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Abstract

We consider the initial boundary value problem for the 3D Navier-Stokes equations.
The physical domain is a bounded open set with a smooth boundary on which we assume
a condition of free-boundary type. We show that if a suitable hypothesis on the vorticity
direction is assumed, then weak solutions are regular. The main tool we use in the proof
is an explicit representation of the velocity in terms of the vorticity, by means of Green’s
matrices.

1 Introduction and results.

In this paper we consider the initial value problem for the 3D Navier-Stokes equations
ut + (u · ∇)u−4u+∇p = 0 in Ω×]0, T ],

∇ · u = 0 in Ω×]0, T ],

u(x, 0) = u0(x) in Ω,

(1)

where the unknowns are the velocity u and the pressure p. In order to avoid inessential
complications we assume that external force vanishes and that the kinematic viscosity is
equal to 1. The open and bounded set Ω ⊂ R3 -the physical domain- has a smooth boundary
∂Ω, say of class C3,α, for some α > 0.

We supplement the initial value problem with the so-called “stress-free” boundary condi-
tions {

u · n = 0 on ∂Ω×]0, T ],

ω × n = 0 on ∂Ω×]0, T ],
(2)

where ω = ∇ × u = curlu is the vorticity field, while n denotes the exterior unit normal
vector. In the case of flat boundaries, the above conditions coincide with the classical Navier
boundary conditions, namely, u · n = 0 and n · ∇u − (n · ∇u · n)n = 0 (see the classical
references Serrin [26] and Solonnikov and Ščadilov [?]; see also [3] and [4]). The boundary
conditions (2) can also be used on a free-surface, see Temam [30].

The variational formulation and numerical implementation of the stationary Navier-Stokes
equations with the “non-standard” boundary conditions (2) (that correspond also to a jet dye

1



in applications to duct flows, see Conca et al. [14]), can be found in [1, 13, 14]. For questions
of existence and regularity for the stationary problem see also Girault [20]. The boundary
conditions (2) are also interesting because the treatment of the boundary layers is simpler
than in the usual no-slip case, see Temam and Ziane [32] and Conca [12]. See also Clopeau,
Mikelić, and Robert [11] for the 2D case. Similar conditions are also used in Lions [24] in
order to study vanishing viscosity limits for the 2D problem.

The initial value problem for the Navier-Stokes equations with the above boundary con-
ditions (2) poses the same problems as the usual one with vanishing Dirichlet boundary con-
ditions: one can only obtain global existence of weak solutions and local existence of strong
solutions. The proof can be done by adapting the usual one concerning Dirichlet boundary
conditions, as in Leray [22] and Hopf [21]. See Section 2 for further details.

In the present paper we address the problem of global existence of smooth solutions, under
additional hypotheses on the vorticity-direction. In particular, we extend previous results for
the problem without boundaries or in the half-space. In the sequel θ(x, y, t) denotes the angle
between the vorticity ω at two distinct points x and y, at time t:

θ(x, y, t)
def
= 6 (ω̂(x, t), ω̂(y, t)),

where, for each non-null vector v, we define v̂
def
= v/|v|. Furthermore, c denotes an arbitrary

positive constant.
The study of conditions involving the direction of vorticity, and its physical-geometric

interpretation, started with Constantin and Fefferman [15], who first derived some exact
formulas and employed them in order to prove regularity in the whole of R3. In particular,
in [15] the following result is proved.

Theorem 1.1. Let be Ω = R3 and let u be a weak solution of (1) in (0, T ) with u0 ∈ H1(R3)
and ∇ · u0 = 0. If

sin θ(x, y, t) ≤ c |x− y|, a.e. x, y ∈ R3, a.e. t ∈]0, T [ , (3)

then the solution u is strong in [0, T ] and, consequently, is regular.

Remark 1.2. Related results concerning vorticity direction and geometric constraints on
potentially singular solutions for the 3D Euler equations (i.e. the case of vanishing viscosity)
have been proved by Constantin, Fefferman, and Majda [16].

The result of Theorem 1.1 has been later improved by the authors in reference [8], by
replacing the above Lipschitz condition by a 1/2-Hölder condition. More precisely, if

sin θ(x, y, t) ≤ c |x− y|1/2, a.e. x, y ∈ R3, a.e. t ∈]0, T [, (4)

then the solution u is necessarily regular. Actually, in reference [8] the authors consider a
family of sufficient conditions that contains (4) as the most significant case. More precisely,
in [8] the following result is proved:

Theorem 1.3. Let be Ω = R3 and let u be a weak solution of (1) in (0, T ) with u0 ∈ H1(R3)
and ∇ · u0 = 0. If there exists β ∈ [1/2, 1] and g ∈ La(0, T ;Lb(R3)), where

2

a
+

3

b
= β − 1

2
with a ∈

[
4

2β − 1
,∞
]
,
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such that
sin θ(x, y, t) ≤ g(t, x)|x− y|β, a.e. x, y ∈ R3, a.e. t ∈]0, T [, (5)

then the solution is necessarily regular.

More recently, one of the authors, see [5], extended the 1/2-Hölder condition in the whole
of R3 to solutions to the boundary value problem (2) in the half-space case. In [5] the
following result is proved (actually, in the above reference, the author considers the Navier’s
slip boundary condition. However, on flat boundaries, this condition coincides with (2)).

Theorem 1.4. Let Ω = R3
+. Suppose that u0 ∈ H1(Ω), ∇ · u0 = 0, and u is a weak solution

to (1)-(2) in [0, T ]. Suppose also that for some β ∈]0, 1/2]

sin θ(x, y, t) ≤ c|x− y|β, a.e. x, y ∈ Ω, a.e. t ∈]0, T [,

and that

ω ∈ L2(0, T ;Ls(Ω)), with s =
3

β + 1
.

Then, the solution u is a strong solution in [0, T ], hence it is smooth.

In reference [5] the above result is proved by appealing, separately, to the classical Dirichlet
and Neumann Green’s functions, in the half space. This can be done since, for flat boundaries,
conditions (2) are equivalent to

ω1 = ω2 = 0 ;
∂ ω3

∂ x3
= 0 .

Here, since the boundary is not flat, we have to localize the problem, a not trivial and quite
technical matter. In reference [28], the author constructs global Green’s matrices for a large
class of boundary value problems and systems of partial differential equations. Our problem
falls within this class. The first (and may be main) step in [28] consists in constructing a
local version of Green’s matrices, in a neighborhood of each boundary point. With the help of
these local kernels, the author construct the global one. Unfortunately, it seems not possible
to treat our problem by applying directly to the global Green’s matrices. Hence we appeal
here to the above ”local” Green’s matrices.
It is of interest to compare the above situation with the different one, faced in the presence of
a Dirichlet boundary condition. In spite of the arbitrary (smooth) boundary, in reference [5]
the fundamental estimate (51) is proved by appealing directly to the global Green’s function
for the Dirichlet problem, without the need of a localization argument. However, a new
obstacle appears. Integration in Ω of the scalar product −∆ω · ω gives rise to the boundary
integral ∫

∂ Ω

∂ω

∂n
· ω dS ,

as follows from (13). Under the boundary condition (2) we are able to estimate this term in
a suitable way, see the Lemma 2.2 below (if the boundary is flat, see [5], the above integral
vanishes). On the contrary, under the Dirichlet boundary condition, (14) does not hold. Hence
a suitable additional assumption on the above boundary integral seems necessary. See [5].

