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Abstract. In this article we prove some sharp regularity results for the sta-
tionary and the evolution Navier-Stokes equations with shear dependent viscos-
ity, under the no-slip boundary condition. This is a classical turbulence model,
considered by von Neumann and Richtmeyer in the 50’s, and by Smagorinski

in the beginning of the 60’s (for p = 3). The model was extended to other
physical situations, and deeply studied from a mathematical point of view, by
Ladyzhenskaya in the second half of the 60’s. In the sequel we consider the
case p > 2. We are interested in regularity results in Sobolev spaces, up to the

boundary, in dimension n = 3, for the second order derivatives of the velocity
and the first order derivatives of the pressure. In spite of the very rich liter-
ature on this subject, sharp regularity results up to the boundary are quite
new. In the sequel we improve in a very substantial way all the known results
in the literature. In order to emphasize the very new ideas, we consider a
flat boundary (the so called “cubic-domain” case). However, all the regularity
results stated here hold in the presence of smooth boundaries, by following [3].

1. Introduction. Throughout this work u and π denote, respectively, the velocity
and the pressure of a viscous incompressible fluid. We are interested on regularity
results for solutions to the Navier-Stokes equations for flows with shear dependent
viscosity, namely

∂u

∂t
+ (u · ∇)u −∇ · T (u, π) = f, ∇ · u = 0, (1)

where T = −πI + νT (u)Du denotes the Cauchy stress tensor, and 1
2Du denotes the

symmetric gradient, Du = ∇u + ∇uT .
The system of equations (1), for p = 3 (for the meaning of p, see below), was

introduced by J.S. Smagorinsky in [23], as a turbulence model. From a mathematical
point of view (and for arbitrary p) the system was studied by O.A. Ladyzenskaya,
already as a turbulence model, in references [10], [11], [12] and [13]. J.-L. Lions
considered similar models, in which Du is replaced by ∇u. See [14] and [15], Chap.2,
n.5. It is worth noting that (3) satisfies the Stokes Principle, see [24]. A clear and
rigorous discussion on this subject is given by J. Serrin in reference [22], page 231.
Nonlinear shear dependent viscosity also models properties of certain materials. The
cases p > 2 and p < 2 captures shear thickening and shear thinning phenomena,
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respectively. See, for instance, [8], [17], [18], and [21]. We assume here that 2 <
p ≤ 3. However this restriction is not at all necessary, in the sense that, basically,
the same argument gives similar results for p ≤ 4.

Often, the exact form of νT (u) is not essential. For instance, our proofs apply to
wider classes of νT (u) generalized viscosities than that considered below, depending
essentially on convexity type properties, and behavior near zero and infinity. A
typical example (considered in references [1] and [2]) is given by νT (u) = ν0 +
ν1|Du|p−2, where ν0 and ν1 are strictly positive constants and p ≥ 2. The results
and proofs shown in the sequel apply to this case. However we consider here the
more difficult case

νT (u) = (1 + |Du|)p−2. (2)

The lack of the −ν0∆u in the left hand side of (3) below is overcome here by
appealing to a new device. See also the Remark 5.1 in [2].

Under the assumption (2) the stationary Stokes system reads
{

−∇ ·
(
(1 + |Du|)p−2Du

)
+ ∇π = f,

∇ · u = 0.
(3)

Below, we consider solutions under the no-slip boundary condition

u|∂Ω = 0. (4)

As already shown in previous papers (see in particular [2], to which this paper is
strongly related), the proofs of our regularity results in the presence of the con-
vective term (u · ∇)u, and for the evolution problem, are easily obtained from the
results proved for the stationary Stokes equations. So, we state these results below,
and leave the straightforward proofs to the interested reader. The main lines are
exactly that followed in [2]. Hence, our main concern is the study of the stationary
generalized Stokes system (3). Roughly speaking, our basic result states that weak
solutions to (3), under the no-slip boundary condition, satisfy equation (31) below.

Concerning previous results, related to (31), in [2] it is shown that u ∈ W 2, 3(4−p)
5−p (Ω),

and in [7] that u ∈ W 2, 8−p
3 (Ω).

