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THE UNIFORMIZATION THEOREM 

WILLIAM ABIKOFF 
Department of Mathematics, University of Illinois, Urbana, IL 61801 

Almost oile hundred years have passed since Felix Klein discovered the uniformization 
theorem. While such theorems had earlier been proved in specific cases, no one had dared even 
conjecture that every compact Riemann surface could be parametrized by a variable whose 
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domain of definition lay in the Riemann sphere, C = C U { oo}. For reasons that will become 
apparent in ? 3, Klein asserted much more, calling his result the limit circle theorem. The theorem 
occurred to him at 2:30 A.M. on March 23, 1882, while he was in the midst of an asthma attack. 
His health had been poor and he was trying to recover in the North Sea coastal town of 
Nordeney. The combination of miserable weather and a desire to announce the theorem led him 
to return to his native city of Dutsseldorf almost immediately. When he received the galley proofs 
of the announcement from the publisher, he dispatched copies to Hurwitz, Schwarz, and Poincare; 
Hurwitz was also sent an outline of the proof. The responses accorded this result by his 
distinguished colleagues are classic examples of the camaraderie of scientists- at least in my loose 
interpretation of Klein's recollections [14, p. 584]. 

HURWITZ: I accept it without reservation. 
SCHWARZ: It's false. 
POINCARt: It's true. I knew it and I have a better way of looking at the problem. 

However, the story does not end there. Schwarz recanted shortly thereafter. He made two great 
contributions to the theory of uniformization. The first was a method for proving the theorem. 
The second was to establish the relationship between uniformization and the study of conformal 
representation of Riemann surfaces on C. The link is provided by the theory of covering spaces 
which Schwarz developed specifically to study the uniformization problem. In 1907, Poincare 
proved the most general known uniformization theorem for the case where the parameter varies 
over a simply connected domain. 

The result, which is now called the uniformization theorem, is a problem in conformal mapping 
which is solved by potential theory. It is related to the original problem by algebraic topology. Of 
the major mathematical disciplines, few have not been enriched by the uniformization theorem or 
the methods developed for the study of the problem. 

Research in uniformization theory has gone through several dormant periods since the concept 
of a (global) uniformization was introduced by Klein in 1882. Uniformization theorems of power 
unimaginable to the classical masters have been proved in the past twenty years and no end is in 
sight. 

My original purpose in writing this paper was to put into print a relatively efficient and 
elementary proof of half of the classical uniformization theorem which I have circulated privately 
for several years. Ralph Boas suggested that I write it in a more expository form. I have taken this 
suggestion as an invitation to exercise my personal fascination with the various facets of the 
uniformization problem. To do historical justice to the problem, I was required to trace the 
development of the notion of a Riemann surface; for as this notion matured, so did the statements 
and proofs involved in the solution of the uniformization problem. The discussion in the text 
contains an outline of this proof with the details placed in an appendix. For completeness I have 
also included a brief sketch of Maskit's work on the general uniformization problem. 

In translating heuristic arguments into mathematics, I shall often refer the reader to Ahlfors's 
Conformal Invariants [2], which will be abbreviated as CI. 

I wouAd like to express my thanks to Lars Ahlfors, Lipman Bers, Jozef Dodziuk, and Bernard 
Maskit for their comments, many of which are incorporated in the ensuing text. The figures, 
which, in a sense, are the soul of Riemann surface theory, were designed and drawn by George 
Francis. My debt to him is clear. 

1. An Example. Consider the variety S in C2 defined by the equation X2 + y2 - 1 . Here 
X and Y are complex and S is the solution set. There is an obvious method for parametrizing S. 
For z E C, set X(z) = cos z and Y(z) = sin z. S is completely parametrized or, in the language 
we will use here, S is uniformized by the variable z. 

This is usually considered a poor choice of uniformization for the following reasons. X(z) and 
Y(z) are transcendental functions with essential singularities at oo. The structure at oo is not 
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clearly displayed by the uniformization. 
Another choice is to let z vary over C = C U { oo} 

with X(z) = 2z/ (I + Z2 ) and Y(z) = (1 -Z2)/ (I + Z2). 

The behavior at oo is not exceptional; however, the rational uniformization has poles at ?+i, i.e., 
there is a definite structure at oo. If we adjoin to S the ideal points (X(? i), Y(?i)), we obtain a 
compact Riemann surface S. S is homeomorphic to C as may be seen from Riemann's method of 
branch cuts. 

To eliminate the special role of the point at oo, the variety S may be viewed as lying in the 
complex projective plane by homogenizing the original polynomial, i.e., we consider the variety in 
projective space defined by X2 + y2 W2= 0 (see, for example, Kendig [12]). 

2. The Evolution of the Concept of a Riemann Surface. Riemann surfaces were first introduced 
by Riemann in an attempt to understand multivalued functions of complex variables. The 
equation X2_ y2= 0 does not define X as a single valued function of Y. However, if X and Y are 
chosen to have real values, a choice of sign of Vf may be consistently made if Y is not permitted 
to assume the value zero. At X = Y = 0, the differential of P(X, Y) = X2- y2 vanishes, that is, 
(0, 0) is a singularity of the equation P(X, Y) = 0. Avoiding the singularities is not sufficient to 
permit such choice if X and Y are permitted to have complex values. 

Using a construction that may be found in any elementary complex variables text, Riemann 
resolved the problem by constructing sheets above the complex plane. On each sheet, a choice 
may be made. The sheets are then glued together to form a natural domain S, of definition for the 
function X2. In Fig. 1, we demonstrate Riemann's solution for real values of X and Y; Fig. 2 
gives the local picture in C near 0. Notice that the modification is made on the domain of the 
function not on the range. Riemann initially thought of his sheets as lying over the complex plane 
in Eucidean 3-space. Much of the subsequent development of the notion of Riemann surface was 
done to remove the artificiality and arbitrary character of Riemann's embedding in R 3. As Weyl 
noted, S, is a natural parameter space for the variety S. In this sense Riemann had a 
uniformization theorem, but it was not the first. 

nutLvodLuecL funcl'oLr ore cka.rt C| functiorn 

Y Y 
FIG. I 

As far as I know, the first uniformization theorem was proved by Puiseux in 1850. The theorem 
is a local uniformization theorem for the structure of singularities of plane algebraic curves. It 
states that if X and Y satisfy a polynomial relation P(X, Y) = 0, then, up to a linear change of 
coordinates, X can be written locally as a holomorphic function of y = (Y - 0)1/k for some 
k > 1; y then becomes a local uniformizing parameter for the variety P( X, Y) = 0. A proof may 
be found in Hille [11, vol. 1, p. 265 ff.]. 

