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Abstract

In some recent papers we have been pursuing regularity results up to
the boundary, in W 2, l(Ω) spaces for the velocity, and in W 1, l(Ω) spaces
for the pressure, for fluid flows with shear dependent viscosity. To fix
ideas, we assume the classical non-slip boundary condition. From the
mathematical point of view it is appropriate to distinguish between the
shear thickening case, p > 2 , and the shear thinning case, p < 2 , and
between flat-boundaries and smooth, arbitrary, boundaries. The p < 2 ,
non flat boundary case, is still open. The aim of this work is to extend
to smooth boundaries the results proved in reference [9]. This is done
here by appealing to a quite general method, introduced in reference [7],
suitable for considering non-flat boundaries.

AMS subject classification 35J25, 35Q30, 76D03, 76D05.

1 Introduction

The Navier-Stokes system of equations with shear dependent viscosity has been
studied in the last forty years by a great number of researchers, not only in
pure and applied mathematics, but also in engineering, physics and biology. A
typical model of generalized stationary Navier-Stokes system of equations with
shear dependent viscosity is the well known model

(1.1)

 −∇ · T (u, π) + u · ∇u = f,

∇ · u = 0 ,

where T denotes the stress tensor olg

(1.2) T = −π I + νT (u)D u

and
D u =

1
2

(∇u+ ∇uT ) .

The first mathematical studies on the above class of equations go back to O.A.
Ladyzhenskaya in a series of remarkable contributions. See [33], [34], [35] and
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[36]. In references [38] and [39], Chap.2, n.5, J.-L. Lions considers the case in
which D u is replaced by ∇u. However in this case the Stokes principle, see [57]
and [55] page 231, is not satisfied. Such models, an instance of which is (1.1),
were intensively studied in the eighties and nineties by J.Nečas and his school.

Nonlinear shear dependent viscosities are used, in particular, to model prop-
erties of materials. The cases p > 2 and p < 2, see equation (2.1), capture shear
thickening and shear thinning phenomena, respectively. The case p = 3 was
introduced by Smagorinsky, see [56], as a turbulence model. In the sequel, we
concentrate on, and assume that, 1 < p ≤ 2 and (for convenience) that n = 3.

For comments and references, both to modeling and theory, we refer the
reader to [30], [42], [43] and [49]. Let us give some references (far from being
complete) on papers by other authors, concerning existence of solutions, inte-
rior regularity results, and mathematical literature on related physical problems.
The first paper treating the unsteady case, for p < 2, is [40]. In [51], [52] regu-
larity results with periodic boundary conditions are proved. Interior regularity
results are proved, for instance, in [27], [28], [44], [54] and [59]. In references
[1], [24], [50], [51], [52] and [53] the authors consider electrorheological fluids.
Fluids with energy transfer, thermal viscous dependence, and related topics are
treated in [17], [18], [19], [20], [21] and [22]. For particularly interesting results
in two dimensions see [31], [32] and references therein. Numerical results may
be found, for instance, in [12], [25], [26] and [48]. For anisotropic problems see,
for instance, [2] and [13].

In a series of recent papers, see also [41], we introduced a general scheme
suitable to solving the problem of the W 2, q(Ω)−regularity up to the boundary,
for p-fluid flows, under typical boundary conditions. We began this series of
papers by considering the half space case, see [4], and the case of a cubic domain,
see [5] and [6]. In this last case the interesting boundary condition is given on
two opposite faces, and space-periodicity in assumed in the other two directions.
These two frameworks avoid the need of appealing to localization techniques and
to changes of variables (in order to flatten the boundary). It is worth noting
that when p 6= 2 the extension of regularity results from flat boundaries to
arbitrary, regular, boundaries presents many new unusual obstacles, compared
to the (still non trivial) classical case p = 2.

Since we have dedicated a certain number of papers to the above subject,
the following overview could help the interested reader. In [4], we establish
the main lines to treat problems in the flat boundary case. More precisely, we
consider the slip and the non-slip boundary value problem in the half space Rn+ ,
and p > 2. In reference [5] we replace, for simplicity, the half-space Rn+ by
the above three dimensional cube and consider the non-slip boundary condition.
Further, we introduce the convective term and the evolution problem.

In reference [6] we consider the p < 2 case. Here, an idea borrowed from
the Lemma 6 in reference [24], is crucial (see the Lemma 3.2, [6]). Further, by
introducing a new device (see [5], Remark 5.1), we drop the −∆u term from
the equations.

It is worth noting that the addition of a −∆u term on the left hand side of
the equations simplify the proofs. Actually, it allows much stronger regularity
results, specially in the p < 2 . This case, much easier to handle, is more in
accordance with the physical problems. Actually, in [8], it is shown that weak
solutions belong to W 1, q(Ω) , for any finite q , provided that an x -dependent
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growth condition holds, p = p(x) ≤ 2. Convexity-type assumptions are not
assumed. Under more classic assumptions, see for instance [16], one shows that
u ∈ W 2, 2(Ω) .

To finish this overview on our recent contributions, we refer to [10], where
the previous results on the shear thickening case are improved.

A main open problem remains the extension of the above types of results to
non-flat boundaries (in this context, see also the pioneering paper [41]). This
requires really new ideas, since the presence of the D u term together with
p 6= 2 , makes the boundary value problem particularly difficult. We solve this
problem in reference [7], where p > 2 .

In the mean-time, in references [14] and [15], F. Crispo has extended the
p < 2 results to cylindrical domains, by appealing to cylindrical coordinates.
This change of coordinates requires particular care, due to the non linear p-
term. Further, L.C. Berselli, see [11], improves the argument followed in [5], by
replacing the classical (isotropic) Sobolev embedding theorems by anisotropic
embedding theorems. This very fruitful idea is used by us below (in section 7).
Next, in reference [9], we improve previous results shown for the shear thinning
case. In particular, we obtain a better value for the parameter p0 in the Navier-
Stokes problem (see bellow) by replacing the device borrowed from [24], by a
different idea. It remains the open problem of the extension, from flat to regular
boundaries, of the sharp results proved in [9]. This is the aim of this paper.

For convenience, we call ”the Stokes problem” the problem without the
convective term (u · ∇)u , and ”the Navier-Stokes problem” the problem with
the above term included. Concerning our approach to W 2, l(Ω) regularity results
up to the boundary, the really new points mostly concern the stationary Stokes
problem. In fact, in our proofs, the inclusion of the convective term, and the
consideration of the evolution problem, are reduced in a very simple way to the
stationary Stokes problem. It goes without saying that we do not claim that it
is not possible to obtain better results by different methods. In our approach,
a) The Stokes evolution problem can be easily reduced to the stationary Stokes
problem, with the same range of admissible values of p . b) In the stationary
case, the presence of the convective term requires an assumption of the type
p > p0 for some p0 < 2 , see Theorem 2.3. Under this assumption the regularity
results for the Stokes and the Navier-Stokes stationary problems, coincide. c)
For the Navier-Stokes evolution problem we need a condition p > p1 , for some
p1 > 2 . Hence the shear thinning case is excluded, except for sufficiently small
initial data. In this last case we believe that it should be not difficult to prove
the existence of a global, regular, solution.

2 Main results

In the sequel we consider the following very basic model of generalized Stokes
stationary problem, where νT (u) = (1 + |D u|)p−2 :

(2.1)

{
−∇ · ( (1 + |D u|)p−2D u ) +∇π = f,

∇ · u = 0 , in Ω ,
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under the non-slip boundary condition

(2.2) u|Γ = 0 .

The domain Ω is a bounded, connected, open set in R3, locally situated on one
side of its boundary Γ, a manifold of class C2.

In the sequel we use the following exponents

(2.3) r(q) =
2 q

2 (2− p) + q
, λ(q) =

2 q
2− p+ q

, Q(q) =
6 q

8− 4 p+ q
,

and also

(2.4) q = 4 p− 2 , l =
4 p− 2
p+ 1

.

Theorem 2.1. Assume that f ∈ Lp
′
(Ω) and let u ∈ Vp be a solution to the

problem (2.1), (2.2), where 3
2 < p < 2. Assume that

(2.5) D u ∈ Lq(Ω) ,

for some q satisfying
p ≤ q ≤ 6 .

Then

(2.6) u ∈ W 1,Q(r)(Ω) ∩W 2, r(q)(Ω) , ∇π ∈ Lr(q)(Ω) .

Further,

(2.7) ‖∇u‖Q(q),Ω ≤ C (1 + ‖f‖p′ )
(

1 + ‖∇u ‖
2 (2− p)

3
q,Ω

)
,

and

(2.8) ‖D2 u‖r(q),Ω + ‖∇π‖r(q),Ω ≤ C (1 + ‖f‖p′ )
(

1 + ‖∇u ‖
2− p

2
q,Ω

)
.

Note that the assumption (2.5) holds for q = p . This furnishes a first
regularity theorem (statement left to the reader). Furthermore, the Theorem
2.1 allows a bootstrap argument, similar to that introduced in references [4]
and [5]. This leads to the following improvement, and extension to general
boundaries, of the Theorem 1.4 in [6].

Theorem 2.2. Assume that f ∈ Lp
′
(Ω) and let u ∈ Vp, see (3.2), be a solution

to the problem (2.1), (2.2), where 3
2 < p < 2. Then (see (2.4))

(2.9) u ∈ W 2, l(Ω) ∩W 1, q(Ω) , ∇π ∈ Ll(Ω) .

Moreover,

(2.10) ‖u‖1, q ≤ C ( 1 + ‖f‖
3

2 p− 1
p′ ) .

and

(2.11) ‖u‖2, l ≤ C ( ‖f‖p′ + |f‖
5− p
2 p− 1
p′ ) .
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Concerning the full Navier-Stokes system

(2.12)


−∇ ·

(
(µ+ |D u|)p−2D u

)
+ (u · ∇)u+ ∇π = f,

∇ · u = 0 ,

one has the following result.

Theorem 2.3. Let u be a solution to the full Navier-Stokes equations (2.12)
under the boundary condition (2.2). Set

(2.13) p0 =
20
11
.

Then, under the assumption p > p0, (2.9) holds.

Besides the extension to general boundaries, the above result improves the
lower bound p0 = = 15

8 obtained in [6] and the lower bound p0 = 7+
√

35
7 ,

obtained in [11]. It coincides with the value p0 that was reached in reference
[9].

It is worth noting that the boundedness of Ω is not essential here. In fact,
our proof is done locally, i.e., in ”small” neighborhoods of each point x0 ∈ Γ.
Consequently, the results hold, in particular, in any bounded subset of Ω, since
boundedness is used only in order to work with a compact boundary (just to
guarantee that local parameters associated with the boundary Γ have uniform
bounds).

3 Notation. Weak Solutions

In general we set

(3.1) Tsym =
1
2

(T + TT ) ,

where T is a generic tensor field and TT is it transpose. In particular, D u =
(∇u)sym.