Higher order regularity results up to the boundary in regular bounded open sets
Ω ⊂ R3, under the no-slip boundary condition, and p > 2, are studied for the first
time in reference [16]. For n = 2, see [9]. In reference [1] and [2], sharper results
are obtained in the case of a flat boundary. In particular, in reference [2], as below,
we consider the cubic-domain case, see subsection 1.1. Further, in reference [3], we
introduce a general method that, essentially, provides the extension of results from
flat to non flat boundaries. Actually, in [3], we have extended to smooth boundaries
the results proved in reference [2]. By now, having in hands the results shown here,
we can easily modified a few points in the proofs in [3], and extend in this way all
the results stated below to non-flat boundaries. Actually, a similar extension for
the case p < 2 has already been done by us, see [4].

It is worth noting that the presentation of some arguments and proofs below could
be reduced by appealing to some of our previous papers. However, the reading of
the paper would became unclear and unpleasant to really interested readers.

1.1. The “cubic-domain” framework, and related notation. In the following
we consider a 3-dimensional cubic domain Ω = (]0, 1[)3, and impose our boundary
condition (4) only on the two opposite faces x3 = 0 and x3 = 1 . On the x1

and x2 directions we assume periodicity, as a device to avoid unessential technical



TURBULENCE MODELS AND REGULARITY 771

difficulties. This choice is made so that we work in a bounded domain Ω and, at the
same time, with a flat boundary. By working in this simple context, we concentrate
on the basic ideas of proofs. More precisely, the boundary condition (4) will be
imposed only on

Γ = Γ− ∪ Γ+.

where

Γ− = {x : |x1|, |x2| < 1, x3 = 0} , Γ+ = {x : |x1|, |x2| < 1, x3 = 1} .

The problem is assumed to be periodic, with period equal to 1, both in the x1 and
the x2 directions. Obviously, the “significant” boundary is Γ. We set

x′ = (x1, x2).

By x′-periodic we mean periodic of period 1 both in x1 and x2. A similar convention
is assumed for expressions like x′-periodicity and so on.

Hence our “boundary condition” reads

u|Γ = 0, and u(x) is x′ − periodic. (5)

We denote by D2u the set of all the second derivatives of u and by D2
∗u the sec-

ond order derivatives ∂2uj/∂xi∂xk with the exclusion of the normal derivatives
∂2uj/∂x2

3, for j = 1, 2. Further,

|D2
∗u|

2 :=

∣∣∣∣
∂2u3

∂x2
3

∣∣∣∣
2

+
3∑

i,j,k=1
(i,k)6=(3,3)

∣∣∣∣
∂2uj

∂xi∂xk

∣∣∣∣
2

. (6)

Similarly, ∇∗ denotes first order partial derivatives, except for ∂ /∂x3.

1.2. Weak solutions. In the sequel the symbol ‖ · ‖p denotes the canonical norm
in Lp(Ω), and ‖ · ‖ = ‖ · ‖2. By W k,q(Ω) we denote the usual Sobolev spaces. We
use the same notation for functional spaces and norms for both scalar and vector
fields. We set

Vp =
{
v ∈ W 1,p(Ω) : (∇ · v)|Ω = 0; v|Γ = 0; v is x′ − periodic

}
. (7)

It is well known that there is a positive constant c such that the estimate

‖∇v‖p + ‖v‖p ≤ c‖Dv‖p (8)

holds, for each v ∈ Vp. Hence the two above quantities are equivalent norms in Vp.
See, for instance, [20], Proposition 1.1.

Assume that f ∈ (Vp)
′, the strong dual of V p. We say that u is a weak solution

to problem (3), (4) if u ∈ Vp satisfies

1

2

∫

Ω

(1 + |Du|)p−2Du · Dvdx =

∫

Ω

f · vdx (9)

for all v ∈ Vp. It is well known that existence and uniqueness of the weak solution
follow by appealing to the method described in the Chap.2, Sect.2 of [15].

By replacing v by u in equation (9) one gets

‖Du‖2 + ‖Du‖p
p ≤ c| < f, u > |, (10)

where the symbols < ·, · > denote a duality pairing.
From (10) and (8) there readily follows the basic estimates

‖∇u‖ ≤ c‖f‖ and ‖∇u‖p ≤ c‖f‖
1

p−1

p′ . (11)

Note that the second estimate is stronger than the first one.
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Well known devices show the existence of a distribution π (determined up to a
constant) such that

∇π = −∇ ·
[
(1 + |Du|)p−2Du

]
+ f. (12)

Hence the first equation (3) holds in the distributions sense. Actually, by appealing

to (12) and (11), one may show that π ∈ Lp′

(Ω) and that

‖π‖
Lp′

#

≤ c(‖Du‖p′ + ‖Du‖p−1
p ) ≤ c(‖f‖ + ‖f‖p′),

where, in general, Lα
# = Lα/R.