Algebraic equations in two variables are not the only source of multivalued functions. Linear 
differential equations with regular singular points, such as XY' + Y = 0, generally have multival- 
ued solutions. 

Algebraic integrals are contour integrals in the complex plane of the form fR(z, w) dz where R 
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I ~~~1; 11a 

4 3~~~~~~~~Z 1 C:21. 

Construction v2 

FIG. 2 

is rational and z and w satisfy a polynomial identity. As the path of integration varies, we again 
obtain multivalued functions of the path and upper endpoint of integration. Siegel [21, pp. 1 ff.] 
traces back to Fagnano in 1719 the study of the algebraic properties of these integrals. In the first 
half of the nineteenth century, these properties were studied by Abel and Jacobi; the integrals are 
now called abelian integrals. 

Riemann later studied these integrals by considering them as defined on the variety S rather 
than as integrals in the complex plane. 

The method discovered by Weierstrass for studying multivalued functions is quite different 
from Riemann's. It is probably the first step in the development of the modem notions of abstract 
manifold and sheaf. Weierstrass's original paper on the subject seems to have been written in 
1842, although it did not appear in print until 1894. The basic idea is to construct a Riemann 
surface, in this context called an analytic configuration, by starting with a power series f(z) 
centered at some z0 of positive radius of convergence. One then considers all meromorphic 
continuations of f in C. Each continuation of f to a point z is given by a chain of discs in which 
the continuation is possible. 

The set of points to which f may be continued is subject to an equivalence relation, and a 
natural topology may be given to the equivalence classes (see, e.g., Ahlfors [1] or Hille [11, vol. 2] 
for details). Singular points admitting uniformizations by Puiseux series are usually added to give 
complete analytic configurations, which are Riemann surfaces in the sense of Weyl (see below). The 
analytic configurations are Riemann surfaces which lie in the sheaf of germs of holomorphic or 
meromorphic functions on C. Overlapping discs define the topology, a concept which underlies 
the modem notion of manifold. 

In his 1907 paper on uniformization, Poincare removed the reliance of Weierstrass's construc- 
tion on the initial power series f(z). He proved the uniformization theorem for collections of 
overlapping discs on which there exists some meromorphic function in the sense of Weierstrass. 
The geometric entity became paramount; the role of the function was secondary. 

The modem era in the study of Riemann surfaces, and, indeed, of all manifolds, opened in 
1913 with the publication of Hermann Weyl's book The Concept of a Riemann Surface. Here, for 
the first time, no defining function is assumed. The definition is purely geometric and also 
independent of any embedding in Eucidean 3-space. 
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On the justification for abandoning Riemann's embedding of the Riemann surfaces of 
multivalued functions, Weyl wrote: 

In essence, three-dimensional space has nothing to do with analytic forms [Riemann surfaces of 
multi-valued functions], and one appeals to it not on logical-mathematical grounds, but because it is closely 
associated with our sense perception. To satisfy our desire for pictures and analogies in this fashion by 
forcing inessential representations on objects instead of taking them as they are could be called an 
anthropomorphism contrary to scientific principles. However, these reproaches of the pure logician are no 
longer pertinent if we pursue the other approach ... in which the analytic form is a two-dimensional 
manifold ... To the contrary, not to use this approach is to overlook one of the most essential aspects of the 
topic. 

Weyl's definition, in modem language and without unnecessary hypotheses, follows. Let S be a 
connected Hausdorff space and U = { DI Da C S} be an open cover of S. Assume that for all a 
there is a homeomorphism z -: Da - C which satisfies: z1 l z< is holomorphic where defined. 
The set A -{(za, Da) is called a holomorphic or conformal atlas and the pair (S, A) is called a 
Riemann surface. Usually, by abuse of language, we speak of the Riemann surface S. za is called a 
local coordinate or uniformizing variable at the points of D.. A function f on S is holomorphic, 
meromorphic or harmonic if, for each a, f o za has that property wherever it is defined. A map 
f: SI -> S2 between two surfaces S, and S2 is holomorphic if z-1 -f- z is holomorphic whenever 
defined. Here z1 and z2 are local coordinates on S, and S2, respectively. 

It is not trivial, but possible, to prove that every Riemann surface in the sense of Weyl carries a 
pair of nonconstant linearly independent meromorphic functions and may be embedded in R 3. It 
then follows that, up to holomorphic equivalence, the notions of Riemann surfaces developed by 
Riemann (suitably generalized), Weierstrass, and Weyl are equivalent. 

To return to the uniformization problem, the question changed as the notion of Riemann 
surfaces changed. Klein's original claim is to have proved the theorem for compact Riemann 
surfaces, possibly missing a finite number of points, in the sense of Riemann. All proofs until, I 
believe, the 1920's assumed that the surfaces were first countable; this latter assumption was made 
by Weyl. The assumption was removed by Rad6, but now may be derived as a simple consequence 
of the uniformization theorem. 

We may now state the general uniformization problem. Let S be a Riemann surface. Find all 
domains D c C and holomorphic functions t: D -> S so that at each point p E S, t is a local 
uniformizing variable at p. 

Equivalently, there is a topological disc B c S with center p so that the restriction of t to each 
component of t - l ( B) is a homeomorphism. The reader should notice that the required conditions 
on t and D say precisely that the triple (D,S,t) is a (smooth) covering space with base S, total 
space D, and holomorphic projection t. 

The early problem was less ambitious. It was simply to find one uniformization, but where D is 
simply connected. This theorem was proved independently by Koebe and Poincare in 1907. 
Poincare's solution was somewhat more general but we will ignore that generalization here. Until 
recently the most common proof was that offered by Hilbert in 1909. We give the modem 
statement of th,e Uniformization Theorem in the next section following the preliminaries that tie it 
to the uniformization problem. 

3. Covering Surfaces and Classical Plane Geometries. Let S, and S2 be two Riemann surfaces 
and Tr: S, -* S2 be a local homeomorphism so that each point on S2 has an evenly covered 
neighborhood. We then say that (S, ,S2 ,5) is a covering surface or, more commonly, that S, is a 
covering surface of S2 with cover map or projection 7T. The number of points in 7 -I (p) is 
independent of p C S2 and is called the number of sheets of the covering. 

Covering surfaces occur classically in the study of algebraic equations with symmetries. For 
example, the equation w2 - z = 0 admits the symmetry obtained by replacing w by - w. In this 
context the symmetry is called sheet interchange. The Riemann surface S of w2 - z over 
C \ {0} is a covering surface of C \ {0}. Notice that the sheet interchange cannot be defined to 
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be a covering surface at z 0 O. Points where the map topologically looks like z _ zn are called 
ramification points. 

