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In some recent papers we have been pursuing regularity results up to the boundary, in
W 2,l(Ω) spaces for the velocity, and in W 1,l(Ω) spaces for the pressure, for fluid flows
with shear dependent viscosity. To fix ideas, we assume the classical non-slip boundary
condition. From the mathematical point of view it is appropriate to distinguish between
the shear thickening case, p > 2, and the shear thinning case, p < 2, and between
flat-boundaries and smooth, arbitrary, boundaries. The p < 2 non-flat boundary case is
still open. The aim of this work is to extend to smooth boundaries the results proved
in reference [H. Beirão da Veiga, On non-Newtonian p-fluids. The pseudo-plastic case,
J. Math. Anal. Appl. 344 (1) (2008) 175–185]. This is done here by appealing to a quite
general method, introduced in reference [H. Beirão da Veiga, On the Ladyzhenskaya–
Smagorinsky turbulence model of the Navier–Stokes equations in smooth domains. The
regularity problem, J. Eur. Math. Soc., in press], suitable for considering non-flat boundaries.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The Navier–Stokes system of equations with shear dependent viscosity has been studied in the last forty years by a great
number of researchers, not only in pure and applied mathematics, but also in engineering, physics and biology. A typical
model of generalized stationary Navier–Stokes system of equations with shear dependent viscosity is the well-known model{−∇ · T (u,π) + u · ∇u = f ,

∇ · u = 0,
(1.1)

where T denotes the stress tensor

T = −π I + νT (u)Du (1.2)

and

Du = 1

2

(∇u + ∇uT )
.

The first mathematical studies on the above class of equations go back to O.A. Ladyzhenskaya in a series of remarkable
contributions. See [34–37]. In references [39] and [40, Chapter 2, n. 5] J.-L. Lions considers the case in which Du is replaced
by ∇u. However in this case the Stokes principle, see [57] and [55, p. 231], is not satisfied. Such models, an instance of
which is (1.1), were intensively studied in the eighties and nineties by J.Nečas and his school.

Non-linear shear dependent viscosities are used, in particular, to model properties of materials. The cases p > 2 and
p < 2, see Eq. (2.1), capture shear thickening and shear thinning phenomena, respectively. The case p = 3 was introduced
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by Smagorinsky, see [56], as a turbulence model. In the sequel, we concentrate on, and assume that, 1 < p � 2 and (for
convenience) n = 3.

For comments and references, both to modeling and theory, we refer the reader to [30,43,44,49]. Let us give some ref-
erences (far from being complete) on papers by other authors, concerning existence of solutions, interior regularity results,
and mathematical literature on related physical problems. The first paper treating the unsteady case, for p < 2, is [41]. In
[51,52] regularity results with periodic boundary conditions are proved. Interior regularity results are proved, for instance, in
[27,28,45,54,59]. In references [1,24,50–53] the authors consider electrorheological fluids. Fluids with energy transfer, ther-
mal viscous dependence, and related topics are treated in [14–19]. For particularly interesting results in two dimensions see
[31–33,38] and references therein. Numerical results may be found, for instance, in [12,25,26,48]. For anisotropic problems
see, for instance, [2,13].

In a series of recent papers, see also [42], we introduced a general scheme suitable to solve the problem of the W 2,q(Ω)-
regularity up to the boundary, for p-fluid flows, under typical boundary conditions. We began this series of papers by
considering the half space case, see [4], and the case of a cubic domain, see [5,6]. In this last case the interesting boundary
condition is given on two opposite faces, and space-periodicity is assumed in the other two directions. These two frame-
works avoid the need of appealing to localization techniques and to changes of variables (in order to flatten the boundary).
It is worth noting that when p �= 2 the extension of regularity results from flat boundaries to arbitrary, regular, boundaries
presents many new unusual obstacles, compared to the (still non-trivial) classical case p = 2.

Since we have dedicated a certain number of papers to the above subject, the following overview could help the inter-
ested reader. In [4], we establish the main lines to treat problems in the flat boundary case. More precisely, we consider
the slip and the non-slip boundary value problem in the half space Rn+ , and p > 2. In reference [5] we replace, for sim-
plicity, the half-space Rn+ by the above three-dimensional cube and consider the non-slip boundary condition. Further, we
introduce the convective term and the evolution problem.

In reference [6] we consider the p < 2 case. Here, an idea borrowed from Lemma 6 in reference [24] is crucial (see [6,
Lemma 3.2]). Further, by introducing a new device (see [5, Remark 5.1]), we drop the −�u term from the equations.

It is worth noting that the addition of a −�u term on the left-hand side of the equations simplify the proofs. Actually, it
allows much stronger regularity results, specially in the p < 2. This case, much easier to handle, is more in accordance with
the physical problems. Actually, in [8], it is shown that weak solutions belong to W 1,q(Ω), for any finite q, provided that
an x-dependent growth condition holds, p = p(x) � 2. Convexity-type assumptions are not assumed. Under more classic
assumptions, see for instance [23], one shows that u ∈ W 2,2(Ω).

To finish this overview on our recent contributions, we refer to [10], where the previous results on the shear thickening
case are improved.

A main open problem remains the extension of the above types of results to non-flat boundaries (in this context, see also
the pioneering paper [42]). This requires really new ideas, since the presence of the Du term together with p �= 2 makes
the boundary value problem particularly difficult. We solve this problem in reference [7], where p > 2.

In the mean-time, in references [21,22], F. Crispo has extended the p < 2 results in [6] to cylindrical domains, by ap-
pealing to cylindrical coordinates. This change of coordinates requires particular care, due to the non-linear p-term. Further,
L.C. Berselli, see [11], improves the argument followed in [5], by replacing the classical (isotropic) Sobolev embedding theo-
rems by anisotropic embedding theorems. This very fruitful idea is used by us below (in Section 7). Next, in reference [9],
we improve previous results shown for the shear thinning case. In particular, we obtain a better value for the parameter p0
in the Navier–Stokes problem (see below) by replacing the device borrowed from [24], by a different idea. It remains the
open problem of the extension, from flat to regular boundaries, of the sharp results proved in [9]. This is the aim of this
paper.

For convenience, we call “the Stokes problem” the problem without the convective term (u · ∇)u, and “the Navier–Stokes
problem” the problem with the above term included. Concerning our approach to W 2,l(Ω) regularity results up to the
boundary, the really new points mostly concern the stationary Stokes problem. In fact, in our proofs, the inclusion of the
convective term, and the consideration of the evolution problem, are reduced in a very simple way to the stationary Stokes
problem. Obviously, we do not claim that it is not possible to obtain better results by different methods. In our approach,
(a) The Stokes evolution problem can be easily reduced to the stationary Stokes problem, with the same range of admissible
values of p. (b) In the stationary case, the presence of the convective term requires an assumption of the type p > p0 for
some p0 < 2, see Theorem 2.3. Under this assumption the regularity results for the Stokes and the Navier–Stokes stationary
problems, coincide. (c) For the Navier–Stokes evolution problem we need a condition p > p1, for some p1 > 2. Hence the
shear thinning case is excluded, except for sufficiently small initial data. In this last case we believe that it should be not
difficult to prove the existence of a global, regular, solution.

2. Main results

In the sequel we consider the following very basic model of generalized Stokes stationary problem, where νT (u) =
(1 + |Du|)p−2:{

−∇ · ((1 + |Du|)p−2Du
) + ∇π = f ,

∇ · u = 0,
(2.1)
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under the non-slip boundary condition

u|Γ = 0. (2.2)

The domain Ω is a bounded, connected, open set in R3, locally situated on one side of its boundary Γ, a manifold of
class C2.

In the sequel we use the following exponents:

r(q) = 2q

2(2 − p) + q
, λ(q) = 2q

2 − p + q
, Q(q) = 6q

8 − 4p + q
, (2.3)

and also

q = 4p − 2, l = 4p − 2

p + 1
. (2.4)

Theorem 2.1. Assume that f ∈ L p′
(Ω) and let u ∈ V p be a solution to the problem (2.1), (2.2), where 3

2 < p < 2. Assume that

Du ∈ Lq(Ω), (2.5)

for some q satisfying

p � q � 6.

Then (see (2.3))

u ∈ W 1,Q(r)(Ω) ∩ W 2,r(q)(Ω), ∇π ∈ Lr(q)(Ω). (2.6)

Further,

‖∇u‖Q(q),Ω � C
(
1 + ‖ f ‖p′

)(
1 + ‖∇u‖

2(2−p)
3

q,Ω

)
(2.7)

and ∥∥D2u
∥∥

r(q),Ω
+ ‖∇π‖r(q),Ω � C

(
1 + ‖ f ‖p′

)(
1 + ‖∇u‖

2−p
2

q,Ω

)
. (2.8)

Note that the assumption (2.5) holds for q = p. This furnishes a first regularity theorem (statement left to the reader).
Furthermore, Theorem 2.1 allows a bootstrap argument, similar to that introduced in references [4,5]. This leads to the
following improvement, and extension to general boundaries, of Theorem 1.4 in [6].

Theorem 2.2. Assume that f ∈ L p′
(Ω) and let u ∈ V p, see (3.2), be a solution to the problem (2.1), (2.2), where 3

2 < p < 2. Then
(see (2.4))

u ∈ W 2,l(Ω) ∩ W 1,q(Ω), ∇π ∈ Ll(Ω). (2.9)

Moreover,

‖u‖1,q � C
(
1 + ‖ f ‖

3
2p−1

p′
)

(2.10)

and

‖u‖2,l � C
(‖ f ‖p′ + ‖ f ‖

5−p
2p−1

p′
)
. (2.11)

Concerning the full Navier–Stokes system{
−∇ · ((μ + |Du|)p−2Du

) + (u · ∇)u + ∇π = f ,

∇ · u = 0,
(2.12)

one has the following result.

Theorem 2.3. Let u be a solution to the full Navier–Stokes equations (2.12) under the boundary condition (2.2). Set

p0 = 20

11
. (2.13)

Then, under the assumption p > p0 , (2.9) holds.
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Besides the extension to general boundaries, the above result improves the lower bound p0 = 15
8 obtained in [6] and the

lower bound p0 = 7+√
35

7 , obtained in [11]. It coincides with the value p0 that was reached in reference [9].
It is worth noting that the boundedness of Ω is not essential here. In fact, our proof is done locally, i.e., in “small”

neighborhoods of each point x0 ∈ Γ . Consequently, the results hold, in particular, in any bounded subset of Ω , since bound-
edness is used only in order to work with a compact boundary (just to guarantee that local parameters associated with the
boundary Γ have uniform bounds).