The aim of this paper is to extend the above regularity theorems to arbitrary, regular,
open sets Ω. One has the following result.
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Theorem 1.5. Let Ω ⊂ R3 be an open, bounded set with a smooth boundary ∂Ω, say of class
C3,α, for some α > 0. Suppose that u0 ∈ H1(Ω), ∇ · u0 = 0, and u is a weak solution to (1)-
(2) in [0, T ]. In addition, suppose either that there exists β ∈ [1/2, 1] and g ∈ La(0, T ;Lb(Ω)),
where

2

a
+

3

b
= β − 1

2
with a ∈

[
4

2β − 1
,∞
]
,

such that
sin θ(x, y, t) ≤ g(t, x)|x− y|β, a.e. x, y ∈ Ω, a.e. t ∈]0, T [,

or either that there exists β ∈]0, 1/2]

sin θ(x, y, t) ≤ c|x− y|β, a.e. x, y ∈ Ω, a.e. t ∈]0, T [,

and that

ω ∈ L2(0, T ;Ls(Ω)), with s =
3

β + 1
.

Then, the solution u is a strong solution in [0, T ], hence it is smooth.

Note that in Theorems 1.3, 1.4, and 1.5 the assumption (4) alone is a sufficient condition
for regularity since weak solutions satisfy ω ∈ L2(0, T ;L2(Ω)) (consider β = 1

2 , a = b = ∞
and s = 2). In addition, scaling properties show the sharpness of Theorem 1.5, since the case
β = 0 and s = 3, corresponds to a well-known regularity class, as proved in ref. [2] and [9] for
R

3 and for a bounded domain, respectively. Moreover, by following [15], one shows that the
conditions on sin θ(x, y, t) need to be assumed only in the region where the vorticity at both
points x and y is larger than an arbitrary fixed positive constant K. For further details see
Remark 3.9.

For simplicity, we present the complete proof of the above theorem only under the main
assumption (4) (which corresponds to the special case β = 1/2), since this is the most sig-
nificant case. In this way we avoid secondary points, that could hide the main ideas of an
overall complicated and technical result. Actually, once the Proposition 3.2 is established, it
is not difficult to make the necessary alterations in the subsequent results, in order to prove
Theorem 1.5 in all its generality.

Hence, we shall prove with full details the following result, that is the main result of the
paper (this result was announced by one of the authors in the note [7]).

Theorem 1.6. Let Ω ⊂ R3 be an open, bounded set with a smooth boundary ∂Ω, say of
class C3,α, for some α > 0. Suppose that u0 ∈ H1(Ω), ∇ · u0 = 0, and u is a weak solution
to (1)-(2) in [0, T ]. Suppose also that

sin θ(x, y, t) ≤ c |x− y|1/2, a.e. x, y ∈ Ω, a.e. t ∈]0, T [,

is satisfied. Then, the solution u is a strong solution in [0, T ], hence it is smooth.

Each of the above theorems strongly appeals to ideas and techniques developed in the
previous ones. In the proof of Theorem 1.6 the crucial new contribution is that one can use the
representation formulas for Green’s matrices derived in Solonnikov’s outstanding work [27, 28]
in order to treat boundaries. With the aid of these explicit formulas we introduce original
local representation formulas for the velocity (in terms of the vorticity) and we are able to
employ (4) in order to prove suitable estimates for the vortex stretching terms.
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Plan of the paper. In Section 2 we give a proper variational formulation of the problem
and we sketch the existence results for weak and strong solutions. In addition, integration
by parts formulas are derived with full details. In Section 3 we use Solonnikov’s theory
of Green’s matrices to give explicit representation of the vortex stretching term. By using
Hypothesis (4) we deduce suitable estimates for the vorticity growth. Finally, in Section 4
we collect all previous results in order to prove the regularity results of Theorem 1.6. In an
appendix some secondary calculations are reported for the sake of completeness.

Added in proof. In the forthcoming paper [10], one of the authors establish new results
concerning the existence of global regular solutions under suitable hypothesis on the directions
of ω and curl ω .

2 Variational formulation and energy-type estimates.

In this section we present the variational formulation of the Navier-Stokes equations with
the boundary conditions (2). We start by recalling the laws of balance for some physically
meaningful quantities. We assume the functions to be smooth enough to make the calculations
possible. In particular, by assuming that the solutions are strong (see Proposition 2.9) all the
formal calculations become rigorous. In the sequel, we denote by Lp := Lp(Ω), for 1 ≤ p ≤ ∞
and equipped with norm ‖ . ‖p, the usual Lebesgue spaces, while Hs := Hs(Ω), for s ≥ 0,
are the classical Sobolev spaces. We shall use the same symbol for both scalar and vector
function spaces. We also use the space of divergence-free tangential vector fields of L2(Ω)

L2
σ
def
=
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on ∂Ω

}
.

We recall that the divergence is taken in the distributional sense, while the trace condition
has to be understood with respect to the space H−1/2(∂Ω). We also shall use the space of
more regular H1(Ω) tangential and divergence free-vector fields:

H1
σ
def
= H1(Ω) ∩ L2

σ.

In order to give the variational formulation of (1)-(2) we make some observations to explain
the integration by parts that are possible to perform within this setting. In the sequel,

∂i
def
= ∂

∂xi
, while εijk is the totally anti-symmetric Ricci tensor. Moreover, summation over

repeated indices is assumed.

2.1 Some integral identities.

In this section we derive some integrations by parts formulas that will be used in the sequel.
We start with an identity involved in the energy budget.

Lemma 2.1. Let u and φ be two vector fields, tangential to the boundary. Then

−
∫

Ω
4ui φi dx =

∫
Ω
∇ui∇φi dx+

∫
∂Ω

(ω × n)i φi dS +

∫
∂Ω
φi uk ∂ink dS, (6)

where ω = curlu.
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Proof. We observe that, for i = 1, 2, 3,

[ω × n]i = εijk ωj nk = εijk (εjlm ∂lum)nk = (δkl δim − δkm δil)nk ∂lum, on ∂Ω.

Hence
nk ∂kui − nk ∂iuk = (ω × n)i on ∂Ω. (7)

Since the vector field u is tangential to the boundary, it follows that ∂(u·n)
∂τ

∣∣
|∂Ω
≡ 0, for each

vector field τ tangential to the boundary. By smoothly extending the normal unit vector field
n to a small neighborhood of ∂Ω (see for instance Nečas [25] for Lipschitz prolongation for
C0,1-boundaries), a straightforward argument (φ is tangential, as well) shows that φ ·∇(u ·n)
vanishes on ∂Ω, i.e.,

nk φi ∂iuk = −uk φi ∂ink on ∂Ω. (8)

Finally, by appealing in particular to (7) and (8) in the classic Gauss-Green formula, we
deduce formula (6).

The second identity is concerned with the vorticity field.

Lemma 2.2. Assume that u is divergence-free and that on ∂Ω condition (2) holds, i.e.,
u · n = 0 and ω × n = 0. Then

− ∂ω
∂n
· ω = (ε1jk ε1βγ + ε2jk ε2βγ + ε3jk ε3βγ)ωj ωβ ∂knγ . (9)

In particular,

−
∫

Ω
4ω · ω dx ≤

∫
Ω
|∇ω|2 dx+ c

∫
∂Ω
|ω|2 dS. (10)

Proof. The vorticity ω is parallel to the normal unit vector on ∂Ω. Hence ∂(ω×n)
∂τ

∣∣
∂Ω
≡ 0 for

each vector field τ tangential to the boundary. Since on the boundary ω is orthogonal to
tangent vectors, it follows that ω × ∇[ (ω × n)i ] ≡ 0 for i = 1, 2, 3, on ∂Ω. In more explicit
coordinates we can write, for i, α = 1, 2, 3 ,

εijk εαβγ ωj ∂k(ωβ nγ) = 0, on ∂Ω. (11)

Hence, by considering Eq. (11) for (i, α) equal to (1, 1), (2, 2), and (3, 3) we get, respectively:
n3 ω2 ∂3ω2 + n2 ω3 ∂2ω3 − n2 ω2 ∂3ω3 − n3 ω3 ∂2ω2 + ε1jk ε1βγ ωj ωβ ∂knγ = 0,

n1 ω3 ∂1ω3 + n3 ω1 ∂3ω1 − n3 ω3 ∂1ω1 − n1 ω1 ∂3ω3 + ε2jk ε2βγ ωj ωβ ∂knγ = 0,

n2 ω1 ∂2ω1 + n1 ω2 ∂1ω2 − n1 ω1 ∂2ω2 − n2 ω2 ∂1ω1 + ε3jk ε3βγ ωj ωβ ∂knγ = 0.