Covering surfaces with isolated singularities, all of which are ramification points, are called 
ramified covers. 

A method for constructing a covering surface is to take two copies S' and S" of a given surface 
S, slice them along corresponding curves, and glue as indicated in Fig. 3. The resulting surface is a 
two-sheeted cover of S with the projection taking z' and z" to z. Notice that there is a simple 
closed curve that covers /3 twice. In a sense that may be made quite precise, passing to the 
covering surface has replaced /B by a curve of twice the length of /3. If we repeat this process 
infinitely often, /3 will have been replaced by an infinitely long, simple curve; i.e., /3 will no longer 
be an obstruction to simple connectivity. We may repeat this process for sufficiently many curves 
so that the resulting covering surface S has only homotopically trivial curves. S is called the 
universal covering surface. This approach is the most classical one; the modem approach (see, e.g., 
Greenberg [8]) is an abstract reformulation of the basic idea of opening up all homotopically 
nontrivial closed curves. Klein states that the construction above is due to Schwarz. 

FIG. 3 

As we have noted in the previous section, if S is the Riemann surface of some multivalued 
function Y of X, then both X and Y are functions of D if D varies over the points of S. If S, is a 
covering surface of S, and , varies over S,, then X v and Y v parametrize the variety in C2 
defined by the functional relationship between X and Y. Thus if S, lies in C we obtain a solution 
to the general uniformization problem. We will return to this question in ? 6 but now restrict our 
attention to S, = S. 

S inherits the structure of a Riemann surface from the conformal structure on S. S is a simply 
connected Riemann surface because any homotopically nontrivial closed curve has been opened. 
It follows immediately that we may obtain a solution to the uniformization problem by showing 
that every simply connected Riemann surface is biholomorphically equivalent to a subdomain of 
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C; this is merely a rephrasing of the Riemann mapping theorem, (see ? 4). So a solution to the 
uniformization problem follows from the statement now known as: 

THE UNIFORMIZATION THEOREM. Every simply connected Riemann surface is biholomorphically 
equivalent to either C, C, or the unit disc A. 

That the three possibilities are distinct is an immediate consequence of Liouville's theorem. 
The universal cover has several very strong properties. Since it is simply connected, every 

multivalued locally meromorphic function on S lifts to a meromorphic function on S; here we are 
restating the monodromy theorem. The universal cover is the only covering surface with this 
property. 

Another important property is the following. Suppose t E S and N is an evenly covered 
neighborhood of t. The cover map ST: S -* S defines a map y from one component N, of ST - l(N) 
to another, say N2, by the rule D, + 2 where t2 iS the unique point in N2 for which T(t,) = TG2) 
(see Fig. 4). Using the evenly covered character of N,, one shows that y extends to a biholomor- 
phic self-map of S. These maps form a group G called the group of the covering (5,S,, ) or cover 
group or group of deck (cover) transformations. Clearly, G acts without fixed points. G also has the 
stronger property of being properly discontinuous, which means that each point f E S has a 
neighborhood N so that y(N) n N 7i 0 if and only if y = identity. Since the sheet interchange 
maps y E G are in one-to-one correspondence with the free homotopy classes of closed curves on 
S, the group G is isomorphic to the fundamental group Ti,S of S based at any point. The orbit 
space S/G is the set of equivalence classes in S where Dl - t2 if there exists y E G so that 
(2 = y(;,). It is not difficult to show that S/G inherits a conformal structure from S and that S is 
biholomorphically equiyalent to SIG. 

c~~N,N 
cON2 } S 

c , NpJ 

CV4 N C 

FIG. 4 

The line of reasoning developed above is, more or less, historically accurate when S is C or C 
(we shall no longer distinguish between biholomorphically equivalent surfaces except when 
necessary). It shows immediately that S = C only if S = C. If S is compact and S = C, 7T is the 
inverse to an elliptic integral (see Siegel [21, Chapter 1]). The problem of finding inverse functions 
to algebraic integrals, i.e., cover maps, is called the Jacobi inversion problem, the rich history of 
which leads directly to Riemann surfaces and uniformization (cf. Weyl [23, p. 144]). 

When S = C, G must be a properly discontinuous subgroup of the group Aut C of biholomor- 
phic self-maps of C. There are precisely three types. The first is when G is trivial. The Riemann 
surface is then C. The second are the cyclic groups {z + z + nz0 n E Z}. All are conjugate in 
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AutC to G= (zF-z + n n C Z} and conjugate groups determine biholomorphically equivalent 
surfaces. The surface is C \ (0) and ST: C -> S is the map exp(27Tiz). The last is a class of groups, 
the lattices, which are, up to conjugation, generated by Yl: z Fz + 1 and Y2: z - z + T where 
Im T> 0. In this case 7T,S is free abelian on two generators and S is topologically a torus. The two 
generators may be chosen as in Fig. 5. 

t~~~~~~ 

FIG. 5 

We have this "found" all Riemann surfaces with S C or S =. The uniformization theorem 
tells us that every other Riemann surface S has S = A. Here the history proceeded in the opposite 
direction. Klein knew in 1882 that if G is a properly discontinuous subgroup of Aut A then A/G 
looks like a Riemann surface. However in 1882, a Riemann surface required a defining multival- 
ued function. While it seems that Klein had a method for obtaining such a function, Poincare 
claimed two methods, one of which remains the standard method for obtaining automorphic 
functions for discrete groups acting on bounded domains. The existence of this function shows 
that all the definitions of Riemann surfaces coincide. 

The Riemann sphere has a metric of constant positive curvature induced by the usual 
embedding in R 3. C, hence by projection C \ {O} and tori, have Eucidean or flat metrics, i.e., of 
zero curvature. Using the uniformization theorem, we see that all other Riemann surfaces inherit 
any Aut lx invariant metric from l. Up to scale factor, there is only one; it is the Poincare metric 
on the hyperbolic plane. It is a metric of constant negative curvature. The universal cover of a 
surface of constant negative curvature may be conformally and injectively developed on a 
hyperbolic plane. This is one of many successful approaches to proving the uniformization 
theorem. The relevant differential equation is Au = e2u. Studies of this equation were among the 
earliest in nonlinear partial differential equations. 

We also recall that the hyperbolic plane, in Poincares model, is the unit disc i\. When we map 
S to A\, we give natural boundary to S, namely MA. To Klein the edge was a limiting circle and he 
called his uniformization theorem, the limit circle theorem. 