3. Notation. Weak solutions

In general we set

Tsym = 1

2

(
T + T T )

, (3.1)

where T is a generic tensor field and T T is it transpose. In particular, Du = (∇u)sym.
The symbol ‖.‖p denotes the canonical norm in L p(Ω). Further, ‖.‖ = ‖.‖2. We denote by W k,p(Ω), k a positive integer

and 1 < p < ∞, the usual Sobolev space of order k, by W 1,p
0 (Ω) the closure in W 1,p(Ω) of C∞

0 (Ω) and by W −1,p′
(Ω) the

strong dual of W 1,p
0 (Ω), where p′ = p/(p − 1). The canonical norms in these spaces are denoted by ‖.‖k,p . L p

#(Ω) denotes
the subspace of L p consisting of functions with vanishing mean value.

In notation concerning duality pairings and norms, we will not distinguish between scalar and vector fields. Very often
we also omit from the notation the symbols indicating the domains Ω or Γ, provided that the meaning remains clear.

We set

Lp(Ω0) = [
L p(Ω0)

]3
, Wk,p(Ω0) = [

W k,p(Ω0)
]3

, W
1,p
0 (Ω0) = [

W 1,p
0 (Ω0)

]3
,

for any open subset Ω0 of R3.
We set

V p = {
v ∈ W1,p(Ω): (∇ · v)|Ω = 0; v |Γ = 0

}
. (3.2)

Note that, by appealing to inequalities of Korn’s type, one shows that there is a positive constant c such that

‖∇v‖p + ‖v‖p � c‖Dv‖p, (3.3)

for each v ∈ V p . Hence the two quantities above are equivalent norms in V p . Actually, ‖Dv‖p is a norm in W
1,p
0 .

We denote by c, c, c1, c2, etc., positive constants that depend, at most, on Ω and p. The dependence of the constants c
on p is not crucial provided that 1 < p0 � p � p1 < ∞. The same symbol c may denote different constants, even in the
same equation.

Definition. We say that a pair (u,π) is a weak solution of problem (2.1), (2.2) if it belongs to W
1,p
0 (Ω) × L p′

# (Ω), and if it
satisfies∫

Ω

(
1 + |Du|)p−2Du · Dφ dx −

∫
Ω

π(∇ · φ)dx +
∫
Ω

(∇ · u)ψ dx =
∫
Ω

f · φ dx, (3.4)

for each (φ,ψ) ∈ W
1,p
0 (Ω) × L p′

# (Ω).

Note that (1 + b)p−2b � 2p−1(1 + bp−1), for b � 0.
Since a solution u of (3.4) necessarily satisfies∫

Ω

∇ · u dx = 0,

it readily follows that (3.4) holds for each (φ,ψ) ∈ W
1,p
0 (Ω) × L p′

(Ω).

Existence and uniqueness of the above solution is well known.
By replacing v by u and ψ by π in Eq. (3.4) one gets∫

Ω

(
1 + |Du|)p−2|Du|2 dx � 〈 f , u〉, (3.5)

where the symbols 〈·,·〉 denote a duality pairing. Hence, by setting A = {x: |Du| � 1, }, B = {x: |Du| > 1}, one shows that
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Ω

(
1 + |Du|)p−2|Du|2 dx � 2p−2

∫
A

|Du|2 dx + 2p−2
∫
B

|Du|p dx.

By appealing to the obvious inequality |Du|p � 1 + |Du|2, one shows that∫
Ω

(
1 + |Du|)p−2|Du|2 dx � 2p−2

(∫
Ω

|Du|p dx − |Ω|
)

.

It follows that

‖Du‖p
p � 22−p〈 f , u〉 + |Ω|. (3.6)

Hence

‖∇u‖p−1
p � c

(‖ f ‖−1,p′ + 1
)
, (3.7)

where, in general, q′ denotes the dual exponent of q, namely

q′ = q

q − 1
. (3.8)

Remark 3.1. Since∫
Ω

(u · ∇)u · u dx = 0,

it readily follows that all the above estimates hold for weak solutions u to the complete Navier–Stokes equations{
−∇ · ((1 + |Du|)p−2Du

) + ∇π = F ,

∇ · u = 0,
(3.9)

where

F = f − (u · ∇)u.

This means, in particular, that (3.7) holds with the external force f not replaced by F .

The following result, basically due to Nečas (see [46]), is well known.

Lemma 3.1. If a distribution g is such that ∇g ∈ W−1,α(Ω) then g ∈ Lα(Ω) and

‖g‖Lα
#

� c‖∇g‖−1,α, (3.10)

where Lα
# = Lα/R.

By setting in (3.4) ψ = 0 and by using test-functions φ ∈ C∞
0 (Ω) one gets

∇π = −∇ · [(1 + |Du|)p−2Du
] + f . (3.11)

By appealing to (3.10) we prove that

‖π‖p′ � c
(‖ f ‖−1,p′ + 1

)
. (3.12)

For convenience we fix π by assuming that its mean value in Ω vanishes.

4. The change of variables

In order to reduce our problem, by a suitable change of variables, to a problem involving a flat boundary, we need to
consider functions with a sufficiently small support.

Let x0 ∈ Γ be given and let Π be the tangent plane to Γ at x0. We assume that the axes of xi, i = 1,2,3, are such that
the origin coincides with x0 and the x3 axis has the direction of the inward normal to Γ at x0. Hence the axes of xi, i = 1,2,

lie in the plane Π. We may use this particular system of coordinates since the analytical expressions that appear on the
left-hand side of (3.4) are invariant under orthogonal transformations.

We assume that Γ is a manifold of class C2. Let x0 ∈ Γ be given and let (x′, x3) = (x1, x2, x3), be the above system of
coordinates. We assume that there is a positive real constant a and a real function x3 = η(x′), of class C2 defined on the
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sphere {x′: |x′| < a}, such that: the points x for which x3 = η(x′) belong to Γ ; and the points x for which η(x′) < x3 <

a + η(x′) belong to Ω; the points x for which −a + η(x′) < x3 < η(x′) belong to R3 − Ω. Without loss of generality, we
assume that a � 1. In principle a may depend on the point x0 ∈ Γ . However, since Γ is regular and bounded, the greatest
lower bound a of the values a(x0) is positive. Note that if we do not assume that Ω is bounded then the above greatest
lower bound could be equal to zero. In this case our results hold on any bounded subset of Ω .

The positive values of a for which a � a are called admissible. For each admissible a define

Ia = {
x: |x′| < a, −a + η(x′) < x3 < a + η(x′)

}
,

Ωa = {
x ∈ Ia: η(x′) < x3

}
,

Γa = {
x ∈ Ia: x3 = η(x′)

}
. (4.1)

Clearly Ωa = Ω ∩ Ia and Γa = Γ ∩ Ia.

Actually, we extend the function η(x′) to the whole of Ωa by setting η(x′, x3) = η(x′). Nevertheless, since η is indepen-
dent of x3, we use the notation η(x′).

It is worth noting that along the course of our proof (more than once, but a finite number of times) we need to impose
additional smallness assumptions on the positive parameter a, i.e., on the admissible values of a. Actually, each time we
appeal to (4.8) we are just imposing a smaller positive upper bound to the admissible values of a.

Next we introduce the change of variables y = T x given by

(y1, y2, y3) = (
x1, x2, x3 − η(x′)

)
, (x1, x2, x3) = (

y1, y2, y3 + η(y′)
)
, (4.2)

and set

Ja = {
y: |y′| < a, −a < y3 < a

}
,

Q a = {y ∈ Ja: 0 < y3},
Λa = {y ∈ Ja: y3 = 0}. (4.3)

The map T is a C2 diffeomorphism of Ia onto Ja, that maps Ωa onto Q a and Γa onto Λa. Note that the Jacobian determinant
of the map T is equal to 1.

We define functions g̃ by setting g̃(y) = g(x) or, more precisely, by

g̃(y) = g
(
T −1(y)

)
, (4.4)

where g denotes an arbitrary scalar or vector field. As a notation rule, g = g(x) and g̃ = g̃(y). Moreover, partial derivatives
and differential operators when applied to functions g concern the x variables and when applied to functions g̃ concern the
y variables. We primarily use the notation ∂k g instead of ∂ g

∂xk
. Hence

∂k g̃ = ∂ g̃(y)

∂ yk

and

∂k g = ∂ g(x)

∂xk
.

Note the distinction between ∇̃ f and ∇ f̃ . Actually, ∇̃ f (y) = (∇x f )(T −1(y)) and (∇ f̃ )(y) = ∇y[ f (T −1(y))].
Since some expressions are quite long, in addition to the “tilde” notation we also use the symbol T to denote the map

f → f̃ . In other words,

(T f )(y) = f̃ (y).

Vector fields are transformed here coordinate by coordinate (as independent scalars). More precisely

ṽ j(y) = v j(x) = v j
(

y′, y3 + η(y′)
)
, (4.5)

where j = 1,2,3. Conversely,

v j(x) = ṽ j(y) = v j
(
x′, x3 − η(x′)

)
. (4.6)

Given x, if y = T x then y′ = x′. Hence η̃(y) = η(x) = η(x′) = η(y′), moreover ∂η(x′)
∂x j

= ∂η(y′)
∂ y j

, and so on. In the sequel we

identify the above functions and use the sole notation η(y′).
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We set

V(Ωa) = {
v: v ∈ W

1,p
0 (Ωa), supp v ⊂ Ia

}
,

V(Q a) = {̃
v: ṽ ∈ W

1,p
0 (Q a), supp ṽ ⊂ Ja

}
.

Clearly, if a test-function φ(x) belongs to V(Ωa) the transformed function φ̃(y) belongs to V(Q a).
A main point in the sequel is that

∂ jη(0) = 0, j = 1,2, (4.7)

which holds since Π is tangential to Γ at x0. The following trivial, but fundamental, result is a consequence of (4.7) together
with the continuity of ∇η over Γ.

Lemma 4.1. Given a positive ε0 there is an a(ε0) > 0 such that∣∣∇η(y′)
∣∣ < ε0, for each y′ such that |y′| < a(ε0). (4.8)

Moreover, a(ε0) is independent of the point x0 .

Note that a(ε0) depends on the C1( Ja) norm of η. Since Γ is compact the desired independence holds.
In the sequel we express the derivatives with respect to the y variables of functions φ̃(y) in terms of the transformations

of the derivatives of the original functions φ(x).

Lemma 4.2. One has the following formulas:

(∂kφ̃)(y) = (∂̃kφ)(y) + (∂kη)(y′)(∂̃3φ)(y) (4.9)

and

(∂̃kφ)(y) = (∂kφ̃)(y) − (∂kη)(y′)(∂3φ̃)(y). (4.10)

If k = 3 the second terms on the above right-hand sides vanish identically.

Proof. Since

φ̃(y) = φ
(
T −1 y

)
it follows that

(∂kφ̃)(y) = (∂kφ)
(
T −1 y

) + (∂3φ)
(
T −1 y

)
(∂kη)(y′) = (∂̃kφ)(y) + (∂kη)(y′)(∂̃3φ)(y).