(12)

Next, by adding term-by-term, equations (12) together with

(n2 ω2 ∂2ω2 − n2 ω2 ∂2ω2) + (n3 ω3 ∂3ω3 − n3 ω3 ∂3ω3) + (n1 ω1 ∂1ω1 − n1 ω1 ∂1ω1) = 0,

we show that

ni ωk ∂iωk − (ωi ni)(∂kωk) + (ε1jk ε1βγ + ε2jk ε2βγ + ε3jk ε3βγ)ωj ωβ ∂knγ = 0, on ∂ Ω.

Finally, since ∇ · ω = 0 we get (9). Equation (10) follows by appealing to the well known
Green’s formula

−
∫

Ω
4ω · ω dx =

∫
Ω
|∇ω|2 dx−

∫
∂Ω

∂ω

∂n
· ω dS , (13)
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since (9) shows that

∃ c = c(Ω) > 0 :

∣∣∣∣ ∂ω(x)

∂n
· ω(x)

∣∣∣∣ ≤ c |ω(x)|2, ∀x ∈ ∂Ω. (14)

2.2 Weak/strong solutions and energy/enstrophy balance.

With the results of the previous section we can now give the following definition.

Definition 2.3 (Weak solution (à la Leray-Hopf)). We say that u ∈ L∞(0, T ;L2
σ)∩L2(0, T ;H1

σ)
is a weak solution to (1), with the boundary conditions (2), if the two following conditions
hold:∫ T

0

∫
Ω

(−uφt +∇u∇φ+ (u · ∇)uφ) dxdt+

∫ T

0

∫
∂Ω
φ∇nu dSdt =

∫
Ω
u0(x)φ(x, 0) dx,

for each φ ∈ C∞([0, T ]× Ω) satisfying ∇ · φ = 0 in Ω× [0, T ], φ(T ) = 0 in Ω, and φ · n = 0
on ∂Ω× [0, T ].

There exists c = c(Ω) ≥ 0 such that the energy estimate

‖u(t)‖22 +

∫ t

0
‖∇u(s)‖22 ds ≤ ‖u0‖22 e 2ct,

is satisfied for all t ∈ [0, T ].

Observe that the condition ω × n = 0 on ∂Ω can be recovered by integration by parts.
Before going into existence of weak solutions, let us see one inequality that holds for

smooth solutions.

Lemma 2.4. Let u be a smooth solution of (1)-(2) in [0, T ]. Then, there exists a positive
constant c = c(Ω) such that

1

2

d

dt

∫
Ω
|u|2dx+

∫
Ω
|∇u|2 dx− c

∫
∂Ω
|u|2 dS ≤ 0. (15)

Proof. The proof follows immediately by taking the scalar product of (1) with u, by integrat-
ing over Ω, and by using results of Lemma 2.1. Note that the first order derivatives of the
(extended) normal unit vector n are uniformly bounded, since the domain is smooth.

Next we give the definition of strong solution.

Definition 2.5 (Strong solution). We say that a weak solution u is strong in [0, T ] if

∇u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) .

We say that a weak solution u is strong in [0, T1[ if u is strong in [0, T ] for each T < T1.
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Standard trace theorems imply that for strong solutions the condition ω × n = 0 takes
place in H−1/2(∂Ω). In addition, standard tools (following the same lines of the proof in [17])
show uniqueness of strong solutions in the much wider class of weak solutions.

In order to show existence of strong solutions, one can consider the balance equation for
the vorticity: By applying the curl operator to (1) we get{

ωt + (u · ∇)ω −4ω = (ω · ∇)u in Ω×]0, T ],

∇ · ω = 0 in Ω×]0, T ],
(16)

and the system is supplemented with the boundary condition (ω × n)|∂Ω = 0.
In order to deduce enstrophy balance, we take the scalar product of (16)1 with ω, and we

integrate over Ω. By appealing to (10)we show the following result.

Lemma 2.6. Let u be a strong solution of (1)-(2) in [0, T ]. Then, there exists a positive
constant c = c(Ω) such that

1

2

d

dt

∫
Ω
|ω|2dx+

∫
Ω
|∇ω|2 dx− c

∫
∂Ω
|ω|2 dS ≤

∣∣∣∣∫
Ω

(ω · ∇)u · ω dx
∣∣∣∣ . (17)

Inequality (17) allows us to bound (at least for small times/small data) the vorticity in
natural function spaces. As is well known, the presence in the right-hand-side of the vortex
stretching term (that, at least at first glance, behaves like the integral of |ω|3) is the main
obstacle to proving global existence results for strong solutions, even for the Cauchy problem
in R3.

To employ inequality (17) we must observe that it concerns the L2-norm of the vorticity
and its first order derivatives, while the definition of strong solutions involves the full first
and second order derivatives of u. In order to deduce suitable estimates we shall show that
it is possible to bound the gradient of velocity, by the curl (at least in the L2-setting). More
precisely, we have the following result.

Lemma 2.7. Let u ∈ H1
σ be a function satisfying (2). Then, there exists a positive constant

c = c(Ω) such that
1

2

∫
Ω
|∇u|2 ≤ c(Ω)

∫
Ω
|u|2 dx+

∫
Ω
|ω|2dx. (18)

In addition, if ω ∈ H1(Ω), then u ∈ H2 and its H2-norm can be bounded by ‖ω‖H1 .

Proof. Since ∇ · u = 0 in Ω , one has

−4u = curl curlu = curlω .

In particular, 
−4u = curlω in Ω,

u · n = 0 on ∂Ω,

ω × n = 0 on ∂Ω.

(19)

Next, we multiply both sides of the first equation (19) by u , and integrate over Ω. By
appealing to Lemma 2.1 it follows that∫

Ω
|∇u|2 dx+

∫
∂Ω
ui uk ∂ink dS =

∫
Ω

curlω · u dx .
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This last equation can be written in the equivalent form∫
Ω
|∇u|2 dx+

∫
∂Ω
ui uk ∂ink dS =

∫
∂Ω

(ω × n) · u dS +

∫
Ω
|ω|2 dx . (20)

The boundary integral on the right hand side of (20) vanishes. On the other hand, smoothness
of ∂Ω implies that the second integral on the left hand side of (20) is bounded by a multiple
of
∫
∂Ω |u|

2 dS. Hence, the standard trace inequality implies (18).
The L2-regularity of second order derivatives follows by standard arguments.

Remark 2.8. In order to use inequality (18), we need a bound for the L2-norm of u to ensure
the H1-a-priori estimate for the solution. Since we are considering the time-evolution prob-
lem, the above bound follows from the energy estimate (23)1, in the next section. However,
if Ω is convex, then this last device is superfluous since the integrand that appears in the
surface integral in the left-hand-side of (20) is (almost) everywhere non-negative. With this
assumption it is also possible to prove existence (and regularity) of solutions to the stationary
Stokes and Navier-Stokes equations with non-standard boundary conditions (2), see [20] for
an approach with vector-valued potentials. In addition, with a different variational formu-
lation, existence and uniqueness of weak solutions to the stationary Navier-Stokes equations
with the “non-standard” boundary conditions (2) can be given in simply connected domains.
For related question of non-uniqueness, see Foiaş and Temam [19] with the characterization
of curl/div-free vector fields in non-simply connected domains.

In the following, a main point is that the system (19), more precisely, the system
−4u = f in Ω,

u · n = 0 on ∂Ω,

ω × n = 0 on ∂Ω.