To comment on the pre- 1907 "proofs" of the uniformization is to tread on the most dangerous 
ground. One gathers from Hilbert's 1900 lecture at the International Congress [10] that he did not 
accept Klein's proof, for it is not mentioned. Poincare's uniformization is spoken of, but Hilbert 
comments that it does not parametrize the whole variety; so it is not a uniformization in the sense 
considered here (see also the introduction to Poincare [20]). 

From the vantage point of 1980, it is not quite so easy to dismiss Klein's argument. One is first 
presented with a major obstacle, namely, to find the argument. To those of us trained in the 
Satz-Beweis school of mathematical exposition and discourse, reading Klein is often a mystical 
experience. In fact, many a mathematician has proved and published a deep and elegant result, 
later to discover with chagrin that there is a casual and vague reference to the result in Klein. 
Most of Klein's writing on areas related to uniformization are collected in two books written 
jointly with Fricke; these comprise over 2,000 pages without an index, and often without 
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definitions or theorem statements. The mathematical insight contained therein is astounding, but 
it often seems that one can only appreciate a part of it after having independently rediscovered the 
results. To the modem observer Klein only claimed the proof of the uniformization theorem when 
S is conformally finite, that is, when S is a compact surface missing a finite number of points. A 
terse modern appraisal of the argument is that it is an excellent outline, but far from a proof; it 
appears on pages 698-705 of volume 3 of his collected works [14]. 

A brief description follows. First construct one algebraic equation defining P(z, w) = 0 as a 
multivalued function of z. Let S be the Riemann surface of P in the sense of Riemann. On S we 
find a finite set of piecewise circular closed curves a, so that S \ U a, is a polygon II c S. On S, z 
is a well-defined function, z 1I7 immerses H in C, and a z( H) consists of circular arcs. P may be 
chosen in any genus g, so that it is very symmetric. Then for some choice of P and the a,, 
z(HI) C A and az(IH) are circular arcs lying on circles orthogonal to Ma. z-l'z(H) may be 
analytically, but in a multivalued fashion, continued along all paths in S. If the image domain is 
the unit disc, the continuation is the inverse of the universal cover map. He then considers the 
corresponding group of cover transformations, and he notes that the space of such (normalized) 
groups G and the space of dissected Riemann surfaces in genus g both have real dimension 
6g - 6. The local correspondence between them he assumes is a local real analytic diffeomor- 
phism. He, more or less, shows that the mapping is injective and proper, hence bijective. This 
completes Klein's attempt. This technique of proof is called the continuity method. Even assuming 
the uniformization theorem, the last two properties are true but not easily proved. The fundamen- 
tal difficulty with this proof was recognized quite early and goes as follows. Forget that the 
correspondence is a local diffeomorphism (or wait some 40 to 80 years until the theorem is 
proved). You only haye a proper, continuous injection f of R' into R'. Brouwer essentially 
developed dimension theory to prove that f is a homeomorphism and thereby resurrected the 
continuity method. With Brouwer's proof added, Klein's technique becomes viable; however, 
before Brouwer's proof appeared, the uniformization theorem had already been proved in 
complete generality. 

Uniformization theory was relatively dormant from 1883 to 1900. In 1900, Hilbert delivered a 
lecture to the International Congress of Mathematicians in which he stated 23 problems which 
have had a profound effect on the course of mathematics in the twentieth century. Uniformization 
was Problem 22. This renewed interest in the question led to the solution in 1907. Both solutions 
given in 1907 and the argument given in 1909 by Hilbert come from potential theory and it is to 
that stream of ideas that we now turn. 

4. Some Potential Theory. Riemann's thesis is contemporary with many of the great dis- 
coveries of nineteenth-century physical science. Klein [13, p. x] wrote, "Riemann as we know used 
Dirichlet's Principle in their place." The physical arguments of which Klein speaks are those 
associated to a conservative vector field E and its associated potential function V. The classic 
examples of these fields are electric fields and the flow of an incompressible fluid. I shall not dwell 
on these concepts save to say that the following equations hold: divE ? 0, E - grad V, and 
AV= 0. In the last equation, = a 2/ax2 + a2/ay2 is the Laplacian, and therefore V is a 
harmonic function. 

Among the earliest nontrivial fields to be studied is that induced by a point charge. In the unit 
disc, the potential defined by a (positive) point charge at z = 0 is V(z) = log(l/I z I) if aA is 
grounded, i.e., VI aA = 0. Riemann considered the question of whether a point charge could live 
in an arbitrary simply connected plane domain D whose boundary is a grounded conductor. 

The latter condition is that the potential VI aD = 0. Assume we have a point charge in D. The 
level curves L v( c) of V for 0 < c < oo are analytic Jordan curves separating the point charge at z0 
from aD. The integral curves C of the gradient field of V, the paths of elections in this field, are 
again analytic curves from aD to z0. These integral curves may be parametrized by the angle a at 
which they enter zo. We may therefore write C C(O). Each point z E D lies on a unique level 
curve Lv(c) and a unique integral curve C(O). We form a map 
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f : D -->A 

ZF-( -c a0) 

in polar coordinates. (See Fig. 6.) This map is conformal and proves the Riemann mapping 
theorem, once we know that a point charge can live in D. To prove existence, Riemann invoked 
the Dirichlet principle. The principle states that harmonic functions minimize the energy in an 
electric field and such a minimum exists here if D C C. This argument was used by Riemann in 
several contexts, but was questioned by Weierstrass. The latter noted that even elementary 
extremum problems need have no solution. The Dirichlet principle fell into disrepute but was later 
resurrected by Hilbert. It is the key to his 1909 proof of the uniformization theory. Hilbert's proof 
uses mapping properties associated with electric dipoles. 

FIG. 6 

To continue our intuitive discussion, we next consider incompressible fluid flow. (See Fig. 7.) If 
we have a point source of water in the plane, for example a faucet, there must be an edge across 
which the water may flow out of the domain. Otherwise the fluid will compress. If the domain has 
such an edge, which we call a "thick boundary," then a point source can exist at any point in the 

FIG. 7 
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domain. It is intuitively obvious that any edge save a point for the domain will enable it to 
support a point source. 

There are now many ways to prove the existence of a point charge or source. Perhaps the most 
elegant is due to Perron. His method may be found in most complex analysis books. Basically the 
idea is that a harmonic function is the 2 (or n) variable analogue of a linear function f(x) of one 
variable. f(x) has the property that f(x) = supg(x) where g(x) is convex and the boundary 
values of g are less than or equal to those of f (see Fig. 8). Locally one replaces g by a linear 
function and g is "bootstrapped" up tof by taking suprema. 