Note that ∂3φ̃ = ∂̃3φ. �
From the above lemma it follows that

(∇̃φ)(y) = (∇φ̃)(y) − (∇η)(y′) ⊗ (∂3φ̃)(y) (4.11)

and that

(∇̃ · φ)(y) = (∇ · φ̃)(y) − (∇η)(y′) · (∂3φ̃)(y). (4.12)

Lemma 4.3. Given an ε0 ∈ ]0,1[ there is an a(ε0) > 0 such that if a � a(ε0) then∣∣(∇φ̃)(y) − (∇̃φ)(y)
∣∣ � ε0

∣∣(∂̃3φ)(y)
∣∣, ∀y ∈ Q a. (4.13)

The same result holds if we replace y by y − h (a tangential translation, see the next section). Clearly we may replace ∇ by D.

Proof. From (4.9) one shows that the left-hand side of (4.13) is bounded by |∇η(y′)||(∂̃3φ)(y)|. Since ∇η(0) = 0 it follows
that |∇η(y′)| � ε0 in a sufficiently small neighborhood of x0. �
Remark. Note that the identity ∇φ(x) = (∇̃φ)(y) together with (4.13) leads to a “point wise equivalence” between |∇φ(x)|,
|(∇̃φ)(y)| and |(∇φ̃)(y)|. In particular, the Lq-norms of these quantities are equivalent.
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Next, from (4.9) one gets (point wisely in y) that

∂s(∂kφ̃) − ∂s(∂̃kφ) = (∂s∂kη)(∂3φ̃) + (∂kη)(∂s∂3φ̃).

In particular, by appealing to (4.8), one shows that∣∣∣∣∂s(∂kφ̃)
∣∣ − ∣∣∂s(∂̃kφ)

∣∣∣∣ � c
∣∣D2η

∣∣|∂3φ̃| + ε0
∣∣∂s(∂̃3φ)

∣∣,
point wisely in the y variables. By appealing to the above estimate for k = 1,2,3, and to (4.8) with (for instance) ε0 = 1,
one proves the following result.

Lemma 4.4. Let s = 1,2,3 be fixed. For a sufficiently small a(ε0) > 0 one has∣∣∂s(∇φ̃)
∣∣ � 2

∣∣∂s(∇̃φ)
∣∣ + c

∣∣D2η
∣∣|∂3φ̃|, ∀y ∈ Q a. (4.14)

The left-hand side and the first term on the right-hand side may be switched.

Clearly φ may be a vector field since the above result holds for each component. In particular, by considering s = 1,2,
one proves the first estimate in the following lemma.

Lemma 4.5. For a sufficiently small a(ε0) > 0 one has∣∣∇∗(∇ũ)
∣∣ � c

∣∣∇∗(∇̃u)
∣∣ + c

∣∣D2η
∣∣|∂3ũ|, ∀y ∈ Q a. (4.15)

Moreover,∣∣∇∗(Dũ)
∣∣ �

∣∣∇∗(D̃u)
∣∣ + c|∇η||∇∗∂3ũ| + c

∣∣D2η
∣∣|∂3ũ|, ∀y ∈ Q a. (4.16)

The left-hand side and the first term on the right-hand side in both estimates may be switched.

The estimate (4.16) follows since, if we apply the above transformation formulae to ∂s(Dũ), we get

∂s(Dũ)i, j = ∂s(D̃u)i, j + 1

2

[
(∂ jη)(∂s∂3ũi) + (∂iη)(∂s∂3ũ j)

] + 1

2

[
(∂s∂ jη)(∂3ũi) + (∂s∂iη)(∂3ũ j)

]
.

By iteration, (4.10) may be extended to higher order derivatives (not used in the sequel):

T
(
∂2

jkφ
) = ∂2

jkφ̃ − (∂kη)∂2
j3φ̃ − (∂ jη)∂2

k3φ̃ + (∂ jη)(∂kη)∂2
3 φ̃ − (

∂2
jkη

)
∂3φ̃.

Remark. We want to emphasize that, basically, our regularity results will be proved in the following local form. Let x0
and Ωa be as above. If (u,π) ∈ W1,p(Ωa) × L p′

(Ωa) satisfies (2.1) in the weak sense in Ωa and satisfies (2.2) in Γa , then
the regularity results hold in Ωr for r < a (for instance, for r = a

2 ). We prove this local result by assuming that a > 0 is
sufficiently small. Our final value of a is not necessarily equal to the initial one. As we proceed through the proof we may
need to consider smaller values of a. However we will show explicitly that each new (smaller) value of a depends only on
an upper bound of the C2( Ja) norm of η. In particular, a positive lower bound for a, independent of the point x0, exists
since Γ is compact. This leads to the global result in the whole of Ω .

5. Translations and related properties

In the sequel we deal with translations of h j in the y j-direction, j = 1,2. For notational convenience we consider the
case j = 1 and set h = h1. We use the following convention:

y + h = (y1 + h, y2, y3), y′ + h = (y1 + h, y2).

The amplitude |h| of the translations is always assumed to be smaller than the distance from the support of φ̃ to the set
(∂ Q a)\Λa .

A test-function φ(x) is transformed into a function φ̃(y). Since in the following we make translations in the y variables
we need to determine (and study) the differential properties of the test-function φh(x) such that (̃φh)(y) = φ̃(y + h). This is
the aim of this section.

Lemma 5.1. Let φ(x) ∈ V(Ωa). Define φh by

φh(x) = φ
(
x1 + h, x2, x3 − η(x′) + η(x′ + h)

)
. (5.1)

Then

φ̃h(y) = φ̃(y + h). (5.2)
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The proof is left to the reader.
Next we want to establish the transformation law for derivatives of the “pseudo-translations” φh(x). One has the follow-

ing result.

Lemma 5.2. Let φ(x) ∈ V(Ωa), let φh(x) be as in the previous lemma, and let k � 3 be fixed. Then

(∂̃kφh)(y) = (∂̃kφ)(y + h) + (∂̃3φ)(y + h)
[
(∂kη)(y′ + h) − (∂kη)(y′)

]
. (5.3)

If k = 3 the second term on the right-hand side vanishes identically.

Proof. From (5.1) it readily follows that

(∂kφh)(x) = (∂kφ)
(
x′ + h, x3 + η(x′ + h) − η(x′)

)
+ (∂nφ)

(
x′ + h, x3 + η(x′ + h) − η(x′)

)[
(∂kη)(x′ + h) − (∂kη)(x′)

]
. (5.4)

Note that the last term is not taken into account if k = 3. By the definition of the “tilde” functions

(∂̃kφh)(y) = (∂kφh)
(
T −1 y

) = (∂kφh)(x),

where

x = (x1, x2, x3) = (
y′, y3 + η(y′)

)
.

Hence from (5.4) with x replaced by x we get an expression for (D̃kφh)(y) in terms of x. By taking into account the
definition of x we obtain

(∂̃kφh)(y) = (∂kφ)
(

y′ + h, y3 + η(y′ + h)
) + (∂3φ)

(
y′ + h, y3 + η(y′ + h)

)[
(∂kη)(y′ + h) − (∂kη)(y′)

]
. (5.5)

Since (y′ + h, y3 + η(y′ + h)) = T −1(y + h) it follows that

(∂kφ)
(

y′ + h, y3 + η(y′ + h)
) = (∂̃kφ)(y + h).

Consequently (5.3) follows from (5.5). �
By setting in general

(∇φ)ik = ∂kφi

it follows from (5.3) that

(∇̃φh)(y) = (∇̃φ)(y + h) + (∂̃3φ)(y + h) ⊗ [
(∇η)(y′ + h) − (∇η)(y′)

]
, (5.6)

where, since η does not depend on the 3rd variable, we set

∇η = (∂1η, ∂2η).

In particular, since Du = (∇u)sym,

(D̃φh)(y) = (D̃φ)(y + h) + {
(∂̃3φ)(y + h) ⊗ [

(∇η)(y′ + h) − (∇η)(y′)
]}

sym. (5.7)

Moreover,

(∇̃ · φh)(y) = (∇̃ · φ)(y + h) + (∂̃3φ)(y + h) · [(∇η)(y′ + h) − (∇η)(y′)
]
. (5.8)

Lemma 5.3. Given an ε0 ∈ ]0,1[ there is an a(ε0) > 0 such that if a � a(ε0) then∣∣((∇̃φ)(y) − (∇̃φ)(y − h)
) − (

(∇φ̃)(y) − (∇φ̃)(y − h)
)∣∣

� ε0
∣∣(∂3φ̃)(y) − (∂3φ̃)(y − h)

∣∣ + |h|‖η‖C2(Q a)

∣∣(∂3φ̃)(y − h)
∣∣. (5.9)

Proof. From (4.10) one has(
(∇̃φ)(y) − (∇̃φ)(y − h)

) − (
(∇φ̃)(y) − (∇φ̃)(y − h)

)
= −∇η(y′) ⊗ (

(∂3φ̃)(y) − (∂3φ̃)(y − h)
) − (∇η(y′) − ∇η(y′ − h)

) ⊗ (∂3φ̃)(y − h).

Hence, in a sufficiently small neighborhood of x0, (5.9) holds. �
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5.1. Estimates for some second-order derivatives of the velocity in terms of the pressure

For convenience, in the sequel C denotes positive constants which are bounded from above provided that the quan-
tities ‖∇η‖C1(Λa) and ‖∇θ‖C1(Ωa) are bounded from above. These constants may also depend on the bounded quantities
‖∇u‖p,‖π‖p′ ,‖ f ‖p′ (recall (3.7) and (3.12)). In short,

C = C
(‖∇u‖p,‖π‖p′ ,‖∇η‖C1(Λa),‖∇θ‖C1(Ωa)

)
. (5.10)

Explicit expressions for these quantities follow easily from our calculations. For the reader’s convenience (and for com-
pleteness) we often write the explicit dependence on the above quantities before including them in a constant of type C .
Multiplicative constants of type c will be incorporated in C .

In the sequel, in the absence of an explicit indication, tilde-functions inside integrals are calculated at the generic point y.
Compare Eqs. (5.11) and (5.12). Moreover, in the absence of an explicit indication, norms of functions of the x variable
concern the domain Ωa and norms of tilde-functions concern the domain Q a .

