Analisi I - IngBM - 2018-19 COMPITO A 16 Febbraio 2019

COGNOME	NOME
MATRICOLA	VALUTAZIONE + =

1. Istruzioni

Gli esercizi devono essere svolti negli appositi spazi del presente fascicolo; solo questo sarà ritirato e valutato. I fogli a quadretti messi a disposizione possono essere usati liberamente ma in nessun caso saranno ritirati. Il compito è composto di due parti. La prima parte deve essere svolta preliminarmente. Essa verrà corretta per prima e valutata con un punteggio di $0 \le x \le 10$ punti. Condizione necessaria affinché venga preso in considerazione l'eventuale svolgimento della seconda parte è che $x \ge 6$. In tal caso la seconda parte viene valutata con un punteggio di $0 \le y \le 24$ punti. Il compito sarà sufficiente per l'ammissione alla prova orale se $x + y \ge 18$. In tal caso il voto di ammissione all'orale sarà $y = \min(28, x + y)$.

2. Prima parte

Esercizio 0. (0 punti) Leggere e capire le istruzioni.

Esercizio 1. (3 punti) Determinare se il seguente limite esiste e nel caso calcolarlo.

$$\lim_{x \to 0} \frac{|\sin(x)|}{x^2}$$

SOLUZIONE

Il limite

□Esiste e vale

□Non esiste

perché

Esercizio 2. (4 punti)

Siano a_n e b_n due successioni di numeri reali definite per $n \ge 0$.

Supponiamo che $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$. Sia c_n la successione definita da $c_{2n} = a_n, c_{2n+1} = b_n$. Dimostrare che $\lim_{n\to\infty} c_n = 0$.

SOLUZIONE.

Esercizio 3. (3 punti) Sia $f: \mathbf{R} \to \mathbf{R}$ la funzione definita da $f(x) = |\cos(x)|$.

- (1) Determinare, se esiste, una primitiva F(x) di f(x).
- (2) Nel caso esista, determinare il più grande $n \geq 0$ tale che F(x) sia di classe C^n ma non di classe C^{n+1} .

SOLUZIONE.

3. Seconda parte

Esercizio 1. (8 punti) Si considerino le funzioni $\sin(x), \cos(x)$ sull'intervallo $[0, \pi/2]$ e siano $\arcsin(x)$ e $\arccos(x)$ le rispettive funzioni inverse.

- (1) Determinare il dominio D in cui la funzione $f(x) = \arcsin(x) + \arccos(x)$ è definita.
- (2) Dimostrare che f(x) è costante su D e determinarne il valore.

SOLUZIONE.

D =

f(x) è costante e vale:

Esercizio 2. (5 punti) Indichiamo con Arctan il ramo principale della funzione arcotangente. Si consideri la funzione integrale $F(x) = \int_0^x e^{Arctan(t)} dt$

- (1) Dimostrare che F è iniettiva.
- (2) Dimostrare che F è surgettiva.
- (3) Determinare il sottoinsieme D di ${\bf R}$ tale che per ogni $y\in D$ la funzione inversa F^{-1} è derivabile.
- (4) Per ogni $y \in D$ determinare $(F^{-1})'(y)$.

SOLUZIONE

Esercizio 3. (5 punti)

Per ogni numero naturale $n \geq 1$, si consideri il polinomio $p_n(x) = \sum_{j=0}^n (-x)^j = 1 - x + x^2 + \cdots + (-1)^n x^n$. Determinare, al variare di n, tutte le radici complesse di $p_n(x)$ specificando quali di esse sono reali.

SOLUZIONE

Esercizio 4. (6 punti) Si consideri l'equazione differenziale

$$y' = \frac{t}{2y}$$

Determinare, se esiste, una soluzione massimale y(t) dell'equazione tale che y(-1)=-1. Si ricorda che, se esiste, bisogna specificare l'intervallo di definizione della soluzione. SOLUZIONE