The symbol ‖ . ‖p denotes the canonical norm in Lp(Ω). Further, ‖ . ‖ = ‖ . ‖2.
We denote by W k,p(Ω), k a positive integer and 1 < p < ∞, the usual Sobolev
space of order k, byW 1,p

0 (Ω) the closure inW 1,p(Ω) of C∞0 (Ω) and byW−1,p′(Ω)
the strong dual of W 1,p

0 (Ω), where p′ = p/(p−1). The canonical norms in these
spaces are denoted by ‖ . ‖k,p. Lp#(Ω) denotes the subspace of Lp consisting of
functions with vanishing mean value.

In notation concerning duality pairings and norms, we will not distinguish
between scalar and vector fields. Very often we also omit from the notation
the symbols indicating the domains Ω or Γ, provided that the meaning remains
clear.

We set

L
p(Ω0) = [Lp(Ω0)]3, W

k,p(Ω0) = [W k,p(Ω0)]3 , W
1,p
0 (Ω0) = [W 1,p

0 (Ω0)]3 ,

for any open subset Ω0 of R3.
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We set

(3.2) Vp =
{
v ∈W1,p(Ω) : (∇ · v)|Ω = 0 ; v|Γ = 0

}
.

Note that, by appealing to inequalities of Korn’s type, one shows that there is
a positive constant c such that

(3.3) ‖∇v‖p + ‖v‖p ≤ c ‖Dv‖p

for each v ∈ Vp. Hence the two quantities above are equivalent norms in Vp.
Actually, ‖D v‖p is a norm in W1,p

0 .
We denote by c, c, c1, c2, etc., positive constants that depend, at most, on

Ω, and p. The dependence of the constants c on p is not crucial provided that
1 < p0 ≤ p ≤ p1 < ∞. The same symbol c may denote different constants,
even in the same equation.
Definition.We say that a pair (u, π) is a weak solution of problem (2.1), (2.2)
if it belongs to W1,p

0 (Ω)× Lp
′

#(Ω) , and if it satisfies

(3.4)

∫
Ω

(1 + |Du|)p−2Du · Dφdx

−
∫

Ω
π (∇ · φ) dx+

∫
Ω

(∇ · u)ψ dx =
∫

Ω
f · φdx .

for each (φ, ψ) ∈W1,p
0 (Ω)× Lp

′

#(Ω).

Note that (1 + b)p−2 b ≤ 2p−1(1 + bp−1) , for b ≥ 0 .
Since a solution u of (3.4) necessarily satisfies∫

Ω

∇ · u dx = 0 ,

it readily follows that (3.4) holds for each (φ, ψ) ∈W1,p
0 (Ω)× Lp′(Ω).

Existence and uniqueness of the above solution is well known.

By replacing v by u and ψ by π in equation (3.4) one gets

(3.5)
∫

Ω

(1 + |Du|)p−2 |Du|2 dx ≤< f, u > ,

where the symbols < ·, · > denote a duality pairing. Hence, by setting A =
{x : |D u| ≤ 1, } , B = {x : |D u| > 1 } , one shows that∫

Ω

(1 + |Du|)p−2 |Du|2 dx ≥ 2p− 2

∫
A

|Du|2 dx+ 2p− 2

∫
B

|Du|p dx .

By appealing to the obvious inequality |D u|p ≤ 1 + |D u|2 , one shows that∫
Ω

(1 + |Du|)p−2 |Du|2 dx ≥ 2p− 2

(∫
Ω

|Du|p dx− |Ω|
)
.

It follows that

(3.6) ‖D u‖pp ≤ 22− p < f, u > + |Ω| .
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Hence

(3.7) ‖∇u‖p−1
p ≤ c (‖f‖−1,p′ + 1 )

where, in general, q′ denotes the dual exponent of q, namely

(3.8) q′ =
q

q − 1
.

Remark 3.1. Since ∫
Ω

(u · ∇)u · u dx = 0 ,

it readily follows that all the above estimates hold for weak solutions u to the
complete Navier-Stokes equations

(3.9)


−∇ ·

(
(µ+ |D u|)p−2D u

)
+ ∇π = F,

∇ · u = 0 ,

where
F = f − (u · ∇)u .

This means, in particular, that (3.7) holds with the external force f not replaced
by F .

The following result, basically due to Nečas (see [45]), is well known.

Lemma 3.1. If a distribution g is such that ∇ g ∈W−1,α(Ω) then g ∈ Lα(Ω)
and

(3.10) ‖g‖Lα# ≤ c ‖∇ g‖−1,α ,

where Lα# = Lα/R.

By setting in (3.4) ψ = 0 and by using test-functions φ ∈ C∞0 (Ω) one gets

(3.11) ∇π = −∇ ·
[

(1 + |Du|)p−2Du
]

+ f .

By appealing to (3.10) we prove that

(3.12) ‖π‖p′ ≤ c (‖f‖−1, p′ + 1) .

For convenience we fix π by assuming that its mean value in Ω vanishes.

4 The change of variables

In order to reduce our problem, by a suitable change of variables, to a problem
involving a flat boundary, we need to consider functions with a sufficiently small
support.

Let x0 ∈ Γ be given and let Π be the tangent plane to Γ at x0. We assume
that the axes of xi, i = 1, 2, 3, are such that the origin coincides with x0 and
the x3 axis has the direction of the inward normal to Γ at x0. Hence the axes of
xi, i = 1, 2, lie in the plane Π. We may use this particular system of coordinates
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since the analytical expressions that appear on the left hand side of (3.4) are
invariant under orthogonal transformations.

We assume that Γ is a manifold of class C2. Let x0 ∈ Γ be given and let
(x′, x3) = (x1, x2, x3), be the above system of coordinates. We assume that
there is a positive real ā and a real function x3 = η(x′), of class C2 defined on
the sphere {x′ : |x′| < ā} , such that: the points x for which x3 = η(x′) belong
to Γ; and the points x for which η(x′) < x3 < ā + η(x′) belong to Ω; the
points x for which −ā + η(x′) < x3 < η(x′) belong to R3 − Ω. Without loss
of generality, we assume that ā ≤ 1. In principle ā may depend on the point
x0 ∈ Γ . However, since Γ is regular and bounded, the greatest lower bound
ā of the values ā(x0) is positive. Note that if we do not assume that Ω is
bounded then the above greatest lower bound could be equal to zero. In this
case our results hold on any bounded subset of Ω̄ .

The positive values of a for which a ≤ ā are called admissible. For each
admissible a define

(4.1)
Ia = {x : |x′| < a, −a+ η(x′) < x3 < a+ η(x′)} ,
Ωa = {x ∈ Ia : η(x′) < x3} ,
Γa = {x ∈ Ia : x3 = η(x′)} .

Clearly Ωa = Ω ∩ Ia and Γa = Γ ∩ Ia.
Actually, we extend the function η(x′) to the whole of Ωa by setting η(x′, x3) =

η(x′). Nevertheless, since η is independent of x3, we use the notation η(x′).
It is worth noting that along the course of our proof (more than once, but

a finite number of times) we need to impose additional smallness assumptions
on the positive parameter ā , i.e., on the admissible values of a . Actually, each
time we appeal to (4.8) we are just imposing to the admissible values of a a
smaller positive upper bound.

Next we introduce the change of variables y = T x given by

(4.2) (y1, y2, y3) = (x1, x2, x3 − η(x′)), (x1, x2, x3) = (y1, y2, y3 + η(y′)) ,

and set

(4.3)
Ja = {y : |y′| < a, −a < y3 < a} ,
Qa = {y ∈ Ja : 0 < y3} ,
Λa = {y ∈ Ja : y3 = 0} , .

The map T is a C2 diffeomorphism of Ia onto Ja, that maps Ωa onto Qa and
Γa onto Λa. Note that the Jacobian determinant of the map T is equal to 1.

We define functions g̃ by setting g̃(y) = g(x) or, more precisely, by

(4.4) g̃(y) = g(T−1(y)),

where g denotes here an arbitrary scalar or vector field. As a notation rule, g =
g(x) and g̃ = g̃(y). Moreover, partial derivatives and differential operators when
applied to functions g concern the x variables and when applied to functions
g̃ concern the y variables. We primarily use the notation ∂k g instead of ∂ g

∂ xk
.

Hence

∂k g̃ =
∂ g̃(y)
∂ yk
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and

∂k g =
∂ g(x)
∂ xk

.

Note the distinction between ∇̃f and ∇f̃ . Actually, ∇̃f(y) = (∇xf)(T−1(y))
and (∇f̃)(y) = ∇y[f(T−1(y))].

Since some expressions are quite long, in addition to the ”tilde” notation we
also use the symbol T to denote the map f → f̃ . In other words,

(T f)(y) = f̃(y) .

Vector fields are transformed here coordinate by coordinate (as independent
scalars). More precisely

(4.5) ṽj(y) = vj(x) = vj(y′, y3 + η(y′)) ,

where j = 1, 2, 3. Conversely,

(4.6) vj(x) = ṽj(y) = vj(x′, x3 − η(x′)) .

Given x, if y = T x then y′ = x′. Hence η̃(y) = η(x) = η(x′) = η(y′), moreover
∂ η(x′)
∂ xj

= ∂ η(y′)
∂ yj

, and so on. In the sequel we identify the above functions and
use the sole notation η(y′).

We set
V(Ωa) = {v : v ∈W1,p

0 (Ωa), supp v ⊂ Ia} ,
V(Qa) = {ṽ : ṽ ∈W1,p

0 (Qa), supp ṽ ⊂ Ja} .

Clearly, if a test function φ(x) belongs to V(Ωa) the transformed function φ̃(y)
belongs to V(Qa).

A main point in the sequel is that

(4.7) ∂j η(0) = 0, j = 1, 2 ,

which holds since Π is tangential to Γ at x0. The following trivial, but funda-
mental, result is a consequence of (4.7) together with the continuity of ∇ η over
Γ.

Lemma 4.1. Given a positive ε0 there is an a(ε0) > 0 such that

(4.8) |(∇ η(y′)| < ε0 , for each y′ such that |y′| < a(ε0) .

Moreover, a(ε0) is independent of the point x0.

Note that a(ε0) depends on the C1(Ja) norm of η. Since Γ is compact the
desired independence holds.

In the sequel we express the derivatives with respect to the y variables of
functions φ̃(y) in terms of the transformations of the derivatives of the original
functions φ(x).

Lemma 4.2. One has the following formulas

(4.9) (∂k φ̃)(y) = (∂̃kφ)(y) + (∂k η)(y′) (∂̃3φ)(y) ,

and

(4.10) (∂̃kφ)(y) = (∂k φ̃)(y)− (∂k η)(y′) (∂3 φ̃)(y)

If k = 3 the second terms on the above right hand sides vanish identically.

9



Proof. Since
φ̃(y) = φ(T−1 y)

it follows that

(∂k φ̃)(y) = (∂k φ)(T−1 y) + (∂3 φ)(T−1 y) (∂k η)(y′) =

(∂̃kφ)(y) + (∂k η)(y′) (∂̃3φ)(y) .

Note that ∂3 φ̃ = ∂̃3φ.