From (3.4), by making the change of variables x → T x = y, it follows that∫ (
1 + |D̃u|)p−2D̃u · D̃φ dy −

∫
π̃ (∇̃ · φ)dy +

∫
(∇̃ · u)ψ̃ dy =

∫
f̃ · φ̃ dy, (5.11)

for each φ̃ ∈ V(Q a) and each ψ̃ ∈ L p(Q a). Recall that the Jacobian determinant of the T -transform is equal to one.
Next we consider Eq. (5.11) with φ and ψ replaced by the admissible test-functions φh and ψh , respectively. Then by the

change of variables y → y − h we show that∫ (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h) : D̃φh(y − h)dy −
∫

π̃ (y − h)(∇̃ · φh)(y − h)dy +
∫

(∇̃ · u)(y − h)ψ̃h(y − h)dy

=
∫

f̃ (y − h) · φ̃h(y − h)dy, (5.12)

for each φ̃ ∈ V(Q a) and each ψ̃ ∈ L p(Q a).
By appealing to (5.2), (5.3), (5.6), (5.7) and (5.8) we may write Eq. (5.12) in the form∫ (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h) : D̃φ(y)dy

+
∫ (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h) : [(∂̃3φ)(y) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]]

sym dy

−
∫

π̃ (y − h)(̃∇ · φ)(y)dy −
∫

π̃ (y − h)(∂̃3φ)(y) · [(∇η)(y′) − (∇η)(y′ − h)
]

dy +
∫

(̃∇ · u)(y − h)ψ̃(y)dy

=
∫

f̃ (y − h) · φ̃(y)dy. (5.13)

Finally by taking the difference, side by side, between Eqs. (5.11) and (5.13) we get∫ ((
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) − (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h)
) : (̃Dφ)(y)dy

−
∫ (

π̃ (y) − π̃ (y − h)
)
(̃∇ · φ)(y)dy +

∫ (
(̃∇ · u)(y) − (̃∇ · u)(y − h)

)
ψ̃(y)dy

= −
∫

f̃ (y) · (φ̃(y + h) − φ̃(y)
)

dy

+
∫ (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h) : [(∂̃3φ)(y) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]]

sym dy

−
∫

π̃ (y − h)(∂̃3φ)(y) · [(∇η)(y′) − (∇η)(y′ − h)
]

dy. (5.14)

Remark 5.1. Now we would like to replace in (5.14) ∇̃φ(y) with ∇̃u(y) − ∇̃u(y − h) and, by consequence, D̃φ(y) with
D̃u(y) − D̃u(y − h). Unfortunately this is not allowed since ∇̃u(y − h) is not the transformation of the gradient of an x-test
function. However our goal will be obtained “up to a perturbation term” by setting in Eq. (5.14)

φ(x) = (
u(x) − u−h(x)

)
θ2(x), (5.15)

where θ is an arbitrary regular real function such that

supp θ ⊂ Ia.
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Just for the reader’s convenience, assume from now on that 0 < θ(x) � 1. Note that (̃θ2) = (θ̃)2 and ∇̃θ2 = 2θ̃∇̃θ . Clearly

φ̃(y) = (̃
u(y) − ũ(y − h)

)
(θ̃ )2(y). (5.16)

Lemma 5.4. Let φ(x) be the admissible test-function given by (5.15). Then the y-transformed of ∇φ(x), Dφ(x), ∂3φ(x) and ∇ · φ(x)
are respectively given by (5.17), (5.18), (5.19) and (5.20) below.

Proof. By taking the gradient of both sides of Eq. (5.15), by passing from the x to the y variables and by appealing to (5.6)
it readily follows that

∇̃φ(y) = (∇̃u(y) − ∇̃u(y − h)
)
(θ̃)2(y) + (∂̃3u)(y − h) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]
(θ̃ )2(y)

+ 2θ̃ (y)
(̃
u(y) − ũ(y − h)

) ⊗ ∇̃θ(y). (5.17)

In particular, one has

D̃φ(y) = (
D̃u(y) − D̃u(y − h)

)
(θ̃)2(y) + {

(∂̃3u)(y − h) ⊗ [
(∇η)(y′) − (∇η)(y′ − h)

]
(θ̃ )2(y)

}
sym

+ 2θ̃ (y)
{(̃

u(y) − ũ(y − h)
) ⊗ ∇̃θ(y)

}
sym, (5.18)

and also (since ∂3η = 0)

∂̃3φ(y) = (
∂̃3u(y) − ∂̃3u(y − h)

)
(θ̃)2(y) + 2θ̃ (y)

(̃
u(y) − ũ(y − h)

)
∂̃3θ(y). (5.19)

Similarly, from (5.2) and (5.8) it readily follows that

∇̃ · φ(y) = (∇̃ · u(y) − ∇̃ · u(y − h)
)
(θ̃)2(y) + (∂̃3u)(y − h) · [(∇η)(y′) − (∇η)(y′ − h)

]
(θ̃ )2(y)

+ 2θ̃ (y)
(̃
u(y) − ũ(y − h)

) · ∇̃θ(y). � (5.20)

On the other hand, by setting

ψ(x) = (
π(x) − π−h(x)

)
θ2(x), (5.21)

it follows

ψ̃(y) = (
π̃ (y) − π̃ (y − h)

)
(θ̃ )2(y). (5.22)

Next we replace in Eq. (5.14) the test-functions φ and ψ by the expressions in Eqs. (5.15) and (5.21). We start by estimating
each term which appears in Eq. (5.14). In order to treat the first integral on the left-hand side of (5.14) we appeal to the
following well-known result. For the proof see, for instance, Lemma 2.19 in reference [53].

Let A, B be two symmetric matrices. Then((
1 + |A|)p−2

A − (
1 + |B|)p−2

B
) · (A − B) � c

(
1 + |A| + |B|)p−2|A − B|2,∣∣(1 + |A|)p−2

A − (
1 + |B|)p−2

B
∣∣ � c

(
1 + |A| + |B|)p−2|A − B|. (5.23)

Proposition 5.1. Let φ̃(y) be given by (5.15). Then∫ ((
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) − (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h)
) : D̃φ(y)dy

� c

∫ (
1 + ∣∣(D̃u)(y)

∣∣ + ∣∣(D̃u)(y − h)
∣∣)p−2∣∣(D̃u)(y) − (D̃u)(y − h)

∣∣2
(θ̃ )2(y)dy − C‖∇ũ‖p

ph2. (5.24)

Proof. For convenience, denote by S1 the left-hand side of (5.24). By (5.18) one has

S1 =
∫ ((

1 + ∣∣D̃u(y)
∣∣)p−2D̃u(y) − (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h)

) : (D̃u(y) − D̃u(y − h)
)
(θ̃ )2(y)dy

+
∫ ((

1 + ∣∣D̃u(y)
∣∣)p−2D̃u(y) − (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h)

)
· {(∂̃3u)(y − h) ⊗ [

(∇h)(y′) − (∇h)(y′ − h)
]}

sym(θ̃)2(y)dy

+
∫ ((

1 + ∣∣D̃u(y)
∣∣)p−2D̃u(y) − (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h)

)
· {(̃u(y) − ũ(y − h)

) ⊗ ∇̃θ(y)
}

symθ̃ (y)dy. (5.25)
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From (5.23) it follows that

S1 � c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣2
(θ̃ )2(y)dy

− c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣∣∣(∂̃3u)(y − h)
∣∣∣∣(∇η)(y′) − (∇η)(y′ − h)

∣∣(θ̃ )2(y)dy

− c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣θ̃ (y)
∣∣̃u(y) − ũ(y − h)

∣∣∣∣∇̃θ(y)
∣∣dy. (5.26)

By appealing to Cauchy–Schwartz inequality one easily shows that

S1 � c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣2
(θ̃ )2(y)dy

− c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣(∂̃3u)(y − h)

∣∣2∣∣(∇η)(y′) − (∇η)(y′ − h)
∣∣2

(θ̃ )2(y)dy

− c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣̃u(y) − ũ(y − h)

∣∣2∣∣∇̃θ(y)
∣∣2

dy. (5.27)

The last two integrals are bounded by

ch2(∥∥D2η
∥∥2

∞ + ∥∥D2θ
∥∥2

∞
)∥∥∇̃u(y)

∥∥p
p . �

Next we estimate the second integral on the right-hand side of (5.14).

Proposition 5.2. Let φ̃(y) be given by (5.15). Then∣∣∣∣ ∫ (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h) : [(∂̃3φ)(y) ⊗ [
(∇η)(y′) − (∇η)(y′ − h)

]]
sym dy

∣∣∣∣
� c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣2
(θ̃)2(y)dy + Ch2‖∇ũ‖p

p . (5.28)

Proof. Denote by S the integral on the left-hand side of (5.28). By (5.19) one has

S =
∫ (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h) : [(∂̃3u(y) − ∂̃3u(y − h)

)
(θ̃)2(y) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]]

sym dy

+ 2
∫ (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h)

· [(̃u(y) − ũ(y − h)
)
∂̃3θ(y) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]]

symθ̃ (y)dy. (5.29)

It is easily seen that the second integral on the right-hand side of (5.29) is bounded by

c‖∇θ‖∞
∥∥D2η

∥∥∞‖∇ũ‖p
ph2,

hence it is bounded by the last term in the right-hand side of Eq. (5.28).
Denote by I1 the first integral on the right-hand side of (5.29). By splitting this integral into two integrals, the first

one including the term ∂̃3u(y) and the second one including the term ∂̃3u(y − h). By appealing to the change of variables
y1 − h → y1 in the second integral. And, finally, by splitting this last integral in a convenient and obvious way, we get

I1 =
∫ (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h) : [∂̃3u(y)(θ̃ )2(y) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]]

sym dy

−
∫ (

1 + ∣∣D̃u(y)
∣∣)p−2D̃u(y) : [∂̃3u(y)(θ̃)2(y) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]]

sym dy

−
∫ (

1 + ∣∣D̃u(y)
∣∣)p−2D̃u(y) : {[∂̃3u(y)(θ̃)2(y + h) ⊗ [

(∇η)(y′ + h) − (∇η)(y′)
]]

sym

− [
∂̃3u(y)(θ̃ )2(y) ⊗ [

(∇η)(y′) − (∇η)(y′ − h)
]]

sym

}
dy. (5.30)

The last integral on the right-hand side of (5.30) is bounded by

C‖∇η‖∞‖∇ũ‖p
ph2,

hence it is bounded by the last term in the right-hand side of Eq. (5.28). It remains to estimate the absolute value of
the difference between the first two integrals on the right-hand side of (5.30). By appealing to (5.23) one shows that this
absolute value is bounded by
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c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣∣∣∂̃3u(y)
∣∣(θ̃ )2(y)

∣∣(∇η)(y′) − (∇η)(y′ − h)
∣∣dy.

In turn, this quantity is bounded by

c

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣2
(θ̃ )2(y)dy

+ C

∫ ∣∣∂̃3u(y)
∣∣2∣∣(∇η)(y′) − (∇η)(y′ − h)

∣∣2(
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2

(θ̃ )2(y)dy.

Since the last integral is bounded by

C
∥∥D2η

∥∥2
∞‖∇ũ‖p

ph2,

the estimate (5.28) follows. �
From (5.24) and (5.28) we get the following result.

