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Abstract

In the beginning of the 1990s we devoted a sequence of papers to perturbation theory, singular limits and well-posedness prob-
lems. In particular, the strong well-posedness of the initial–boundary value problem for the compressible Euler equations was
demonstrate for the first time. Our method also allowed singular limit results in the strong norm, even under assumptions weaker
than the current ones in the literature (where the strong norm is not reached). It is worth noting that, until now, the above method
and results have not been substantially improved. Hence an introduction to it still looks timely. Actually, in a forthcoming paper,
by returning to this method, we improve (in a very substantial way) some important results recently appeared in the literature.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Following T. Kato, by perturbation theory we mean the study of the dependence of solutions to linear systems
of equations on the coefficients of the operators. Well-posedness, in Hadamard’s sense, means the continuous depen-
dence of solutions to evolution problems on the initial data. Clearly, a main point in the above context is to define
“continuity,” i.e., the choice of the topologies. It is worth noting that sufficiently strong perturbation theorems for lin-
ear systems (like (2.10) below) lead, without difficulty, to well-posedness results for related non-linear systems (like
(2.1) below). This fact was already remarked by T. Kato in the introduction to his work [29], where he points out that
the results obtained for the abstract quasi-linear equation, denoted by (Q) in reference [29], are based on his previous
results for the linear “hyperbolic” equation (L), see [29]. More generally, singular limit problems for non-linear equa-
tions (for instance, incompressible limit problems for compressible fluids), can be brought back to related perturbation
theorems, as shown in our papers.

In the following we present a brief overview of our contribution to the above theories, in a deliberately very sim-
plified framework. We are mainly driven by an interest in solutions to compressible non-viscous flows. By taking
into account real physical problems, our efforts were basically directed to the study of initial–boundary value prob-
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lems. Clearly, the results may be proved for the corresponding Cauchy problems, in a much simpler way, by obvious
simplifications in the original proofs. Nevertheless, even for the Cauchy problem, the results were new in some cases.

Having in mind compressible non-viscous fluids, we deal with strong, local in time solutions, that live in (for
instance) H = Hk(Ω)-type spaces, for sufficiently large values of k. Furthermore, we work in the framework of
functional spaces that also take into account time derivatives of the solutions u(t). For instance, one may look for
solutions u(t) of systems like (2.1) or (2.10) such that(

u,u′, u′′, . . . , u(r)
) ∈ C

([0, T ]; H
)
, (1.1)

where

H = Hk(Ω) × Hk−1(Ω) × Hk−2(Ω) × · · · × Hk−r (Ω), (1.2)

and r � k. More precise notation will be introduced below.
A fundamental task in the theory of evolution partial differential equations is the extension to this field of the

basic results that hold for ordinary differential equations, namely existence, uniqueness and continuous dependence
theorems (or to show their failure). In considering evolution partial differential equations, a finite dimensional space,
typical in the O.D.E. theories, is mostly replaced by a suitable infinite dimensional space (in the sequel, a Hilbert
space H), and the ordinary differential system of equations is replaced by an equation of the type u′ + B(u) = F ,
where B is an unbounded operator in H. Proving, in correspondence to each initial data u0 ∈ H (H = Hk in the
previous example), the existence of a solution u(t), continuous in some interval [0, T ] with values in H is still non-
trivial, in particular for initial–boundary value problems. Further, if this result holds, there still remains the task to
show that if

lim
ν→∞

∥∥uν
0 − u0

∥∥
H

= 0, (1.3)

then

lim
ν→∞‖uν − u‖C([0,T ];H) = 0, (1.4)

where uν(t) is the solution with initial data uν
0. Roughly speaking, results weaker than (1.4) may be obtained in

the following way. Typically, the existence theorems exhibit an L∞(0, T ; H) estimate of the norm of the solution,
where T depends only on the norm of u0 in H . Hence, by assuming (1.3), all the above solutions exist in a given
interval [0, T ]. By a well-known compactness argument, “suitable subsequences” of uν converge in the above space
with respect to the weak-∗ topology. This convergence implies, in particular, convergence in norm-topologies like
C([0, T ];Hk−α(Ω)), α > 0. The strong convergence of the derivatives present in the equations shows at once that
limits of the above convergent subsequences are already solutions, with initial data u0. Since these limits belong
to quite regular spaces, uniqueness of the solution guarantees the weak-∗ convergence of the full sequence uν to u

in L∞(0, T ; H) and the strong convergence in spaces like C([0, T ];Hk−α(Ω)). Nevertheless, these significant results
are not totally satisfactory. Since all the solutions belong to C([0, T ]; H), this is the natural space for proving con-
tinuous dependence on the data. The aim of our work was to reach this result, as well as extensions to more general
problems.

The strong, uniform continuous, dependence result (1.4) is, in general, not very difficult to prove for parabolic
problems, thanks to the regularity of the solutions in terms of data and coefficients. On the contrary, in the hyperbolic
case, in particular for initial–boundary value problems related to fluid mechanics, the problem is particularly difficult.
As remarked by Kato and Lai in reference [32], where the Euler incompressible equation is studied, “the continuous
dependence in the “strong” topology of the solution on the data is the most difficulty part in a theory dealing with
nonlinear equations of evolution.” At that time, even the existence problem for the Euler compressible equations was
completely open (see Section 5.2 below).

Reference [14] is the leitmotif for Part I below, even if (for simplicity) we mostly consider the Cauchy (and not
the initial–boundary value) problem. We study the Cauchy problem for the linear system (2.10) and for the non-linear
system (2.1). The assumptions on the coefficients A(t, x), Aν(t, x) and A(u), made here, come from (5.2), a situation
that does not allow convenient choices: The topology under which one assumes that Aν(t, x) → A(t, x) must be
weaker or (at most) equivalent to the topology under which, in the non-linear problem, A(uν) → A(u) as uν → u in
C([0, T ];H).
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In Section 2.1 we introduce some notation and state Theorems 2.1, 2.2 and 2.3. In Section 2.2 we discuss some
substantial (non-technical) obstacles that impose the introduction of suitable devices. In Section 3 we prove the very
basic result, namely Theorem 2.2 (see Remark 1.2). Finally, in Section 4 we consider the initial–boundary value
problem under the assumption (4.3).

Theorem 2.3, for the Cauchy problem, was proved by T. Kato by means of his perturbation theory for linear
evolution equations, see [27,28], and has been applied by him to prove Theorem 2.1 for a large class of systems. See
also Hughes, Kato and Marsden [26]. Successively, this same theory has been extended to a class of initial–boundary
value problems, see [31], in particular to non-linear wave equations, but not to the Euler compressible equations.

In Part II we touch on references [13,15], by describing related, but simpler, situations. It is dedicated, at least
ideally, to the Euler compressible equations (5.1). This system is the very center of our concern, in spite of the fact
that in Section 8 (the core of Part II) we deal with the simplified system (8.1). The complete system (5.1) will be con-
sidered only at the level of the existence theory, in Section 6. It is worth noting that the system (5.2) does not verify
the assumption (4.3). We overcome this obstacle by finding an (apparently more complicated) system of equations,
equivalent to the system (5.1), for which the assumption (4.3) holds. More precisely, by appealing to the classical curl
and div differential operators, we show that the system (5.1) is equivalent to the system consisting of the first-order el-
liptic system (6.4), the Euler type transport equation (6.5), and the second-order hyperbolic equation (6.6) (plus (6.7)).
This decomposition is very helpful, since the boundary value associated with (6.4) is well known; Eq. (6.5) has no
boundary conditions; the boundary value problem (6.6) satisfies (4.3). The system (6.6) carries out the main hyper-
bolic features of (5.1). So, in order to simplify our exposition, we could limit oneself to considering the system (6.6).
Actually, we simplify even more our framework, by considering the system (8.1), a very drastic simplification of (6.6).
In this way we avoid further strong obstacles (compare these two last systems). In Section 8, by appealing to (8.1), we
try to explain the real motivations that lead to our approach to the perturbation theory. A preliminary overview on the
existence theory for the complete compressible Euler equations (see Section 6) has the pretension of giving a glimpse
of some of the obstacles that cannot be overcome in the framework of the continuous dependence theory, in a short
presentation. This is the real motivation for Section 6.

Finally, in Part III, we state and briefly discuss some singular limit results, see [21], in particular strong conver-
gence of solutions for compressible Navier–Stokes equations to solutions of the Euler incompressible equations, as
(simultaneously, with independent rates) the Mach number λ−1 goes to 0, the viscosity coefficient μ goes to zero and
the viscosity coefficient ζ remains bounded.

Remark 1.1. Another way to overcome the lack of (4.3) could be to extend the method described in Section 4, in such
a way as to cover the initial–boundary value problem (5.1). We have shown (not published) that this can be done at
least in the presence of flat boundaries, and for n = k = 3 (we take this opportunity to point out that non-flat boundaries
are much harder to handle).

Remark 1.2. In Section 2.1 the crucial result is Theorem 2.2, which is the basis of the theory. As a matter of fact,
Theorems 2.1 and 2.3 are corollaries. Similarly, in Section 4, where we consider the initial–boundary value problem,
the basic result is the estimate (4.13). In Part II (where, for convenience, k = 3) the situation is similar. See (8.14).
The reader should compare (8.14) with (4.11), since in Part II we will not repeat the last argument of the proof.