(21)

is of Petrovks̆ı type (see [28]). In Petrovks̆ı’s systems –roughly speaking– different equations
and unknowns have the same “differentiability order,” see p. 126 in [27]. This fact allows
us to use in the sequel the “simplified” representation formula (25), in which just a single
Green’s matrix is present. We also recall that Petrovks̆ı’s systems are an important subclass
of Agmon-Douglis-Nirenberg (ADN) elliptic systems, having the same good properties of self-
adjoint ADN systems. In addition, for these systems the H2-regularity can be used to prove
the full regularity of solutions, provided that the data are smooth. In particular, this implies
(by employing a boot-strap argument) that if ∂Ω is smooth, then strong solutions of (1) are
smooth, say C∞.

For the reader’s convenience we give here some remarks on the above subject. In refer-
ence [28], see p. 126, in connection with the particular system of equations and boundary
value problem under study, the author considers a set of integer ”weights” ti, si, σj . The
system is called of Petrovks̆ı type if si = 0 and σj < 0, for all i and j. Let us consider the
system (21), in the case of a flat boundary and assume that the x3 direction is normal to the
boundary. In this case the above weights are given by t1 = t2 = t3 = 2, s1 = s2 = s3 = 0,
and σ1 = σ2 = −1, σ3 = −2 . Hence the system (21) is of Petrovks̆ı type. On the contrary, if
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we consider the Stokes problem
−4u+∇p = f in Ω,

∇ · u = 0 in Ω

u · n = 0 on ∂Ω,

ω × n = 0 on ∂Ω ,

(22)

then one has two additional weights, s4 = −1 and t4 = 1. Hence the system is not of Petrovks̆ı
type.
For an introduction to the above subject we recommend the reader to look up in the proof of
proposition 2.2 in [31], where the Stokes system is considered under the Dirichlet boundary
condition. Under this boundary condition the ti and the si, i = 1, . . . , 4 are as above,
moreover σ1 = σ2 = σ3 = −1. Hence the system is still not of Petrovks̆ı type (the weights σk
are denoted in [31] by rk).

2.3 Existence of solutions.

We conclude this section by giving a sketch of the proof of the existence results for weak and
strong solutions.

By using standard techniques, the two differential inequalities (15) and (17) can be used
to prove the existence of weak and strong solutions. In fact, by taking into account the trace
inequality, we prove the following differential inequalities:

1

2

d

dt

∫
Ω
|u|2dx+

1

2

∫
Ω
|∇u|2 dx ≤ c(Ω)

∫
Ω
|u|2dx,

1

2

d

dt

∫
Ω
|ω|2dx+

1

2

∫
Ω
|∇ω|2 dx ≤ c(Ω)

∫
Ω
|ω|2dx+

∣∣∣∣∫
Ω

(ω · ∇)u · ω dx
∣∣∣∣ . (23)

By using a Faedo-Galerkin approximation method, with the techniques introduced by Hopf [21],
(see e.g. Temam [31] or Constantin and Foiaş [17]) one can easily show the following result.

Proposition 2.9. Let u0 ∈ L2
σ be given. Then, for each T > 0 there exists at least one weak

solution of the 3D Navier-Stokes equations (1) with the boundary conditions (2). In addition,
if u0 ∈ H1

σ then there is a T ∗ = T ∗(‖∇u0‖2) > 0 such that a unique strong solution in [0, T ∗[
exists.

From Lemma 2.7 it follows that if we are able to bound the L2-norm of the curl of a weak
solution u, we are also able to bound the full gradient of this solution. This is the reason
why we can use the vorticity equation. A standard continuation argument, that will be used
in the proof of Theorem 1.6, reduces our task to showing that if a weak solution satisfies
Hypothesis (4) in (0, T ), then ω(x, t) belongs to L∞(0, T ;L2(Ω)).

3 Solonnikov’s theory on the Green’s Matrices: A sharp esti-
mate of the vortex stretching.

The results in this section are the core of our proof. In fact, by appealing to the integral bounds
shown below, the proof of Theorem 1.6 will follow by a standard continuation argument (see
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the next section).
In order to give upper bounds for the vortex stretching we prove a suitable estimate for
the integral that appears in the right-hand-side of the vorticity balance equation (17). The
estimate on the vortex stretching term will be derived by using an explicit representation
of the solution to the boundary value problem (19), which generalizes that introduced in
reference [5] in the half-space case, and by using identities similar to those introduced in [15].

3.1 Preliminaries on Green’s functions.

Since ∂Ω is smooth and compact, we may fix a positive, real δ such that for each point of
x ∈ Ωδ, where

Ωδ
def
= {x ∈ Ω such that d(x, ∂Ω) ≤ δ} ,

there exists a unique point (the orthogonal projection) Px ∈ ∂Ω such that

d(x,Px) = min
y∈∂Ω

d(x, y),

where d( . , . ) is the Euclidean distance in R3.
Given x0 ∈ Ω and we distinguish between two cases: 1) x0 ∈ Ωκ; 2) x0 ∈ Ω\Ωκ, for some

positive 0 < κ ≤ δ that we shall fix later.
We aim at proving (see Proposition 3.2) a bound for∣∣(ω(x0) · ∇)u(x0) · ω(x0)

∣∣, (24)

independent of x0, recall (17). To this end we express the velocity u in terms of the vorticity
ω, by appealing to the boundary value problem (19). Since this system is of Petrovks̆ı type,
there exists a single Green’s matrix G(x, y) (see [28]) such that:

u(x) =

∫
Ω
G(x, y) curlω(y) dy. (25)

The matrix G(x, y) can be written as

G(x, y) = G(x, y) + g(x, y),

where the first term on the right hand side, which contains the “leading-order terms,” satisfies
the estimates

∃ c > 0 : |Dα
xD

β
yG(x, y)| ≤ c

|x− y||α|+|β|+1
, ∀x, y ∈ Ω, x 6= y, (26)

while the second term g(x, y) consists of lower order terms, as |x − y| → 0; see again Solon-
nikov [27, 28]. In order to prove our results, we need more explicit representation formulas
for G(x, y). So, let us be precise about some details, proved in reference [28], to which we
constantly refer.

First, we localize our problem by appealing to the construction of the Green’s matrices
made in [27]. More precisely (for a proof and further details see p. 150 in [27]), it is possible
to find a finite covering {ωa}a=1,...,N , N ∈ N, of Ω such that:

a) ωa ⊆ Ω ;

11



b) The regions ωa -which do not intersect the boundary ∂Ω- are cubes defined (for i =
1, 2, 3) by |xi − xai | ≤ d1, with xa ∈ Ω, and d(ωa, ∂Ω) ≥ d1. The set of indices of these
interior regions is denoted by I.

The remaining ωa are given, in local coordinates {za} with centers at points xa ∈ ∂Ω,
by inequalities

|zai | ≤ d2 i = 1, 2; 0 ≤ z3 − Fa(za1 , za2) ≤ 2d2 ,

where F a ∈ C3,α define ∂Ω as a Cartesian surface (graph) near the points xa by equa-
tions za3 = F a(za1 , z

a
2) defined in square domains |zai | ≤ d2, with i = 1, 2. The set of

indices of these boundary regions is denoted by B.

c) There is a partition of the unity consisting of smooth functions {χa(y)}a associated
to the covering {ωa}a, with

∑
a χa(y) ≡ 1, ∀ y ∈ Ω such that supp[χa(y)] ⊂ ωa and⋃

a ω
a ⊃ Ω.