_S~~~~~~~~~~~~~~~~~~ I S 

FIG. 8 

On a Riemann surface, subharmonic functions assume the role of convex functions. A 
subharmonic function is a continuous real-valued function whose value at a point ;0 E S is less 
than or equal to the average of the values of the function on the boundary of any small symmetric 
neighborhood of t0. Specifically, let s: S -- R be continuous. s is subharmonic if, for each o0 E S 
and each small neighborhood N and local coordinate z = z(') in N with z('0) = 0, 

S(W?) < 2g fs(relO)dO 

for r z(t)j sufficiently small and 0 = argz( '). 
A Perron class 'F is a nonvoid set of subharmonic functions s: S -* R which is closed under the 

following operations: 
(i) taking the maximum of two functions 
(ii) local harmonic majorization. 

Property (ii) generalizes the local replacement of a convex function by a linear function. To obtain 
the precise definition, let D be a closed disc on S. On D, let 3 be the harmonic function such that 
3 I aD = s I aD. Extend 3 to S by setting 3 = s in S \ D. 3 is called the local harmonic majorant of s 
in D. Local harmonic majorization is the process of replacing s by 3s for some disc D. 

Perron showed that s(') = sups,s( ') is either harmonic or identically infinite. 
We now give a precise definition of the Green's function, or potential of a point charge, using 

Perron's method. The potential should be the smallest potential which is positive and grows as 
does - logl z near the point charge. 

Let t0 E S and 'J be the set of subharmonic functions s in S \ {0} having the following 
properties: 

(i) SMt 2_ 0. 
(ii) {' E S \ {O)} I s(; ) #7 0} is compact. 
(iii) For any local coordinate z on a neighborhood N of t0 with z('0) = 0, s(z) + logl z is 

bounded above near t0. 
As a consequence of Perron's Theorem (see, e.g., Ahlfors [1, p. 240]), s-(') = supsaqs(') is 

either identically infinite or harmonic in S \ { 0}. In the latter case we call g(', '0) = s-(') the 
Green's function of S with singularity at t0. In the former case we say that S does not admit a 
Green's function with singularity at t0. It is known that, if z is a local coordinate at t0 with 
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z(tO) = 0, g(', '0) + logl z I has a harmonic extension to any small neighborhood of t0 (see CI, p. 
141). 

Assume that S has a Green's function g(',tO). Then, in the sense of fluid flow, it must have a 
thick boundary- a notion we must also formalize. Asserting that a domain S has a thick 
boundary is equivalent to stating that the "edge" of S may serve as a source or sink for 
incompressible fluid flow (with bounded potential). Equivalently the associated potential may 
have a minimum along the edge. The nonthickness of the boundary is formalized by the following: 

DEFINITION. Let S be a Riemann surface and K be a compact subset of S. We say that S 
satisfies the maximum principle relative to K if every bounded harmonic function f: S \ K -*> R 
has the property that 

sup f(A)0 lim f(0). 
tE=S\K -->aK 

Notice that if S has a Green's function with singularity t0 E IntK, then - g I(S \ K) shows that S 
does not satisfy the maximum principle relative to K. The converse is also true, namely, the 
invalidity of the maximum principle relative to K implies the existence of the Green's function 
with singularity at an arbitrary point t0 E IntK (see CI, p. 139). 

Given a Riemann surface or any plane domain, the validity of the relative maximum principle 
is not directly verifiable. There is, however, a standard technique used to show that it is not valid. 
Suppose there exists a nonconstant harmonic function h on S. Then h has a maximum on K. If the 
relative maximum principle were valid, that maximum would be a global maximum contradicting 
the usual maximum principle. We have proved: 

PROPOSITION 4. 1. Let S be a Riemann surface. If there is a bounded harmonic function f: S -*1 R 
which is not constant, then, for all compact K C S with nonvoid interior, the maximum principle 
relative to K is not valid and S has a Green's function with singularity at any point t0 E S. 

It is not a triviality to produce nonconstant bounded harmonic functions on Riemann surfaces. 
For example, the usual maximum principle implies that a harmonic function on a compact 
Riemann surface is constant. C admits the nonconstant harmonic function Rez, but, by applying 
the removable singularity theorem to a neighborhood of infinity, C admits no bounded noncon- 
stant harmonic functions. 

Producing nonconstant bounded harmonic functions on a Riemann surface brings us to the 
venerable Dirichlet problem. The problem is easily stated. Let S C S, be Riemann surfaces and, 
for simplicity, assume aS is a finite collection of piecewise analytic curves. Let f: aS -* R be 
continuous. The Dirichlet problem is to find a continuous function h: S -* R so that h S is 
harmonic and hIaS = f. Notice that a S corresponds to our intuitive picture of a thick edge. 
Further, if we may solve the Dirichlet problem for nonconstant functions f, then, by the 
proposition above, S will not satisfy the maximum principle relative to a compact subset and our 
analytic characterization of thickness will have been proved. 

The solution of the Dirichlet problem is an application of Perron's method. Assume f is 
bounded or, more simply, assume aS is compact. We form a Perron class 'Y of continuous 
functions s: S -1 R which are subharmonic in S and satisfy s I as < f and s < sup f. If m = inf f, 
then the constant function m E CY. Also, the maximum principle, applied to subharmonic 
functions, implies that for all ' E S and all s E CY, s(') < sup f. It follows that h(') = supa,s( ') 
< oo and hence is harmonic in S. It remains to show that h extends to aS and h I aS = f. The 
usual technique for doing so is due to Poincare (1899) and formalizes the notion of local thickness 
of the boundary. One aims a microscope with arbitrarily fine resolution at a point ' C aS, and we 
see whether it is possible to push water across aS near '. The potentials of these flows are called 
barriers. The formal definitions and proofs may be found in Bers [4, p. 139 ff.] and Conway [7, p. 
265 ff.]. Conway's arguments are stated for plane domains but are equally valid on Riemann 
surfaces. The precise result that we need is 
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PROPOSITION 4.2. Let SI and S be Riemann surfaces and S C SI. If a S is a finite union of closed 
analytic arcs, then, for all continuous, bounded f: a S -* R there exists h: S - 11R so that 

(i) Ih IsuplfI 
(ii) h S is harmonic 
(iii) hadS= f. 

As an immediate consequence of Propositions 4.1 and 4.2, we obtain the first conclusion of 

PROPOSITION 4.3. Let SI and S be Riemann surfaces and S C SI. If as is a finite union of closed 
analytic arcs then 

(i) S has a Green's function g(', '0) 
and 

(ii) limv asg(G, W0 = ?. 