Remark 1.3. Note that, in the hyperbolic case, the continuity of the map S(t) from H to H , where S(t)u0 = u(t),
for a fixed t > 0, can not be replaced by a better result (as, for instance, Hölder or Lipschitz continuity). A very
simple example comes from the equation ∂tu + u∂xu = 0 in Hk(R). See Subsection 5.3 in reference [30]. Hence,
in Eulerian coordinates, C0-continuous dependence on the initial data is the most we may expect, even for trivial
Cauchy problems. On the contrary, in Lagrangian coordinates dependence could be much stronger, and does not nec-
essarily imply continuous dependence in Eulerian coordinates. See the illuminating remark in [24, Section 6, p. 483]
(C1-dependence results, in Lagrangian coordinates, for small initial data are also announced).

Finally, we also refer the reader to our strictly related papers [7,11,16,17,19], not quoted elsewhere in this
work.
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Part I. First-order hyperbolic systems

2. The Cauchy problem

2.1. Notation and main results

The well-posedness problem, for non-linear systems, is strictly related to the more general structural stability
problem, for linear systems. This means here sharp continuous dependence of the solution in terms of the coefficients
of the operators. For instance, consider a non-linear Cauchy problem described by the system{

∂tu + A(u)∂xu = F in QT ,

u(0) = u0,
(2.1)

where QT = [0, T ] × R
n, ∂i = ∂xi

, i = 1, . . . , n, u = (u1, . . . , um),

A(u)∂xu =
n∑

i=1

A(i)(u)∂iu. (2.2)

A(i)(u) are m × m symmetric matrices with coefficients a
(i)
q,l(·) of class Ck(Rm;R), i = 1, . . . , n, q, l = 1, . . . ,m. We

assume that k > 1 + n
2 . Further, u0 ∈ Hk(Rn) and F ∈ L2

T0
(Hk), see below. We denote by ‖ · ‖l the canonical norm

in Hl(Rn), moreover,

‖|u|‖2
l =

l∑
j=0

∥∥∂
j
t u

∥∥2
l−j

.

Other main notations are

CT

(
Hl

) =
l⋂

j=0

Cj
([0, T ];Hl−j

)
, L2

T

(
Hl

) =
l⋂

j=0

Hj
(
0, T ;Hl−j

)
,

and

‖|u|‖2
l,T = sup

0�t�T

∥∥∣∣u(t)
∣∣∥∥2

l
; [u]2

l,T =
T∫

0

∥∥u(t)
∥∥2

l
dt; |[u]|2l,T =

T∫
0

∥∥∣∣u(t)
∣∣∥∥2

l
dt.

Below, we also mention spaces

Lp
T

(
Hl

) =
l⋂

j=0

Wj,p
(
0, T ;Hl−j

)
,

where 1 < p � ∞, even if their role here is negligible.
Together with (2.1), we also consider a sequence of similar problems{

∂tu
ν + Aν

(
uν

)
∂xu

ν = Fν,

uν(0) = uν
0,

(2.3)

where Aν(·), uν
0 and Fν are as A(·), u0 and F above. Note that, in typical applications, Aν = A. Assume that

lim
ν→∞

∥∥uν
0 − u0

∥∥
k
= 0, lim

ν→∞
∣∣[Fν − F

]∣∣
k,T0

= 0, (2.4)

and

lim
ν→∞Aν(·) = A(·) in Ck, (2.5)

on compact subsets of R
m. Under the above hypotheses there are T > 0 and C > 0 such that the problem (2.1) has

a unique solution u ∈ CT (Hk) satisfying ‖|u|‖2 � C. Actually, it would be sufficient to assume that u ∈ L∞(Hk),
k,T T



H. Beirão da Veiga / J. Math. Anal. Appl. 352 (2009) 271–292 275
since continuity follows then easily by appealing to estimates proved in the sequel. Upper bounds for T −1 and for C

depend (non-decreasingly) on the norms ‖u0‖k and |[F ]|k,T0 , and on the Ck norms of the matrices A(i)(·) on a fixed
open, bounded subset of R

m that contains the closure of the set {u0(x): x ∈ R
n}. By applying this result to the system

(2.3), under the hypotheses (2.4), (2.5), it follows that the constants T and C may be chosen independently of ν. In
particular∥∥∣∣uν

∣∣∥∥2
k,T

� C, ∀ν ∈ N, (2.6)

where N denotes the set of positive integers. It easily follows that if (2.4) and (2.5) hold, then limν→∞ ‖uν −u‖0,T = 0.

Furthermore, by interpolation,

lim
ν→0

∥∥∣∣uν − u
∣∣∥∥

k−α,T
= 0, (2.7)

for each (arbitrarily small) positive α. In bounded domains, one also has

uν → u, w.r.t. the weak-∗ topology in L∞
T

(
Hk

)
. (2.8)

These well-posedness results are not completely satisfactory. In fact, since the solutions u and uν belong to CT (Hk),
the conclusive result should be (2.9) below.

Eq. (2.9) guarantees, in particular, that if a solution u(t) exists on [0, T ∗], for some T ∗ > 0, then (for sufficiently
large values of ν) the solutions uν(t) exist on [0, T ∗] and satisfy (2.9) in this same interval.

In the next sections we sketch the proof of (2.9) for the Cauchy linear and non-linear problems, see Theorems 2.1
and 2.3, and for the related initial–boundary value problems, see Theorems 4.1 and 4.2. The result proved for the
Cauchy non-linear problem applies, in particular, to the Cauchy problem for the compressible Euler equation. How-
ever, since (4.3) fails, Theorem 4.2 does not apply (at least in a simple way) to the boundary value problem (5.1). See
Remark 1.1.

One has the following results.

Theorem 2.1. Assume that (2.4) and (2.5) hold. Then, the solutions to the non-linear problem (2.3) converge
in CT (Hk) to the solution u of problem (2.1), i.e.,

lim
ν→∞

∥∥∣∣uν − u
∣∣∥∥

k,T
= 0. (2.9)

Next consider the following linear systems:{
∂tu + A(t, x)∂xu = F,

u(0) = u0,
(2.10)

and {
∂tu

ν + Aν(t, x)∂xu
ν = Fν,

uν(0) = uν
0,

(2.11)

where notation follows that introduced above (now A(u) is replaced by A(t, x), A(i)(u) by A(i)(t, x), and so on). In
this case we assume that A,Aν ∈ L∞

T0
(Hk). It is worth noting that if we want to relate the linear case to the non-linear

one, we cannot assume more than A,Aν ∈ CT0(H
k).

We prove the following result (where we may replace everywhere L2
T0

(Hk) and L∞
T0

(Hk) by Lp
T0

(Hk), for some
p > 1).

Theorem 2.2. Assume that u0, u
ν
0 ∈ Hk , and that F,F ν ∈ L2

T0
(Hk), with norms bounded by a some constant C,

independent of ν. Let u and uν be the solutions to the systems (2.10) and (2.11), respectively. Assume, moreover, that

‖|Aν |‖k,T0 � C, ∀ν ∈ N. (2.12)

Then, to each ε > 0 it corresponds a positive Λ(ε), that depends only on ε, T0, u0,F, and A, such that∥∥∣∣(uν − u
)
(t)

∣∣∥∥2
k
� C

{
ε + ∥∥uν

0 − u0
∥∥2

k
+ ∣∣[Fν − F

]∣∣2
k,T0

+ |[Aν − A]|2k,t + Λ(ε)|[Aν − A]|2k−1,t

}
, (2.13)

for all ν ∈ N.
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Theorem 2.3. Under the assumptions of Theorem 2.2 if, moreover, (2.4) holds and

lim
ν→∞|[Aν − A]|k,T0 = 0, (2.14)

then the solutions to the linear problem (2.11) converge in CT0(H
k) to the solution u of problem (2.10), i.e., Eq. (2.9)

holds here.

We point out that (ε, ν)-estimates like (2.13) are the very central point in our approach. It looks convenient to
explain this very central point before going on to the proofs of the above theorems. This is the subject of the next
subsection.

2.2. The ε-device and the (ε, ν)-estimates. Motivations

In this subsection we illustrate the main reasons that force us to introducing some crucial new devices in the next
sections. For simplicity, we assume that Aν(·) = A(·).

We only want to show to the reader the starting, necessarily imprecise, ideas that lead us to the decisive method of
proof. In this scheme of things, “spaces” and “norms” are simply outlined by their main, expected, characteristics.