1.3. Main integrability exponents. Integrability exponents play a crucial role
in our proofs. For the reader’s convenience, we introduced all these exponents
together.

In the sequel p denotes an exponent that lies in the interval

2 ≤ p ≤ 3 (13)

and q an exponent that, in the sequel (but not necessarily), lies in the interval

p ≤ q ≤ p + 4.

We denote by p′ the dual exponent

p′ =
p

p − 1
. (14)

In general, for 1 < a < 3 we define the Sobolev embedding exponent a∗ by the
equation

1

a∗
=

1

a
−

1

3
. (15)

Moreover we define r = r(q) by

1

r(q)
=

p − 2

2q
+

1

2
, (16)

Q = Q(q) by

1

Q(q)
=

5(p − 2)

6(p − 1)q
+

1

6(p − 1)
, (17)

and q = q(q) by

1

q(q)
=

p − 2

Q(q)
+

1

2
. (18)

Note that

Q(q) > q, (19)

since q < p + 4.
We set

q̃(q) = min{q(q), r(q)}. (20)

Note that r(q) ≥ q(r) is equivalent to q ≥ 7 − 2p.
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2. The stationary Stokes problem. Main results. In the sequel we denote
by c a generic positive constant that may change from equation to equation. The
positive constants c do not depend on the parameters p and q, in the usual sense
(i.e., they are bounded from above for p and q varying in the ranges considered
here).

Our first statement concerns the regularity of the tangential derivatives.

Theorem 2.1. Assume that
f ∈ L2(Ω) (21)

and let u, π be the weak solution to problem (3) under the boundary condition (5)
(problem (9)).

Then the derivatives D2
∗u belong to L2(Ω), moreover

‖D2
∗u‖

2 +

2∑

k=1

∥∥∥∥(1 + |Du|)
p−2
2 D

∂u

∂xk

∥∥∥∥
2

≤ c‖f‖2. (22)

Concerning the regularity of the remaining derivatives, we start from the follow-
ing conditional result.

Theorem 2.2. Let f, u and π be as in Theorem 2.1 and assume, in addition, that

Du ∈ Lq(Ω) (23)

for some p ≤ q ≤ 6. Then, in addition to (22), one has

‖∇∗π‖r(q) + ‖D2u‖r(q) + ‖(1 + |Du|)p−2∇∗Du‖r(q) ≤ Kq, (24)

where r = r(q) is given by (16) and Kq satisfies the estimate

Kq ≤ c‖f‖ + c‖Du‖
p−2
2

q ‖f‖. (25)

Furthermore,

‖u‖1,Q(q) ≤ Aq =: c0‖f‖
1

p−1 + c0‖∇u‖
5(p−2)
6(p−1)
q ‖f‖

1
p−1 + c‖∇u‖p, (26)

where Q(q) is given by (17).

Since (23) holds for q = p, and r(p) = p′, one has the following result.

Corollary 1. Let f, u and π be as in Theorem 2.1. Then

‖∇∗π‖p′ + ‖D2u‖p′ + ‖(1 + |Du|)p−2∇∗Du‖p′ ≤ c‖f‖ + c‖1 + |Du|‖
p−2
2

p ‖f‖ (27)

and

‖u‖1,Q(p) ≤ c0‖f‖
1

p−1 + c0‖∇u‖
5(p−2)
6(p−1)
p ‖f‖

1
p−1 + c‖∇u‖p, (28)

where Q(p) = 3p−5
3p(p−1) .

Concerning the regularity of the derivative ∂π
∂x3

one has the following result.

Proposition 1. Under the assumptions of Theorem 2.2 one has∥∥∥∥
∂π

∂x3

∥∥∥∥
q̃

≤ c
[
1 + Ap−2

q

]
‖f‖ + cKq (29)

where q̃ is defined in (20) and Aq is the right hand side of (26). In particular, by
(24),

‖∇π‖q̃ ≤ c
[
1 + Ap−2

q

]
‖f‖ + cKq. (30)
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The reason that leads us to separate Proposition 1 from Theorem 2.2 is to em-
phasize that the regularity of ∂π

∂x3
is simply obtained as a final by-product of the

regularity of all other derivatives.
The next is our main result.