Proof: We prove the second conclusion. Let C be a small circle around t0. Using Proposition 
4.2, on S we may solve the Dirichlet problem outside C with boundary data f C = g and 
f S as = 0. Call the resulting solution h. By the maximum principle for subharmonic functions, h is 
an upper bound for all functions s lying in the Perron class IF defining g(', t0). It follows that 

lim g(',W<) 0. 
-->as 

Since the function s(') = 0 lies in IF, 

lim g(t, t0) 2- 0, 
-->as 

which proves the Proposition. 

5. The Uniformization Theorem. The uniformization theorem, even today, commands a non- 
trivial proof. Here we will sketch one style of proof with some details omitted. For the interested 
reader, we give references either to the accessible literature or to the appendix to this paper. 

Let S be a simply connected Riemann surface. We first assume that, for fixed t0 E S, S admits 
a point charge or Green's function g = g(','0) with singularity at t0. The complete argument in 
this case may be found in CI, p. 136 ff. We must define a conformal map f:S -* C. Let 
S' = S \ {(0} and choose a simply connected chart ND in S' near each D E S'. Since g is harmonic 
in ND, it has a harmonic conjugate h D there and fi = exp[ - (g + ih)] is holomorphic near '. 

Further, fD is unique up to multiplication by a complex number of modulus one. Let No be a 
simply connected chart near t0 with local coordinate z satisfying z('0) = 0. g(',q'0) + logl z() I is 
harmonic in No and hence has a harmonic conjugate ho. Set 

aa 

= 

Z(a) -iexpN[N-- 

(g + log| | + 
ih0)]. 

fo is holomorphic in No and vanishes to first order at t0. By adjusting constants of modulus one, fi 
is an analytic continuation of fo. Since S is simply connected, the monodromy theorem implies 
that the analytic continuation defines a homomorphic function f: S -* C. Also I f(t) = e -g < I 
since g(','0) > 0. It is possible to show directly that f is a bijection of S with A; however, an 
elegant argument due to Heins [9] is far more efficient. We omit the details save to note that the 
proof makes decisive use of the fact that a Riemann surface admitting a Green's function with 
singularity at t0 also has a Green's function with singularity at any prescribed point. This 
completes our sketch of the proof of 

PROPOSITION 5.1. If S is a simply connected Riemann surface which admits a Green's function, 
then there is a biholomorphic, i.e., conformal, map f: S -* A. 

Henceforth we assume that S is simply connected and does not admit a Green's function. 

DEFINITION. A divergent curve on S is a piecewise analytic simple arc 0: [0, oo) -* S so that, 

This content downloaded from 131.114.72.53 on Thu, 26 Mar 2015 08:08:50 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1981] THE UNIFORMIZATION THEOREM 587 

for any compact K C S, 'V'(K) is compact. 

Now assume S admits a divergent curve and set St = S \f([t,oo)). It should be intuitively 
clear, but requires proof, that the simple connectivity of S implies that St shares that property. 
Using Proposition 4.3, we then obtain 

LEMMA 5.1. For all t 2 0, St is simply connected and for any t0 E So, St admits a Green's 
function with singularity at t0. Further, 

lim g(',;O) = 0. 
?as, 

Proof: See the appendix. 

We shall need the following standard result in function theory. 

LEMMA 5.2. Let lA(r) z z < r} and Sr be the set of holomorphic injections f: A(r) -? C and 
satisfying 

(i) f(O) = 0 
(ii) f'(O) = 1. 

Then Sr is (sequentially) compact in the topology of uniform convergence on compact subsets. 

Proof. The map 

UC: Sr 5I 

f(z) F(z) = r-'f(rz) 

is obviously a homeomorphism. It therefore suffices to show that 5 is compact. Montel's 
Theorem (see any graduate-level complex analysis text) states that one must show only that SI is 
closed and bounded. Hurwitz's Theorem states that a limit of holomorphic injections is holomor- 
phic and injective or constant. Condition (ii) rules out a constant limit. Thus 5 is closed. The 
estimates necessary to show that 5 , is bounded are given by Koebe's distortion theorem (see CI, p. 
84, or Conway [7, p. 351 ff.]. 

Since St is a simply connected Riemann surface with a Green's function, there is a holomorphic 
bijection ft: St -- A\. Further we may assume that ft(O) 0 O for some fixed ;0 E S. Now choose a 
sequence (t,) increasing to infinity and denote St by S, and ft by f. Fix the local coordinate 
z = fo(') near t0. We may then compute cl = ft'(z(?))K I and let F,(t) c-lf (). 
Fj: S, -1- = A A(c7-) is a holomorphic bijection. 

Recursively we define subsequences Ni of Z ? as follows: 
(i) N1 = Z + 
(ii) If N, is defined and j E NA and j > i, F3 is defined and injective on S, and FI'(z(o)) = 1. 

FJ o F- 1: A- C is injective, maps 0 to 0, and has derivative equal to 1. Thus, by Lemma 
5.2, we find that there must be a subsequence NA+I C N, so that, for j c N+ 1, FJ O Fo-' 
converges to an injective map HI: Ib -- C. HI(0) 0 O and HJ(O) = 1. We have defined 

Choose ni to be the jth entry in the sequence NJ. For k > i, on S, Hk o Fk is a holomorphic 
injection and 

Hk oFk= (limF ?oFk' )Fk= (limFn oF 0) oFloIFk 

- (limE oFJ')oFi=HoF. 
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Thus HI F, is the restriction to S, of a globally defined holomorphic map f: S -? C. f is injective 
since f IS, is injective for all i. 

f(S) is simply connected. If f(S) #& C, then, by the Riemann mapping theorem, f(S) is 
conformally equivalent to A and there is a conformal map h: S -1 A. Re h is a bounded 
nonconstant harmonic function on S. As in Proposition 4.1, S must then have a Green's function 
which contradicts our original assumption. We have therefore proved 

PROPOSITION 5.2. If S is a simply connected Riemann surface with a divergent curve and 
admitting no Green's function, then S is conformally equivalent to C. 

We shall need the following 

PROPOSITION 5.3. If S is a simply connected Riemann surface with no divergent curves, then, for 
all t, C S, S = S \ { ,} is simply connected. 

Proof. Here the reader is offered a choice of two proofs. A proof via potential theory and 
covering spaces is given in the appendix. The deepest but quickest proof uses the classification of 
simply connected topological surfaces. A simply connected Riemann surface S is homeomorphic 
to C or to ? (see Ahlfors and Sario [3, pp. 90-104]). In C it is easy to find a divergent curve k. 
The image of 0 in S may be arbitrarily closely approximated by a divergent curve. Otherwise S is 
homeomorphic to ?, S is homeomorphic to C and hence is simply connected. 