At a first glance, the more natural way to try to prove (2.9) seems appealing to energy estimates for the difference
uν − u, which solves the problem{

∂t

(
u − uν

) + A(u)∂x

(
u − uν

) = (
A

(
uν

) − A(u)
)
∂xu

ν + (
F − Fν

)
in QT ,(

u − uν
)
(0) = u0 − uν

0.
(2.15)

However, as the function (A(uν) − A(u))∂xu
ν does not belong to Hk , but merely to Hk−1, we can not obtain

from (2.15) an Hk estimate for (u − uν)(t). The obstacle here is the lack of regularity of the “pivot” function uν ,
in the right-hand side of (2.15). So we have tried the following idea: To single out, in correspondence to any ε > 0,
a positive integer N(ε) and a new “pivot” function uε characterized by

uε ∈ L∞(
0, T ;Hk+1),

and such that∥∥u − uε
∥∥

k,T
< cε and

∥∥uν − uε
∥∥

k,T
< cε for each ν > N(ε),

where, in principle, norms are in L∞(0, T ;Hk). Here c should be independent of the other quantities involved in the
above equations. Note that it is expected that the L∞

T (Hk+1)-norm of uε blows up as ε goes to zero. We also hope to
be able to estimate the term A(uν) − A(u) in a suitable way.

Our first attempt to individuate the uε was to consider the auxiliary system{
∂tu

ε + A(u)∂xu
ε = Fε,

uε(0) = uε
0,

(2.16)

where uε
0 ∈ Hk+1, Fε ∈ L2

T (Hk+1), and∥∥uε
0 − u0

∥∥2
k
� cε,

∣∣[Fε − F
]∣∣

k,T
� cε. (2.17)

Unfortunately, since A(u) /∈ Hk+1, we cannot expect uε(t) ∈ Hk+1, as desired. Hence, we need an additional idea to
improve the above strategy. Before going to this point, we note the following.

Remark 2.1. An attempt to overcome that A(u) /∈ Hk+1 could be to replace in (2.16) the coefficient A(u) by A(uε).
Note that this device requires an extra-regularity for the coefficients A(·), not suitable in applications. Nevertheless,
even by assuming this extra-regularity (or, possibly, by replacing A(uε) by Aε(uε)), we come up against new obstacles
and even more technical situations. It looks out of place here to discuss, and compare, all the ways we have tried. We
may just note that replacing the coefficient A(u) by A(uε), leads to the need of showing that

lim
∣∣[uε − u

]∣∣2
k−1,t

∥∥∣∣uε
∣∣∥∥2

k+1,t
= 0.
ε→0
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We may prove this result for any Cauchy problem, and for some particular initial–boundary value problems that
do not require compatibility conditions (like incompressible Euler, under the classical homogeneous slip boundary
condition). We may also consider more general situations, but not the more general initial–boundary value problems
for compressible Euler equations.

As shown in the next subsection, the above ε-device still works, if combined with a suitable new device. Let us
briefly illustrate ideas, before going into the detailed description presented in the next subsection.

First of all, since A(u) ∈ Hk , we may look for suitable perturbations theorems in Hk−1, instead of Hk . On the
other hand, differentiation of Eq. (2.1) with respect to xj gives{

∂t (∂ju) + A(u)∂x(∂ju) = ∂jF − (
∂jA(u)

)
∂xu,

(∂j )u(0) = ∂ju0.
(2.18)

The coefficient A(u) belongs to Hk , and the right-hand side of Eq. (2.18) belongs to Hk−1. So, we have high hopes of
being able to prove suitable Hk−1 estimates for each of the first-order derivatives ∂j (u − uν), by still appealing to the
above ε-device, now applied to the n systems (2.18), j = 1, . . . , n. The set of all these Hk−1 estimates is equivalent
to an Hk estimate for u − uν . As we will see below, this is the winning strategy.

In the case of initial–boundary value problems the situation is (as usual) much more difficult to treat, in particular in
the case of compressible Euler equations. However this is the real physical situation. We take a glance at this problem
in Section 4 below, where we consider the linear system (4.1), instead of the non-linear system (2.1), endowed with the
same boundary conditions. The situation is very similar in both cases, since we do not assume “additional” regularity
for the coefficients A(t, x). This means here that the regularity assumed for these coefficients is not greater than that
of the coefficients A(u(t, x)), when u(t, x) has the regularity furnished by the existence theorems. In this situation the
proofs are essentially the same in both cases, as shown below for the Cauchy problem.

In order to simplify the argument, in Section 4 we will assume a flat boundary (say, Ω = R
n+, where xn is the

coordinate in normal direction to the boundary). In principle, for j 	= n, the system (2.18) can be endowed with suit-
able boundary conditions obtained by differentiating the (given) boundary conditions with respect to the (tangential)
coordinate xj (see, for instance, the first n − 1 equations (4.7) bellow). However, for j = n, this is false in general.
Hence we replace differentiation with respect to the normal coordinate xn by differentiation with respect to t . Clearly,
this leads to more technical proofs. In particular, the pivot auxiliary functions uε must satisfy the boundary conditions
and the compatibility conditions. Now, a main point is to obtain sharp estimates for ∂n(u − uν) by appealing to the
prior estimates proved for the derivatives ∂j (u − uν), j < n, and for ∂t (u − uν). This must be done by appealing
directly to the equations.

In the case of the compressible Euler equations the above strategy seems difficult to apply, since (4.3) is false for
this system. Actually, the proof of Theorem 4.2 can be improved in such a way as to cover this problem, at least for
k = n = 3, and flat boundaries. However, the more “physical” approach described in Section 6.2 below, allows us to
prove the key well-posedness result [15, Theorem 1.4]. In Section 6.2 below we give an introduction to this subject.

3. Proof of Theorem 2.2

In this section we apply the strategy described in the previous subsection to the Cauchy problems (2.10) and (2.11).
Differentiation of (2.10) with respect to xj , j = 1, . . . , n, yields{

∂t (∂ju) + A(t, x)∂x(∂ju) = ∂jF − (
∂jA(t, x)

)
∂xu,

(∂j )u(0) = ∂ju0.
(3.1)

By setting U = (∂1u, . . . , ∂nu), φ ≡ ∂xu0 = (∂1u0, . . . , ∂nu0), and Â (l) ≡ diagonal bloc matrix (A(l), . . . ,A(l)), where
the matrix A(l) is repeated n times, one shows that U , which belongs to CT0(H

k−1), solves, by the construction, the
system{

∂tU + Â(t, x)∂xU = Φ,

U(0) = φ,
(3.2)

where Φ = ∂xF − (∂xA(t, x))∂xu. Note that φ ∈ Hk−1 and Φ ∈ L2
T0

(Hk−1). We do not write a detailed expression
of (∂xA(t, x))∂xu since it is superfluous here.
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Similarly, one gets from (2.11){
∂tU

ν + Âν(t, x)∂xU
ν = Φν,

Uν(0) = φν,
(3.3)

where

φν ≡ ∂xu
ν
0, Φν = ∂xF

ν − (
∂xAν(t, x)

)
∂xu

ν,

and Â
(l)
ν ≡ diagonal bloc matrix (A

(l)
ν , . . . ,A

(l)
ν ).

For each ε > 0 we fix φε ∈ Hk and Φε ∈ L2
T0

(Hk) such that∥∥φε − φ
∥∥2

k−1 � ε,
∣∣[Φε − Φ

]∣∣2
k−1,T0

� ε, (3.4)

and we consider the solutions Uε of problems{
∂tU

ε + Â(t, x)∂xU
ε = Φε,

Uε(0) = φε.
(3.5)

Since Â ∈ L∞
T0

(Hk) it follows that Uε ∈ CT0(H
k). Note that an upper bound for the norm ‖|Uε |‖k,T0 depends only

on ε and T0, and on the given functions φ,Φ and Â(t, x). Hence the above norm depends only on ε, T0, u0,F, and A.
We write, for convenience,∥∥∣∣Uε

∣∣∥∥
k,T0

� C(ε,T0;u0,F,A) ≡ Λ(ε). (3.6)

By taking the difference, side by side, between Eqs. (3.3) and (3.5), we get{
∂t

(
Uν − Uε

) + Âν(t, x)∂x

(
Uν − Uε

) = (
Φν − Φε

) + (Â − Âν)∂xU
ε,(

Uν − Uε
)
(0) = φν − φε.

(3.7)

The classical Hk−1-energy estimate gives∥∥∣∣(Uν − Uε
)
(t)

∣∣∥∥2
k−1 � C

{∥∥φν − φε
∥∥2

k−1 + ∣∣[Φν − Φε
]∣∣2

k−1,t
+ ∣∣[(Â − Âν)∂xU

ε
]∣∣2

k−1,t

}
,

where C depends on T0. Hence,∥∥∣∣(Uν − Uε
)
(t)

∣∣∥∥2
k−1 � C

{
ε + ∥∥φν − φ

∥∥2
k−1 + ∣∣[Φν − Φ

]∣∣2
k−1,t

+ |[Â − Âν]|2k−1,t

∥∥∣∣∂xU
ε
∣∣∥∥2

k−1,t

}
. (3.8)

Note the changing of φε and Φε by φ and Φ , respectively.
On the other hand (recall that k − 1 > n

2 ),∣∣[Φν − Φ
]∣∣2

k−1,t
�

∣∣[Fν − F
]∣∣2

k,t
+ ∣∣[∂x(A − Aν)

]∣∣2
k−1,t

‖|∂xu|‖2
k−1,t + ‖|∂xAν |‖2

k−1,t

∣∣[∂x(u − uν)
]∣∣2

k−1,t
.