Theorem 2.3. Let f, u and π be as in Theorem 2.1. Then, in addition to (22),

u ∈ W 1,p+4(Ω) ∩ W 2, p+4
p+1 (Ω). (31)

More precisely,

‖u‖1,p+4 ≤ c‖f‖
1

p−1 + c‖f‖
6

p+4 + c‖∇u‖p. (32)

Furthermore,

‖∇∗π‖l + ‖D2u‖l + ‖(1 + |Du|)p−2∇∗Du‖l ≤ c(1 + ‖∇u‖
p−2
2

p )‖f‖ + c‖f‖
2(p−2)

p+4 ,

(33)

where

l =
p + 4

p + 1
. (34)

Finally,
∂π

∂x3
∈ Lm(Ω), (35)

where m = q(p + 4). In particular,

∇π ∈ Lm(Ω),

and

‖∇π‖m ≤ c
[
1 + Ap−2

p+4

]
‖f‖ + cKp+4. (36)

Note that, by (32), Kp+4 and Ap+4 are bounded (in terms of ‖f‖ and ‖∇u‖p).
Further, m = 2 if p = 2.

Remark 1. Note that, by a Sobolev embedding theorem, it follows from u ∈ W 2,l

that u ∈ W 1,l∗ , where l∗ = 3(p+4)
2p−1 . Since l < 2 one has l∗ < 2∗ = 6. Nevertheless,

we prove here that u ∈ W 1,p+4, where 6 < p + 4.
Note that, for p = 2, all the inequalities written in this remark turn into equali-

ties.

Remark 2. The second order “tangential derivatives”, see (22), belong to L2(Ω).
Hence, they are more regular than the remaining (purely normal) second order
derivatives, see (24). Consequently, instead of appealing to classical Sobolev em-
bedding theorems (as done in [2], to show (3.8)), we appeal here to anisotropic
Sobolev-type embedding theorems, see [25], in order to show (26) (which is here
the counterpart of (3.8) in [2]). This fruitful idea was introduced in reference [6].
Clearly, by appealing to the estimate (26), we get better integrability exponents
than that in [2], obtained by appealing to the weaker estimate (3.8).

Remark 3. As already remarked, all the regularity results stated here hold in the
presence of smooth boundaries. This can be shown, without particular difficulties,
by readers already acquainted with the approach introduced in [3]. The significant
changes must be made only in a very small part of the proof in [3], concerning a
couple of estimates proved in the context of the ”flat” system of coordinates y used
in the above reference. Roughly speaking, in this last reference, we extend to the
y variables some basic estimates proved in [2] in the simpler context of the original
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x variables. In order to extend to non-flat boundaries the results proved below
(instead of that in [2]), it is sufficient to appeal to the equivalent basic estimates
proved in the following. For instance, the fundamental estimate (10.19) in reference
[3] corresponds to the estimate (3.8) in reference [2], and to the estimate (26) below.
Roughly speaking, in the original proof of the estimate (10.19) in [3], we extend some
manipulations made in the proof of the estimate (3.8) in reference [2], from the x
to the y variables. In the context of the new results claimed above, we extend, in
a quite similar way, the corresponding manipulations made in proving the estimate
(26) below instead of that concerning the estimate (3.8) in [2].

Finally, in the forthcoming paper [5] all the above results are improved. In [5]
stationary and evolution (Stokes and Navier-Stokes) problems are studied in the
presence of non-flat boundaries, for all p ≥ 2 and all n ≥ 2 .

Remark 4. In our previous papers [1], [2], [3] and [4] (as well as in our papers
concerning the case p < 2) we obtain the largest integrability exponents (like l in
(34)) by appealing to a boot-strap argument. Actually, in the above papers we may
avoid the boot-strap, by arguing just as shown in section 6 below.

3. Stationary and evolution Navier-Stokes equations. Results. The proofs
of the following extensions of the above results to solutions of the Navier-Stokes
stationary and evolution equations are left to the interested reader, since they are
done by straightforward modifications of the corresponding proofs shown in refer-
ence [2]. We note that, in our papers, the main novelties concern the generalized
Stokes system (3). In fact, in our opinion, the new obstacles related to the bound-
ary value problems already appear in this particular case. Regularity results for
solutions to the stationary and evolution generalized Navier-Stokes equations are
proved by us as more or less straightforward consequences of the results obtained
for the generalized Stokes system. Actually, we realize that a more stringent use of
the estimates proved for the system (3) is possible. However, we did not push in
this direction.