THE UNIFORMIZATION THEOREM. If S is a simply connected Riemann surface, then S is 
conformally equivalent to Av, C or C. 

Proof. If S has a Green's function then Proposition 5.1 shows that S is equivalent to A\. If S 
has no Green's function but has a divergent curve, then S is equivalent to C. In any other case, 
S S \ {t0} is simply connected and obviously has a divergent curve. It follows that S A or 
S C. 

If f: S A is a conformal equivalence, then f is a bounded holomorpic function on S, in 
particular it is bounded near t0. By Riemann's theorem on removable singularities, f extends to a 
holomorphic map of S into A. By the maximum principle, If(to)I < 1. Since f(S) A, there is 
some t, E S so that f(t0) = f(t'). By the open mapping theorem, there are points 0, t near t0 
and t,, respectively, so that f(D) f(?4). But this contradicts the fact that f 1S is injective. 
Therefore S C and S C ? which completes the proof. 

To illustrate the use of the uniformization theorem, we note 

COROLLARY 1. Every Riemann surface is second countable and separable. 

Proof. These properties project from the universal cover. A, C, and ? have these properties. 

COROLLARY 2 (Picard's Theorem). Let f be a meromorphic function in C. If C \ f(C) contains at 
least three points, then f is constant. 

Proof. Let D = f(C). By the uniformization theorem, the universal cover D of D is conformally 
equivalent to A. Let ST denote the universal cover map, ST: A- D. Then, locally, ST 

-I exists and 
7 -f may be continued along all paths in C to define a map F: C -1 A. Since F is holomorphic, 
Liouville's theorem says F is constant; hence so is f. 

6. Maskit's Work on the General Uniformization Problem. In a fifteen-year series of papers, 
Maskit resolved the general uniformization problem for surfaces of finite conformal type. Weyl 
noted that the problem has two aspects. One starts with a Riemann surface S. The first part of the 
problem is topological- namely, find all covering surfaces D C e of S. Maskit's planarity 
theorem [12] classifies them in the following way. On S we find a set of simple closed loops {al} 
which are homotopically independent. By this we mean that the a, are disjoint and not freely 
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homotopic to each other or to the ideal boundary of S. To each a, we assign a positive integer n,. 
The set of pairs P ={(a, n,)} determine a planar covering surface Sp which is defined as the 
largest covering surface on which ax' is a simple loop but a k is not for k < nI. This theorem gives 
a complete solution to the topological part of the problem. 

The second part of the problem is the conformal mapping problem. Here we try to find all 
conformal maps of all surfaces Sp into ?. The existence of such a map was proved by Koebe; it is 
his planarity theorem (see, for example, Tsuji [18]). Let f be the map and D = f(Sp). The group of 
deck transformations G for the covering D -* S lies in the conformal automorphism group Aut D 
of D. For purposes of classification, it is not important to know all conformal maps of Sp into ? 
but just one good one. All others are obtained by conformal maps of domains D in C. Maskit [13] 
found a very good one. Specifically he proved that D may be chosen so that for all y E Aut D, y is 
a Mobius transformation. The group G then becomes a group of Mobius transformations acting 
properly discontinuously on a domain D C ?. Such objects had first been studied by Schottky 
and later by Fricke and Klein. They are called function groups. Now assume S has finite 
conformal type. Maskit further showed [14] D may be chosen so that each component of 
Int(C \ D) is a Eucidean disc. Such groups, he called Koebe groups. In [15], he classified the 
Koebe groups. This solves the general uniformization for surfaces of finite conformal type. 

Appendix 

This appendix contains the proofs of Lemma 5.1 and Proposition 5.3. The proof of the former 
is rather short and we give it first. 

Proof of Lemma 5.1. St C S and as, is a piecewise analytic arc. As we noted in ? 5, Proposition 
4.3 implies that S, has a Green's function for all t > 0. We claim that St, is simply connected for 
all to. Let a be a closed curve in Sto based at t0. Let 

A(a) ={t E [to, oo)la is nullhomotopicin St. 

Since a is null homotopic in S, and the homotopy takes place in a compact subset of S, 
A(a) + 0 and is open. To see that A (a) is closed, observe that if t1 E A(a) then so is t for all 
t > t . Let t2 = inf{tlt E A(a)}. Choose a small disc D about k(t2). There is a homotopy F1 of a 
to the constant map t0 in S?2+e. Choose a homeomorphism h of D so that h I a D = id and h moves 
0(t2 + e) to 0(t2 - e) as shown in Fig. 9. h may be extended by the identity to a homeomorphism 
of So. h o F1(12) C St2; hence t2 C A(a) and A (a) is closed. From the connectedness of [to, cc), it 
follows that t2 to and a is null homotopic in Sto. 

FIG. 9 
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Proof of Proposition 5.3. The proof of this proposition is modeled after the ideas of Riemann- 
at least as interpreted, by Klein [13]. We shall solve a potential problem on a subsurface of S. 
Then, by studying the level sets and integral curves of the gradient field of that potential, we shall 
obtain a global topological result. The author begs the indulgence of the knowledgeable reader for 
presenting several basic results on holomorphic and harmonic functions. 

Let f be a function holomorphic in a neighborhood of 0 E C with f(O) 7# 0. Then 

f(z) = Eanz1= ao+ akzk+ o(lzlk) 

where o( z k) means a function so that 

lim o(Zk) 
z-O zk 

k is the order of f(z) - ao at 0. 
arg(f(z) - ao) = arg ak+ karg z + o(1 Z I k). It follows that {z larg (f(z) - ao) = 0} consists 

of k analytic arcs which meet at 0 and whose tangents at 0 are equally spaced as a function of 
arg z. If k = 1, then, near 0, {z Iarg(f(z) - a0) = 0} is a simple analytic arc. The points where 
f'(z) = 0 are discrete. If u(z) is a harmonic function in a simply connected neighborhood of 0, 
then it has a harmonic conjugate v(z) there. 

f(z) = exp(u + iv) is holomorphic. 0 is called a critical point of u if f '(0) = 0. { z I v (z) = v (0)} 
consists of k analytic arcs through 0. 

The discussion above remains valid for points other than 0 and, indeed, is valid on Riemann 
surfaces. 

Now let S be a simply connected Riemann surface with no divergent curves. Let dl E S and N 
be a closed disc about t, with analytic boundary. Set S, = S \ N. The reader may easily verify 
that S, is homeomorphic to S, and we must only show that S, is simply connected. By Proposition 
4.3, S, has a Green's function g(q, t0) for any t0 E S,. 