Hence,∥∥∣∣(Uν − Uε
)
(t)

∣∣∥∥2
k−1

� C
{
ε + ∥∥uν

0 − u0
∥∥2

k
+ ∣∣[Fν − F

]∣∣2
k,T0

+ |[Aν − A]|2k,t + ∣∣[uν − u
]∣∣2

k,t
+ Λ(ε)|[Aν − A]|2k−1,t

}
. (3.9)

By replacing in the above calculations the system (3.3) simply by (3.2), one gets∥∥∣∣(U − Uε
)
(t)

∣∣∥∥2
k−1 � Cε. (3.10)

Hence ‖|(Uν − U)(t)|‖2
k−1 is bounded by the right-hand side of (3.9). Since this quantity is equivalent to

‖|(uν − u)(t)|‖2
k , Eq. (2.13) follows, for each t ∈ [0, T ]. The term |[uν − u]|2k,t was previously dropped by appealing

to Gronwall’s lemma. This proves Theorem 2.3. In fact, given σ > 0 we fix, in Eq. (2.13), ε0 = ε0(σ ) in such a way
that Cε < σ . Since Λ(ε0) is a fixed quantity, the thesis follows.
2
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3.1. Proof of Theorem 2.1

As already remarked, we assume that Aν(·) = A(·), for each ν ∈ N, leaving to the interested reader the proof when
this assumption is not fulfilled. Define A(t, x) = A(u(t, x)),Aν(t, x) = A(uν(t, x)). Due to (2.6), the estimate (2.12)
holds if T0 is replaced by T . Furthermore, |[A(uν) − A(u)]|2l,t � C|[uν − u]|2l,t , for l � k, since A(·) is of class Ck on
compact sets. It follows that∥∥∣∣(uν − u

)
(t)

∣∣∥∥2
k
� C

{
ε + ∥∥uν

0 − u0
∥∥2

k
+ ∣∣[Fν − F

]∣∣2
k,T0

+ Λ(ε)
∣∣[uν − u

]∣∣2
k−1,t

}
, (3.11)

where the term [uν − u]2
k,t was dropped by appealing to Gronwall’s lemma. Since A(t, x) = A(u(t, x)), dependence

of Λ(ε) on A(t, x) becomes dependence on u, hence dependence on the fixed elements u0,F and A(u). Now the
desired result follows trivially from (3.11), as in Theorem 2.3. Note that |[uν − u]|2k−1,T → 0 as ν → 0.

4. The initial–boundary value problem

4.1. Notation and main results

Since our aim here is to emphasize the basic features in our method, we consider the half-space case Ω = R
n+ ≡

{x ∈ R
n: xn > 0} and assume a boundary condition Mu = 0 on ΣT , where the p × m matrix M (p � m) has constant

coefficients and rank p. Notation is that used in the previous sections, by replacing R
n by R

n+. We set Γ ≡ {x ∈ R
n:

xn = 0}, ΣT = [0, T ] × Γ .
The main difference between the proofs for the Cauchy and the initial–boundary value problems follows from the

fact that for initial–boundary value problems the system (3.1) is not closed. However, differentiation of the boundary
conditions with respect to xj , j = 1, . . . , n−1, gives boundary conditions on ∂j x, that make the corresponding system
complete. This argument fails for the normal direction xn. However, it works for the t direction. Furthermore, we show
that suitable estimates for ∂1u, . . . , ∂n−1u, ∂tu lead to estimates for ∂nu, at least if the matrix A(n), recall (2.2), is non-
singular on the boundary ΣT . Clearly, the proofs are now more involved.

A main technical difference between the two problems is also due to the compatibility conditions for the initial–
boundary value problem. In particular, the construction of the couples (φε,Φε) must be done very carefully. We will
not touch this argument.

We start by considering the linear systems⎧⎨⎩
∂tu + A(t, x)∂xu = F,

Mu|ΣT
= 0,

u(0) = u0,

(4.1)

and ⎧⎪⎨⎪⎩
∂tu

ν + Aν(t, x)∂xu
ν = Fν,

Muν |ΣT
= 0,

uν(0) = uν
0,

(4.2)

where A,Aν,u0u
ν
0,FF ν are as in Section 2, provided that R

n is replaced by R
n+ in all assumptions, definitions and

equations. We suppose that the matrices A(i),A
(i)
ν are symmetric; that there is a positive constant σ such that∣∣detA(n)

∣∣ > σ and
∣∣detA(n)

ν

∣∣ > σ, ∀ν ∈ N, (4.3)

on ΣT0 ; and that the set Ñ ≡ {v ∈ R
m: Mv = 0} is maximal non-positive with respect to A(n)(t, x) and A

(n)
ν (t, x), for

each (t, x) ∈ ΣT0 . These assumptions are done here just for convenience. In fact, the only essential assumption is the
existence of regular solutions u ∈ L∞

T0
(H l) satisfying the classical Hl-energy estimates for l = k − 1, k. Finally we

assume that the couples (u0,F ) and (uν
0,F

ν) satisfy the compatibility conditions up to order k − 1 with respect to the
systems (4.1) and (4.2), respectively.

Since Hk ⊂ C1,α , for some α > 0, it readily follows from (2.12) and (4.3) that |detAn| > σ
2 and |detAn

ν | > σ
2 , in

a neighborhood ST0 of ΣT0 , independent of ν. This leads to consider a cut-off function θ = θ(xn), xn � 0, depending
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only on xn, equal to 1 in a neighborhood of xn = 0 and vanishing far from the boundary. Since the main point is the
regularity up to the boundary, there is no inconvenient in assuming that (4.3) holds on the whole of QT0 ≡ [0, T0]×Ω .

One has the following results.

Theorem 4.1. Assume that (2.12) and (4.3) hold, and that the couples (u0,F ) and (uν
0,F

ν) belong to Hk × L2
T0

(Hk),

and satisfy the compatibility conditions up to order k − 1 for the systems (4.1) and (4.2), respectively. Let u and uν be
the solutions of these linear systems. Then (4.13) holds. In particular, if the assumptions (2.4) and (2.14) are satisfied,
then (2.9) holds.

Theorem 4.2. Assume that A(·) and Aν(·) are as in Section 2, and M is as above. Assume, moreover, that the
boundary matrices A(n)(v) and Aν,(n)(v) are non-singular for each v ∈ Ñ, and that the set Ñ is maximal non-positive
with respect to A(n)(v) and Aν,(n)(v), for each v ∈ Ñ. Furthermore, the couples (u0,F ) and (uν

0,F
ν) belong to

Hk × L2
T0

(Hk), and satisfy the compatibility conditions up to order k − 1 for the systems⎧⎨⎩
∂tu + A(u)∂xu = F in QT ,

Mu|ΣT
= 0,

u(0) = u0,

(4.4)

and ⎧⎪⎨⎪⎩
∂tu

ν + Aν
(
uν

)
∂xu

ν = Fν,

Muν |ΣT
= 0,

uν(0) = uν
0,

(4.5)

respectively. Finally, assume that (2.4) and (2.5) are satisfied.
Then Eq. (2.9) holds, where u and uν denote, respectively, the solutions of the systems (4.1) and (4.2).

4.2. Proof of Theorems 4.1 and 4.2

Let us go into the proof of Theorem 4.1 below. Together with Eqs. (3.1) for j = 1, . . . , n − 1, we also consider the
equations{

∂t (∂tu) + A(t, x)∂x(∂tu) = ∂tF − (
∂tA(t, x)

)
∂xu,

(∂tu)(0) = ∂tu0 ≡ F(0) − A(0, x)∂xu0,
(4.6)

obtained from (4.1) by differentiation with respect to t . Note the formal definition of the quantity ∂tu, introduced just
for notational convenience.

Differentiation of the boundary condition that appears in (4.1) gives

M(∂ju)|ΣT0
= 0, j = 1, . . . , n − 1, M(∂tu)|ΣT0

= 0. (4.7)

Set, for convenience, ∂τ ≡ (∂1, . . . , ∂n−1, ∂t ), and define U = ∂τ u, φ = ∂τ u0 and

Φ = ∂τF − (
∂τA(t, x)

)
∂xu. (4.8)

Moreover, denote by M̂ the diagonal bloc matrix (M, . . . ,M), repeated n times. Eqs. (3.1) for j = 1, . . . , n − 1,

(4.6) and (4.7) can be written in the abbreviate form⎧⎪⎨⎪⎩
∂tU + Â(t, x)∂xU = Φ,

M̂U |ΣT0
= 0,

U(0) = φ,

(4.9)

that corresponds to (3.2). By replacing in the above arguments the system (4.1) by (4.2), we get⎧⎪⎨⎪⎩
∂tU

ν + Âν(t, x)∂xU
ν = Φν,

M̂Uν |ΣT0
= 0,

Uν(0) = φν,

(4.10)

where Uν,Φν and φν are defined in the obvious way.
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By the construction, the couples (φ,Φ) and (φν,Φν) satisfy the compatibility conditions up to order k − 2 for
the systems (4.9) and (4.10). Next we prove (3.9) and (3.10), where now U = ∂τ u ≡ (∂1u, . . . , ∂n−1u, ∂tu) instead
of U = ∂τ u ≡ (∂1u, . . . , ∂n−1u, ∂nu), and similarly for Uν and Uε . Basically, the argument is an adaptation of that
shown in Section 2. Here, the construction of the couples(

φε,Φε
) ∈ Hk × L2

T0

(
Hk

)
must be done in a more careful way. In fact, besides (3.4), each couple must satisfy the compatibility conditions
up to order k − 1 for the system (3.5) endowed with the boundary condition M̂Uε |ΣT0

= 0. See Proposition 4.1
in reference [14].