Theorem 3.1. The regularity results stated in the Theorems 2.1, 2.2 and 2.3, and
in the Lemma 1, hold for the generalized Navier-Stokes equations

{
−∇ ·

(
(1 + |Du|)p−2Du

)
+ (u · ∇)u + ∇π = f,

∇ · u = 0.
(37)

Consider now the evolution problem




∂u

∂t
+ (u · ∇)u −∇ ·

(
(1 + |Du|)p−2Du

)
+ (u · ∇)u + ∇π = f,

∇ · u = 0,
u(0) = u0(x).

(38)

One has the following results.

Theorem 3.2. Let u be a weak solution to problem (38) under the boundary con-
dition (4) plus x′-periodicity, where u0 ∈ Vp and f ∈ L2(0, T ; L2). Assume that
p ≥ 2 + 2

5 . Then




u ∈ L2(0, T ; W 2,p′

) ∩ L∞(0, T ; W 1,p),
∂u

∂t
∈ L2(0, T ; L2).

(39)
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Theorem 3.3. Under the assumptions of Theorem 3.2 one has

u ∈ L
p+4
p−2 (0, T ; W 2,l) ∩ L∞(0, T ; W 1,p). (40)

The assumption p ≥ 2 + 2
5 is superfluous if the convective term is not present.

Corresponding results for the pressure are easily obtained, as well as estimates for
the norms that appear in the above theorems.

4. Proof of Theorem 2.1. In this section we prove the Theorem 2.1. By assump-
tion u ∈ Vp satisfies (9) for each v ∈ Vp. For arbitrary scalar or vector fields v set
vh(x) = v(x1 + h, x2, x3) or vh(x) = v(x1, x2 + h, x3) where h ∈ R. We also set

∆hv =
v − v−h

h
.

By writing (9) with v replaced by vh and by replacing, in the integrals on the left
hand side, the variable xk by xk − h , k = 1, 2, one easily shows that

1

2

∫
(1 + |Du−h|)p−2Du−h · Dvdx =

∫
f · vhdx. (41)

By taking the difference between equations (9) and (41), respecting the left and
right sides, and by dividing by h one gets

1

2h

∫ (
(1+|Du|)p−2Du−(1+|Du−h|)p−2Du−h

)
· Dvdx =

1

h
,

∫
f · (v−vh)dx. (42)

By setting v = ∆hu in equation (42), by appealing to the identity

‖D∆hu‖2 = 2‖∇(∆hu)‖2 (43)

and by using the estimate
∣∣∣∣
1

h

∫
f · (v − vh)dx

∣∣∣∣ ≤ ‖f‖

∥∥∥∥
v − vh

h

∥∥∥∥ ≤ ‖f‖‖∇v‖, (44)

it follows that
1

2h

∫ (
(1+|Du|)p−2Du−(1+|Du−h|)p−2Du−h

)
· (D∆hu)dx ≤ c‖f‖‖D(∆hu)‖. (45)

Next, by a well known convex analysis estimate (set U = Du and V = Du−h in
equation (5.1), [2]), it follows that

∫ (
1 + |Du| + |Du−h|)

)p−2
|D∆hu|2 ≤ c‖f‖‖D(∆hu)‖. (46)

In particular,

‖D2
∗u‖

2 +

∫ (
1 + |Du| + |Du−h|)

)p−2
|D∆hu|2 ≤ c‖f‖2. (47)

Note that, as a first steep, we obtain the above equation with ‖D2
∗u‖

2 replaced
by ‖D∆hu‖2, hence by ‖∇∆hu‖2 (apply (43)). Further, the uniform bound of
this last quantity with respect to h allows us to replace it by ‖∇∇∗u‖

2. Finally,
differentiation with respect to x3 of the equation ∇ · u = 0 allows the inclusion of

the derivative ∂2u3

∂x2
3

in the above estimate, hence to replace ‖∇∇∗u‖ by ‖D2
∗u‖.

Next, (as in [2]), by passing to the limit in (47), as h → 0, one proves (22).
We note that it is not strictly necessary to appeal to (43). See the remark 5.1 in

reference [2].
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5. Proof of the Theorem 2.2.

5.1. Proof of the estimate (24). We start this section by recalling the following
result. Let g(x) be a scalar field in Ω such that g = ∇ · w0 and ∇g = ∇ · W, where
w0 ∈ Lβ(Ω) and W ∈ Lα(Ω), for some α ≥ β > 1. Then

‖g‖Lα(Ω) ≤ c
(
‖w0‖Lβ(Ω) + ‖W‖Lα(Ω)

)
. (48)

For β = α this result is proved in reference [19]. The above extension is straight-
forward.