From the above Lemma it follows that

(4.11) (∇̃φ)(y) = (∇ φ̃)(y)− (∇ η)(y′)⊗ (∂3 φ̃)(y)

and that

(4.12) (∇̃ · φ)(y) = (∇ · φ̃)(y)− (∇ η)(y′) · (∂3 φ̃)(y) .

Lemma 4.3. Given an ε0 ∈]0, 1[ there is an a(ε0) > 0 such that if a ≤ a(ε0)
then

(4.13) |(∇ φ̃)(y)− (∇̃φ)(y)| ≤ ε0 |(∂̃3 φ)(y)| , ∀ y ∈ Qa .

The same result holds if we replace y by y−h (a tangential translation. See the
next section). Clearly we may replace ∇ by D.

Proof. From (4.9) one shows that the left hand side of (4.13) is bounded by
|∇ η(y′)| |(∂̃3 φ)(y)| . Since ∇η(0) = 0 it follows that |∇η(y′)| ≤ ε0 in a suffi-
ciently small neighborhood of x0.

REMARK. Note that the identity ∇φ(x) = (∇̃φ)(y) together with (4.13)
leads to a ”point wise equivalence” between | ∇φ(x)| , |(∇̃φ)(y)| and |(∇ φ̃)(y)|.
In particular, Lq-norms of these quantities are equivalent.

Next, from (4.9) one gets (point wisely in y) that

∂s (∂k φ̃)− ∂s (∂̃k φ) = (∂s ∂k η) (∂3 φ̃) + (∂k η) (∂s ∂3 φ̃) .

In particular, by appealing to (4.8), one shows that

| | ∂s (∂k φ̃) | − | ∂s (∂̃k φ) | | ≤ c |D2 η| |∂3 φ̃|+ ε0 | ∂s (∂̃3 φ) | ,

point wisely in the y variables. By appealing to the above estimate for k =
1, 2, 3, and to (4.8) with (for instance) ε0 = 1 , one proves the following result:

Lemma 4.4. Let s = 1, 2, 3 be fixed. For a sufficiently small a(ε0) > 0 one
has

(4.14) | ∂s (∇ φ̃) | ≤ 2 | ∂s (∇̃φ) |+ c |D2 η| |∂3 φ̃| , ∀ y ∈ Qa .

The left hand side and the first term in the right hand side may be switched.

Clearly φ may be a vector field since the above result holds for each com-
ponent. In particular, by considering s = 1, 2, one proves the first estimate in
the following lemma.
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Lemma 4.5. For a sufficiently small a(ε0) > 0 one has

(4.15) | ∇∗ (∇ ũ) | ≤ c | ∇∗ (∇̃u) |+ c |D2 η| |∂3 ũ| , ∀ y ∈ Qa .

Moreover,
(4.16)
| ∇∗ (D ũ) | ≤ |∇∗ (D̃ u) |+ c |∇ η| |∇∗ ∂3 ũ|+ c |D2 η| |∂3 ũ| , ∀ y ∈ Qa .

The left hand side and the first term in the right hand side in both estimates
may be switched.

The estimate (4.16) follows since, if we apply the above transformation for-
mulae to ∂s (D ũ) , we get

∂s (D ũ)i, j = ∂s (D̃ u)i, j +
1
2

[ (∂j η) (∂s ∂3 ũi) + (∂i η) (∂s ∂3 ũj) ]+

1
2

[ (∂s ∂j η) (∂3 ũi) + (∂s ∂i η) (∂3 ũj) ] .

By iteration, (4.10) may be extended to higher order derivatives (not used in
the sequel):

T (∂2
jk φ) = ∂2

jk φ̃− (∂k η) ∂2
j3 φ̃

− (∂j η) ∂2
k3 φ̃+ (∂j η) (∂k η) ∂2

3 φ̃− (∂2
jk η) ∂3 φ̃ .

REMARK. We want to emphasize that, basically, our regularity results will
be proved in the following local form. Let x0 and Ωa be as above. If (u, π) ∈
W

1,p(Ωa)×Lp′(Ωa) satisfies (2.1) in the weak sense in Ωa and satisfies (2.2) in
Γa, then the regularity results hold in Ωr for r < a (for instance, for r = a

2 ). We
prove this local result by assuming that a > 0 is sufficiently small. Our final
value of a is not necessarily equal to the initial one. As we proceed through
the proof we may need to consider smaller values of a. However we will show
explicitly that each new (smaller) value of a depends only on an upper bound of
the C2(Ja) norm of η. In particular, a positive lower bound for a, independent
of the point x0, exists since Γ is compact. This leads to the global result in the
whole of Ω.

5 Translations and related properties

In the sequel we deal with translations of hj in the yj-direction, j = 1, 2. For
notational convenience we consider the case j = 1 and set h = h1. We use the
following convention:

y + h = (y1 + h, y2, y3), y′ + h = (y1 + h, y2) .

The amplitude |h| of the translations is always assumed to be smaller than the
distance from the support of φ̃ to the set (∂ Qa)\Λa.

A test-function φ(x) is transformed into a function φ̃(y). Since in the follow-
ing we made translations in the y variables we need to determine (and study the
differential properties) of the test function φh(x) such that (̃φh)(y) = φ̃(y+ h).
This is the aim of this section.
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Lemma 5.1. Let φ(x) ∈ V(Ωa). Define φh by

(5.1) φh(x) = φ(x1 + h, x2, x3 − η(x′) + η(x′ + h)) .

Then

(5.2) φ̃h(y) = φ̃(y + h) .

The verification is left to the reader.
Next we want to establish the transformation law for derivatives of the

”pseudo-translations” φh(x). One has the following result.

Lemma 5.2. Let φ(x) ∈ V(Ωa), let φh(x) be as in the previous lemma, and let
k ≤ 3 be fixed. Then

(5.3) (∂̃kφh)(y) = (∂̃kφ)(y + h) + (∂̃3φ)(y + h) [(∂kη)(y′ + h)− (∂kη)(y′)] .

If k = 3 the second term on the right hand side vanishes identically.

Proof. From (5.1) it readily follows that

(5.4)
(∂kφh)(x) = (∂kφ)((x′ + h, x3 + η(x′ + h)− η(x′))+

(∂nφ)((x′ + h, x3 + η(x′ + h)− η(x′)) [(∂kη)(x′ + h)− (∂kη)(x′)] .

Note that the last term is not taken into account if k = 3. By the definition of
the ”tilde” functions

(∂̃kφh)(y) = (∂kφh)(T−1y) = (∂kφh)(x)

where
x = (x1, x2, x3) = (y′, y3 + η(y′)) .

Hence from (5.4) with x replaced by x we get an expression for (D̃kφh)(y) in
terms of x. By taking into account the definition of x we obtain

(5.5)
(∂̃kφh)(y) = (∂kφ)(y′ + h, y3 + η(y′ + h))+

(∂3φ)(y′ + h, y3 + η(y′ + h)) [(∂kη)(y′ + h)− (∂kη)(y′)].

Since (y′ + h, y3 + η(y′ + h)) = T−1(y + h) it follows that

(∂kφ)(y′ + h, y3 + η(y′ + h)) = (∂̃kφ)(y + h) .

Consequently (5.3) follows from (5.5).

By setting in general
(∇φ)ik = ∂kφi

it follows from (5.3) that

(5.6) (∇̃φh)(y) = (∇̃φ)(y + h) + (∂̃3φ)(y + h) ⊗ [(∇η)(y′ + h)− (∇η)(y′)]

where, since η does not depend on the 3-rd. variable, we set

∇η = (∂1η, ∂2η) .
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In particular, since Du = (∇u)sym ,
(5.7)
(D̃φh)(y) = (D̃φ)(y + h) +

{
(∂̃3φ)(y + h) ⊗ [(∇η)(y′ + h)− (∇η)(y′)]

}
sym

.

Moreover,

(5.8) (∇̃ · φh)(y) = (∇̃ · φ)(y + h) + (∂̃3φ)(y + h) · [(∇η)(y′ + h)− (∇η)(y′)] .

Lemma 5.3. Given an ε0 ∈]0, 1[ there is an a(ε0) > 0 such that if a ≤ a(ε0)
then

(5.9)

∣∣∣((∇̃φ)(y)− (∇̃φ)(y − h)
)
−
(

(∇ φ̃)(y)− (∇ φ̃)(y − h)
)∣∣∣ ≤

ε0 |(∂3 φ̃)(y)− (∂3 φ̃)(y − h)|+ |h| ‖η‖C2(Qa) |(∂3φ̃)(y − h)| .

Proof. From (4.10) one has(
(∇̃φ)(y)− (∇̃φ)(y − h)

)
−
(

(∇ φ̃)(y)− (∇ φ̃)(y − h)
)

=

−∇ η(y′)⊗
(

(∂3φ̃)(y)− (∂3φ̃)(y − h)
)

− (∇ η(y′)− ∇ η(y′ − h))⊗ (∂3 φ̃)(y − h) .

Hence, in a sufficiently small neighborhood of x0, (5.9) holds.

5.1 Estimates for some second order derivatives of the
velocity in terms of the pressure

For convenience, in the sequel C denotes positive constants which are bounded
from above provided that the quantities ‖∇ η‖C1(Λa) and ‖∇ θ‖C1(Ωa) are bounded
from above. These constants may also depend on the bounded quantities
‖∇u‖p , ‖π‖p′ , ‖f‖p′ (recall (3.7) and (3.12)). In short,

(5.10) C = C( ‖∇u ‖p, ‖π‖p′ , ‖∇ η‖C1(Λa), ‖∇ θ‖C1(Ωa)) .

Explicit expressions for these quantities follow easily from our calculations. For
the reader’s convenience (and for completeness) we often write the explicit de-
pendence on the above quantities before including them in a constant of type
C. Multiplicative constants of type c will be incorporated in C.

In the sequel, in the absence of an explicit indication, tilde-functions inside
integrals are calculated at the generic point y. Compare equations (5.11) and
(5.12). Moreover, in the absence of an explicit indication, norms of functions of
the x variable concern the domain Ωa and norms of tilde-functions concern the
domain Qa.

From (3.4), by making the the change of variables x → Tx = y, it follows
that

(5.11)

∫
(1 + |D̃u|)p−2D̃u · D̃φdy

−
∫
π̃ (∇̃ · φ) dy +

∫
(∇̃ · u) ψ̃ dy =

∫
f̃ · φ̃ dy .
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for each φ̃ ∈ V(Qa) and each ψ̃ ∈ Lp(Qa). Recall that the Jacobian determinant
of the T-transform is equal to one.