Equations similar to (3.9) and (3.10) lead to

∥∥∣∣∂t

(
uν − u

)
(t)

∣∣∥∥2
k−1 +

n−1∑
j=1

∥∥∣∣∂j

(
uν − u

)
(t)

∣∣∥∥2
k−1

� C
{
ε + ∥∥uν

0 − u0
∥∥2

k
+ ∣∣[Fν − F

]∣∣2
k,T0

+ |[Aν − A]|2k,t + ∣∣[uν − u
]∣∣2

k,t
+ Λ(ε)|[Aν − A]|2k−1,t

}
, (4.11)

for all ν ∈ N.
Finally, we appeal to Eqs. (4.1) and (4.2) to express ∂n(u

ν − u) in terms of the other n first-order derivatives
of uν − u. This is done here by taking into account (4.3). One gets

∂nu = (
A(n)

)−1

(
n−1∑
j=1

A(j)∂ju − ∂tu − F

)
,

and similarly for ∂nu
ν . It readily follows, from the expression of ∂n(u

ν − u), that

∥∥∣∣∂n

(
uν − u

)
(t)

∣∣∥∥2
k−1 � C

(∥∥∣∣∂t

(
uν − u

)
(t)

∣∣∥∥2
k−1 +

n−1∑
j=1

∥∥∣∣∂j

(
uν − u

)
(t)

∣∣∥∥2
k−1

+ ∥∥∣∣(Aν − A
)
(t)

∣∣∥∥2
k−1 + ∥∥∣∣(Fν − F

)
(t)

∣∣∥∥2
k−1 + ∥∥∣∣(uν − u

)
(t)

∣∣∥∥2
k−1

)
. (4.12)

Hence, by (4.11),∥∥∣∣(uν − u
)
(t)

∣∣∥∥2
k
� CT0

{
ε + ∥∥uν

0 − u0
∥∥2

k
+ ∣∣[Fν − F

]∣∣2
k,T0

+ |[Aν − A]|2k,t + Λ(ε)|[Aν − A]|2k−1,t

}
, (4.13)

where the term |[uν −u]|2k,t was dropped by appealing to Gronwall’s lemma. Note that, formally, the estimate (4.13) is
just the estimate (2.13), obtained above for the Cauchy problem. By appealing to (4.13), and by arguing as for proving
Theorems 2.3 and 2.1, one proves Theorems 4.1 and 4.2.

Part II. The compressible Euler equations

5. Introduction

5.1. Strong continuous dependence. Incompressible and compressible fluids

Let us start Part II by quoting once again the following remark from the introduction of Kato and Lai’s paper [32],
concerning the Euler incompressible equations: “A remark is in order regarding the continuous dependence in “strong”
topology of the solution on the data. It is the most difficulty part in a theory dealing with nonlinear equations of evo-
lution. As far as we know, [25] is the only place where continuous dependence (in the strong sense) has been proved
for the Euler equation in a bounded domain.” In [25], the continuous dependence, in bounded domains, for the Euler
incompressible equation, was proved by appealing to Riemannian Geometry in infinite dimensional manifolds. The
authors consider an infinite dimensional manifold consisting of measure preserving endomorphisms of the spatial
domain Ω , and introduce in this manifold a suitable Riemannian metric. Each solution is identified with a trajec-
tory (parameterized by time) in this manifold. An analytical proof of the same result was given by Kato and Lai in
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reference [32], in the framework of Hilbert spaces Wm,2, without however appealing to the perturbation theory of
the first author (at that time, T.Kato mentioned to me that his approach to the Euler incompressible equation in [32]
would probably apply in the framework of Wm,p spaces, p 	= 2). Let us quote again from the introduction of [32]:
“The general theory developed in [29] by one of the authors for quasi-linear equations is unfortunately not applicable,
since it is difficult to find the operator S with the required properties in the case of a bounded domain.” It seems quite
interesting that (by introducing a suitable new idea) we succeed in proving, see [10], that Kato’s general perturbation
theory does apply to the above problem, even in the framework of Wm,p spaces. This is essentially due to the fact
that the Euler incompressible equations do not require compatibility conditions. This fact brings the initial–boundary
value problem near the Cauchy problem, in the case of the Euler incompressible equation. In the mathematical the-
ory of initial–boundary value problems for non-viscous fluids, it is definitely necessary to distinguish between the
compressible and the incompressible cases.

Let us turn back to the compressible Euler equations. Until the end of the 1970s, in the mathematical literature on
the initial–boundary value problem for compressible Euler equations, the (strong) continuous dependence of the solu-
tion on the data was an open problem. Below, we give an introduction to some of our contributions to the resolution of
this problem. It is, we hope, a suitable introduction for readers interested in the complete proofs. For convenience, we
consider the case of the half-space Ω = R

3+ ≡ {x: x3 > 0}. We start Section 6 by stating the existence Theorem 6.1.
Then we illustrate our approach to the proof of this result. The original system is decomposed into four systems,
namely (6.4), (6.5), (6.6), and (6.7). Roughly speaking, these decomposition circumvent the lack of (4.3) since the
first-order hyperbolic system (6.5) has no boundary constraints, and the second-order hyperbolic system (6.6) satis-
fies (4.3). As already explained in the introduction (to which we once again refer the reader) our approach to strong
continuous dependence will be illustrated by appealing to the very simplified system (8.1).

5.2. Compressible Euler equations. The existence problem

At the end of the 1970s, an existence and uniqueness theorem for solutions to the compressible Euler equations
was known only for the Cauchy problem, see Klainerman and Majda [33]. The first existence theorem for solutions to
the initial–boundary value problem, for the compressible Euler equations, was proved by D.G. Ebin, see [23], under
two restrictions: The initial density ρ0 must be near constant and the initial velocity v0(x) must be sub-sonic (slightly
compressible fluids). In references [4,6] we succeeded in proving the result in the general case. At more or less the
same time, there appeared an independent paper by R. Agemi [1] in which he obtains the result proved in reference [6]
(i.e., without size restrictions). We also refer the reader to references [12,38]. In [12] we gave a quite complete and
simplified version of our proof, in the half-space case. We strongly refer the interested reader to this quite readable
paper. It should be noted, however, that the flat boundary case is much easier to treat.

The set of the above papers is a fundamental step in the mathematical theory of compressible fluids, since they
filled a big gap in this theory.

Let us recall some notation: R
3+ = R

2 × R
+, Γ = R

2 × {0}, N = unit normal to the boundary Γ . Note that
x3 denotes the normal coordinate to the boundary.

We set L2 = L2(R3+), Hk = Hk(R3+), k positive integer, and so on. The L2 norm is denoted by ‖ · ‖, that in Hk

by ‖ · ‖k . We write ∂t = ∂/∂t , ∂i = ∂/∂xi
, for i = 1,2,3. Moreover, (v · ∇)w = ∑

j vj ∂jw.

For T > 0, we set QT = [0, T ] × R
3+, ΣT = [0, T ] × Γ , CT (Hk) = C([0, T ];Hk),L2

T (Hk) = L2(0, T ;Hk). The
canonical norms in these two last spaces are denoted by ‖ · ‖k,T and [·]k,T , respectively. The above notation will be
used without distinction for scalar and vector fields.

If ρ = ρ(t, x) is the density of the fluid, we denote by ρ (a given positive constant) the density of the fluid at
infinity. We assume that the pressure law p(·) is of class C4(R+,R), moreover p′(s) > 0 for each s ∈ R

+. The
barotropic motion of a non-viscous, compressible, fluid is described by the system⎧⎪⎨⎪⎩

ρ
[
∂tv + (v · ∇)v

] + ∇p(ρ) = 0 in QT ,

∂tρ + ∇ · (ρv) = 0 in QT ,

v3 = 0 on ΣT , v(0) = v0, ρ(0) = ρ0.

(5.1)

Note that, in the case of a generic domain Ω , boundary conditions like v3 = 0 have the form v · N = 0. Moreover, in
Eq. (6.2) below, and similar, derivatives ∂3 are replaced by ∂N .
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By the change of variables g = log(ρ/ρ), and by setting h(s) = p′(ρes), for each s ∈ R (say, h(g) = p′(ρ)), one
obtains the equivalent system⎧⎨⎩

∂tv + (v · ∇)v + h(g)∇g = 0 in QT ,

∂tg + v · ∇g + ∇ · v = 0 in QT ,

v3 = 0 on ΣT , v(0) = v0, g(0) = g0.

(5.2)

The consideration of an external force field, as well as the proof of the continuous dependence of the solution in terms
of it, do not present any particular difficulty, as shown in our original papers. Further, since our aim here is to show
some of the main points, we will present our method in the particular framework of H 3 spaces. The proofs apply also
in the framework of Hk spaces, for k � 3.