Proposition 5.3. Let φ̃(y) be given by (5.15) and denote by S the difference between the first integral on the left-hand side of (5.14)
and the absolute value of the second integral on the right-hand side of the same equation. Then

S � c

∫ (
1 + ∣∣(D̃u)(y)

∣∣ + ∣∣(D̃u)(y − h)
∣∣)p−2∣∣(D̃u)(y) − (D̃u)(y − h)

∣∣2
(θ̃ )2(y)dy − C‖∇u‖p

ph2. (5.31)

Next we consider the f -term. A classical result shows that (s = 1,2)∣∣∣∣ ∫ f̃ (y) · (φ̃(y + h) − φ̃(y)
)

dy

∣∣∣∣ � h‖ f̃ ‖p′ ‖∂sφ̃‖p . (5.32)

Since φ̃(y) is given by (5.16), straightforward calculations yield (recall that 0 � θ(x) � 1)∣∣∣∣ ∫ f̃ (y) · (φ̃(y + h) − φ̃(y)
)

dy

∣∣∣∣ � h‖ f̃ ‖p′
(∫ ∣∣∂sũ(y) − ∂sũ(y − h)

∣∣p
(θ̃)2(y)dy

) 1
p

+ h2‖ f̃ ‖p′ ‖∂sũ‖p
∥∥∇(θ̃ )2

∥∥∞. (5.33)

At this point it looks convenient to the reader to make a full stop. In this regard we write the equation that follows
from (5.14) by appealing to Proposition 5.3 and to Eq. (5.33). One has∫ (

1 + ∣∣(D̃u)(y)
∣∣ + ∣∣(D̃u)(y − h)

∣∣)p−2∣∣(D̃u)(y) − (D̃u)(y − h)
∣∣2

(θ̃ )2(y)dy

�
∫

π̃ (y)(∂̃3u)(y − h) · [(∇η)(y′) − (∇η)(y′ − h)
]
(θ̃ )2(y)dy

+
∫ (

π̃ (y) − π̃ (y − h)
)
θ̃ (y)

(̃
u(y) − ũ(y − h)

) · ∇̃θ(y)dy

−
∫

π̃ (y − h)(∂̃3u)(y) · [(∇η)(y′) − (∇η)(y′ − h)
]
(θ̃)2(y)dy

−
∫

π̃ (y − h)
(̃
u(y) − ũ(y − h)

)
∂̃3θ(y) · [(∇η)(y′) − (∇η)(y′ − h)

]
θ̃ (y)dy

+ C‖∇u‖p
ph2 + h‖ f̃ ‖p′

(∫ ∣∣∂sũ(y) − ∂sũ(y − h)
∣∣p

(θ̃ )2(y)dy

) 1
p

+ h2‖ f̃ ‖p′ ‖∇ũ‖p
∥∥∇(θ̃ )2

∥∥∞. (5.34)

By recalling, if necessary, (4.9) one easily shows that the fourth integral in the right-hand side of the above equation is
bounded by

C‖∇θ‖∞‖π‖p′ ‖∇u‖ph2.

Similar estimates hold for the first and the third integrals in the right-hand side of the same equation. We set, for conve-
nience,

Ã2
1 =

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣2
θ̃ 2(y)dy.

The above arguments prove the following estimate
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Ã2
1 �

∫ (
π̃ (y) − π̃ (y − h)

)
θ̃ (y)

(̃
u(y) − ũ(y − h)

) · ∇̃θ(y)dy + |h|‖ f̃ ‖p′
(∫ ∣∣∂sũ(y) − ∂sũ(y − h)

∣∣p
(θ̃)2(y)dy

) 1
p

+ ch2‖ f ‖p′ ‖∇u‖p
∥∥∇(θ̃ )2

∥∥∞ + C
(
1 + ‖∇θ‖2∞

)(‖∇u‖p
p + ‖π‖p′ ‖∇u‖p

)
h2. (5.35)

By recalling the definition of constants of type C , we state the following theorem.

Theorem 5.5. The following estimate holds:

|h|−2 Ã2
1 � |h|−2

∫ (
π̃ (y) − π̃ (y − h)

)
θ̃ (y)

(̃
u(y) − ũ(y − h)

) · ∇̃θ(y)dy

+ |h|−1‖ f̃ ‖p′
(∫ ∣∣∂sũ(y) − ∂sũ(y − h)

∣∣p
(θ̃ )2(y)dy

) 1
p

+ C . (5.36)

Note that∣∣∣∣ ∫ (
π̃ (y) − π̃ (y − h)

)
θ̃ (y)

(̃
u(y) − ũ(y − h)

) · ∇̃θ(y)dy

∣∣∣∣ � C
∥∥̃u(y) − ũ(y − h)

∥∥
2

∥∥(
π̃ (y) − π̃ (y − h)

)
θ̃ (y)

∥∥
2

� C |h|‖∂sũ‖2
∥∥(

π̃ (y) − π̃ (y − h)
)
θ̃ (y)

∥∥
2. (5.37)

Recall that

λ(q) = 2q

2 − p + q
. (5.38)

One has, for 1 < λ � λ(q),∫ ∣∣(D̃u)(y) − (D̃u)(y − h)
∣∣λθ̃λ(y)dy

�
∫ (

1 + ∣∣(D̃u)(y)
∣∣ + ∣∣(D̃u)(y − h)

∣∣) (2−p)λ
2

(
1 + ∣∣(D̃u)(y)

∣∣ + ∣∣(D̃u)(y − h)
∣∣) (p−2)λ

2
∣∣(D̃u)(y) − (D̃u)(y − h)

∣∣λθ̃λ(y)dy.

(5.39)

By Hőlder’s inequality with exponents 2
2−λ

and 2
λ

the following result holds.

Lemma 5.6. Let be p � q and 1 < λ � λ(q). Then∫ ∣∣(D̃u)(y) − (D̃u)(y − h)
∣∣λθ̃λ(y)dy �

∥∥1 + 2|D̃u|∥∥ (2−p)λ
2

(2−p)λ
2−λ

( Ã1)
λ. (5.40)

Note that λ � λ(q) is equivalent to (2−p)λ
2−λ

� q, moreover the corresponding equalities are equivalent.
From (5.40), with λ = p, λ = λ(q), and λ = r(q) it follows that

Corollary 5.1.∫ ∣∣(D̃u)(y) − (D̃u)(y − h)
∣∣p

θ̃ p(y)dy �
∥∥1 + 2|D̃u|∥∥ (2−p)p

2
p Ã p

1 � C Ã p
1 , (5.41)∫ ∣∣(D̃u)(y) − (D̃u)(y − h)

∣∣λ(q)
θ̃λ(q)(y)dy �

∥∥1 + 2|D̃u|∥∥ (2−p)λ(q)
2

q ( Ã1)
λ(q), (5.42)

and ∫ ∣∣(D̃u)(y) − (D̃u)(y − h)
∣∣r(q)

θ̃ r(q)(y)dy �
∥∥1 + 2|D̃u|∥∥ (2−p)r(q)

2
q
2

( Ã1)
r(q). (5.43)

5.2. Estimates for the tangential derivatives of the pressure in terms of the velocity

Next we prove the following main estimate.

Lemma 5.7. For each φ̃ ∈ C2
0(Q a) one has
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π̃ (y) − π̃ (y − h)

)
θ̃

] · φ̃ dy

∣∣∣∣
�

∣∣∣∣ ∫ ((
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) − (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h)
) : ∇̃(θφ)(y)dy

∣∣∣∣
+ ε0

∥∥(
π̃ (y) − π̃ (y − h)

)
θ̃
∥∥

2‖∇φ̃‖2 +
∣∣∣∣ ∫ f̃ · ((̃θφ)(y + h) − (̃θφ)(y)

)
dy

∣∣∣∣
+ C |h|(1 + ‖∇u‖p−1

p + ‖π‖p′
)‖∇φ̃‖p, (5.44)

where ε0 and a are chosen below.

Proof. From (5.14) with ψ = 0 and φ replaced by θφ one shows that∫ (
π̃ (y) − π̃ (y − h)

) ˜(∇ · (θφ)
)
(y)dy =

∫ ((
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) − (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h)
) : D̃(θφ)(y)dy

+
∫

f̃ (y) · ((̃θφ)(y + h) − (̃θφ)(y)
)

dy + cR, (5.45)

where R satisfies

|R| � |h|‖η‖C2

(
1 + ‖∇̃u‖p

)p−1∥∥∂̃3(θφ)
∥∥

p + |h|‖η‖C2‖π‖p′
∥∥∂̃3(θφ)

∥∥
p . (5.46)

Since ∂̃3(θφ) = θ̃∂3φ̃ + φ̃∂̃3θ (recall, in particular, (4.10) for k = 3) it follows that∥∥∂̃3(θφ)
∥∥

p � C‖∇φ̃‖p .

One has

|R| � C |h|‖∇φ̃‖p . (5.47)

On the other hand, by appealing to (4.12), one shows that

∇̃ · (θφ) = θ̃ (∇ · φ̃) + φ̃ · ∇̃θ − θ̃ (∇η) · (∂3φ̃) − (∂3θ̃ )(∇η) · φ̃.

Hence we may decompose the left-hand side of (5.45) as∫ (
π̃ (y) − π̃ (y − h)

) ˜(∇ · (θφ)
)

dy =
∫ [(

π̃ (y) − π̃ (y − h)
)
θ̃

]
(∇ · φ̃)dy

+
∫ (

π̃ (y) − π̃ (y − h)
)
(̃∇θ) · φ̃ dy −

∫ [(
π̃ (y) − π̃ (y − h)

)
θ̃

]
(∇η) · (∂3φ̃)dy

−
∫ (

π̃ (y) − π̃ (y − h)
)
(∂3θ̃ )(∇η) · φ̃ dy. (5.48)

By means of a suitable translation one shows that∫ (
π̃ (y) − π̃ (y − h)

)
(̃∇θ) · φ̃ dy = −

∫
π̃

(
φ̃(y + h) − φ̃(y)

) · (̃∇θ)dy

−
∫

π̃ φ̃(y + h) · (∇̃θ(y + h) − ∇̃θ(y)
)

dy. (5.49)

Hence the second integral on the right-hand side of (5.48) satisfies∣∣∣∣ ∫ (
π̃ (y) − π̃ (y − h)

)
(̃∇θ) · φ̃ dy

∣∣∣∣ � |h|‖∇̃θ‖C1‖π̃‖p′ ‖∇φ̃‖p . (5.50)

A similar device applied to the last integral on the right-hand side of (5.48) shows that∣∣∣∣ ∫ (
π̃ (y) − π̃ (y − h)

)
(∂3θ̃ )(∇η) · φ̃ dy

∣∣∣∣ � c|h|‖∇η‖C1‖∂3θ̃‖C1‖π̃‖p′ ‖∇φ̃‖p . (5.51)

On the other hand∣∣∣∣ ∫ [(
π̃ (y) − π̃ (y − h)

)
θ̃

]
(∇η) · (∂3φ̃)dy

∣∣∣∣ �
∥∥(

π̃ (y) − π̃ (y − h)
)
θ̃
∥∥

2‖∇η‖C0‖∇̃φ‖2. (5.52)

From (5.48), (5.50), (5.51) and (5.52) it follows that
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π̃ (y) − π̃ (y − h)

) ˜(∇ · (θφ)
)

dy = −
∫

∇[(
π̃ (y) − π̃ (y − h)

)
θ̃

] · φ̃ dy + R2, (5.53)

for each φ̃ ∈ C2
0(Q a), where R2 satisfies the estimate

|R2| � C |h|‖π̃‖p′ ‖∇φ̃‖p + ε0
∥∥(

π̃ (y) − π̃ (y − h)
)
θ̃
∥∥

2‖∇φ̃‖2, (5.54)

for an arbitrarily small positive ε0, provided that a � a(ε0). We appeal to the fact that ∇η(0) = 0. From (5.53), (5.54) and
(5.45), (5.47) the estimate (5.44) follows. �

Next we prove the following result.