Next we consider the equation (5.11) with φ and ψ replaced by the admissible
test functions φh and ψh respectively. Then by the change of variables y → y−h
we show that

(5.12)

∫
(1 + |D̃u(y − h)|)p−2D̃u(y − h) : D̃φh(y − h) dy

−
∫
π̃(y − h) (∇̃ · φh(y − h)) dy +

∫
(∇̃ · u(y − h)) ψ̃h(y − h) dy =∫

f̃(y − h) · φ̃h(y − h) dy .

for each φ̃ ∈ V(Qa) and each ψ̃ ∈ Lp(Qa).
By appealing to (5.2), (5.3), (5.6), (5.7) and (5.8) we may write the equation

(5.12) in the form
(5.13)∫

(1 + |D̃u(y − h)|)p−2D̃u(y − h) : D̃φ(y) dy

+
∫

(1 + |D̃u(y − h)|)p−2D̃u(y − h) :
[

(∂̃3φ)(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]
]
sym

dy

−
∫
π̃(y − h) ˜(∇ · φ)(y) dy

−
∫
π̃(y − h) (∂̃3φ)(y) · [(∇η)(y′)− (∇η)(y′ − h)] dy

+
∫ ˜(∇ · u)(y − h) ψ̃(y) dy =

∫
f̃(y − h) · φ̃(y) dy .

Finally by taking the difference, side by side, between equation (5.11) and (5.13)
we get
(5.14)∫ (

( 1 + |D̃u(y)|)p−2D̃u(y) − ( 1 + |D̃u(y − h)|)p−2D̃u(y − h)
)

: ˜(Dφ)(y) dy

−
∫

(π̃(y)− π̃(y − h)) ˜(∇ · φ)(y) dy

+
∫

( ˜(∇ · u)(y)− ˜(∇ · u)(y − h)) ψ̃(y) dy =

−
∫
f̃(y) · (φ̃(y + h)− φ̃(y)) dy

+
∫

(1 + |D̃u(y − h)|)p−2D̃u(y − h) :
[

(∂̃3φ)(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]
]
sym

dy

−
∫
π̃(y − h) (∂̃3φ)(y) · [(∇η)(y′)− (∇η)(y′ − h)] dy .

Remark 5.1. Now we would like to replace in (5.14) ∇̃φ(y) with ∇̃u(y) −
∇̃u(y−h) and, by consequence, D̃φ(y) with D̃u(y)− D̃u(y−h). Unfortunately
this is not allowed since ∇̃u(y − h) is not the transformation of the gradient of
an x-test function. However our goal will be obtained ”up to a perturbation

14



term” by setting in equation (5.14)

(5.15) φ(x) = (u(x)− u−h(x)) θ2(x) ,

where θ is an arbitrary regular real function such that

supp θ ⊂ Ia .

Just for the reader’s convenience, assume from now on that 0 < θ(x) ≤ 1.
Note that (̃θ2) = (θ̃)2 and ∇̃ θ2 = 2 θ̃ ∇̃ θ. Clearly

(5.16) φ̃(y) = (ũ(y)− ũ(y − h)) (θ̃)2(y) .

Lemma 5.4. Let φ(x) be the admissible test-function given by (5.15). Then
the y-transformed of ∇φ(x), D φ(x), ∂3 φ(x) and ∇ ·φ(x) are respectively given
by (5.17), (5.18), (5.19) and (5.20) below.

Proof. By taking the gradient of both sides of equation (5.15), by passing from
the x to the y variables and by appealing to (5.6) it readily follows that

(5.17)

∇̃φ(y) =
(
∇̃u(y)− ∇̃u(y − h)

)
(θ̃)2(y)

+ (∂̃3u)(y − h)⊗ [(∇η)(y′)− (∇η)(y′ − h)] (θ̃)2(y)

+2 θ̃(y) (ũ(y)− ũ(y − h))⊗ ∇̃θ(y) .

In particular, one has

(5.18)

D̃φ(y) =
(
D̃u(y)− D̃u(y − h)

)
(θ̃)2(y)

+
{

(∂̃3u)(y − h)⊗ [(∇η)(y′)− (∇η)(y′ − h)] (θ̃)2(y)
}
sym

+2 θ̃(y)
{

(ũ(y)− ũ(y − h))⊗ ∇̃θ(y)
}
sym

,

and also (since ∂3 η = 0),

(5.19)
∂̃3 φ(y) =

(
∂̃3 u(y)− ∂̃3 u(y − h)

)
(θ̃)2(y)+

2 θ̃(y) (ũ(y)− ũ(y − h)) ∂̃3θ(y) .

Similarly, from (5.2) and (5.8) it readily follows that

(5.20)

∇̃ · φ(y) =
(
∇̃ · u(y)− ∇̃ · u(y − h)

)
(θ̃)2(y)+

(∂̃3u)(y − h) · [(∇η)(y′)− (∇η)(y′ − h)] (θ̃)2(y)+

2 θ̃(y) (ũ(y)− ũ(y − h)) · ∇̃θ(y) .
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On the other hand, by setting

(5.21) ψ(x) = (π(x)− π−h(x)) θ2(x) ,

it follows

(5.22) ψ̃(y) = (π̃(y)− π̃(y − h)) (θ̃)2(y) .

Next we replace in equation (5.14) the test functions φ and ψ by the expressions
indicated in equations (5.15) and (5.21). We start by estimating each of the
terms that appear in equation (5.14). In order to treat the first integral on the
left hand side of (5.14) we appeal to the following well known result. for the
proof see, for instance, the Lemma 2.19 in reference [53].

Let A, B be two symmetric matrices. Then

(
(1 + |A|)p−2A− (1 + |B|)p−2B

)
· (A− B) ≥ c (1 + |A|+ |B| )p−2 |A− B|2 ,

∣∣ (1 + |A|)p−2A− (1 + |B|)p−2B
∣∣ ≤ c (1 + |A|+ |B| )p−2 |A− B| .

(5.23)

Proposition 5.1. Let φ̃(y) be given by (5.15). Then
(5.24)∫ (

1 + |D̃u(y)| )p−2 D̃u(y) − ( 1 + |D̃u(y − h)| )p−2 D̃u(y − h)
)

: D̃φ(y) dy ≥

c
∫ (

1 + |(D̃u)(y)|+ |(D̃u)(y − h)|
)p−2

|(D̃u)(y)− (D̃u)(y − h)|2 (θ̃)2(y) dy

−C ‖∇ũ‖pp h2 .

Proof. For convenience, denote by S1 the left hand side of (5.24). By (5.18) one
has
(5.25)

S1 =
∫ (

(1 + |D̃u(y)| )p−2 D̃u(y) − ( 1 + |D̃u(y − h)| )p−2 D̃u(y − h)
)
·

(
D̃u(y)− D̃u(y − h)

)
(θ̃)2(y) dy

+
∫ (

(1 + |D̃u(y)| )p−2 D̃u(y) − (1 + |D̃u(y − h)| )p−2 D̃u(y − h)
)
·

{
(∂̃3u)(y − h)⊗ [(∇h)(y′)− (∇h)(y′ − h)]

}
sym

(θ̃)2(y) dy

+
∫ (

(1 + |D̃u(y)| )p−2 D̃u(y) − (1 + |D̃u(y − h)| )p−2 D̃u(y − h)
)
·

{
(ũ(y)− ũ(y − h))⊗ ∇̃θ(y)

}
sym

θ̃(y) dy
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From (5.23) it follows that
(5.26)

S1 ≥ c
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2 ∣∣∣D̃u(y)− D̃u(y − h)

∣∣∣2 (θ̃)2(y) dy

− c
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2 ∣∣∣ D̃u(y)− D̃ u(y − h)

∣∣∣
| (∂̃3u)(y − h) | | (∇η)(y′)− (∇η)(y′ − h) | (θ̃)2(y) dy

− c
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2

∣∣∣D̃u(y)− D̃u(y − h)
∣∣∣ θ̃(y) |ũ(y)− ũ(y − h)| |∇̃θ(y)| dy .

By appealing to Cauchy-Schwartz inequality one easily shows that
(5.27)

S1 ≥ c
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2 ∣∣∣D̃u(y)− D̃u(y − h)

∣∣∣2 (θ̃)2(y) dy

− c
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2 ∣∣∣(∂̃3u)(y − h)

∣∣∣2
|(∇η)(y′)− (∇η)(y′ − h)|2 (θ̃)2(y) dy

− c
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2

|ũ(y)− ũ(y − h)|2
∣∣∣∇̃θ(y)

∣∣∣2 dy .
The last two integrals are bounded by

c h2 (‖D2 η‖2∞ + ‖D2 θ‖2∞) ‖∇̃u(y)‖pp .

Next we estimate the second integral on the right hand side of (5.14).

Proposition 5.2. Let φ̃(y) be given by (5.15). Then
(5.28)
|
∫

( 1 + |D̃u(y − h)| )p−2 D̃u(y − h) :
[

(∂̃3φ)(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]
]
sym

dy| ≤

c
∫

( 1 + |D̃u(y)|+ |D̃u(y − h)| )p−2 |D̃u(y)− D̃u(y)|2 (θ̃)2(y) dy+

C h2 ‖∇ũ‖pp .

Proof. Denote by S the integral on the left hand side of (5.28). By (5.18) one
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has
(5.29)
S =

∫
( 1 + |D̃u(y − h)| )p−2 D̃u(y − h)·[ (
∂̃3 u(y)− ∂̃3 u(y − h)

)
(θ̃)2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]

]
sym

dy

+ 2
∫

(1 + |D̃u(y − h)| )p−2D̃u(y − h)·[
(ũ(y)− ũ(y − h)) ∂̃3θ(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]

]
sym

θ̃(y) dy .

The second integral on the right hand side of (5.29) is easily seen to be bounded
by

c ‖∇θ‖∞ ‖D2η‖∞ ‖∇ũ‖pp h2 ,

hence bounded by the last term in the right hand side of equation (5.28).
Denote by I1 the first integral on the right hand side of (5.29). By splitting

this integral into two integrals, the first one including the term ∂̃3 u(y) and
the second one including the term ∂̃3 u(y − h) ; by appealing to the change of
variables y1 − h→ y1 in the second integral; and, finally, by splitting this last
integral in a convenient and obvious way, we get
(5.30)
I1 =

∫
(1 + |D̃u(y − h)| )p−2 D̃u(y − h) :

[
∂̃3 u(y) (θ̃)2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]

]
sym

dy

−
∫

(1 + |D̃u(y)| )p−2 D̃u(y) :
[
∂̃3 u(y) (θ̃)2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]

]
sym

dy

−
∫

(1 + |D̃u(y)| )p−2 D̃u(y) :
{[

∂̃3 u(y) (θ̃)2(y + h)⊗ [(∇η)(y′ + h)− (∇η)(y′)]
]
sym

−
[
∂̃3 u(y) (θ̃)2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]

]
sym

}
dy .

The last integral on the right hand side of (5.30) is bounded by

C ‖∇η‖∞ ‖∇ũ‖pp h2 ,

hence is bounded by the last term in the right hand side of equation (5.28). It
remains to estimate the absolute value of difference of the two first integrals
on the right hand side of (5.30). By appealing to (5.23) one shows that this
absolute value is bounded by

c

∫
( 1 + |D̃u(y)|+ |D̃u(y − h)| )p−2 |D̃u(y)− D̃u(y − h)|

|∂̃3 u(y)| (θ̃)2(y) |(∇η)(y′)− (∇η)(y′ − h)| dy .