6. An existence theorem

6.1. Statement of the existence theorem

For the sake of brevity, we state the results directly for the system (5.2). From these results one immediately obtains
corresponding results in terms of the couple (v,ρ) and initial data (v0, ρ0).

We assume here that

v0 ∈ H 3, g0 ∈ H 3. (6.1)

Furthermore, we assume that the initial data satisfy the compatibility conditions

v0,3 = 0, ∂3g0 = 0, ∂3[v0 · ∇g0 + ∇ · v0] = 0 on Γ. (6.2)

Note that these conditions are necessary in order to obtain solutions in the CT (H 3) space. For k > 3, other necessary
conditions must be imposed.

Theorem 6.1. (See [1,4,6].) Assume that (6.1) and (6.2) hold. There are positive constants c and T , which depend only
on ‖v0‖3 and ‖g0‖3 (c increasingly and T decreasingly), such that there is a unique solution (v, g) of problem (5.2)
in the class CT (H 3). Further,

3∑
j=0

∥∥∂
j
t (v, g)

∥∥
3−j,T

� c. (6.3)

In the above references the result is proved for quite general domains Ω .

Remark 6.1. Our original proof was divided in two parts [5,6]. In reference [5] we study of the Euler “incompressible”
equations with a non-vanishing, divergence assumption, say ∇ · v = θ . See (6.4). In this last paper we introduce a very
useful device to proving, in a quite trivial way, existence of strong solutions to systems of partial differential equations.
Solutions are identified with fixed points of maps in the framework of reflexive Banach spaces. The idea is trivial, but
at the time new. Later on, the same idea has been used by many other authors.

It is not difficult to prove L2 and H 1 energy type estimates for the system (5.2). Further, by differentiating the
equations with respect to x1, x2 and t, we obtain in the same way estimates for the higher order derivatives which sat-
isfy suitable boundary conditions. On the other hand, by truncation with a suitable function of the normal direction x3,
vanishing near the boundary, we may obtain interior estimates for all the derivatives. At this point, one would like to
express, near the boundary, the first-order normal derivatives in terms of derivatives with respect to t, x1 and x2. This
would allow to estimate, near the boundary, the missing derivatives. Unfortunately, in the system consisting of the
two first equations (5.2)1 and (5.2)2, the matrix that multiplies the vector (∂3v1, ∂3v2, ∂3v3, ∂3g) has rank 2 on the
boundary Γ . Hence it is not possible to solve the above algebraic system in the desired way.
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6.2. The approach to the existence theorem

Here we present the approach introduced in references [5,6] (roughly speaking, we follow [12]) in order to over-
come the obstacle shown above. We replace the system (5.2) by an equivalent system, by appealing to the properties of
the divergence and the curl operators, under the slip boundary condition. This leads to, apparently, a more complicate
problem. However, this last problem can be separated in three elementary problems (plus an “equality”), as shown in
the sequel.

For clearness, assume for a while that Ω is an arbitrary (for convenience, simply connected) domain. Then, a vector
field V vanishes in Ω , if and only if ∇ × V = 0 and ∇ · V = 0 in Ω , and V · N = 0 in Γ . Hence, we may rewrite the
first equation in (5.2) as ∇ × V = 0 in Ω , ∇ · V = 0 in Ω , plus V · N = 0 in Γ , where V ≡ ∂tv + (v · ∇)v + h(g)∇g.
Straightforward manipulations lead to the following systems of equations (for convenience, we associate the resulting
equations in four separate systems), where

ζ ≡ ∇ × v, δ ≡ ∇ · v.

One has⎧⎨⎩
∇ × v = ζ,

∇ · v = δ in QT ,

∇ · v = 0 on ΣT ,

(6.4)

where t is treated as a parameter. Moreover,{
∂t ζ + (v · ∇)ζ − (ζ · ∇)v + (∇ · v)ζ = 0 in QT ,

ζ(0) = ζ0,
(6.5)

plus ⎧⎪⎨⎪⎩
(∂t + v · ∇)2g − ∇ · (h(g)∇g

) =
∑

(∂ivj )(∂j vi) in QT ,

∂3g = 0 on ΣT ,

g(0) = g0, (∂tg)(0) = g1,

(6.6)

and, finally,

δ = −(∂tg + v · ∇g). (6.7)

It is worth noting that in the general case of a non-flat boundary, the boundary condition ∂3g = 0 is replaced by

∂N g = 1

h(g)

∑
(∂i Nj )vivj on ΣT .

We get the expressions of the new initial data ζ0(x) and g1(x) in terms of the given initial data, ζ0(x) = ∇ × v0 and
g1(x) = −(v0 · ∇g0 + ∇ · v0). From (6.2) it follows that ∂3g0 = ∂3g1 = 0 on Γ , which are precisely the necessary
compatibility conditions to solve (6.6).

Roughly speaking (see the introduction of reference [10]; for a simplified version see [12, Section 1]), we solve the
above sequence of problems as follows. We start by giving a triad (φ, θ, q) in a suitable non-empty, convex, closed
set K, and by looking for a fixed point of the map

S : (φ, θ, q) → (ζ, δ, g), (6.8)

as follows (roughly speaking, both θ and δ should be seen here as ∇ · v, and φ and ζ as ∇ × v): For each given couple
(φ, θ) we solve the elliptic system (6.4) with (ζ, δ) replaced by (φ, θ). This gives v. Note that this v depends on the
particular couple (φ, θ). Clearly, v will represent the true velocity field only after the fixed point (similar remarks
applies below). As a second step, we solve the Euler type equation (6.5), which gives ζ . Note that this transport
equation does not require compatibility conditions. Hence the normal direction may be treated as the other directions.
Next, we solve the linear hyperbolic initial–boundary value problem (6.6) obtained by using the previous vector field v

and by replacing h(g) by h(q). This gives g. Note that, in (6.6), the derivative ∂2g appears multiplied by the coefficient
3
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v2
3 − h(g). This coefficient does not vanish on the boundary, since is given by −h(g). This allows us to express ∂2

3 g

in terms of tangential derivatives, in a neighborhood of Γ. Finally, δ is simply obtained from (6.7).
The above construction defines the map (6.8). Obviously, the main problem is to be able to solve the above sequence

of problems with very sharp estimates, in order to prove the existence of the fixed point (uniqueness is easily shown).
The more complex system is (6.6), in particular due to the non-homogeneous boundary condition for ∂N g, when the
boundary is not flat.

7. Hadamard’s well-posedness theorem

Let now (vν
0 , gν

0 ) be a sequence of initial data satisfying the assumptions (6.1) and (6.2). One has the following
result, which shows that the problem (5.2) is well posed in the classical Hadamard’s sense. For k = 3 and Ω = R

3+
the result was proved in reference [13].

Theorem 7.1. Let (v0, g0) and (vν
0 , gν

0 ), ν ∈ N, be couples of initial data satisfying the conditions (6.1) and (6.2).
Further, assume that

lim
ν→∞

∥∥(
vν

0 − v0, g
ν
0 − g0

)∥∥
3 = 0. (7.1)

Let (v, g) ∈ CT0(H
3) be the solution of problem (5.2) in QT0 , for some T0 > 0 (see Theorem 6.1). Then

lim
ν→∞

3∑
j=0

∥∥∂
j
t (vν − v,gν − g)

∥∥
3−j,T0

= 0, (7.2)

where (vν, gν) is the solution to the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tvν + (vν · ∇)vν + h(gν)∇gν = 0 in QT0 ,

∂tgν + vν · ∇gν + ∇ · vν = 0 in QT0 ,

vν,3 = 0 on ΣT0,

vν(0) = vν
0 , gν(0) = gν

0 .

(7.3)

Such a solution exists in QT0 for sufficiently large values of n.

For the extension of the above result from H 3(Ω) to Hk(Ω) spaces, where Ω is an open, bounded, connected
subset of R

n, n � 2, of class Ck+2, and k is any integer satisfying k > n
2 + 1, see Theorem 1.4 in reference [14] (in

this last reference we give a more effective statement, by appealing to neighborhoods instead of sequences).
We note that under the hypotheses of the above theorem one easily shows that

lim
ν→∞

2∑
j=0

∥∥∂
j
t (vν − v,gν − g)

∥∥
2−j,T0

= 0, (7.4)

and, as an immediate consequence,

lim
ν→∞

2∑
j=0

∥∥∂
j
t

(
h(g) − h(gν)

)∥∥
2−j,T0

= 0. (7.5)

In fact, by energy type estimates, one trivially shows that ‖vν − v‖0,T and ‖gν − g‖0,T go to zero as ν → ∞. Since

‖ · ‖2 � c‖ · ‖
2
3
3 ‖ · ‖

1
3
0 , (7.4) follows.