Lemma 5.8. The following estimate holds:∣∣∣∣ ∫ ((
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) − (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h)
) : ∇̃(θφ)dy

∣∣∣∣
� c Ã1‖∇φ̃‖2 + C |h|(1 + ‖∇u‖p

)p−1‖∇φ̃‖p . (5.55)

Proof. From (4.11) it follows that

∇̃(θφ) = θ̃∇φ̃ − θ̃
[
(∇η) ⊗ ∂3φ̃

] + φ̃ ⊗ ∇̃θ,

for each y ∈ Q a . Moreover∣∣θ̃∇φ̃ − θ̃
[
(∇η) ⊗ ∂3φ̃

]∣∣ � C |θ̃ ||∇φ̃|. (5.56)

Hence, by appealing to (5.23), it follows that∣∣∣∣ ∫ ((
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) − (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h)
) : ∇̃(θφ)dy

∣∣∣∣
� C

∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣|θ̃ ||∇φ̃|dy

+
∣∣∣∣ ∫ ((

1 + ∣∣D̃u(y)
∣∣)p−2D̃u(y) − (

1 + ∣∣D̃u(y − h)
∣∣)p−2D̃u(y − h)

) : (φ̃ ⊗ ∇̃θ)dy

∣∣∣∣. (5.57)

Next, since p � 2, it readily follows that∫ (
1 + ∣∣D̃u(y)

∣∣ + ∣∣D̃u(y − h)
∣∣)p−2∣∣D̃u(y) − D̃u(y − h)

∣∣|θ̃ ||∇φ̃|dy � c Ã1‖∇φ̃‖2, (5.58)

which is the desired estimate for the first integral on the right-hand side of (5.57).
We could appeal to similar devices to obtain as well a useful estimate for the second integral in the right-hand side

of (5.57). However, the lack of θ̃ (y) in this integral would imply some tricky arguments. We rather prefer to introduce a
more elegant device to obtain the desired estimate. Denote by I the referred integral. An obvious translation shows that

I =
∫ (

1 + ∣∣D̃u(y)
∣∣)p−2D̃u(y) : (φ̃(y) ⊗ ∇̃θ(y)

)
dy −

∫ (
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) : (φ̃(y + h) ⊗ ∇̃θ(y + h)
)

dy.

By appealing to an obvious decomposition of (φ̃(y + h) ⊗ ∇̃θ(y + h)) − (φ̃(y) ⊗ ∇̃θ(y)), it readily follows that

|I| � c|h|‖∇̃θ‖C1

(
1 + ∥∥(̃∇u)

∥∥
p

)p−1(‖φ̃‖p + ‖∇φ̃‖p
)
.

Hence ∣∣∣∣ ∫ ((
1 + ∣∣D̃u(y)

∣∣)p−2D̃u(y) − (
1 + ∣∣D̃u(y − h)

∣∣)p−2D̃u(y − h)
) : (φ̃ ⊗ ∇̃θ)dy

∣∣∣∣ � C |h|(1 + ‖∇u‖p
)p−1‖∇φ̃‖p . (5.59)

By appealing to Eqs. (5.57), (5.58) and (5.59) one proves (5.55). �
Next, by appealing to an obvious decomposition of the θφ terms, one shows that∣∣∣∣ ∫ f̃ · ((̃θφ)(y + h) − (̃θφ)(y)

)
dy

∣∣∣∣ � C |h|‖ f ‖p′ ‖∇φ̃‖p . (5.60)

The following result follows from (5.44), (5.55) and (5.60).
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Lemma 5.9. Given ε0 > 0 there is a(ε0) > 0 (independent of the point x0) such that for a � a(ε0), one has∣∣∣∣ ∫ ∇[(
π̃ (y) − π̃ (y − h)

)
θ̃

] · φ̃ dy

∣∣∣∣ � c Ã1‖∇φ̃‖2 + ε0
∥∥(

π̃ (y) − π̃ (y − h)
)
θ̃
∥∥

2‖∇φ̃‖2

+ C |h|(1 + ‖∇u‖p−1
p + ‖π‖p′ + ‖ f ‖p′

)‖∇φ̃‖p, (5.61)

for each φ̃ ∈ C2
0(Q a).

The following theorem follows from the above estimates.

Theorem 5.10. For sufficiently small positive values of a (which are independent of the particular point x0) one has∥∥(
π̃ (y) − π̃ (y − h)

)
θ̃
∥∥

2 � c Ã1 + C |h|(1 + ‖∇u‖p−1
p + ‖π‖p′ + ‖ f ‖p′

)
. (5.62)

Proof. Eq. (5.61) shows that ∇[(π̃ (y)− π̃ (y −h))θ̃] ∈ W −1,2(Q a) and that the corresponding norm is bounded by the right-
hand side of Eq. (5.63) below. A main point here is that θ̃ has compact support in Ja . To fix ideas the reader may assume,
once and for all, that

supp θ̃ ⊂ Q a
2
,

and that translation amplitudes satisfies |h| < a
2 . Next, by appealing to Lemma 3.1 (see also Appendix B), one shows that∥∥(

π̃ (y) − π̃ (y − h)
)
θ̃
∥∥

2 � ε0
∥∥(

π̃ (y) − π̃ (y − h)
)
θ̃
∥∥

2 + c Ã1 + C |h|(1 + ‖∇u‖p−1
p + ‖π‖p′ + ‖ f ‖p′

)
. (5.63)

This proves (5.62). �
From Eqs. (5.36), (5.37) and (5.62) it follows that

|h|−2 Ã1 � C |h|−1
∥∥̃u(y) − ũ(y − h)

∥∥
2,Q a

+ |h|−1‖ f ‖p′
(∫ ∣∣∂sũ(y) − ∂sũ(y − h)

∣∣p
(θ̃ )2(y)dy

) 1
p

+ C .

From the above estimate we get

Theorem 5.11. The following estimate holds:

|h|−2
∫ (

1 + ∣∣D̃u(y)
∣∣ + ∣∣D̃u(y − h)

∣∣)p−2∣∣D̃u(y) − D̃u(y − h)
∣∣2

θ̃ 2(y)dy

� C
∥∥∂sũ(y)

∥∥
2,Q a

+ C |h|−1‖ f ‖p′
(∫ ∣∣∂sũ(y) − ∂sũ(y − h)

∣∣p
(θ̃ )2(y)dy

) 1
p

+ C . (5.64)

Remark 5.2. It is worth noting that the particular features of the problem under hands require a special care, and some
new device, in order to apply the translation’s method here. On the other hand, going on with the explicit expressions of
the differential quotients would be detrimental to the reader, since the main ideas would stay in hiding among intricate
expressions. On the other hand, the work already done by appealing to the differential quotients technique is largely suf-
ficient to allow the interested reader to carry on the proofs by this technique. We also refer to [7], where this technique
is continuously applied. The above situation leads us to come to a compromise: From now on, we replace the differential
quotients by the corresponding derivatives.

For convenience, we define the non-negative quantity Ã by

Ã2 =
∫ (

1 + 2
∣∣(D̃u)(y)

∣∣)p−2∣∣(∂sD̃u)(y)
∣∣2

(θ̃)2(y)dy. (5.65)

By taking into account (5.64) and the above remark, we may write

Ã2 � C
∥∥∂sũ(y)

∥∥
2,Q a

+ C‖ f ‖p′
(∫ ∣∣∂2

ssũ(y)
∣∣p

(θ̃ )2(y)dy

) 1
p

+ C . (5.66)

Eqs. (5.41), (5.42), (5.43), and (5.62) show the following result.
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Theorem 5.12. The following estimates hold:∥∥(∇∗D̃u)θ̃
∥∥p

p � C Ã p, (5.67)∥∥(∇∗D̃u)θ̃
∥∥λ(q)

λ(q)
� c

(
1 + ‖D̃u‖

(2−p)λ(q)
2

q
)

Ãλ(q), (5.68)∥∥(∇∗D̃u)θ̃
∥∥r(q)

r(q)
� c

(
1 + ‖D̃u‖

(2−p)r(q)
2

q
2

)
Ãr(q), (5.69)

and ∥∥(∇∗π̃ )θ̃
∥∥2

2 � C
(
1 + ‖ f ‖2

p′ + Ã2). (5.70)

Finally (roughly speaking), we prove that the tangential derivatives of the full gradient ∇u can be estimated in terms of
the tangential derivatives of the symmetric gradient Du. See Remark 3.1 in reference [7].

We start by the following auxiliary result, where the bounded open set D has a “Lipschitz” boundary consisting on the
union of two disjoint pieces, S1 and S2, both with not vanishing 2-dimensional measure. The exponent p may be any real
p > 1.

Lemma 5.13. There is a linear continuous map from f̃0 ∈ L p(D) into w̃ ∈ W 1,p(D) such that ∇ · w̃ = f̃0 in D and w̃ = 0 on S1 . In
particular,

‖w̃‖1,p � c‖ f̃0‖p . (5.71)

Proof. Extend the domain D to a fixed domain D̃ “throughout” S2. Then extend f̃0 to D̃ in such a way that the extension
F̃0 has vanishing mean value in D̃ (for instance, F̃0 constant outside D). Then, it is well known that there is W̃0 ∈ W 1,p(D̃)

such that ∇ · W̃0 = F̃0 in D̃ and W̃0 = 0 on ∂ D̃ . For proofs see [29, Chapter III, Section 3], and for quite complete references
see [29, Chapter III, Section 7]. We define w̃ as the restriction of W̃0 to D . �
Theorem 5.14. For each β > 1, one has∥∥θ̃∇∗(∇ũ)

∥∥
β,Q a

� c
∥∥θ̃∇∗(Dũ)

∥∥
β,Q a

+ C, (5.72)

in Q a, for each admissible value of a.

Note that θ̃ can be replaced by any positive power of θ̃ .

Proof. Set

ṽ = θ̃∂sũ,

s = 1,2. From ∇ · u = 0 and from (4.10) it follows that

∇ · ũ = (∂1η)(∂3ũ1) + (∂2η)(∂3ũ2).

Straightforward calculations show that{
(∇ · ṽ)|Q a = f̃0,

ṽ |Λa = 0,
(5.73)

where

f̃0(y) = θ̃
[
(∂1η)(∂s3ũ1) + (∂2η)(∂s3ũ2)

] + R

and ∣∣R(y)
∣∣ � c

(∣∣∇ θ̃ (y)
∣∣ + ∣∣D2η(y)

∣∣)∣∣∇ũ(y)
∣∣.