The coordinates {za} are connected to x by an orthogonal transformation za = Ua(x−
xa) in order that the za3 -axis is directed along the normal interior direction at the point
xa ∈ ∂Ω. The transformation ξa = Fa(za) is defined by

ξa1 = za1 ,

ξa2 = za2 ,

ξa3 = za3 − F a(za1 , za2),

(27)

and maps ωa into the cube |ξai | ≤ d2, for i = 1, 2 and 0 ≤ ξ2
3 ≤ 2d2. It also maps ωa∩∂Ω

onto ξa3 ≡ 0. Finally, the transformation

T a = Fa ◦ Ua,

which connects x and ξa, has Jacobian identically equal to 1.

The fact that the domain Ω is smooth and bounded implies that we may choose the two
strictly positive numbers d1 and d2 (small enough) such that

1

2
|x− y| ≤ |T ax− T ay| ≤ 2|x− y|, ∀x, y ∈ ωa ∀ a ∈ B. (28)

By means of this change of coordinates the Green’s matrix G(x, y) can be expressed in terms
of the explicit Green’s matrices Za( . , . ) and Ga( . , . ) that are known respectively for the
whole space or for the half-space, leading to the following representation formula:

u(x) =

∫
Ω

∑
a∈I

χa(y)Za(x, y)[curlω(y)] ζ

(
|x− y|
d3

)
dy+

+

∫
Ω

∑
a∈B

χa(y)Ga(T ax, T ay)[curlω(y)] ζ

(
|T ax− T ay|

d3

)
dy

+

∫
Ω
g(x, y) [curlω(y)] dy,

(29)

with
d3 = (1/4) min{d1, d2}.
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Here Za( . , . ) is the Green’s matrix related to the Poisson problem in the whole-space:

Zaij(ξ, η) =
δij
4π

1

|ξ − η|
, i, j = 1, . . . , 3

and δij denotes the Kronecker’s delta such that δij = 1, if i = j, and 0 otherwise. The
function Ga( . , . ) is the Green’s matrix associated to the Poisson problem in the half-space
with suitable (Navier) boundary conditions:

Gaij(ξ, η) =
δij
4π

(
1

|ξ − η|
− εj

1

|ξ − η|

)
,

with ε1 = ε2 = 1 and ε3 = −1. The “bar” denotes the “reflected point”

[ η ]j
def
= εj ηj j = 1, 2, 3.

We recall that the introduction of “reflected point” derives from the use of virtual charges to
treat problems with boundaries, classical in the potential theory for electrostatic problems;
see, e.g., Courant-Hilbert [18].

The function ζ ∈ C∞(R) is a monotonic non-increasing cut-off function such that

0 ≤ ζ(r) ≤ 1 and ζ(r) =


1 if r ≤ 1

4
,

0 if r ≥ 3

4
.

Finally, as recalled above, the matrix g(ξ, η) consists of lower-order-terms (i.e. terms that are
not of the leading order as those in Z(ξ, η) and G(ξ, η)), say

∃ c , γ > 0 : |Dα
ξD

β
η g(ξ, η)| ≤ c

|ξ − η||α|+|β|+1−γ , ∀x, y ∈ Ω, x 6= y, (30)

where γ > 0 depends on the Hölder regularity of the solutions to (19), see [28]. Consequently
γ depends just on the regularity of the boundary ∂Ω, since the differential operator and the
boundary operators in (19) have constant coefficients. Recall that, as already remarked at
the end of Section 2.3, we may assume that the right-hand side curlω is regular in (0, T ).

Remark 3.1. In order to understand the explicit formulas for Z(x, y) and G(x, y), we recall
that we are dealing with boundary conditions involving the vorticity which, on flat boundaries,
become the usual Navier-slip boundary condition. For system (19) this boundary condition
-in local coordinates- become a Neumann boundary condition for the first two components of
u (or, equivalently, for the normal derivative of the velocity in the tangential directions) and
a Dirichlet boundary condition for the velocity in the normal direction (the third component
in our reference frame.) Hence, in the flat-boundary case (see [5]), problem (19) reduces to

−4u = curlω in R3
+,

u3 = 0 on ξ3 = 0,

∂uj
∂ξ3

= 0, j = 1, 2 on ξ3 = 0.

This basic problem leads to the construction of the principal part G(ξ, η) of the Green’s
matrix. For a classical treatment of the Green’s function in these particular cases see also
Lévy [23] and Courant-Hilbert [18].
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3.2 Some explicit formulas for the vortex stretching.

In this section we appeal to the explicit representation formula (29) to estimate the vortex
stretching term. We start from the integrals involving the leading order terms and -for the
sake of completeness- we shall treat in an appendix all the lower order terms.

A crucial point of this paper is the following proposition.

Proposition 3.2. There exists a non-negative constant C, uniformly bounded for x ∈ Ω,
such that∣∣∣(ω(x)·∇)u(x) · ω(x)

∣∣∣ ≤ C |ω(x)|2
[
‖ω‖2+

+

∫
Ω

[∣∣Det
(
ω̂(x), ω̂(y), ̂Tx− Ty

)∣∣+
∣∣Det

(
ω̂(x), ω̂(y), σ(y′)

)∣∣] |ω(y)| dy
|Tx− Ty|3

+

∫
Ω

[∣∣Det
(
ω̂(x), ω̂(y),

̂
Tx0 − Ty

)∣∣+
∣∣Det

(
ω̂(x), ω̂(y), σ(y′)

)∣∣] |ω(y)| dy
|Tx− Ty|3

]
.

(31)

This proposition will be proved separately for points “near the boundary” and for points
“far from the boundary;” see (32) and (47). New ideas concern the treatment of points near
the boundary. Estimates for points far from the boundary can be derived easily from the
results in the whole of the space, or by a substantial simplification of the argument used to
treat points near to the boundary. Nevertheless, just for completeness, we shall also give the
guidelines for proving (31) for points x far from the boundary.

In order to properly define “near” and far” set

d
def
= min{δ, d1, d2},

were δ, d1, d2, and d3 are defined in the previous section.

3.2.1 Proof of Proposition 3.2 for points “near the boundary.”

We now suppose that x0 is an arbitrary (but fixed) point, near the boundary. More precisely,
we assume that

x0 ∈ Ω2d/3. (32)

As previously claimed, by means of a rigid rotation (recall that the Navier-Stokes equations
are invariant by means of rigid transformations) we can use a reference frame with origin
at P(x0) and such that e3 = x0 − Px0. The e1 and e2-directions -tangential to ∂Ω- are
chosen in order to have a right-handed triple of unit vectors. In this system of coordinates
the boundary point Px0 becomes the origin (0, 0, 0). The change of coordinates is made by
flattening the domain near x0 in the direction of the normal unit vector passing through x0

and having this line as vertical axis for the corresponding square in e3-variables. With this
choice of coordinates the transformation is simply given by

Tx =


x1

x2

x3 − F (x1, x2),

(33)
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where, for notation convenience, from now on we denote z by x (observe that (33) is a special
case of (27)). Note that here there are no rotation U , see formula (27) (more precisely, U is
the identity).

It is worthwhile observing that the transformation T depends on the point x0 ∈ Ω, even
if we do not write it explicitly. In particular, contrary to the tools used to prove existence
of Green’s matrices, in the sequel we appeal to a different transformation T for each point
x0 ∈ Ω. Note that (see [27, 28]), for a given regular domain Ω, the parameters that characterize
the transformation T can be chosen independently of the particular point x0. In fact, these
parameters depend only on the diameter of the local subset ωa and on the local regularity
of the boundary ∂Ω, which however is characterized by global parameters (for instance the
curvature is globally bounded).

In addition, we shall make use of just one chart in connection to each single point x0, in
order to bound (24) uniformly with respect to the point x0. This is justified by taking into
account the above independence of the main parameters, with respect to the particular point
x0. More precisely, we make use of two sets ω1 and ω2 such that:

1. x0 ∈ ω1, where ω1 is defined by

ω1 =
{
|xi| ≤ 2d/3 i = 1, 2; 0 ≤ x3 − F (x1, x2) ≤ 4d/3

}
,

where x3 = F (x1, x2) denotes the analytical expression of the boundary ∂Ω near Px0

(recall the third equation (33)).

