiber bundle, whose base space is 

HLIII H!‘=IV H” = IV 
I I I .I 

The j?bre is F, = V and CT = {A(W) 1 WE 0,) W c T} defines a global 
section. 

The partition in bundles of orbits gives a good real semialgebraic 
stratification of M(n), which is a refinement of the Jordan bundles 
stratzjkation (see [ 11). 

Proof: Let o: T-+ B, x F, be defined as follows: For any A E T, let 
QA E U(n) such that A0 = A(O(A)) = ‘e,AQ,. We remark that A0 defines in 
a natural way a unique element $A’) E B,, since every matrix of T has the 
“same type” of normal form (see Remark 3.9 and Lemma 3.12). Set 
q(A) = (n(A’), QA A(V)‘&). Then ~1 is well defined and a real analytic 
isomorphism, which gives a banalization of T. 

Next, if A0 E & consider the versa1 deformation A0 + G,,(x) defined in 
Section 2. It follows from the construction that G,, does not depend on 
A0 E & and we can denote it by G,. It is not difficult to define [R-linear 
functions Gk and Gc such that Im Gi = T<T,AO, Im G, = Im Gk 0 Im G$, so 
that A0 + G;(x) is transversal to T in A0 for any A0 E Cr. Using this defor- 
mation it follows by straightforward computation that the partition in 
bundles is a good stratification of M(n). The last assertion follows from 
Section 3,A. Q.E.D. 
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C. Examples and Final Remarks 

1. We give an example. Let n = 8, a = (2, l), N= (3, 2, 1; 2) 
A0 =K(N, a) =d(v), I/= $4’). Then we have: 

c,=((1,2,1,1*,~*~2),(1,2*,1,1:,1,,2),(1,1,1*,1,1:,1,,2), 

(13 1*, l,, l”, l,, I,, 2), (1, 11, 12, 11, 12, I,, 2)); 

Ev = ((1, l>>, 0I,0,0,0>; 

(Hjy) = (IV, III, I, III, III). 

dim V= 57; 

The versa1 deformation of A0 is A0 + G(x), where G is shown in Fig. 4. 
The white entries represent complex independent parameters; the black 

entries represent zero; aj, j = 1, 2, 3 represent real independent parameters. 
Let T be the bundle to which V belongs. Then dim T= 62, dim B, = 5, 

and Gt is represented in Fig. 5, where /I, and /I2 are real independent 
parameters and the white and black entries have the above meaning. 

2. A Jordan bundle of orbits (see [ 11) is the union of the elements 
of an equivalence class of 0, with respect to the equivalence relation: V- W 
iff NV = N,. We denote by SQ the Jordan bundle defined by NE N, ; SR is a 
disjoint union of bundles. We remark that in the Jordan bundle &v,o is not 
considered. 

There exists a unique bundle of minimal dimension among those contained 
in SG, precisely that containing K(N, (h, h - I,..., l)), if N is as in 
Section 3,A. SE contains a unique bundle TN of maximal dimension; 
dim T,,, = dim SQ, and TN is defined by the following properties: 

(i) for any orbit Vc TN and for any i, j we have {riyj} = 0 or y,‘Ij is 
a 1 X 1 minor and HIj = IV; 

(ii) ev,O = (0,O ,..., 0); 

G= 

FIGURE 4 
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FIGURE 5 

(iii) 
maximal; 

if Hy E {I, II} then the rank pj of m(rj-, , sj-, , A(V))cp j-l is 

(iv) if H,!’ = III then q,!’ = pj and if HJ” = IV then E,,~ = (0 ,..., 0). 

3. In M(n) there exists a unique bundle of codimension 0, defined 
by: 

N= (1; l;...; 1). 

c= ((l*, I)...) 1*>, (li, 1* )...) l?), (Ii, I,, 1* )..., 1:) )...) 

(11, 1,,“‘, l,, l”, l;“), (111 ll,“‘, 1,)). 

E = ((O,..., O), 0 ,..., 0). 

There exist n - 1 bundles of codimension 1, obtained taking N, C as 
above and 

E, = ((1, 0 ,... IO), 0 ,..., 0) 

E2 = ((0, 1, 0 ,..., O), 0 ,..., 0) 

& n-1 = ((O,..., 0, l), 0, . . . . 0). 

The bundles of codimension 2 are of two types: 

(a) There are n - 1 with N = (1 ;...; l), obtained as follows 

c, = ((1, 1* )...) 1*>, (1, l,, 1” )...) 1;) )...) (1, l,,..., 1*, 11*), 

(1 *r 1 * > 11 ,-.., I,*, 1 I), (1 1, 11 ,..., 1,)). 

E, = ((0 )...) 0) 0 )..., 0) = E. 
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c,= ((l*, l)...) l*), (I,, 1, 1* )...) 11*), (I,, 1, l,, 1* ).,., l?) )...) 

(11, l”, l,‘..., I:, I,), Cl,, l,,..‘, 11)). 

&,=e,. 

c,-, = ((1” ,... , 1*>, (I,, 1” ,..., I;“) ,..., (If ,..., I,, l”, I,), (llY, 1,)). 

(b) There are n - 1 with 

N, = (1, 1; l;...; l), N, = (1; 1, 1; l;...; 1) ,..., N,m, = (I;...; 1; 1, 1). 

ci = c, Ei = E, l<i<n-1. 

4. The preceding examples suggest an inductive way to order the 
bundles contained in Si with respect to increasing codimension. 

Consider the conditions (i), (ii), (iii), (iv) of 2 which define the maximal 
dimension bundle TN of SE; if exactly one of these fails, you define a family 
.F’ of bundles contained in SD. For the family Xj you define in a natural 
way (iy‘, (iiy’, (iii)j, (ivy’; if exactly one of these fails, you get the family 
,Fj+ I 

5. A necessary condition that one bundle contains in its closure 
another is that the same holds for the Jordan bundles to which they belong. 
The problem to determine the bundles which are contained in the closure of 
a given one is not easy to solve in general, but the following principle should 
be true: among the bundles such that E,,~ = (O,..., 0) or sy,i = 0, every bundle 
T contains in its closure all the bundles of higher codimension belonging to a 
Jordan bundle which is contained in the closure of the Jordan bundle which 
contains T. 

6. As we remarked, the normal form algorithm and hence the 
bundle stratification depend on the order relation CL The examples of this 
paragraph are based on the order relation defined in Remark 1.19, but many 
of the remarks we made above do not depend on this choice. The following 
principle should be true: the bundle stratifications of M(n) defined by 
different order relations are isomorphic, so the singularities arising from the 
action of U(H) on M(n) are smoothly, uniquely determined. 

On the questions related to 5 and 6 we want to return. 
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