Hence,

‖ f̃0‖β � ‖∇η‖∞
(‖θ̃∂13ũ‖β + ‖θ̃∂23ũ‖β

) + C . (5.74)

Next we define w̃ as in Lemma 5.13, where D = Q a , D̃ = Ja and S1 = Λa . Set

g̃ = ṽ − w̃.
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One has{
(∇ · g̃)|Q a = 0,

g̃|Λa = 0.
(5.75)

From (5.75) it follows that there is a constant c (independent of the particular g̃) such that

‖̃g‖1,β � c‖D g̃‖β . (5.76)

The proof follows essentially by appealing to a classical result of Nečas. See, for instance, [47, Lemma 1.1 and Proposition 1.1].
By taking into account the definition of g̃ and (5.71), it follows that

‖∇ ṽ‖β � c
(‖D ṽ‖β + ‖ f̃0‖β

)
.

Finally, by taking into account that ṽ = θ̃∂sũ, that∣∣∥∥∇(θ̃∂sũ)
∥∥ − ∥∥θ̃∇(∂sũ)

∥∥∣∣ � C,

that ∣∣∥∥D(θ̃∂sũ)
∥∥ − ∥∥θ̃D(∂sũ)

∥∥∣∣ � C,

and the estimate (5.74), one proves (5.72). Recall that ‖∇η‖∞ � ε0, for arbitrarily small ε0. �
Theorem 5.15. One has

Ã � C
(
1 + ‖ f ‖p′ + ‖∇∗ũ‖

1
2
2,Q a

)
. (5.77)

Proof. From (4.16) it follows that∥∥θ̃∇∗(Dũ)
∥∥

p,Q a
�

∥∥θ̃∇∗(D̃u)
∥∥

p,Q a
+ ε0

∥∥θ̃∇∗(∇ũ)
∥∥

p,Q a
+ C‖∇ũ‖p,Q a .

By applying (5.72) to the second term on the right-hand side of the above inequality, and by choosing ε0 sufficiently small,
we prove that∥∥θ̃∇∗(Dũ)

∥∥
p,Q a

� c
∥∥θ̃∇∗(D̃u)

∥∥
p,Q a

+ C . (5.78)

Next, from (5.66), (5.72) and (5.78), we get

Ã2 � C
(
1 + ‖∇∗ũ‖2,Q a + ‖ f ‖p′

∥∥θ̃∇∗(D̃u)
∥∥

p,Q a

)
.

Finally, by appealing to (5.67), we show that

Ã2 � C
(
1 + ‖∇∗ũ‖2,Q a + ‖ f ‖p′ Ã

)
.

This proves (5.77). �
5.3. Estimates for the “tangential derivatives” in terms of the data

For the reader’s convenience we recall once more that ∇∗ denotes the gradient with respect to the variables y j , j = 1,2.
Hence

∣∣∇∗(∇̃u)(y)
∣∣2 =

∑
j=1,2

3∑
i,k=1

(
∂ j(∇̃u)ik

)2
,

∣∣∇∗(D̃u)(y)
∣∣2 =

∑
j=1,2

3∑
i,k=1

(
∂ j(D̃u)ik

)2
,

and ∣∣∇∗π̃ (y)
∣∣2 =

∑
j=1,2

(∂ jπ̃ )2.
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Theorem 5.16. The following estimates hold:∥∥θ̃∇∗(∇̃u)
∥∥

p,Q a
� C

(
1 + ‖ f ‖p′ + ‖∇∗ũ‖

1
2
2,Q a

)
, (5.79)∥∥θ̃∇∗(∇̃u)

∥∥
λ(q),Q a

� C
(
1 + ‖Du‖

2−p
2

q
)(

1 + ‖ f ‖p′ + ‖∇∗ũ‖
1
2
2,Q a

)
, (5.80)∥∥θ̃∇∗(∇̃u)

∥∥
r(q),Q a

� C
(
1 + ‖Du‖

2−p
2

q
2

)(
1 + ‖ f ‖p′ + ‖∇∗ũ‖

1
2
2,Q a

)
, (5.81)

and

‖θ̃∇∗π̃‖2,Q a � C
(
1 + ‖ f ‖p′ + ‖∇∗ũ‖

1
2
2,Q a

)
. (5.82)

Proof. From Eqs. (5.72) and (5.67) (together with (4.16) and related devices already explained), and (5.77), we show
that (5.79) holds. We also appeal here to (4.14). Similarly, by appealing to (5.68) and (5.69), one proves (5.80) and (5.81).
Finally, from Eqs. (5.70) and (5.77) one shows (5.82). �
Remarks.

– Note that we may replace the norms ‖∇̃u‖p , ‖π̃‖p′ and ‖ f̃ ‖p′ , in Q a, by the norms ‖∇u‖p , ‖π‖p′ and ‖ f ‖p′ in Ωa ,
hence by these last norms in the whole of Ω .

– The constants C depend on the C2-norms of η and θ in Q a . However the C2-norm of η is bounded from above on Γ ,
hence is independent of the particular point x0. On the other hand the particular truncation function θ may be fixed
once and for all in our proofs as a regular function equal to 1 for |x′| � a

2 and with compact support inside Ia . This
shows that the dependence of the constants C on θ is just a dependence on a.

– Whenever we appeal to a “sufficiently small” ε0, recall (4.8), a smaller, positive, upper bound on the values of the
parameter a must be assumed. However this situation happens a finite number of times. Hence a strictly positive lower
bound for a exists. Further, as already shown, this value does not depend on the point x0.

6. The linear system for the normal derivatives of the tangential components of the velocity

We set

ξ(x) = ∂2
33u(x),

ξ ′(x) = (
ξ1(x), ξ2(x)

)
,

and

M(x) = ∣∣Du(x)
∣∣.

Note that derivatives are with respect to the x-variables. Due to (4.8), we may replace (on “right-hand sides” of estimates)
derivatives ∂kη, for k = 1,2 simply by ε0. Recall that ∂3η = 0. In the same line, cε0 and ε2

0 can be replaced by ε0.
We will use without a particular warning that

∂3 g̃ = ∂̃3 g. (6.1)

Lemma 6.1. One has a.e. in Q a,

|̃ξ3| �
∣∣∇∗(̃∇u)

∣∣ + ε0|ξ̃ ′|. (6.2)

Proof. From ∇ · u = 0 it follows that

ξ̃3 = −∂3(∂̃1u1 + ∂̃2u2). (6.3)

On the other hand, from (4.10),

∂3(∂̃mul) = ∂m∂̃3ul − (∂mη)∂3(∂̃3ul). (6.4)

Hence, for m, l �= 3,

|∂3∂̃mul| �
∣∣∇∗ (̃∇u)

∣∣ + ε0|ξ̃ ′|.
By taking into account (6.3), the thesis follows. �
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Lemma 6.2. One has a.e. in Q a,∣∣D̃2∗u(y)
∣∣ �

∣∣∇∗ (̃∇u)
∣∣ + ε0|ξ̃ ′|. (6.5)

Proof. From (4.10)

T (∂ j∂kul) = ∂k(∂̃ jul) − (∂kη)∂3(∂̃ jul).

By appealing to the above estimates the thesis follows easily. Note that if j = k = l = 3 the result follows from (6.2). �
Straightforward calculations show that

∂k
((

1 + |Du|)p−2Du
) = (

1 + |Du|)p−2
∂kDu + (p − 2)

(
1 + |Du|)p−3|Du|−1(Du · ∂kDu)Du. (6.6)

By appealing to (6.6), the jth equation (2.1) may be written in the form

−(
1 + |Du|)p−2

3∑
k=1

∂2
kku j − 2(p − 2)

(
1 + |Du|)p−3|Du|−1

3∑
l,m,k=1

DlmD jk∂
2
mkul + 2∂ jπ = 2 f j, (6.7)

where Di j = (Du)i j . Let us write the first two equations (6.7), j = 1,2, as follows

(
1 + |Du|)p−2

∂2
33u j + 2(p − 2)

(
1 + |Du|)p−3|Du|−1D j3

2∑
l=1

Dl3∂
2
33ul = F j(x) + 2∂ jπ − 2 f j, (6.8)

where the F j(x), j �= 3, are given by

F j(x) := −(
1 + |Du|)p−2

2∑
k=1

∂2
kku j − 2(p − 2)

(
1 + |Du|)p−3|Du|−1

{
D33D j3∂

2
33u3 +

3∑
l,m,k=1

(m,k)�=(3,3)

DlmD jk∂
2
mkul

}
. (6.9)

In the sequel, Eqs. (6.8), j = 1,2, will be treated as a 2 × 2 linear system in the unknowns ∂2
33u j , j �= 3. Note that, with an

obviously simplified notation, the measurable functions F j satisfy∣∣F j(x)
∣∣ � c

(
1 + |Du|)p−2∣∣D2∗u(x)

∣∣, (6.10)

a.e. in Ωa .
Hence, from (6.5) it follows that

|̃F j | � C(1 + M̃)p−2(∣∣∇∗ (̃∇u)
∣∣ + ε0|ξ̃ ′|) � C(1 + M̃)

p−2
2

∣∣∇∗ (̃∇u)
∣∣ + ε0C(1 + M̃)p−2|ξ̃ ′|. (6.11)

Next we consider the 2 × 2 linear system (6.8) in terms of the y variables, i.e., the system

(1 + M̃)p−2ξ̃ j − 2(2 − p)(1 + M̃)p−3M̃−1D̃ j3

2∑
l=1

D̃l3ξ̃l = F̃ j + ∂̃ jπ − f̃ j, (6.12)

and we show that this system can be point-wisely solved for the unknowns ξ̃ j , j = 1,2, for almost all y ∈ Q a
2

. The elements

ã jl of the matrix system Ã are given by

ã jl = (1 + M̃)p−2δ jl + 2(p − 2)(1 + M̃)p−3M̃−1D̃l3D̃ j3,

for j, l �= 3. Note that ã jl = ãlj . One easily shows that

n−1∑
j,l=1

ã jlλ jλl = (1 + M̃)p−2|λ|2 − 2(2 − p)(1 + M̃)p−3M̃−1[(D̃u) · λ]2
3.

In particular

2∑
j,l=1

ã jlλ jλl � 2

(
p − 3

2

)(
1 + |D̃u|)p−2|λ|2. (6.13)

Hence the following result holds.
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Lemma 6.3. If p > 3
2 the matrix Ã(y) is positive definite for almost all y ∈ Ωa. More precisely

det Ã �
[

2

(
p − 3

2

)(
1 + |D̃u|)p−2

]2

. (6.14)

This lemma allows the following estimate.