2. x0 6∈ ω2, where ω2 is defined by

ω2 =
{
x ∈ Ω : d/3 ≤ |xi| i = 1, 2; or if |xi| < d/3, then x3 > F (x1, x2) + d

}
.

Remark 3.3. The definition of these two sets implies that d(x0, ω
2) ≥ d/3 > 0.

Moreover, the local change of coordinates is given by “flattening” the boundary by means
of the smooth function F . In particular, F ∈ C3,α satisfies F (0, 0) = Fx1(0, 0) = Fx2(0, 0) = 0
and the transformation T is bounded from below and from above in a Lipschitz way by (28).
Hence couples of points that are “near,” are (uniformly) mapped into couples of points that
are “near,” and reciprocally. We finally observe that under the transformation T one has

Tx0 = x0.

Actually, T acts as the identity on the vertical line passing through x0 and Px0.

By using these tools for x near to x0 -say for d(x, x0) < d/16− formula (29) becomes

u(x) =

∫
ω1

χ1(y)G(Tx, Ty) [curlω(y)] ζ

(
|Tx− Ty|

d4

)
dy

+

∫
ω2

χ2(y)G2(x, y) [curlω(y)] dy +

∫
Ω
g(x, y) curlω(y) dy,

= J1(x) + J2(x) + J3(x),

(34)

where d4 is defined by
d4 = (1/4) min{d, d2}. (35)
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Recall that supp[χ2(y)] ⊂ ω2 and note that G2(x, y) collects terms of leading order (multiplied
possibly by a cut-off function) which satisfy -at worse- the estimate in (26). The matrix g(x, y)
(which contains lower-order terms), J2(x), and J3(x) will be treated in the appendix. Note
that, since we are working “near to the boundary,” the Z(x, y)−terms are not present.

Let us focus on the first integral in the right-hand-side (rhs in the sequel) of equation (34).
We first integrate by parts, obtaining

J1(x)
def
=

∫
ω1

χ1(y)G(Tx, Ty) [curlω(y)] ζ

(
|Tx− Ty|

d4

)
dy

=

∫
ω1

ω(y) curl

[
χ1(y)G(Tx, Ty) ζ

(
|Tx− Ty|

d4

)]
dy+

+

∫
∂ω1

[ω(y)× n] χ1(y)G(Tx, Ty)ω(y) ζ

(
|Tx− Ty|

d4

)
dS.

Observe that the presence of the cut-off function χ1(y) implies that the boundary integral
needs not to be evaluated on the whole ∂ω1 but just on ∂Ω ∩ ∂ω1. Due to the boundary
conditions ω × n|∂Ω = 0 this surface integral vanishes identically. Hence, we are left with the
following identity1

J1(x) =

∫
ω1

ω(y) curlG(Tx, Ty)

[
χ1(y) ζ

(
|Tx− Ty|

d4

)]
dy

+

∫
ω1

ω(y)G(Tx, Ty) ×∇
[
χ1(y) ζ

(
|Tx− Ty|

d4

)]
dy,

def
= J1

1 (x) + J2
1 (x).

(36)

For the moment let us consider the leading term J1
1 (x). The term J2

1 (x) will be treated in the
appendix A.1. To deal with J1

1 (x), we use the index notation, with the Einstein’s convention
of summation over repeated indices. Recall that [v × w]j = εjklvk wl for vectors v, w ∈ R3

and [curlu]j = [∇× u(x)]j = εjkl
∂ul(x)
∂xk

. A detailed expression is then[
J1

1 (x)
]
j

=

= − 1

4π

∫
ω1

ωl(y) εjkl

[
Tmx− Tmy
|Tmx− Tmy|3

∂Tmy

∂yk
− εj

Tmx− Tmy
|Tmx− Tmy|3

∂Tmy

∂yk

]
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy,

= − 1

4π

∫
ω1

ωl(y) εjkl

[
Tmx− Tmy
|Tx− Ty|3

− εjεm
Tmx− Tmy
|Tmx− Tmy|3

]
∂Tmy

∂yk
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy.

Since J1
1 (x) is one of the terms that enters in the representation formula (34), we need to

differentiate it with respect to the xi-variables, and to multiply by ωi(x)ωj(x), in order to
be able to estimate its contribution to the term (ω(x0) · ∇)u(x0)ω(x0). To this end, and to
simplify the manipulations, we separate the terms with and without “reflected quantities.”
Consequently

∂
[
J1

1 (x)
]
j

∂xi
ωi(x)ωj(x) =

∂aj(x)

∂xi
ωi(x)ωj(x) +

∂bj(x)

∂xi
ωi(x)ωj(x), (37)

1The differential operators “nabla” and “curl” act on the y variables.
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where (see [5], equation (43))
aj(x)

def
= − 1

4π
εjkl

∫
ω1

ωl(y)
Tmx− Tmy
|Tmx− Tmy|3

∂Tmy

∂yk
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy,

bj(x)
def
=

1

4π
εjklεjεm

∫
ω1

ωl(y)
Tmx− Tmy
|Tmx− Tmy|3

∂Tmy

∂yk
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy.

(38)

We start by dealing with the term involving aj(x) and we have the following result.

Lemma 3.4. Assume that x0 satisfies (32), and define the functions aj(x), for j = 1, 2, 3,
as above. Then, there exists a positive constant c, independent of x0, such that∣∣∣∣∂aj(x0)

∂xi
ωj(x0)ωj(x0)

∣∣∣∣ ≤ c |ω(x0)|2
(
‖ω‖2+

+

∫
ω1

[∣∣Det
(
ω̂(x0), ω̂(y), ̂Tx0 − Ty

)∣∣+
∣∣Det

(
ω̂(x0), ω̂(y), σ(y′)

)∣∣] |ω(y)| dy
|Tx− Ty|3

)
.

(39)

Proof. Taking the derivative of aj(x) with respect to xi we get

∂aj(x)

∂xi
=− 1

4π
εjkl

∫
ω1

ωl(y)
δpm

|Tx− Ty|3
∂Tmy

∂yk

∂Tpx

∂xi
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy

− 1

4π
εjkl

∫
ω1

ωl(y)
(Tpx− Tpy)(Tmx− Tmy)

|Tx− Ty|5
∂Tmy

∂yk

∂Tpx

∂xi
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy

− 1

4π
εjkl

∫
ω1

ωl(y)
Tmx− Tmy
|Tx− Ty|3

∂Tmy

∂yk
χ1(y) ζ ′

(
|Tx− Ty|

d4

)
Tpx

d4|Tx− Ty|
∂Tpx

∂xi
dy

def
= A1

ij(x) +A2
ij(x) +A3

ij(x).
(40)

These three terms should be multiplied by ωi(x)ωj(x). We start by considering the first one,
i.e.,

A1
ij(x)ωi(x)ωj(x).

Observe that, due to the formula that defines the function T (recall (33))

∂Try

∂ys
= δrs + σs(y)δ3r , r, s = 1, 2, 3,

where σs(y) = σs(y1, y2) = −∂F (y1,y2)
∂ys

is independent of y3. Hence, we write σ(y′), where

y′ = (y1, y2). Note that σ3(y1, y2) = 0 and also that σ(y′) = o(|y′|). Hence, by choosing a
possibly smaller d > 0, we may suppose that |σ(y)| ≤ 1. In addition, note that

σi(x0) = σi(x0
′) = σi(0, 0) = 0, i = 1, 2, 3. (41)

In order to make the calculations clearer, we distinguish between terms coming from the
diagonal of the matrix ∂Try

∂ys
(we call them “non-σ-terms”), which are independent of σ, from

those deriving from the off-diagonal part (we call them “σ-terms”), which depend on σ(y).
Neglecting the σ-terms and due to the properties of the Ricci tensor εjkl (for convenience, in
this case, we write ' instead of =) we have

A1
ij(x)ωi(x)ωj(x) ' − 1

4π
εjkl δik ωi(x)ωj(x)

∫
ω1

ωl(y)

|Tx− Ty|3
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy ≡ 0.
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The σ-terms will be treated later on, after having considered the A2
ij(x)ωi(x)ωj(x) terms.