In turn, this quantity is bounded by

c

∫
(1 + |D̃u(y)|+ |D̃u(y − h)| )p−2 |D̃u(y)− D̃u(y − h)|2 (θ̃)2(y) dy+
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C

∫
|∂̃3 u(y)|2 |(∇η)(y′)− (∇η)(y′−h)|2(1+ |D̃u(y)|+ |D̃u(y−h)| )p−2| (θ̃)2(y) dy .

Since the last integral is bounded by

C ‖D2η‖2∞ ‖∇ũ‖pp h2 ,

the estimate (5.28) follows.

From (5.24) and (5.28) we get the following result.

Proposition 5.3. Let φ̃(y) be given by (5.15) and denote by S the difference
between the first integral on the left hand side of (5.14) and the absolute value
of the second integral on the right hand side of the same equation. Then
(5.31)

S ≥ c
∫ (

1 + |(D̃u)(y)|+ |(D̃u)(y − h)|
)p−2

|(D̃u)(y)− (D̃u)(y − h)|2 (θ̃)2(y) dy

−C ‖∇u‖pp h2 .

Next we consider the f-term. A classical result shows that (s = 1, 2)

(5.32) |
∫
f̃(y) · (φ̃(y + h)− φ̃(y)) dy| ≤ h ‖f̃‖p′ ‖∂s φ̃‖p .

Since φ̃(y) is given by (5.16), straightforward calculations yield (recall that
0 ≤ θ(x) ≤ 1)

(5.33)

|
∫
f̃(y) · (φ̃(y + h)− φ̃(y)) dy| ≤

h ‖f̃‖p′
(∫
|∂s ũ(y)− ∂s ũ(y − h)|p (θ̃)2(y) dy

) 1
p

+

h2 ‖f̃‖p′ ‖∂s ũ‖p ‖∇ (θ̃)2‖∞.

At this point it looks convenient to the reader to establish here a full stop.
In this regard we write the equation that follows from (5.14) by appealing to
Proposition 5.3 and to equation (5.33). One has
(5.34)∫ (

1 + |(D̃u)(y)|+ |(D̃u)(y − h)|
)p−2

|(D̃u)(y)− (D̃u)(y − h)|2 (θ̃)2(y) dy ≤

+
∫
π̃(y) (∂̃3u)(y − h) · [(∇η)(y′)− (∇η)(y′ − h)] (θ̃)2(y) dy

+
∫

(π̃(y)− π̃(y − h)) θ̃(y) (ũ(y)− ũ(y − h)) · ∇̃θ(y) dy

−
∫
π̃(y − h) (∂̃3 u)(y) · [(∇η)(y′)− (∇η)(y′ − h)] (θ̃)2(y) dy

−
∫
π̃(y − h) (ũ(y)− ũ(y − h)) ∂̃3θ(y) · [(∇η)(y′)− (∇η)(y′ − h)] θ̃(y) dy

+C ‖∇u‖pp h2 + h ‖f̃‖p′
(∫
|∂s ũ(y)− ∂s ũ(y − h)|p (θ̃)2(y) dy

) 1
p

+

h2 ‖f̃‖p′ ‖∇ ũ‖p ‖∇ (θ̃)2‖∞ .
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By recalling, if necessary, (4.9) one easily shows that the fourth integral in the
right hand side of the above equation is bounded by

C ‖∇ θ‖∞ ‖π‖p′ ‖∇u‖p h2 .

Similar estimates hold for the first and the third integrals in the right hand side
of the same equation. We set, for convenience,

Ã2
1 =

∫ (
1 + |D̃u(y)|+ |D̃u(y − h)|

)p−2

|D̃u(y)− D̃u(y − h)|2 θ̃2(y) dy .

The above arguments prove the following estimate

(5.35)

Ã2
1 ≤

∫
(π̃(y)− π̃(y − h)) θ̃(y) (ũ(y)− ũ(y − h)) · ∇̃θ(y) dy+

|h| ‖f̃‖p′
(∫
|∂s ũ(y)− ∂s ũ(y − h)|p (θ̃)2(y) dy

) 1
p

+

c h2 ‖f‖p′ ‖∇u‖p ‖∇ (θ̃)2‖∞+

C
(
1 + ‖∇θ‖2∞

) (
‖∇u‖pp + ‖π‖p′ ‖∇u‖p

)
h2 .

By recalling the definition of constants of type C, we state the following theorem.

Theorem 5.5. The following estimate holds.
(5.36)
|h|−2 Ã2

1 ≤ |h|−2
∫

(π̃(y)− π̃(y − h)) θ̃(y) (ũ(y)− ũ(y − h)) · ∇̃θ(y) dy+

|h|−1 ‖f̃‖p′
(∫
|∂s ũ(y)− ∂s ũ(y − h)|p (θ̃)2(y) dy

) 1
p

+ C .

Note that

(5.37)

|
∫

(π̃(y)− π̃(y − h)) θ̃(y) (ũ(y)− ũ(y − h)) · ∇̃θ(y) dy | ≤

C |h| ‖ũ(y)− ũ(y − h)‖2 ‖(π̃(y)− π̃(y − h)) θ̃(y)‖2 ≤

C |h| ‖∂s ũ‖2 ‖(π̃(y)− π̃(y − h)) θ̃(y)‖2 .

Next define

(5.38) λ(q) =
2 q

2− p+ q
.

One has, for 1 < λ ≤ λ(q) ,
(5.39)∫
|(D̃u)(y)− (D̃u)(y − h)|λ θ̃λ(y) dy ≤

∫ (
1 + |(D̃u)(y)|+ |(D̃u)(y − h)|

) (2− p)λ
2

(
1 + |(D̃u)(y)|+ |(D̃u)(y − h)|

) (p−2)λ
2 |(D̃u)(y)− (D̃u)(y − h)|λ θ̃λ(y) dy .

By Hőlder’s inequality with exponents 2
2−λ and 2

λ the following result holds.
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Lemma 5.6. Let be p ≤ q and 1 < λ ≤ λ(q) . Then

(5.40)
∫
|(D̃u)(y)− (D̃u)(y − h)|λ θ̃ λ(y) dy ≤ ‖ 1 + 2 |D̃u| ‖

(2− p)λ
2

(2− p)λ
2−λ

(Ã1)λ .

Note that λ ≤ λ(q) is equivalent to (2− p)λ
2−λ ≤ q , moreover the correspond-

ing equalities are equivalent.
From (5.40), with λ = p , λ = λ(q) , and λ = r(q) it follows that

Corollary 5.1. (truc2)

(5.41)
∫
|(D̃u)(y)− (D̃u)(y−h)|p θ̃p(y) dy ≤ ‖ 1+ 2 |D̃u| ‖

(2− p) p
2

p Ãp1 ≤ C Ãp1 ,

(5.42)∫
|(D̃u)(y)− (D̃u)(y − h)|λ(q) θ̃ λ(q)(y) dy ≤ ‖ 1 + 2 |D̃u| ‖

(2− p)λ(q)
2

q (Ã1)λ(q) .

and
(5.43)∫

|(D̃u)(y)− (D̃u)(y − h)|r(q) θ̃r(q)(y) dy ≤ ‖ 1 + 2 |D̃u| ‖
(2− p) r(q)

2
q
2

(Ã1)r(q) .

5.2 Estimates for the tangential derivatives of the pres-
sure in terms of the velocity

Next we prove the following main estimate.

Lemma 5.7. For each φ̃ ∈ C2
0 (Qa) one has

(5.44)
|
∫
∇ [(π̃(y)− π̃(y − h)) θ̃] · φ̃ dy| ≤

|
∫ (

(1 + |D̃u(y)| )p−2D̃u(y) − ( 1 + |D̃u(y − h)| )p−2D̃u(y − h)
)

: ∇̃(θφ)(y) dy|+

ε0 ‖(π̃(y)− π̃(y − h)) θ̃‖2 ‖∇ φ̃‖2+

|
∫
f̃ ·
(

(̃θφ)(y + h)− (̃θφ)(y)
)
dy|+

C |h| (1 + ‖∇u‖p−1
p + ‖π‖p′) ‖∇φ̃‖p ,

where ε0 and a are chosen below.

Proof. From (5.14) with ψ = 0 and φ replaced by θ φ one shows that
(5.45)∫

(π̃(y)− π̃(y − h)) ˜(∇ · (θφ))(y) dy =

∫ (
(1 + |D̃u(y)| )p−2D̃u(y) − (1 + |D̃u(y − h)| )p−2D̃u(y − h)

)
: D̃(θφ)(y) dy

+
∫
f̃(y) ·

(
(̃θφ)(y + h)− (̃θφ)(y)

)
dy + cR
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where R satisfies
(5.46)
|R| ≤ |h| ‖η‖C2 (1 + ‖∇̃u‖p )p−1 ‖ ˜∂3(θφ)‖p + |h| ‖η‖C2 ‖π‖p′ ‖ ˜∂3(θφ)‖p .

Since ˜∂3(θφ) = θ̃ ∂3 φ̃ + φ̃ ∂̃3θ (recall, in particular (4.10) for k = 3) it follows
that

‖ ˜∂3(θφ)‖p ≤ C ‖∇ φ̃‖p .
One has

(5.47) |R| ≤ C |h| ‖∇φ̃‖p .

On the other hand, by appealing to (4.12), one shows that

˜(∇ · (θφ)) = θ̃∇ · φ̃) + φ̃ · ∇̃θ − θ̃ (∇ η) · (∂3 φ̃)− (∂3 θ̃) (∇ η) · φ̃ .

Hence we may decompose the left hand side of (5.45) as
(5.48)∫

(π̃(y)− π̃(y − h)) ˜(∇ · (θφ)) dy =
∫

[(π̃(y)− π̃(y − h)) θ̃] (∇ · φ̃) dy+∫
(π̃(y)− π̃(y − h)) ˜(∇θ) · φ̃ dy − ∫ [(π̃(y)− π̃(y − h)) θ̃] (∇ η) · (∂3 φ̃) dy−∫
(π̃(y)− π̃(y − h)) (∂3 θ̃) (∇ η) · φ̃ dy .

By means of a suitable translation one shows that
(5.49)∫

(π̃(y)− π̃(y − h)) ˜(∇θ) · φ̃ dy = −
∫
π̃ (φ̃(y + h)− φ̃(y)) · ˜(∇θ) dy

−
∫
π̃ φ̃(y + h) · (∇̃θ(y + h)− ∇̃θ(y)) dy .

Hence the second integral on the right hand side of (5.48) satisfies

(5.50)
|
∫

(π̃(y)− π̃(y − h)) ˜(∇θ) · φ̃ dy| ≤
|h| ‖∇̃θ‖C1 ‖π̃‖p′ ‖∇ φ̃‖p .

A similar device applied to the last integral on the right hand side of (5.48)
shows that
(5.51)

|
∫

(π̃(y)− π̃(y−h)) (∂3 θ̃) (∇ η) · φ̃ dy | ≤ c |h| ‖∇ η‖C1 ‖∂3 θ̃‖C1 ‖‖π̃‖p′ ‖∇ φ̃‖p .