It is worth noting that our constants c are independent of p, q, r since the con-
stants that appear in the embedding theorems used in the sequel, as well as in (48),
are uniformly bounded from above. This follows, since the exponents lie away from
the critical values. Note that 2 ≤ p ≤ 3, p ≤ q ≤ 6 and 4

3 ≤ r ≤ 2.

Lemma 5.1. Assume (23). For k = 1, 2, the terms (1 + |Du|)p−2D ∂u
∂xk

and the

derivatives ∂π
∂xk

satisfy the estimate (24), i.e.,

‖∇∗π‖r(q) + ‖(1 + |Du|)p−2∇∗Du‖r(q) ≤ Kq.

Proof. The proof is a straightforward copy of the proof of the Lemma 6.2 in reference
[2]. We present it just for the reader’s convenience.

By Hőlder’s inequality and assumption (23), one has
∥∥∥∥(1 + |Du|)p−2D

∂u

∂xk

∥∥∥∥
r(q)

≤ ‖1 + |Du|‖
p−2
2

q

∥∥∥∥(1 + |Du|)
p−2
2 D

∂u

∂xk

∥∥∥∥ . (49)

Hence, by (22), it follows that
∥∥∥∥(1 + |Du|)p−2D

∂u

∂xk

∥∥∥∥
r(q)

≤ c‖1 + |Du|‖
p−2
2

q ‖f‖. (50)

This proves the second statement in the Lemma.
On the other hand, straightforward calculations show that

∂

∂xk

(
(1 + |Du|)p−2Du

)

=(1 + |Du|)p−2D
∂u

∂xk
+ (p − 2)(1 + |Du|)p−3|Du|−1

(
Du · D

∂u

∂xk

)
Du.

(51)

Hence

|
∂

∂xk

(
(1 + |Du|)p−2Du

)
| ≤ c(1 + |Du|)p−2

∣∣∣∣D
∂u

∂xk

∣∣∣∣ , (52)

almost everywhere in Ω. Hence,
∥∥∥∥

∂

∂xk

(
(1 + |Du|)p−2Du

)∥∥∥∥
r(q)

≤ c‖1 + |Du|‖
p−2
2

q ‖f‖. (53)

Further, by differentiation of equation (3) with respect to xk, k = 1, 2, it follows
that

∇
∂π

∂xk
= ∇ ·

[
−

∂

∂xk

(
(1 + |Du|)p−2Du

)]
+

∂f

∂xk
. (54)
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By appealing to (48), with g = ∂π
∂xk

, α = r and β = p′, and by (53) and (54), (recall

also (12) and (11)) it follows that
∥∥∥∥

∂π

∂xk

∥∥∥∥
r(q)

≤ c
(
‖f‖ + ‖f‖p′ + ‖1 + |Du|‖

p−2
2

q ‖f‖
)

. (55)

Hence, ∥∥∥∥
∂π

∂xk

∥∥∥∥
r(q)

≤ Kq. (56)

Note that from equations (50) and (56) we get the estimate (24) for the first and
the last term on the left hand side. The missing term is the subject of the following
lemma.

Lemma 5.2. The derivatives
∂2uj

∂x2
3
, j = 1, 2 satisfy the estimate

2∑

l=1

∥∥∥∥
∂2ul

∂x2
3

∥∥∥∥
r(q)

≤ Kq. (57)

Proof. It is worth noting that the proof is a pedestrian copy of the proof of the
Lemma 6.3 in reference [2]. Nevertheless, we believe that it is pleasant to the
interested reader to have it hereby.

By using (51), the j.th equation (3) may be written in the form

− (1 + |Du|)p−2
3∑

k=1

∂2uj

∂x2
k

− (p − 2)(1 + |Du|)p−3|Du|−1
3∑

l,m,k=1

DlmDjk

(
∂2ul

∂xm∂xk
+

∂2um

∂xl∂xk

)
+

∂π

∂xj
= fj,

(58)

where Dij = (Du)ij = ∂ui

∂xj
+

∂uj

∂xi
and 1 ≤ j ≤ 3. Let us write the first two equations

(58), j = 1, 2, as follows:

(1+|Du|)p−2 ∂2uj

∂x2
3

+2(p−2)(1+|Du|)p−3|Du|−1Dj3

2∑

l=1

Dl3
∂2ul

∂x2
3

= Fj(x)+
∂π

∂xj
−fj,

(59)

where the Fj(x), j 6= 3, are given by

Fj(x) := −(1 + |Du|)p−2
2∑

k=1

∂2uj

∂x2
k

− 2(p − 2)(1 + |Du|)p−3|Du|−1

{
D33Dj3

∂2u3

∂x2
3

+

3∑

l,m,k=1
(m,k)6=(3,3)

DlmDjk
∂2ul

∂xm∂xk

}
.