Lemma 6.4. One has a.e. in Q a,

|̃ξ | � C
∣∣∇∗(̃∇u)

∣∣ + C(1 + M̃)2−p(|∇̃∗π | + |̃ f |). (6.15)

Proof. From (6.12), i.e. from

2∑
l=1

ã jl̃ξl = F̃ j + ∂̃ jπ − f̃ j, (6.16)

together with (6.14), it follows that

2∑
l, j=1

ã jl̃ξl̃ξ j =
2∑

j=1

( F̃ j + 2∂̃ jπ − 2 f̃ j )̃ξ j (6.17)

holds. Consequently

(1 + M̃)p−2 |̃ξ ′| � | F̃ j + ∂̃ jπ − f̃ j |, (6.18)

a.e. in Q a . By appealing to (6.11) we show that

(1 + M̃)p−2 |̃ξ ′| � C(1 + M̃)p−2
∣∣∇∗(̃∇u)

∣∣ + ε0C(1 + M̃)p−2|ξ̃ ′| + c|∇̃∗π | + c|̃ f |. (6.19)

Hence (6.15) holds. We also appeal here to (6.2). �
Corollary 6.1. For any admissible positive a one has in Q a,

‖̃ξ‖r(q) � C
∥∥∇∗(̃∇u)

∥∥
r(q)

+ C
(
1 + ‖Du‖2−p

q
)(‖∇̃∗π‖2 + ‖ f̃ ‖2

)
. (6.20)

In particular, for j = 1,2,

‖∂3∂̃3u j‖r(q),Q a
2

� C
(
1 + ‖Du‖2−p

q,Q a

)(
1 + ‖∇∗ũ‖

1
2
2,Q a

+ ‖ f ‖p′
)
. (6.21)

Proof. Since∥∥(1 + M̃)2−p∇̃∗π
∥∥

r(q)
� ‖1 + M̃‖2−p

q ‖∇̃∗π‖2,

the estimate (6.20) follows easily from (6.15).
Next, write (6.20) in Q a

2
and estimate the quantities ‖∇∗ (̃∇u)‖r(q),Q a

2
and ‖∇̃∗π‖2,Q a

2
by appealing to (5.81) and (5.82).

Take into account that θ̃ is non-negative and equal to 1 on Q a
2

. It readily follows (6.21). We have used that 0 � 2−p
2 �

2 − p. �
Further, from (5.80), a similar argument shows that

‖∇∗∇̃u‖λ(q),Q a
2

� C
(
1 + ‖Du‖

2−p
2

q,Q a

)(
1 + ‖ f ‖p′ + ‖∇∗ũ‖

1
2
2,Q a

)
. (6.22)

7. Proof of Theorem 2.1

We start by stating the following particular case of more general results proved by Troisi in reference [58], to which we
refer for details.
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Proposition 7.1. Let Q 0 be an open, bounded, “sufficiently regular” set, and let v ∈ W 1,1(Q 0). Assume that

∂k v ∈ L pk (Q 0), for k = 1,2,3, (7.1)

where

1

p
:= 1

3

3∑
k=1

1

pk
− 1

3
. (7.2)

Then v ∈ L p(Q 0) and

‖v‖p � c
3∏

k=1

‖∂k v‖
1
3
pk

+ c‖v‖p . (7.3)

Obviously, we may replace ‖v‖p by any other Ls norm, s � 1.
An essential point in order to get the limit exponent l in Theorem 2.2 is that the constant c on the right-hand side

of (7.3) does not depend on the values of the exponents pk used in the sequel. This property holds provided that p lies
bounded away from 3. This follows essentially from Eq. (1.15) in the above reference (note, however, that all the values pk
used in the sequel lie bounded away from 3).

Further, note that the exponent Q(q), see (2.3), satisfies

1

Q(q)
= 1

3

(
2

λ(q)
+ 1

r(q)
− 1

)
.

Proof of Theorem 2.1. We apply Troisi’s Theorem, in Q a
2

, to the single components of ∇̃u. By appealing to (6.21) and
to (6.22) we show that

‖∇̃u‖Q(q),Q a
2

� C
(
1 + ‖∇∗ũ‖

1
2
2,Q a

+ ‖ f ‖p′
)(

1 + ‖Du‖
2(2−p)

3
q,Q a

)
. (7.4)

From (7.4), by passing from the y to the x variables, it follows that,

‖∇u‖Q(q),Ω a
2

� C
(
1 + ‖∇u‖

1
2
2,Ωa

+ ‖ f ‖p′
)(

1 + ‖∇u‖
2(2−p)

3
q,Ωa

)
. (7.5)

Clearly, (7.4) also holds if Q a is contained in Ω . Actually much stronger interior estimates hold (obtained in a much easier
way).

By setting q = p we get

‖∇u‖ 6p
8−3p ,Ω a

2

� C
(
1 + ‖∇u‖

1
2
2,Ωa

+ ‖ f ‖p′
)
. (7.6)

Since

6p

8 − 3p
� 2,

for p � 4
3 , it readily follows (by a standard argument) that ‖∇u‖2,Ω � C . Hence, we may drop the ‖∇u‖

1
2
2,Ωa

term from the
right-hand side of (7.5). This leads to

‖∇u‖Q(q),Ω a
2

� C
(
1 + ‖ f ‖p′

)(
1 + ‖∇u‖

2(2−p)
3

q,Ωa

)
. (7.7)

It readily follows that (2.7) holds, where C depends on the (fixed) number N of sets of type Ω a
2

(plus the number of spheres
contained in the interior of Ω) sufficient to cover Ω .

In a similar way, from (5.81) and (6.21), we show (2.8). �
Further, from (5.82), it follows that

‖∇∗π̃‖2,Q a
2

� C
(
1 + ‖ f ‖p′

)
. (7.8)

On the other hand, by writing Eq. (6.7) for j = 3 we obtain an explicit expression for ∂3π . In particular, it follows that

|∂3π | � c
(
1 + ∣∣M(x)

∣∣)p−2∣∣D2u(x)
∣∣ + ∣∣ f (x)

∣∣. (7.9)
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Since p < 2, |∂3π | � C |D2u(x)| + | f (x)|. By transforming the inequality (7.9) from the x to the y variables one gets (for
instance, for y ∈ Q a

2
)

∣∣∂3π̃ (y)
∣∣ � C

∣∣(̃D2u
)
(y)

∣∣ + ∣∣ f̃ (y)
∣∣. (7.10)

This equation together with (2.8), and (7.8), show that ‖∇π‖r(q),Ω is bounded by the right-hand side of (2.8).

8. The boot-strap argument. Proof of Theorem 2.2

The proof follows that one in reference [4]. Since Du ∈ L p(Ω), it follows from (2.7) that Du ∈ LQ(p)(Ω), where Q(p) =
6p

8−3p . Since this last exponent is greater than p, we may start an induction argument. Recall that our constants C are
independent of the integrability exponents used here.

Define the strictly increasing sequence{q1 = p,

qn+1 = Q(qn).
(8.1)

Note that the exponent q given by (2.4) is the limit q = limn→∞ qn . In particular, q is the fixed point of the map q → Q(q).
From (2.7) it follows that

‖u‖1,qn+1 � C
(
1 + ‖ f ‖p′

)(
1 + ‖u‖

2(2−p)
3

1,qn

)
. (8.2)

With an obvious notation, we write this equation in the form

an+1 � b
(
1 + aα

n

)
.

Note that 0 < α < 1. By arguing as in [5] we prove that

‖u‖1,qn := an < 2
(
b + b

1
1−α

)
,

at least for sufficiently large values of n. Consequently, ‖u‖1,q is bounded by the right-hand side of the above equation. This
shows that

‖u‖1,q � C
(
1 + ‖ f ‖

3
2p−1

p′
)
.

The estimate (2.10) follows. It is worth noting that the boot-strap argument can be avoid, by following [9, Section 6].
Further, the estimate (2.11) follows easily by applying once more the estimate (2.8), now with q = q, and by taking into

account (2.10). Note that r(q) = l. Very similar devices show that ∇π ∈ Ll .

Appendix A

The proof of Theorem 2.3 is done by following the short proof of Theorem 1.1 in reference [9, Section 6]. As in some of
our previous papers, the proof in the presence of the convective term (u · ∇)u follows in a straightforward way from the
corresponding result obtained without such a term. However, with respect to the proof in reference [9], it is worth noting
that in this last reference the constant C , that appears in (2.11), depends only on ‖∇u‖p . Here (see (5.10)) C also depends
on ‖π‖p′ . A fundamental point in the proof given in [9] is that the introduction of the convective term does not change the
energy estimate obtained for ‖∇u‖p . In fact, this estimate is obtained by multiplication by u followed by integration on Ω ,
and the contribution of the convective term here vanishes. Hence, in order to be sure that the proof given in reference [9]
applies here, we have to take into account the dependence of C on ‖π‖p′ . We overcome this obstacle by showing that for
p � 9

5 one has

‖π‖p′ � c‖∇u‖2
p .

This result is sufficient to our purpose, since 9
5 < p0.

In the case of the full Navier–Stokes equations (2.12) one has an additional term (u · ∇)u on the right-hand side of
Eq. (3.11). This leads to an additional term ‖u2‖p′ on the right-hand side of (3.12). If p � 9

5 , this last term is bounded by
c‖∇u‖2

p . Hence, if (u,π) is a weak solution to the full Navier–Stokes equations (2.12), then

‖π‖p′ � c
(‖∇u‖2

p + ‖ f ‖−1,p′ + 1
)
.

The main point here is that, on the right-hand side of the above estimate, one has f and not F = f − (u · ∇)u (see (3.9)).
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Appendix B

Often, in Lemma 3.1, the additional assumption g ∈ Lα is required. We claim that it is sufficient to assume that g is a
distribution in Ω (see also [20] for a similar claim). Nevertheless, for completeness, we show here a different proof of (5.62),
based on the following result.

Proposition B.1. Let p be a scalar field in L2. Then, there is a constant c such that

‖p − p‖ � c‖∇p‖−1, (B.1)

where p is defined by

p = |Ω|−1
∫
Ω

p dx. (B.2)

For an exhaustive proof of the above proposition see the end of Appendix II, p. 1111, in [3] (warning: in this last reference
the symbol p denotes p − p).

Set, for convenience,

ψ(y) = (
π̃ (y) − π̃ (y − h)

)
θ̃ (y).

Clearly π̃ ∈ L2(Ω) ⊂ L p′
(Ω). Hence, by the above proposition,

‖ψ − ψ‖2 � c‖∇ψ‖−1,2.

By appealing to

ψ = 1

|Q a|
∫

π̃ (y)
(
θ̃ (y) − θ̃ (y + h)

)
dy,

the desired estimate follows.
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[25] L. Diening, A. Prohl, M. Růžička, On time-discretizations for generalized Newtonian fluids, in: Birman, et al. (Eds.), Nonlinear Problems in Mathematical
Physics and Related Topics, II, in: Int. Math. Ser., Kluwer Academic/Plenum, New York, 2002.
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[41] J. Málek, J. Nečas, M. Růžička, On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci. 3 (1993) 35–63.
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[46] J. Nečas, Équations aux Dérivées Partielles, Presses de l’Université de Montréal, Montréal, 1965.
[47] C. Parés, Existence, uniqueness and regularity of solutions of the equations of a turbulence model for incompressible fluids, Appl. Anal. 43 (1992)

245–296.
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