On the other hand
(5.52)
|
∫

[(π̃(y)− π̃(y − h)) θ̃] (∇ η) (∂3 φ̃) dy| ≤ ‖(π̃(y)− π̃(y − h)) θ̃‖2 ‖∇ η‖C0 ‖∇̃φ‖2 .

From (5.48), (5.50), (5.51) and (5.52) it follows that
(5.53)∫

(π̃(y)− π̃(y − h)) ˜(∇ · (θφ)) dy = −
∫
∇ [(π̃(y)− π̃(y − h)) θ̃] · φ̃ dy + R2 ,

for each φ̃ ∈ C2
0 (Qa), where R2 satisfies the estimate

(5.54) |R2| ≤ C |h| ‖π̃‖p′ ‖∇ φ̃‖p + ε0 ‖(π̃(y)− π̃(y − h)) θ̃‖2 ‖∇ φ̃‖2 ,
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for an arbitrarily small positive ε0, provided that a ≤ a(ε0) . We applied to the
fact that ∇ η(0) = 0 . From (5.53), (5.54) and (5.45), (5.47) the estimate (5.44)
follows.

. Next we prove the following result.

Lemma 5.8. The following estimates hold.
(5.55)∣∣∣∫ (

(1 + |D̃u(y)|)p−2 D̃u(y) − (1 + |D̃u(y − h)|)p−2D̃u(y − h)
)

: ˜∇(θ φ) dy
∣∣∣ ≤

c Ã1 ‖∇ φ̃‖2 + C |h| (1 + ‖∇u‖p )p− 1 ‖∇ φ̃‖p .

Proof. From (4.11) it follows that

∇̃(θφ) = θ̃∇ φ̃− θ̃ [(∇ η)⊗ ∂3 φ̃] + φ̃⊗ ∇̃θ ,

for each y ∈ Qa. Moreover

(5.56) |θ̃∇ φ̃− θ̃ [(∇ η)⊗ ∂3 φ̃]| ≤ C |θ̃| |∇ φ̃| .

hence, by appealing to (5.23), it follows that
(5.57)∣∣∣∫ ( (1 + |D̃u(y)|)p−2D̃u(y) − ( 1 + |D̃u(y − h)|)p−2D̃u(y − h)

)
: ˜∇(θ φ) dy

∣∣∣ ≤
C
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2

|D̃u(y)− D̃u(y − h)| |θ̃| |∇ φ̃| dy+∣∣∣∫ ((1 + |D̃u(y)|)p−2D̃u(y) − (1 + |D̃u(y − h)|)p−2D̃u(y − h)
)

: (φ̃⊗ ∇̃θ) dy
∣∣∣ .

Next, since p ≤ 2, it readily follows that
(5.58)∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2

|D̃u(y)− D̃u(y − h)| |θ̃| |∇ φ̃| dy ≤

c Ã1 ‖∇ φ̃‖2 .

which is the desired estimate for the first integral in the right hand side of (5.57).
We could appeal to similar devices to obtain as well an useful estimate for

the second integral in the right hand side of (5.57). However, the lack of θ̃(y) in
this integral would imply some tricky arguments. We rather prefer to introduce
a more elegant device to obtain the desired estimate. Denote by I the referred
integral. An obvious translation shows that

I =
∫

(1 + |D̃u(y)| )p−2D̃u(y) : (φ̃(y)⊗ ∇̃θ(y)) dy

−
∫

( 1 + |D̃u(y)| )p−2D̃u(y) : (φ̃(y + h)⊗ ∇̃θ(y + h)) dy .

By appealing to an obvious decomposition of
(
φ̃(y + h)⊗ ∇̃θ(y + h)

)
−
(
φ̃(y)⊗ ∇̃θ(y)

)
,

it readily follows that

|I| ≤ c |h| ‖∇̃θ‖C1 (1 + ‖˜(∇u)‖p)p−1 (‖φ̃‖p + ‖∇ φ̃‖p) .
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Hence
(5.59)∣∣∣∫ ( (1 + |D̃u(y)|)p−2D̃u(y) − (1 + |D̃u(y − h)|)p−2D̃u(y − h)

)
: (φ̃⊗ ∇̃θ) dy

∣∣∣ ≤
C |h| (1 + ‖∇u‖p )p−1 ‖∇ φ̃‖p .

By appealing to the equations (5.57), (5.58) and (5.59) one proves (5.55).

Next, by appealing to an obvious decomposition of the θφ terms, one shows
that

(5.60) |
∫

f̃ ·
(

(̃θφ)(y + h)− (̃θφ)(y)
)
dy| ≤ C |h| ‖f‖p′ ‖∇ φ̃‖p .

The following result follows from (5.44), (5.55) and (5.60).

Lemma 5.9. Given ε0 > 0 there is a(ε0) > 0 (independent of the point x0)
such that for a ≤ a(ε0), one has

(5.61)

|
∫
∇ [(π̃(y)− π̃(y − h)) θ̃] · φ̃ dy| ≤

c Ã1 ‖∇ φ̃‖2+

ε0 ‖(π̃(y)− π̃(y − h)) θ̃‖2 ‖∇ φ̃‖2+

C |h| (1 + ‖∇u‖p−1
p + ‖π‖p′ + ‖f‖p′) ‖∇φ̃‖p ,

for each φ̃ ∈ C2
0 (Qa).

The following Theorem follows from the above estimates.

Theorem 5.10. For sufficiently small positive values of a (which are indepen-
dent of the particular point x0) one has

(5.62)
‖(π̃(y)− π̃(y − h)) θ̃‖2 ≤ c Ã1+

C |h| (1 + ‖∇u‖p−1
p + ‖π‖p′ + ‖f‖p′) .

Proof. Equation (5.61) shows that ∇ [(π̃(y)− π̃(y−h)) θ̃] ∈W−1,2(Qa) and that
the corresponding norm is bounded by the right hand side of equation (5.63)
bellow. A main point here is that θ̃ has compact support in Ja. To fix ideas the
reader may assume, once and for all, that

supp θ̃ ⊂ Q a
2
,

and that the translation amplitudes satisfies |h| < a
2 . Next, by appealing to

Lemma 3.1 (see also the appendix), one shows that

(5.63)
‖(π̃(y)− π̃(y − h)) θ̃‖2 ≤ ε0 ‖(π̃(y)− π̃(y − h)) θ̃‖2+

c Ã1 + C |h| (1 + ‖∇u‖p−1
p + ‖π‖p′ + ‖f‖p′) .

This proves (5.62).
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From equations (5.36), (5.37) and (5.62) it follows that

|h|−2 Ã1 ≤ C |h|−1 ‖ũ(y)− ũ(y−h)‖2, Qa+ |h|−1 ‖f‖p′
(∫
|∂s ũ(y)− ∂s ũ(y − h)|p (θ̃)2(y) dy

) 1
p

+C .

From the above estimate we get:

Theorem 5.11. The following estimate holds:
(5.64)

|h|−2
∫ (

1 + |D̃u(y)|+ |D̃u(y − h)|
)p−2

|D̃u(y)− D̃u(y − h)|2 θ̃2(y) dy ≤

C ‖∂s ũ(y)‖2, Qa + C |h|−1 ‖f‖p′
(∫
|∂s ũ(y)− ∂s ũ(y − h)|p (θ̃)2(y) dy

) 1
p

+ C .

Remark 5.2. It is worth noting that the particular features of the problem
under hands require a special care, and some new device, in order to apply the
translation’s method here. On the other hand, going on with the explicit ex-
pressions of the differential quotients would be detrimental to the reader, since
the main ideas would stay in hiding among intricate expressions. On the other
hand, the work already done by appealing to the differential quotient’s tech-
nique, is largely sufficient to allow the interested reader to carry on the proofs
by this technique. We also refer to [7], where this technique is continuously
applied. The above situation leads us to come to a compromise: From now on,
we replace the differential quotients by the corresponding derivatives.

For convenience, we define the nonnegative quantity Ã by

(5.65) Ã2 =
∫ (

1 + 2 |(D̃u)(y)|
)p−2

|(∂s D̃u)(y)|2 (θ̃)2(y) dy .

By taking into account (5.64) and the above remark, we may write

(5.66) Ã2 ≤ C ‖∂s ũ(y)‖2, Qa + C ‖f‖p′
(∫
|∂2
s s ũ(y)|p (θ̃)2(y) dy

) 1
p

+ C .

Equations (5.41), (5.42), (5.43), and (5.62) show the following result.

Theorem 5.12. The following estimates hold.

(5.67) ‖ (∇∗ D̃u) θ̃ ‖pp ≤ C Ãp ,

(5.68) ‖ (∇∗ D̃u) θ̃ ‖λ(q)
λ(q) ≤ c

(
1 + ‖D̃u ‖

(2− p)λ(q)
2

q

)
Ãλ(q) ,

(5.69) ‖ (∇∗ D̃u) θ̃ ‖r(q)r(q) ≤ c

(
1 + ‖D̃u ‖

(2− p) r(q)
2

q
2

)
Ã r(q) ,

and

(5.70) ‖(∇∗ π̃) θ̃‖22 ≤ C ( 1 + + ‖f‖2p′ + Ã2 ) .
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Finally (roughly speaking), we prove that the tangential derivatives of the
full gradient ∇u can be estimated in terms of the tangential derivatives of the
symmetric gradient D u . See the remark 3.1 in reference [7].

We start by the following auxiliary result, where the bounded open set D
has a ”Lipschitz” boundary consisting on the union of two disjoint pieces, S1

and S2, both with not vanishing 2−dimensional measure. The exponent p may
be any real p > 1.

Lemma 5.13. There is a linear continuous map from f̃0 ∈ Lp(D) into w̃ ∈
W 1, p(D) such that ∇ · w̃ = f̃0 in D and w̃ = 0 in S1 . In particular,

(5.71) ‖w̃‖1, p ≤ c ‖f̃0‖p .

Proof. Extend the domain D to a fixed domain D̃ ”throughout” S2. Then
extend f̃0 to all of D̃ in such a way that the extension F̃0 has vanishing mean
value in D̃ (for instance, F̃0 constant outside D). Then, it is well known (see
[29] chapter III, for proofs, section III.3, and quite complete references section
III.7) that there is W̃0 ∈ W 1, p(D̃) such that ∇ · W̃0 = F̃0 in D̃ and W̃0 = 0
on ∂ D̃ . We define w̃ as the restriction of W̃0 to D.

Theorem 5.14. For each β > 1, one has

(5.72) ‖ θ̃∇∗ (∇ ũ) ‖β,Qa ≤ c ‖ θ̃∇∗ (D ũ) ‖β,Qa + C ,

in Qa , for each admissible value of a.

Note that θ̃ can be replaced by any positive power of θ̃.

Proof. Set
ṽ = θ̃ ∂s ũ ,

s = 1, 2. From ∇ · u = 0 and from (4.10) it follows that

∇ · ũ = (∂1 η) (∂3 ũ1) + (∂2 η) (∂3 ũ2) .