The proof of Theorem 7.1 is quite complex and well constructed. In the following we concentrate just on one of
the more characteristic obstacles, that appears when trying to prove the theorem. In order to isolate this point, we will
operate drastic simplifications in the above systems of equations. In this way we hope to be able to briefly illustrate
our approach.
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8. The perturbation theory

In the sequel we restrict our considerations to the following drastic simplification of the system (6.6)⎧⎪⎨⎪⎩
∂2
t g − ∇ · (l∇g) = 0 in QT ,

∂3g = 0 on ΣT ,

g(0) = g0, (∂tg)(0) = g1,

(8.1)

together with⎧⎪⎨⎪⎩
∂2
t gν − ∇ · (lν∇gν) = 0 in QT ,

∂3gν = 0 on ΣT ,

gν(0) = gν
0 , (∂tgν)(0) = gν

1 ,

(8.2)

where l = h(g) and lν = h(gν). Note that from (6.3) it follows that

3∑
j=0

∥∥∂
j
t lν

∥∥
3−j,T

� c. (8.3)

Further, from (7.5),

lim
ν→∞

2∑
j=0

∥∥∂
j
t (l − lν)

∥∥
2−j,T0

= 0. (8.4)

In the above systems (8.1) and (8.2), the initial data satisfy the (necessary) compatibility conditions ∂3g0 = ∂3g1 =
∂3g

ν
0 = ∂3g

ν
1 = 0 on Γ . We want to prove that if

lim
ν→∞

(∥∥gν
0 − g0

∥∥
3 + ∥∥gν

1 − g1
∥∥

2

) = 0, (8.5)

then

3∑
j=0

∥∥∂
j
t (gν − g)

∥∥
3−j,T

= 0. (8.6)

The more natural way to prove (8.6) would be to appeal to the energy estimates for the difference gν − g, solution
of the initial–boundary value problem⎧⎪⎨⎪⎩

∂2
t (g − gν) − ∇ · [l∇(g − gν)

] = ∇ · [(l − lν)∇gν

]
in QT ,

∂3(g − gν) = 0 on ΣT ,

(g − gν)(0) = g0 − gν
0 , ∂t (g − gν)(0) = g1 − gν

1 .

(8.7)

However this approach fails, as explained in the next section. A new device is needed.

8.1. The ε-pivot system

As the function ∇ · [(l − lν)∇gν] does not belong to H 2, but merely to H 1, we can not obtain from (8.7) an H 3

estimate for (g − gν)(t).
It is also worth noting that if the right-hand side of the first equation in (8.7) belongs to L

p
T (Hk), the solution would

merely belongs to CT (Hk+1), although we are dealing with a second-order equation. This loss of regularity, which
does not occur for elliptic and parabolic equations, still subsists in the hyperbolic case, even when the coefficients l

and l − lν are as regular as we want.
By tacking into account that the crucial obstacle is the lack of regularity of the “pivot” function gν on the right-

hand side of (8.7) (and hopping to be able to estimate the term l − lν in a suitable way) we have trying to apply the
following.
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Alternative strategy. To single out, in correspondence to any ε > 0, a “pivot” function

gε ∈ L∞
T

(
H 4)

and a positive integer N(ε) such that

‖g − gε‖3,T < cε and ‖gν − gε‖3,T < cε for each ν > N(ε).

Here the positive constant c should be independent of the other quantities involved in the above equations. Note that
the L∞

T (H 4)-norm of gε necessarily blows up as ε goes to zero.
Our first attempt to construct the gε functions was to consider the auxiliary system⎧⎪⎨⎪⎩

∂2
t gε − ∇ · (l∇gε) = 0 in QT ,

∂3gε = 0 on ΣT ,

gε(0) = gε
0, (∂tgε)(0) = gε

1,

(8.8)

where gε
0 ∈ H 4, gε

1 ∈ H 3, and

lim
ε→0

(∥∥gε
0 − g0

∥∥
3 + ∥∥gε

1 − g1
∥∥

2

) = 0, (8.9)

where g0 and g1 are the initial data in Eq. (8.1). Unfortunately, since l(t) /∈ H 4, we cannot expect gε(t) ∈ H 4,
as desired. As a first attempt to overcome this obstacle we may try to approximate, in Eq. (8.8), the term l(t) with a
family lε(t) ∈ H 4 (in the linear case this means lε = h(gε)). However, technical obstacles lead us to avoiding this way.
Hence, we must look for an additional idea to improve our strategy. This is the subject of the next two subsections.

8.2. The Hk via Hk−1 device

We start from the following two observations:
(i) The last obstacle described in the above section does not subsist if we look for a perturbation theorem in H 2

instead of H 3, provided that the coefficient l (on the left-hand side) still stays in H 3.
(ii) By differentiation of Eq. (8.1) with respect to the tangential coordinates x1 or x2, we get⎧⎪⎨⎪⎩

∂2
t ∂∗g − ∇ · (l∇∂∗g) = ∇ · [(∂∗l)∇g

]
in QT ,

∂3∂∗g = 0 on ΣT ,

∂∗g(0) = ∂∗g0, (∂t ∂∗g)(0) = ∂∗g1,

(8.10)

where the symbol ∂∗ indicates here differentiation with respect to x1 and x2. Since the coefficient l ∈ H 3 remains
unchanged, we may appeal to the system (8.10) to try obtaining a perturbation theorem in H 2 for the first-order
derivatives ∂∗g. For Cauchy problems, we also differentiate with respect to x3. For initial–boundary value problems
this is not useful, due to the lack of a suitable boundary condition. However (8.10) also holds if we differentiate with
respect to t , provided that we replace ∂∗g0 and ∂∗g1 by g1 and ∇ · (l(0)∇g0), respectively.

By applying the above argument to Eqs. (8.2) we get⎧⎪⎨⎪⎩
∂2
t ∂∗gν − ∇ · (lν∇∂∗gν) = ∇ · [(∂∗ln)∇gn

]
in QT ,

∂3∂∗gν = 0 on ΣT ,

∂∗gν(0) = ∂∗g0,ν , (∂t ∂∗gν)(0) = ∂∗g1,n.

(8.11)

As for (8.10), in the initial–boundary value problem case we also consider differentiation with respect to t .
Estimate g − gν in H 3 is equivalent to estimating the derivatives ∂∗(g − gν) in H 2, if ∂∗ ≡ {∂1, ∂2, ∂3}. However,

in the case of the initial–boundary value problem we are constrained to consider

∂∗ ≡ {∂1, ∂2, ∂t }.
Summarizing, the lack of H 4-regularity for the coefficients l(t) and lν(t) is not an insuperable barrier, since the

H 3 regularity enjoyed by these “coefficients” is sufficient to obtain H 2 estimates for an appropriate set of first-order
derivatives ∂∗g. So, we need to establish a sufficiently sharp perturbation theorem in H 2. We consider this problem in
the next subsection.
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8.3. The perturbation theorem in H 2

For simplicity we restrict ourselves to the Cauchy problem. For a few remarks on the initial–boundary value
problem see the next subsection. The next step is to prove a perturbation theorem in H 2 for the linear system⎧⎪⎨⎪⎩

∂2
t φ − ∇ · (l∇φ) = f in QT ,

∂3φ = 0 on ΣT ,

φ(0) = φ0, ∂tφ(0) = φ1.

(8.12)

A sequence of perturbed systems must be considered⎧⎪⎨⎪⎩
∂2
t φν − ∇ · (lν∇φν) = fν in QT ,

∂3φν = 0 on ΣT ,

φν(0) = φν
0 , ∂tφν(0) = φν

1 .

(8.13)

We want a perturbation theorem in H 2, to be applied to the three systems satisfied by the first-order derivatives ∂∗g.
Further, in order to prove the perturbation theorem in H 3, we have to apply to the ε-device. The proof that the
solutions gε ∈ L∞

T (H 3) of the ε-systems (8.8) satisfy, in particular, the properties (8.9) (where the index 3 should be
replaced by 2) is out of the aims of these notes. We merely state here the following result, which is a particular case
of Theorem 6.3 in reference [13] (an Hk perturbation result is proved in [15, Theorem 4.1]).

Theorem 8.1. Given ε > 0 there exists C = C(ε) such that

‖φ − φν‖2
2,T � cε + c

(∥∥φ0 − φν
0

∥∥2
2 + ∥∥φ1 − φν

1

∥∥2
1

) + c[f − fν]2
1,T + C(ε)[l − lν]2

2,T , (8.14)

where the constants c are independent of ε and of all the functions involved in the problem.

By applying Theorem 8.1 to the solutions φ = ∂∗g and φν = ∂∗gν of Eqs. (8.10) and (8.11), and by tacking into
account (8.4) and (8.5), one gets

‖∂∗g − ∂∗gν‖2
2,T � cε + c

([g − gν]2
3,T + c[l − lν]2

3,T

)
, (8.15)

for ν > N(ε). Note that here f = ∇ · [(∂∗l)∇g], fν = ∇ · [(∂∗lν)∇gν], φ0 = ∂∗g0, φ
ν
0 = ∂∗gν

0 , etc.
At this point we distinguish between the well-posedness problem for non-linear systems and the (strictly related)

perturbation theorem for linear systems. In the first case we want to prove that the non-linear problem (8.1) is well
posed, where l = h(g) and lν = l(gν). Hence we use the estimate

[l − lν]3,T � c[g − gν]3,T .

In the second case we look for a perturbation theorem. Here, the coefficients l and lν are given, and we assume that

lim
ν→∞[l − lν]3,T = 0.