As above, we start again with the non-σ-terms (the treatment is now similar to the
corresponding terms in the whole space case and this is the reason for the order in which we
consider the various terms.) The non-σ-term of A2

ij(x)-type is given by

A2
ij(x)ωi(x)ωj(x) '

' − 3

4π

∫
ω1

εjkl ωi(x)ωj(x)ωk(y)
(Tix− Tiy)(Tkx− Tky)

|Tx− Ty|5
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy.

By appealing to the properties of the Ricci tensor, we can rewrite the latter term as follows

A2
ij(x)ωi(x)ωj(x) '

' − 3

4π

∫
ω1

( ̂Tx− Ty · ω(x)) Det
( ̂Tx− Ty, ω(y), ω(x)

)
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy

|Tx− Ty|3
.

(42)
This shows, when x = x0, that the absolute value of rhs in (42) is bounded by the first integral

in the rhs of (39). To this end, recall (28), observe that | ̂Tx− Ty| = 1, and also that the
non-negative quantities χ1(.) and ζ(.) are bounded by 1.

We now come back to the σ-terms of A1
ij(x)ωi(x)ωj(x). These σ-terms involve, in principle,

three type of terms which come from the product ∂Try
∂ys

∂Tpx
∂xi

. However, since all quantities
must be evaluated at x = x0, and also by recalling (41), we are left simply with the single
term

σs(y1, y2)δ3r δpi.

In coordinate notation, the σ-term of A1
ij(x0)ωi(x0)ωj(x0) is given by

− 1

4π
ωi(x0)ωj(x0)

∫
ω1

εjklωl(y)
δpmδ3mδpi
|Tx0 − Ty|3

σk(y
′) χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy.

Hence p = m = i = 3. It follows that the above σ-term is given by:

1

4π
ω3(x0)

∫
ω1

εjklωj(x0)σk(y
′)ωl(y) χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy

|Tx0 − Ty|3
,

=
1

4π
ω3(x0)

∫
ω1

Det
(
ω(x0), ω(y), σ(y′)

)
χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy

|Tx0 − Ty|3
.

Consequently, we can bound the last term by the second integral in the rhs of (39).

Next we consider the σ-terms that appear in the expression of A2
ij(x0)ωi(x0)ωj(x0). We note

that, due to the fact that σ(x0) = 0, we are left only with the following term

− 1

4π
ωi(x0)ωj(x0)εjkl

∫
ω1

ωl(y)
(Tpx0 − Tpy)(Tmx0 − Tmy)

|Tx0 − Ty|5
δ3mδpiσk(y

′)χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy.

Since p = i and m = 3, the above expression becomes

= − 1

4π

∫
ω1

(( ̂Tx0 − Ty)·ω(x0)) εjkl ωj(x0)σk(y
′)ωl(y)

T3x0 − T3y

|Tx0 − Ty|4
χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy,
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which, in turn, is equal to

= − 1

4π

∫
ω1

(( ̂Tx0 − Ty)·ω(x0)) Det
(
ω(x0), ω(y), σ(y′)

)
χ1(y) ζ

(
|Tx0 − Ty|

d4

)
(T3x0 − T3y) dy

|Tx0 − Ty|4
.

(43)
Hence this term is still bounded by the second term in Eq. (39).

Finally we consider the A3
ij(x) term. The contribution of this term is easier to handle, since

the function ζ ′(s) is identically zero if its argument s is, in absolute value, smaller than 1/4.
This implies that in the integral that defines A3

ij(x) the potentially singular contribution

coming from points y such that |Tx0 − Ty| vanishes, is cut off. This shows that |A3
ij(x)|

can be bounded in terms of d4 for all x. (Recall also that the derivatives
∂Tp
∂xi

are uniformly
bounded, see (28).) Then, we have the following estimate:

|A3
ij(x0)ωi(x0)ωj(x0)| ≤ C(d4) |ωi(x0)| |ωj(x0)|

∫
ω1

|ω(y)| dy

≤ C(d4) |ω(x0)|2
∫

Ω
|ω(y)| dy ≤ C‖ω‖2|ω(x0)|2,

(44)

where C(d4) is a bounded function, depending only on the bounded domain Ω. Note also
that d4 > 0 is a fixed number, see (35).

The proof of Lemma 3.4 is now accomplished.

We treat now the bj(x) terms, that involve the “reflected” quantities.

Lemma 3.5. Assume that x0 satisfies (32), and recall the definition (38) for the functions
bj(x), for j = 1, 2, 3. Then, there exists a positive constant c, independent of x0, such that∣∣∣∣∂bj(x0)

∂xi
ωj(x0)ωj(x0)

∣∣∣∣ ≤ c |ω(x0)|2
(
‖ω‖2+

+

∫
ω1

[∣∣Det
(
ω̂(x0), ω̂(y),

̂
Tx0 − Ty

)∣∣+
∣∣Det

(
ω̂(x0), ω̂(y), σ(y′)

)∣∣] |ω(y)| dy
|Tx0 − Ty|3

)
.

(45)

Proof. By following the notation of the previous lemma we write

∂bj(x)

∂xi

def
= B1

ij(x) +B2
ij(x) +B3

ij(x),

where each term is obtained from the corresponding term of Akij(x), see (40), by changing its

sign and by replacing Tx−Ty everywhere by Tx−Ty (except in the argument of the cut-off
function ζ and in ζ ′.) Hence, the non-σ-terms of Bij(x)-type satisfy

B1
ij(x)ωi(x)ωj(x) ' εjklεjεk ωj(x)ωk(x)

∫
ω1

ωl(y)
1

|Tx− Ty|3
χ1(y) ζ

(
|Tx− Ty|

d4

)
dy ≡ 0,

as follows from the properties of the Ricci tensor, together with that of εj .
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On the other hand, at x = x0, the σ-term B1
ij(x) is given by

1

4π
ωi(x0)ωj(x0)

∫
ω1

εjkl εj εm ωl(y)
δpmδ3mδpi

|Tx0 − Ty|3
σk(y

′)χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy

= − 1

4π
ω3(x0)

∫
ω1

Det
(
ω(x0), ω(y), σ(y′)

)
χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy

|Tx0 − Ty|3
.

This term will be estimated below.

The B2
ij(x)-term is treated by adapting the previous calculations made to estimate the A2

ij(x)-
term. In particular, we must take into account the action of the εm term. One has

B2
ij(x0)ωi(x0)ωj(x0) =

=
3

4π

∫
ω1

(( ̂Tx0 − Ty) · ω(x0)) Det
( ̂
Tx0 − Ty, ω(y), ω(x0)

)
χ1(y) ζ

(
|Tx0 − Ty|

d4

)
dy

|Tx0 − Ty|3

− 1

4π

∫
ω1

(( ̂Tx0 − Ty) · ω(x0)) Det
(
ω(x0), ω(y), σk(y

′)
)
χ1(y) ζ

(
|Tx0 − Ty|

d4

)
(T3x0 − T3y) dy

|Tx0 − Ty|4
,

where the second term on the rhs corresponds to the σ-terms: see the equations (42) and (43).
By appealing to the inequality

|Tx0 − Ty| ≥ |Tx0 − Ty|, (46)

we prove that both |B1
ij(x0)ωi(x0)ωj(x0)| and |B2

ij(x0)ωi(x0)ωj(x0)| are bounded by the rhs
of (45). Note that |ω(x0)| = |ω(x0)|.