Straightforward calculations show that

(5.73)

 (∇ · ṽ)|Qa = f̃0 ,

ṽ|Λa = 0 ,

where
f̃0(y) = θ̃ [ (∂1 η) (∂s 3 ũ1) + (∂2 η) (∂s 3 ũ2) ] + R ,

and
|R(y)| ≤ c ( |∇θ̃(y)|+ |D2 η(y)|) |∇ ũ(y)| .

Hence,

(5.74) ‖f̃0‖β ≤ ‖∇ η‖∞ (‖θ̃ ∂13 ũ‖β + ‖θ̃ ∂23 ũ‖β ) + C .

Next we define w̃ as in lemma 5.13, where D = Qa, D̃ = Ja and S1 = Λa . Set

g̃ = ṽ − w̃ .
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One has

(5.75)

 (∇ · g̃)|Qa = 0 ,

g̃|Λa = 0 .

From (5.75) it follows that there is a constant c (independent of the particular
g̃) such that

(5.76) ‖g̃‖1, β ≤ c ‖D g̃‖β .

The proof follows essentially by appealing to a classical result of Nečas. See, for
instance, [47], Lemma 1.1 and Proposition 1.1.

By taking into account the definition of g̃ and (5.71), it follows that

‖∇ ṽ‖β ≤ c (‖D ṽ‖β + ‖f̃0‖β) .

Finally, by taking into account that ṽ = θ̃ ∂s ũ , that

| ‖∇ (θ̃∂s ũ) ‖ − | ‖ θ̃∇ (∂s ũ) ‖ | ≤ C ,

that
| ‖D (θ̃∂s ũ) ‖ − | ‖ θ̃D (∂s ũ) ‖ | ≤ C ,

and the estimate (5.74), one proves (5.72). Recall that ‖∇ η‖∞ ≤ ε0 , for
arbitrarily small ε0 .

Theorem 5.15. One has

(5.77) Ã ≤ C (1 + ‖f‖p′ + ‖∇∗ ũ‖
1
2
2, Qa

) .

Proof. From (4.16) it follows that

‖ θ̃∇∗ (D ũ) ‖p,Qa ≤ ‖ θ̃∇∗ (D̃ u) ‖p,Qa + ε0 ‖ θ̃∇∗ (∇ ũ) ‖p,Qa + C‖∇ ũ‖p,Qa .

By applying (5.72) to the second term on the right hand side of the above
inequality, and by choosing ε0 sufficiently small, we prove that

(5.78) ‖ θ̃∇∗ (D ũ) ‖p,Qa ≤ c ‖ θ̃∇∗ (D̃ u) ‖p,Qa + C .

Next, from (5.66), (5.72) and (5.78),we get

Ã2 ≤ C (1 + ‖∇∗ ũ‖2, Qa + ‖f‖p′ ‖ θ̃∇∗ (D̃ u) ‖p,Qa) .

Finally, by appealing to (5.67), we show that

Ã2 ≤ C (1 + ‖∇∗ ũ‖2, Qa + ‖f‖p′ Ã) .

This proves (5.77).

27



5.3 Estimates for the ”tangential derivatives” in terms of
the data

For the reader’s convenience we recall once more that ∇∗ denotes the gradient
with respect to the variables yj , j = 1, 2. Hence

|∇∗(∇̃u)(y)|2 =
∑
j=1,2

3∑
i,k=1

(∂j (∇̃u)ik)2 ,

|∇∗(D̃u)(y)|2 =
∑
j=1,2

3∑
i,k=1

(∂j(D̃u)ik)2 ,

and
|∇∗π̃(y)|2 =

∑
j=1,2

(∂j π̃)2 .

Theorem 5.16. The following estimates hold.

(5.79) ‖θ̃∇∗ (∇̃u)‖p,Qa ≤ C (1 + ‖f‖p′ + ‖∇∗ ũ‖
1
2
2, Qa

) ,

(5.80) ‖θ̃∇∗ (∇̃u)‖λ(q), Qa ≤ C (1 + ‖D u‖
2− p

2
q )(1 + ‖f‖p′ + ‖∇∗ ũ‖

1
2
2, Qa

)

(5.81) ‖θ̃∇∗ (∇̃u)‖r(q), Qa ≤ C (1 + ‖D u‖
2− p

2
q
2

)(1 + ‖f‖p′ + ‖∇∗ ũ‖
1
2
2, Qa

)

and

(5.82) ‖θ̃∇∗ π̃‖2, Qa ≤ C (1 + ‖f‖p′ + ‖∇∗ ũ‖
1
2
2, Qa

) .

Proof. From equations (5.72) and (5.67) (together with (4.16), and related de-
vices already explained), and (5.77), we show that (5.79) holds. We also appeal
here to (4.14). Similarly, by appealing to (5.68) and (5.69), one proves (5.80)
and (5.81). Finally, from equations (5.70) and (5.77) we show (5.82).

REMARKS.
– Note that we may replace the norms ‖∇̃u‖p , ‖π̃‖p′ and ‖f̃‖p′ , in Qa , by the
norms ‖∇u‖p , ‖π‖p′ and ‖f‖p′ in Ωa , hence by these last norms in the whole
of Ω.
–The constants C depend on the C2-norms of η and θ in Qa. However the
C2-norm of η is bounded from above on Γ , hence is independent of the partic-
ular point x0. On the other hand the particular truncation function θ may be
fixed once and for all in our proofs as a regular function equal to 1 for |x′| ≤ a

2
and with compact support inside Ia. This shows that the dependence of the
constants C on θ is just a dependence on a.
–Whenever we appeal to a ”sufficiently small” ε0 , recall (4.8), a smaller, posi-
tive, upper bound on the values of the parameter a must be assumed. However
this situation happens a finite number of times. Hence a strictly positive lower
bound for a exists. Further, as already shown, this value does not depend on
the point x0.
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6 The linear system for the normal derivatives
of the tangential components of the velocity

We set
ξ(x) = ∂2

3 u(x) ,

ξ′(x) = (ξ1(x), ξ2(x))

and
M(x) = |Du(x)| .

Note that derivatives are with respect to the x-variables. Due to (4.8), we may
replace (on ”right hand sides” of estimates) derivatives ∂kη , for k = 1, 2 simply
by ε0. Recall that ∂3η = 0. In the same line, c ε0 and ε20 can be replaced by ε0.

We will use without a particular warning that

(6.1) ∂3g̃ = ∂̃3g .

Lemma 6.1. One has a.e. in Qa

(6.2) |ξ̃3| ≤ |∇∗ ˜(∇u)|+ ε0 |ξ̃′| .

Proof. From ∇ · u = 0 it follows that

(6.3) ξ̃3 = −∂3(∂̃1u1 + ∂̃2u2) .

On the other hand, from (4.10),

(6.4) ∂3 (∂̃mul) = ∂m∂̃3ul − (∂mη) ∂3 (∂̃3ul).

Hence, for m, l 6= 3,
|∂3∂̃mul| ≤ |∇∗ ˜(∇u)|+ ε0 |ξ̃′| .

By taking into account (6.3), the thesis follows.

Lemma 6.2. One has a.e. in Qa

(6.5) |D̃2
∗u(y)| ≤ |∇∗ ˜(∇u)|+ ε0 |ξ̃′| .

Proof. From (4.10)

T (∂j ∂k ul) = ∂k(∂̃j ul)− (∂k η) ∂3(∂̃j ul) .

By appealing to the above estimates the thesis follows easily. Note that if
j = k = l = 3 the result follows from (6.2).

Straightforward calculations show that

∂k
(
(1 + |D u|)p−2D u

)
=

(1 + |D u|)p−2 ∂k D u+ (p− 2) (1 + |D u|)p−3 |D u|−1 (D u · ∂k D u)D u .

(6.6)

29



By appealing to (6.6), the j.th equation (2.1) may be written in the form

−(1 + |D u|)p−2
3∑
k=1

∂2
k k uj

− 2 (p− 2) (1 + |D u|)p−3 |D u|−1
3∑

l,m,k=1

DlmDjk ∂2
mk ul + 2 ∂jπ = 2 fj ,

(6.7)

where Dij = (D u)ij . Let us write the first two equations (6.7), j = 1, 2, as
follows:

(1 + |D u|)p−2 ∂2
3 3 uj

+ 2 (p− 2) (1 + |D u|)p−3 |D u|−1Dj3
2∑
l=1

Dl3 ∂2
3 3 ul =

Fj(x) + 2 ∂jπ − fj ,

(6.8)

where the Fj(x), j 6= 3, are given by

Fj(x) := − (1 + |D u|)p−2
2∑
k=1

∂2
k k uj

−2 (p− 2) (1 + |D u|)p−3 |D u|−1

D33Dj3 ∂2
3 3 u3 +

3∑
l,m,k=1
(m,k)6=(3,3)

DlmDjk ∂2
mk ul

 .

(6.9)

In the sequel, the equations (6.8), j = 1, 2, will be treated as a 2 × 2 linear
system in the unknowns ∂2

3 3 uj , j 6= 3. Note that, with an obviously simplified
notation, the measurable functions Fj satisfy

(6.10) |Fj(x)| ≤ c (1 + |D u|)p−2 |D2
∗ u(x)| ,

a.e. in Ωa.
Hence, from (6.5) it follows that

|F̃j | ≤ C
(

1 + M̃)p−2
) (
|∇∗ ˜(∇u)|+ ε0 |ξ̃′|

)
≤

C (1 + M̃)
p−2
2 |∇∗ ˜(∇u)|+ ε0 C (1 + M̃)p−2 |ξ̃′| .

(6.11)

Next we consider the 2× 2 linear system (6.8) in terms of the y variables, i.e.,
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the system

(1 + |M̃ |)p−2 ξ̃j − 2 (2− p) (1 + M̃)p−3 M̃−1 D̃j3
2∑
l=1

D̃l3 ξ̃l =

F̃j + ∂̃j π − f̃j ,

(6.12)

and we show that this system can be point-wisely solved for the unknowns ξ̃j ,
j = 1, 2, for almost all y ∈ Qa/2. The elements ãj l of the matrix system Ã are
given by

ãj l = (1 + M̃p−2) δj l + 2 (p− 2) (1 + M̃)p−3 M̃−1 D̃l3 D̃j3 ,

for j, l 6= 3. Note that ãj l = ãl j . One easily shows that

n−1∑
j,l=1

ãj lλjλl = (1 + M̃)p−2 |λ|2 − 2 (2− p) (1 + M̃)p−3 M̃−1
[
(D̃ u) · λ

]2
3
.

In particular

(6.13)
2∑

j,l=1

ãj lλjλl ≥ 2 (p− 3
2

) (1 + |D̃ u|)p−2 |λ|2 .

Hence the following result holds.

Lemma 6.3. If p > 3
2 the matrix Ã(y) is positive definite for almost all y ∈ Ωa.

More precisely (pare)

(6.14) det Ã ≥
[
2 (p− 3

2
) (1 + |D̃ u|)p−2

]2

.

This lemma allows the following estimate.