In both cases we arrive to an estimate like

‖∂∗g − ∂∗gν‖2
2,T � cε + c[g − gν]2

3,T , (8.16)

for ν > N(ε) for a suitable N(ε) (that could be larger than the above one). Now, by adding the estimates (8.16) written
for each of the first-order derivatives ∂∗ of g (see, however, Section 8.4), we obtain an estimate like

‖g − gν‖2
3,T � cε + cT ‖g − gν‖2

3,T , (8.17)

for n > N(ε). Hence, for sufficiently small positive values of T , which are independent of ε,

‖g − gν‖2
3,T � cε for ν > N(ε). (8.18)

This shows the convergence of gν(t) to g(t) in H 3, uniformly with respect to t in [0, T ]. Actually, our proofs show
that ∂

j
t gν(t) converges to ∂

j
t g(t) in C([0, T ];H 3−j ), for j = 0,1,2,3. Finally, we have shown that the above results

hold in the whole of the existence interval [0, T0] of a strong solution g.
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8.4. A final remark

Concerning the fact that Eqs. (8.10) and (8.11) do not hold if differentiation is in the normal direction, we note the
following. Roughly speaking, the above equations hold “far from the boundary” (by truncation, etc.). On the other
hand, as already mentioned, our modified system allows to express the missing normal derivatives, near the boundary,
in terms of non-normal derivatives. This is a quite difficult point, which requires new, non trivial devices. Note the
following. In Eq. (6.6), the coefficient v2

3 − h(g) that multiplies the normal derivative ∂2
3 g, does not vanish on the

boundary, since is given by −h(g). This allows us to express ∂2
3g in terms of tangential derivatives, in a neighborhood

of Γ. Above, for simplicity, we have considered the system (8.1), where the coefficient v2
3 − h(g) is replaced by l.

Similarly, v2
ν,3 −h(gν) is replaced by ln, and so on. Without these simplifications, the situation is much harder to treat.

For simplicity, let us discuss this point just in the framework of the existence theorem (say, no ν-systems, ε device, and
so on). We may prove uniform estimates for ∂2

3 g in a δ-neighborhood of the boundary, δ > 0, if in this neighborhood
the coefficient v2

3 − h(g) is strictly positive. However, this coefficient may vanish in interior points, since v2
3 = 0

just on the boundary. Hence, an estimate from below for δ(x3) depends on uniform estimates from below for the
quantity v2

3 − h(g). However, this point requires estimates for the unknown ∂2
3 g near the boundary. We do not treat

this delicate question here. However the very basic idea is the following. In system (8.10) (as well as in (8.11)) the
Neumann boundary condition does not hold if ∂∗ = ∂3 since ∂3∂∗g = 0 on ΣT is false in general. However, instead of
considering the Neumann boundary condition ∂3(∂3g) = 0 we consider the Dirichlet boundary condition ∂3g = 0.

Clearly, if we want strong well-posedness results, the above devices must be developed for g − gν and gν − gε

(recall (8.8)) and not simply for g.

Part III. Mach number and incompressible limits

Here we want just recall some quite general results proved in reference [21] (see also [18]), concerning singular
limits (incompressible and inviscid) in the strong norms for solutions to the equations of motion of compressible
fluids, depending on the Mach number λ−1 and on the viscosity coefficients μ ∈ [0,μ0] and ζ ∈ [0, ζ0]. The spatial
domain is the n-dimensional torus, n � 2. Equations are⎧⎨⎩

ρt + v · ∇ρ + ρ∇ · v = 0,

ρ
[
vt + (v · ∇)v

] + λ2∇p(ρ) = μ�v + ζ∇(∇ · v),

ρ(0) = ρ0 + ρ0(x), v(0) = v0(x),

(8.19)

where ρ0, the mean density of the fluid, is a fixed positive constant. Without loss of generality, we set that ρ0 = 1.
For convenience, we assume that the pressure law has the form p(λ,ρ) = λ2p(ρ), where p(·) is a fixed Ck+2(R+;R)

function and p′(s) > 0 for all s > 0. We denote by k0 the smallest integer larger than n/2 and by k � k0 + 1 a fixed
integer. However our proofs hold if p(λ,ρ) satisfies the assumptions in reference [9]. The crucial point is to assume
that limp′(λ,ρ) = ∞ as λ → ∞.

As in the previous sections, we are interested in proving strong continuous dependence, and this is the main novelty
of our results. Moreover, in the literature, it is in general assumed that, as the Mach number λ−1 goes to zero, the
viscosity coefficients remain fixed (hence one deals with Navier–Stokes or with Euler equations, separately). See the
fundamental, pioneering, paper [33], by Klainerman and Majda, and also [34,35]. Hence one deals with the Navier–
Stokes compressible equations if the (fixed) viscosity coefficients does not vanish, and with the Euler compressible
equations if μ = ζ = 0. In [21] we studied the behavior of (ρ, v) as (simultaneously) the Mach number λ−1 goes
to zero, the viscosity coefficient μ converges to a value μ � 0 and ζ stays bounded. Note that we do not exclude
the (more challenging case) in which μ = 0. In this case the solution to the Navier–Stokes compressible equations
converge (strongly) to the solution w of the incompressible Euler equations⎧⎨⎩

∇ · w = 0,

wt + (w · ∇)w + ∇π = μ�w,

w(0) = w0(x),

(8.20)

where ∇ · w0 = 0.
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We find it convenient to make the change of variables (for details see [20,21])

g = log(ρ/ρ0).

Eqs. (8.21) are then equivalent to (for details see [20,21])⎧⎨⎩
gt + v · ∇g + ∇ · v = 0,

vt + λ2φ′(g)∇g + ∇(∇ · v) = exp(−g)
[
μ�v + ζ∇(∇ · v)

]
,

g(0) = g0(x), v(0) = v0(x),

(8.21)

where φ′(s) ≡ p′(s) for all s ∈ R. Our results are stated in terms of g. To obtain the results in terms of ρ is trivial. See
the remarks in [21, p. 314].

Let us briefly give an idea of the results proved in reference [21]. For more details, variants of the result below, and
significant remarks we refer to this last reference and also to [20], where some useful preliminaries are proved.

Assume the following conditions on the initial data:

‖v0‖k0+1 � c1, λ‖g0‖k0+1 � c1, (8.22)

‖v0‖k0+1 � c2, λ‖g0‖k0+1 � c2, (8.23)

λ‖∇ · v0‖ � c3, λ2‖∇g0‖ � c3. (8.24)

Under these hypotheses, there is a positive constant T , depending only in c1 (decreasingly), such that the prob-
lem (8.21) has a unique strong solution in [0, T ]. Further,

λ2‖g‖2
k,T + ‖v‖2

k,T + μ[∇v]2
k,T + ζ [∇ · v]2

k,T � C1
(
λ2‖g0‖2

k,T + ‖v0‖2
k,T

)
. (8.25)

For other estimates, and more details, see [21, Lemma 1.1, remarks (i), (ii), (iii), (iv)] and [20, Lemmas 1.1, 1.2, 1.3,
Corollary 1.4]. These existence results are minor improvements of results stated in [33]. Further, a careful use of
standard techniques lead to Theorem 1.5 in reference [20], concerning singular limits. This theorem improves, in some
aspects, Theorem 2 in reference [33]. However, the above results do not show strong convergence, i.e., convergence
in spaces like C([0, T ];Hk). This is proved in [21, Theorem A]. Let us illustrate this last result. For details and other
related results see the original work.

In order to state the result in a clear form, we introduce the following notation. The above constants k0, k,μ0, ζ0, c1,

c2, c3 are fixed. Then we define the corresponding set of admissible data (initial data and parameters)

X = {
(v0, g0, λ,μ, ζ ) ∈ Hk × Hk × [1,∞[ × [0,μ0] × [0, ζ0]: (8.22), (8.23), (8.24) hold

}
, (8.26)

endowed with canonical product norm. Finally we define the map S on X,

S(v0, g0, λ,μ, ζ ) = (v, g),

where (v, g) is the solution of (8.21) with data and parameters (v0, g0, λ,μ, ζ ) = (v, g). One has the following result
(see [21, Theorem A]).

Theorem 8.2. Let S : X → C([0, T ];Hk × Hk) be defined as above. Then

lim
(v0,λg0,λ,μ)→(w0,0,∞,μ)

∥∥(v, g) − (w,0)
∥∥2

k,T
+ λ2‖∇g‖2

k−1,T + ‖gt‖2
k−1,T + μ[v − w]2

k+1,T = 0, (8.27)

where w is the solution to problem (8.20).

Note that g = 0 means that ρ = 1, which is just the mean density ρ0. Also note that if μ is positive, hence w is
a solution of a Navier–Stokes incompressible equation, then one has an “additional” strong converge of v to w in
L2([0, T ];Hk).

The above kind of results has been extended to magneto-fluid dynamics in reference [37]. Let us report some
references, previous to [21], treating the incompressible limit for compressible fluids. In [2,3,18,22,24,33,34,36,38–
41] the authors consider inviscid fluids. Viscous stationary fluids where considered in [8,9]. Viscous non-stationary
fluids were studied in [33–35].
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