(60)

In the sequel, the equations (59), j = 1, 2, will be treated as a 2 × 2 linear system

in the unknowns
∂2uj

∂x2
3

, j 6= 3. Note that, with an obviously simplified notation, the

measurable functions Fj satisfy

|Fj(x)| ≤ c(1 + |Du(x)|)p−2|D2
∗u(x)|, (61)
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a.e. in Ω.
We denote by F̃j the right hand sides

F̃j(x) := Fj(x) +
∂π

∂xj
− fj, (62)

that appear in the above 2 × 2 system (59).

Let us show that the 2× 2 system (59) can be solved for the unknowns
∂2uj

∂x2
3

, j =

1, 2, for almost all x ∈ Ω.
The elements ajl of the matrix system A are given by

ajl = (1 + |Du|)p−2δjl + 2(p − 2)(1 + |Du|)p−3|Du|−1Dl3Dj3,

for j, l 6= 3. Note that ajl = alj . One easily shows that

2∑

j,l=1

ajlξjξl = (1 + |Du|)p−2|ξ|2 + 2(p − 2)(1 + |Du|)p−3|Du|−1 [(Du) · ξ]
2
3 .

Hence the matrix A is symmetric and positive definite. Moreover, the above identity
shows that all the eigenvalues are larger than or equal to (1 + |Du|)p−2. Hence,

detA ≥
(
(1 + |Du|)p−2

)2
.

Next, by setting ξl = ∂2ul

∂x2
3
, we get from (59), i.e. from

2∑

l=1

ajlξl = F̃j , (63)

that
2∑

l,j=1

ajlξlξj =

2∑

j=1

F̃jξj . (64)

Consequently (1 + |Du|)p−2|ξ|2 ≤ |F̃ ||ξ|, which shows that

(1 + |Du|)p−2
2∑

l=1

∣∣∣∣
∂2ul

∂x2
3

∣∣∣∣ ≤ |F̃ | :=

(
2∑

j=1

|F̃j |
2

)1/2

, (65)

almost everywhere in Ω. By appealing to (61) and (62) one shows that

(1 + |Du|)p−2
2∑

l=1

∣∣∣∣
∂2ul

∂x2
3

∣∣∣∣ ≤ c(1 + |Du|)p−2|D2
∗u(x)| + c (|∇∗π| + |f |) . (66)

In particular,

2∑

l=1

∣∣∣∣
∂2ul

∂x2
3

∣∣∣∣ ≤ c|D2
∗u(x)| + c (|∇∗π| + |f |) , (67)

almost everywhere in Ω. There readily follows, by appealing to (56), that (57)
holds. The proof of the estimate (24) is accomplished.
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5.2. Proof of the estimate (26). The following anisotropic, Sobolev type, em-
bedding theorem is a particular case of more general results proved by Troisi in
reference [25]. It is a crucial tool for proving the Theorem 2.3.

Proposition 2. Let Ω be as above, and let v ∈ W 1,1(Ω). Assume that

∂kv ∈ Lpk , for k = 1, 2, 3, (68)

where

1

p
:=

1

3

3∑

k=1

1

pk
−

1

3
. (69)

Then v ∈ Lp(Ω) and

‖v‖p ≤ c

3∏

k=1

‖∂kv‖
1
3
pk

+ c‖v‖p. (70)

Obviously, we may replace ‖v‖p by any other Ls norm, s ≥ 1.
An essential point in order to get the limit exponent l in the proof of Theorem

2.3 is that the constant c on the right hand side of (70) does not depend on the
values of the exponents pk used in the sequel. This property holds provided that p
lies bounded away from 3. This follows essentially from the equation (1.15) in the
above reference (nevertheless, note that each of the values pk used in our proof lie
bounded away from 3).