Lemma 6.4. One has a.e. in Qa

(6.15) |ξ̃| ≤ C |∇∗ ˜(∇u)|+ C
(

1 + M̃)2− p
)

( |∇̃∗ π|+ |f̃ |) .

Proof. From (6.12), i.e. from

(6.16)
2∑
l=1

ãj l ξ̃l = F̃j + ∂̃j π − f̃j ,

together with (6.14), it follows that

(6.17)
2∑

l,j=1

ãj l ξ̃lξ̃j =
2∑
j=1

(F̃j + ∂̃j π − f̃j) ξ̃j .

holds. Consequently

(6.18) (1 + M̃)p−2) |ξ̃′| ≤ |F̃j + ∂̃j π − f̃j | ,
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a.e. in Qa. By appealing to (6.11) we show that
(6.19)
(1 + M̃)p−2) |ξ̃′| ≤ C (1 + M̃)p−2 |∇∗ ˜(∇u)|+ ε0 C (1 + M̃)p−2 |ξ̃′|+ c |∇̃∗ π|+ c |f̃ | .

Hence (6.15) holds. We also appeal here to (6.2).

Corollary 6.1. For any admissible positive a one has in Qa (wtescad2)

(6.20) ‖ξ̃‖r(q) ≤ C ‖∇∗ ˜(∇u)‖r(q) + C ( 1 + ‖D u‖2− pq ) (‖∇̃∗ π‖2 + ‖f̃‖2) .

In particular, for j = 1, 2,

(6.21) ‖∂3 ∂̃3 uj‖r(q), Q a
2
≤ C

(
1 + ‖D u ‖2− pq,Qa

)
(1 + ‖∇∗ ũ ‖

1
2
2, Qa

+ ‖f‖p′ ) .

Proof. Since

‖(1 + M̃)2− p ∇̃∗ π‖r(q) ≤ ‖1 + M̃ ‖2− pq ‖∇̃∗ π‖2 ,

the estimate (6.20) follows easily from (6.15).
Next, write (6.20) in Q a

2
and estimate the quantities ‖∇∗ ˜(∇u)‖r(q), Q a

2

and ‖∇̃∗ π‖2, Q a
2

by appealing to (5.81) and (5.82). Take into account that θ̃

is no-negative and equal to 1 on Q a
2

. It readily follows (6.21). We have used
that 0 ≤ 2− p

2 ≤ 2− p .

Further, from (5.80), a similar argument shows that

(6.22) ‖∇∗ ∇̃u‖λ(q), Q a
2
≤ C

(
1 + ‖D u ‖

2− p
2

q,Qa

)
(1 + ‖f‖p′ + ‖∇∗ ũ ‖

1
2
2, Qa

) .

7 Proof of Theorem 2.1

We start by stating the following particular case of more general results proved
by Troisi in reference [58], to which we refer for details.

Proposition 7.1. Let Q0 be an open, bounded, ”sufficiently regular” set, and
let v ∈W 1, 1(Q0) . Assume that

(7.1) ∂k v ∈ Lpk(Q0) , for k = 1, 2, 3 ,

where (condtro2)

(7.2)
1
p

:=
1
3

3∑
k= 1

1
pk
− 1

3
.

Then v ∈ Lp(Q0) and

(7.3) ‖ v ‖p ≤ c

3∏
k= 1

‖ ∂k v ‖
1
3
pk + c ‖v‖p .
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Obviously, we may replace ‖v‖p by any other Ls norm, s ≥ 1 .
An essential point in order to get the limit exponent l in the Theorem 2.2,

is that the constant c on the right hand side of (7.3) does not depend on the
values of the exponents pk used in the sequel. This property holds provided
that p lies bounded away from 3 . This follows essentially from the equation
(1.15) in the above reference (note, however, that all the values pk that will be
used here lie bounded away from 3 ).

Further, note that the exponent Q(q) , see (2.3), satisfies

1
Q(q)

=
1
3

(
2

λ(q)
+

1
r(q)

− 1
)
.

Proof. We apply Troisi’s Theorem, in Q a
2

, to the single components of ∇̃u .
By appealing to (6.21) and to (6.22) we show that

(7.4) ‖∇̃u‖Q(q), Q a
2
≤ C (1 + ‖∇∗ ũ ‖

1
2
2, Qa

+ ‖f‖p′ )
(

1 + ‖D u ‖
2 (2− p)

3
q,Qa

)
.

From (7.4), by passing from the y to the x variables, it follows that,

(7.5) ‖∇u‖Q(q),Ω a
2
≤ C (1 + ‖∇u ‖

1
2
2,Ωa

+ ‖f‖p′ )
(

1 + ‖∇u ‖
2 (2− p)

3
q,Ωa

)
.

Clearly, (7.4) also holds if Qa is contained in Ω. Actually much stronger interior
estimates hold (obtained in a much easier way).

By setting q = p we get

(7.6) ‖∇u‖ 6 p
8− 3 p

, Ω a
2
≤ C (1 + ‖∇u ‖

1
2
2,Ωa

+ ‖f‖p′ ) .

Since
6 p

8− 3 p
≥ 2 ,

for p ≥ 4
3 , it readily follows (by a standard argument) that ‖∇u‖2,Ω ≤ C .

Hence, we may drop the ‖∇u‖
1
2
2,Ωa

term from the right hand side of (7.5).
This leads to

(7.7) ‖∇u‖Q(q),Ω a
2
≤ C (1 + ‖f‖p′ )

(
1 + ‖∇u ‖

2 (2− p)
3

q,Ωa

)
.

It readily follows that (2.7) holds, where C depends on the (fixed) number N
of sets of type Ω a

2
(plus the number of spheres contained in the interior of Ω)

sufficient to cover Ω.
In a similar way, from (5.81) and (6.21), we show (2.8).

Further, from (5.82), it follows

(7.8) ‖∇∗ π̃‖2, Q a
2
≤ C (1 + ‖f‖p′ ) .

On the other hand, by writing the equation (6.7) for j = 3 we obtain an explicit
expression for ∂3π . In particular, it follows that

(7.9) |∂3π| ≤ c (1 + |M(x)|)p−2 ) |D2 u(x)|+ |f(x)| .
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Since p < 2 , |∂3π| ≤ C ( |D2 u(x)| + |f(x)|) . By transforming the inequality
(7.9) from the x to the y variables one gets (for instance, for y ∈ Q a

2
)

(7.10) |∂3 π̃(y)| ≤ c | ˜(D2 u)(y)|+ |f̃(y)| .

This equation together with (2.8), and (7.8), show that ‖∇π‖r(q),Ω is bounded
by the right hand side of (2.8).

8 The boot-strap argument. Proof of Theorem
2.2

The proof follows that in reference [4]. Since D u ∈ Lp(Ω) , it follows from (2.7)
that D u ∈ LQ(p)(Ω) , where Q(p) = 6 p

8− 3 p . Since this last exponent is greater
than p , we may start an induction argument. Recall that our constants C are
independent of the integrability exponents used here.

Define the strictly increasing sequence

(8.1)

 q1 = p ,

qn+1 = Q(qn) .

Note that the exponent q given by (2.4) is the limit q = limn→∞ qn . In
particular, q is the fixed point of the map q → Q(q) .
From (2.7) it follows that

(8.2) ‖u‖1, qn+ 1 ≤ C (1 + ‖f‖p′) (1 + ‖u‖
2 (2− p)

3
1, qn

) .

With an obvious notation, we write this equation in the form

an+ 1 ≤ b (1 + aαn) .

Note that 0 < α < 1 . By arguing as in [5] we prove that

‖u‖1, qn := an < 2 ( b+ b
1

1−α ) ,

at least for sufficiently large values of n . Consequently, ‖u‖1, q is bounded by
the right hand side of the above equation. This shows that

‖u‖1, q ≤ C (1 + ‖f‖
3

2 p− 1
p′ ) .

The estimate (2.10) follows. Further, the estimate (2.11) follows easily by apply-
ing once more the estimate (2.8), now with q = q , and by taking into account
(2.10). Note that r(q) = l . Very similar devices show that ∇π ∈ Ll .

9 APPENDIX I

The proof of theorem 2.3 is done by following the short proof of theorem 1.1
in reference [9], section 6. As in some of our previous papers, the proof in
the presence of the convective term (u · ∇)u follows in a straightforward way
from the corresponding result obtained without this last term. However, with
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respect to the proof in reference [9], it is worth noting that in this last reference
the constant C , that appears in (2.11), depends only on ‖∇u ‖p . Here (see
(5.10)) C also depends on ‖π‖p′ . A fundamental point in the proof given in
[9], section 6, is that the introduction of the convective term does not change
the energy estimate obtained for ‖∇u ‖p . In fact, this estimate is obtained by
multiplication by u followed by integration on Ω, and the contribution of the
convective term here vanishes. Hence, in order to be sure that the proof given
in reference [9] applies here, we have to take into account the dependence of C
on ‖π‖p′ . We overcome this obstacle by showing that for p ≥ 9

5 one has

‖π‖p′ ≤ c ‖∇u ‖2p .

This result is sufficient to our purpose, since 9
5 < p0 .

In the case of the full Navier-Stokes equations (2.12) one has an additional
term (u · ∇)u on the right hand side of equation (3.11). This leads to an
additional term ‖u2‖p′ on the right hand side of (3.12). If p ≥ 9

5 , this last
term is bounded by c ‖∇u ‖2p . Hence, if (u, π) is a weak solution to the full
Navier-Stokes equations (2.12), then

‖π‖p′ ≤ c ( ‖∇u ‖2p + ‖f‖−1, p′ + 1) .

The main point here is that, on the right hand side of the above estimate, one
has f and not F = f − (u · ∇)u (see (3.9)).

10 APPENDIX II

Often, in Lemma 3.1, the additional assumption g ∈ Lα is required. We claim
that it is sufficient to assume that g is a distribution in Ω (see also [23] for a
similar claim). Nevertheless, for completeness, we show here a different proof
of (5.62), based on the following result.

Proposition 10.1. Let p be a scalar field in L2. Then, there is a constant c
such that

(10.1) ‖p− p‖ ≤ c ‖∇p‖−1 ,

where p is defined by

(10.2) p = |Ω|−1

∫
Ω

p dx .

For an exhaustive proof of the above proposition see the end of Appendix II,
page 1111, in [3] (warning: in this last reference the symbol p denotes p− p ).

Set, for convenience,

ψ(y) = (π̃(y)− π̃(y − h)) θ̃(y) .

Clearly π̃ ∈ L2(Ω) ⊂ Lp
′
(Ω) . Hence, by the above proposition,

‖ψ − ψ‖2 ≤ c ‖∇ψ‖−1,2 .

By appealing to

ψ =
1
|Qa|

∫
π̃(y) (π̃(y)− π̃(y + h)) dy ,

the desired estimated follows.
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fluides visqueux et leurs résolution globale. Troudi Math. Inst. Steklov CII
(1967), 85-104.

[35] Ladyzhenskaya, O.A. Sur des modifications des équations de Navier-Stokes
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