As in the proof of Proposition 5.1, we let h0 be a harmonic conjugate of g(q, t0) + logl z near 
t0 and let f0(') = z(')exp[-(g + loglzI + ih0)]. f0(') may be analytically continued along all 
paths in S,. Since we do not know a priori that S, is simply connected, the analytic continuation 
may not define a function. 

Near t0, f(z(')) = a,z + o(I z 1) and it follows that f is locally injective near t0 and there is a 
neighborhood of t0 containing no critical points of g. If g has critical points, let M= 
sup{g(', 9'o) I 7# t0 and D a critical point of g}. Otherwise let M = 0. Let D ={ E S I g(t', '0) > 
M} U {t0} and B C C be the disc of radius e-M about 0. 

LEMMA B. 1. Analytic continuation of fo in D defines a holomorphic bijection f: D -) B. 

Proof. Let T(6) be the curve in D starting at t0 along which fo continues with constant 
argument. Since T(6) contains no critical points, it is unique and may be parametrized by e 9. 
Since S has no divergent curves, T(6) is a simple arc from t0 to a D = {Ig(t o0) = M}. 

Let D t D \ {t0} and 00 be the argument of some analytic continuation f, of fo to t. Then 
f f(D) I exp(-g(t ,9'0). Let A be the necessarily unique arc through D with argf1 = 00. Extend A 
so that it is maximal with respect to being a curve along which f, continues with constant 
argument in D. Since g is monotone on A and D contains no critical points, A is simple and 
analytic. Thus it is either divergent or contains an arc T( 6) from D to t0. The first possibility is 
ruled out by our initial assumption. Thus A = T(61) and we may write 0(D) = 61. Thus each point 
; E D \ {t0} is parametrized in polar coordinates by (e -g,0(')), with t0 being the origin. The 
parametrization is continuous and injective, hence is a homeomorphism of D with B. It follows 
that D is simply connected and the parametrization is precisely the analytic continuation of fo. 

If M = 0, we are done, since D = S, and f is a homeomorphism of D with A. If M > 0, we 
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have 

LEMMA B.2. If M > 0, then there is a critical point t'2 E aD 

Proof. First suppose that there is a critical point t'2 so that g(W2, W' = M. Then arbitrarily 
close to t'2 are points in D and t'2 & aD. Otherwise there is a sequence of critical points t'1 so that 
g(W, 10) -- M. Through each tn there is an arc An along which g increases and any continuation 
of fo has constant argument. Since S has no divergent curves, A,n connects t,n to t0. For some 0, 
A,1 n D = T(n). On a subsequence, f9n - 6 and T(6) must have an endpoint t. From the local 
structure of the curves arg f = constant near ta, we see that ta is a limit of critical points. Since 
critical points of g are discrete in S1, this is impossible and the Lemma is proved. 

LEMMA B.3. If M > 0, then there exists_a closed annulus A C S with piecewise analytic boundary 
so that S \A is connected. Here A = IntA. 

Proof. Using the previous lemma, there is a critical point '2 E aD. Again by the local structure 
near a critical point, there are at least two curves T(61) and T(62) emanating from '2* Choose 
closed discs Bo and B2, with centers t0 and '2, respectively, which are defined by Bo {= I g(', to) - 

c'} and B2 ={-Ig(t, t)-g(t2, -o) < e}. For E sufficiently small, the B, are disjoint and 
contain no critical points. For 6 sufficiently close to 6,, T(6) is a curve from Bo to B2. Let 
E = U{T(6)1 I0-6.k < 8}. , is a strip from Bo to B2 for i= l,2. LetA = E1 U E2 U Bo U B2 as 
in Fig. 10. For nearly all but finitely many 6,, T(6,) n B2 = 0 for E sufficiently small. Let 
,q E S \ A where A = Int A. Any analytic continuation f, of fo to a neighborhood of q may be 
continued along a curve with decreasing modulus and constant argument to aS1. Thus if 
g(), t0) : M, the curve will not meet A and q and as1 lie in the same path component of S \ A. 
If q E D \ A, then q lies in a complementary sector of 2 U 2 in D. Choose T(6) in that same 
sector so that continuation along T(6) with decreasing modulus and constant argument does not 
lead us into B2. We may then further continue to MB. , T(6) and aB thus lie in the same path 
component of S \ A, and S \ A is path connected. 

PROPOSITION B. 1. If S is any Riemann surface and A is a closed annulus on S with piecewise 
analytic boundary and such that S \ A is path connected, then S is not simply connected. 

T0) 

T(O~~ ~2 8B. 

FIG. 10 

Proof. A has two boundary components F1 and F2. Further, there is a simple closed curve a in 
S so that a n IntA is a simple arc from one boundary component to the other. 

Solve the Dirichlet problem in A with boundary data p 1 1 F, = I and 4 1 1 F2 = 0. The Dirichlet 
problem in S \ IntA may be solved with boundary data 021 F1 = 1 and 021 F2 2. Set 4 = exp i7r+, 
and notice that p is defined on S and continuous. 4 o a has winding number 1 about z = 0. If a 
is null homotopic in S then 4 o a is null homotopic in aix. The latter is impossible; hence S is not 
simply connected. 
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BLACK WOMEN IN MATHEMATICS IN THE UNITED STATES 

PATRICIA C. KENSCHAFT 
Department of Mathematics and Computer Science, Montclair State College, Upper Montclair, NJ 07043 

Increased attention has been focused on women in mathematics during the past decade, but 
when I was invited to speak on Black women in mathematics, I could find only two references- a 
talk by Vivienne Malone Mayes [1] at the Summer Meeting in Kalamazoo in 1975 sponsored by 
the Association for Women in Mathematics, and the AWM panel I chaired in Atlanta in January, 
1978 [2]. Since then I have collected much information, and this article tells about the American 
Black women holding doctoral degrees in mathematics, all but two of whom I have talked with in 
the past three years. 

The 1970 decennial census revealed more than 1,100 Black women who reported themselves as 
mathematicians. In that census 244 said that they were college or university teachers, and, of 

Adapted from an invited address given at the annual meeting of the Association of Mathematics Teachers of 
New England in Springfield, Massachusetts, on November 2, 1979. 

Patricia Kenschaft received her Ph.D. with a specialty in functional analysis from the University of Pennsylvania 
in 1973 under the direction of Edward Effros. Since then she has taught at Montclair State College in New Jersey. 
She is the author or co-author of three textbooks for nontechnical majors published by Worth Publishers, Inc., and is 
currently preparing a paper on the life of Charlotte Scott, vice president of the AMS in 1906.-Editors 
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