We start by noting that

|∂xk
|Du|p−1| ≤ (p − 1)|Du|p−2|∂xk

Du|. (71)

Lemma 5.3. Assume that the hypotheses in the Theorem 2.2 hold. Then

‖∇∗|Du|p−1‖r ≤ Kq (72)

and

‖∂x3|Du|p−1‖s ≤ c‖Du‖p−2
q Kq, (73)

where s = s(q) is given by

1

s(q)
:=

p − 2

q
+

1

r(q)
=

3p + q − 6

2q
. (74)

Proof. The estimate (72) follows from (71), for k = 1, 2, together with (24).
On the other hand, from (71) and Hőlder’s inequality, one gets

‖∂x3|Du|p−1‖s ≤ c‖Du‖p−2
q ‖∂x3Du‖r. (75)

The estimate (73) follows by appealing to (24).

Define α = α(q) by

1

α(q)
=

1

3

(
2

r(q)
+

1

s(q)

)
−

1

3
, (76)

Note that
1

α(q)
=

1

r(q)
+

p − 2

3q
−

1

3
, (77)

moreover, recall (17),

Q(q) = (p − 1)α(q).
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Lemma 5.4. Assume that the hypotheses in the Theorem 2.2 hold. Then ∇u ∈
LQ(q), moreover,

‖∇u‖Q(q) ≤ c‖f‖
1

p−1 + c‖Du‖
5(p−2)
6(p−1)
q ‖f‖

1
p−1 + c‖∇u‖p. (78)

In particular, if q < p + 4,

‖∇u‖Q(q) ≤ c(‖f‖
1

p−1 + ‖∇u‖p) + c‖f‖
6

p+4 . (79)

Proof. From (72), (73) and Proposition 2, it follows that

‖|∇u|p−1‖α ≤ cKq‖Du‖
p−2
3

q + c‖∇u‖p−1
p . (80)

Equation (78) follows from (80) and (25). Next, since q < Q(q) for q < p + 4 ,
we may write (78) with ‖D u‖q replaced by ‖D u‖Q(q) . The estimate (79) follows,

since 5 (p−2)
6 (p− 1) < 1 .

6. Proof of Theorem 2.3. Define the increasing sequence

q1 = p, qn+1 = Q(qn). (81)

Since qn < p + 4 for each n, and ∇u ∈ Lq1 , an induction argument shows (79), for
each q = qn. Since

lim
n→∞

Q(qn) = p + 4, (82)

equation (32) holds.
Finally, the estimates (33) follows by applying once more the Theorem 2.2, now

with q = p + 4. In this case the equation (16) shows that r(p + 4) = l, with l given
by (34). Hence, from (24), it follows that

‖∇∗π‖l + ‖D2u‖l + ‖(1 + |Du|)p−2∇∗Du‖l ≤ Kp+4 ≤ c‖f‖ + c‖1 + |Du|‖
p−2
2

p+4‖f‖.

(83)

Finally, by appealing to (32) we show (33).
Regularity and estimates for ∂π

x3
(hence, for ∇π), see (36), follows immediately

by appealing to the Lemma 1 with q = p + 4. Note that m = q̃(p + 4) = q(p + 4)
since p + 4 > 7 − 2p (see the remark after (20)).

7. Proof of proposition 1.

Proof. From equation (58) written for j = 3, we get
∣∣∣∣
∂π

∂x3

∣∣∣∣ ≤ c(1 + |Du(x)|)p−2|D2
∗u(x)| + c(p − 2)(1 + |Du(x)|)p−2

2∑

l=1

∣∣∣∣
∂2ul

∂x2
3

∣∣∣∣+ |f3(x)|,

(84)

almost everywhere in Ω. Hence, by (66), one has
∣∣∣∣
∂π

∂x3

∣∣∣∣ ≤ c(1 + |Du|)p−2|D2
∗u| + c(|∇∗π| + |f |). (85)

On the other hand, by Hőlder’s inequality,

‖(1 + |Du|)p−2D2
∗u‖q(q) ≤ ‖1 + |Du|‖p−2

Q(q)‖D
2
∗u‖. (86)

By (22) and (26) one gets

‖(1 + |Du|)p−2D2
∗u‖q ≤ c

[
1 + Ap−2

q

]
‖f‖. (87)
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Finally, (29) follows by appealing to (85), (87) and (24).
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1965.

[20] C. Parés, Existence, uniqueness and regularity of solutions of the equations of a turbulence

model for incompressible fluids, Appl. Analysis, 43 (1992), 245–296.
[21] K. R. Rajagopal, Mechanics of Non-Newtonian Fluids, Recent Developments in Theoretical
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