Finally, by using again (46), and by recalling the remarks already made for the A3
ij terms,

one easily shows that
|B3

ij(x0)ωi(x0)ωj(x0)| ≤ C ‖ω‖2|ω(x0)|2.

The proof of Proposition 3.2, for points near the boundary, is accomplished by appealing to
the estimates proved in this section.

Remark 3.6. For the reader’s convenience, we summarize the main steps done until now.
By appealing to (34) we have shown that

(ω(x) · ∇)u(x)ω(x) = ωi(x)

(
∂J1(x)

∂xi
+
∂J2(x)

∂xi
+
∂J3(x)

∂xi

)
ωj(x).

The J1(x) term (see (36) and (37)), which is the main term, gives rise to the following equality

(ω(x) · ∇)u(x)ω(x) =

(
∂aj(x)

∂xi
+
∂bj(x)

∂xi
+ “lower order terms”

)
ωi(x)ωj(x).

By using Lemmas 3.4-3.5 we ended the proof of Proposition 3.2. As shown above (with the
aid of (29)) the terms J2(x) and J3(x) give rise to “lower order terms” and, for convenience,
they are treated in the first part of the appendix.
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3.2.2 Proof of Proposition 3.2 for points “far from the boundary.”

In the case of points x0 that are not “near the boundary,”

x0 6∈ Ω2d/3, (47)

we do not need to appeal to the change of coordinates T . We define sets

ω1 def
=

{
x ∈ Ω : d(x, x0) <

4d

9

}
,

and

ω2 def
=

{
x ∈ Ω : d(x, x0) ≥ 2d

9

}
.

Note that d(x0, ω
2) ≥ 2d/9 > 0. Further, we define functions aj(x), j = 1, 2, 3, as done in

Eq. (38), where now ∂Tmy
∂yk

is replaced by δmk. Note that for points far from the boundary
there are no bj terms.

Lemma 3.7. Assume that x0 satisfies (47). Then, there exists a positive constant c, inde-
pendent of x0, such that∣∣∣∣∂aj(x0)

∂xi
ωj(x0)ωj(x0)

∣∣∣∣ ≤ c |ω(x0)|2
(
‖ω‖2 +

∫
Ω

∣∣Det
(
ω̂(x0), ω̂(y), ̂x0 − y

)∣∣ |ω(y)| dy
|x− y|3

)
.

Proof. The proof is a simplification of that of Lemma 3.4 and we just present a sketch of it.
Now the leading order term of the Green’s matrix is that occurring in the whole space

case and the calculations are very similar to those in [15]. The representation formula for the
solution of system (19) is now (for x near x0)

u(x) =

∫
ω1

χ1(y)Z(x, y) [curlω(y)] ζ

(
|x− y|
d4

)
dy

+

∫
ω2

χ2(y)G2(x, y) [curlω(y)] dy +

∫
Ω
g(x, y) [curlω(y)] dy.

(48)

Remark 3.8. The functions G2(x, y) and g(x, y) are not those in Eq. (34). However, we use
the same symbols since they have the same main properties of the corresponding functions
in (34).

We come back to Eq. (36) and we make the same calculations starting with (48). As usual
taking the derivative with respect to xj and multiplying by ωi(x)ωj(x) we define terms that
correspond to the aj(x) in (38). Essentially we have only the terms “without reflections,” the
main difference is that in this (simpler) case we have not σ-terms, since no rectifications in
required at interior points. Hence the estimates are proved in the same way.

Remark 3.9. In all the expression appearing in the statement (and in the derivation) of
Proposition 3.2 we need to have the vorticity-direction ω̂ well-defined. In all computations of
Section 3 we are implicitly assuming that ω is always non-vanishing. To be rigorous one has
to fix a positive constant K, and to decompose the vorticity as ω = ω1 + ω2, where

ω1(x) =


ω(x), if |ω(x)| ≤ K,

0, if |ω(x)| > K,
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while ω2(x) = ω(x) − ω1(x). Then, the vortex-stretching term can be split into the sum of
eight terms (

[ω1 + ω2] · ∇
)
[u1 + u2] · [ω1 + ω2],

with obvious notation. Most of the resulting terms are not difficult to handle since they involve
the bounded part ω1 of the vorticity. Only the (2, 2, 2) term needs the use of Hypothesis (4)
in order to be estimated as in Proposition 3.2. For this term the quantity ω̂ is well-defined,
and all calculations are completely justified. Full details how to implement this essential
technical part can be found in [15] and in Section 4 of [8]. It is straightforward to apply the
same ideas to the present context.

3.3 Using the hypothesis on the vorticity direction.

We now use the Hypothesis (4), in order to control the various terms that derive from our
representation of the vortex-stretching term. We prove the following result.

Proposition 3.10. There exists a non-negative function S : Ω→ R belonging to L3(Ω) such
that, for each x0 ∈ Ω,∣∣∣∣∂aj(x0)

∂xi
ωi(x0)ωj(x0)

∣∣∣∣ ≤ C|ω(x0)|2
(
‖ω‖2 + S(x0)

)
,∣∣∣∣∂bj(x0)

∂xi
ωi(x0)ωj(x0)

∣∣∣∣ ≤ C|ω(x0)|2
(
‖ω‖2 + S(x0)

)
.

(49)

Moreover,
‖S ‖3 ≤ C‖ω ‖2.

The above constants C = C(Ω) are independent of x0.

Proof. Let us consider the rhs of Eq. (39). By using (4) we obtain∣∣Det
(
ω̂(x), ω̂(y), ̂Tx− Ty

)∣∣ ≤ sin θ(x, y, t) ≤ C |x− y|1/2 , ∀x, y ∈ Ω,

almost everywhere for t ∈ [0, T ]. Hence, by recalling (28), we show that

|ω(x0)|2
∫
ω1

∣∣Det
(
ω̂(x0), ω̂(y), ̂Tx0 − Ty

)∣∣ dy ≤ c |ω(x0)|2
∫
ω1

|ω(y)|
|x0 − y|5/2

dy.

Set

S(x)
def
=

∫
Ω

|ω(y)|
|x− y|5/2

dy.

Note that by Hardy-Littlewood-Sobolev inequality, see e.g. [29], it follows that S ∈ L3(Ω)
since ω ∈ L2(Ω) for almost every t ∈ (0, T ).

The last term in the rhs of Eq. (39) is treated in a similar way, by recalling that σ is
bounded. The first equation (49) is proved.

We pass now to the reflected bi(x) terms. We want to estimate the rhs of Eq. (45). The
relevant point is to prove that∫

ω1

∣∣Det
(
ω̂(x0), ω̂(y),

̂
Tx0 − Ty

)∣∣ |ω(y)|
|Tx0 − Ty|3

dy ≤ C
∫
ω1

|ω(y)|
|x0 − y|5/2

dy, (50)
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with C independent of x0. The second term in the rhs of Eq. (45) can be treated as the above
one.

In order to prove this inequality, the obstacle arises from the fact that we have to compare
the direction of the vorticity at the point y with that at the point x0, after reflection.

We use now the fact that the exterior unit normal vector at Px0 satisfies n(Px0) = −e3

and also that
ω̂(Px0) = e3 or ω̂(Px0) = −e3 ,

sincePx0 belongs to the vertical line passing through x0. First we observe that sin 6
(
ω̂(x0),±e3

)
=

sin 6
(
ω̂(x0),±e3

)
, due to the fact that reflection on the boundary (as in the half-space case)

changes the sign of the third component (that in e3-direction). Consequently, the sinus of the
angle between the reflected vector and the direction e3 is that of the angle identified by the
vorticity without reflection.

Next, by using the Hypothesis (4) it follows that

sin 6
(
ω̂(x0),±e3

)
≤ c|x0 − (Px0)|1/2 = c([x0]3)1/2,

where [x0]3 denotes the third component of x0.
Now we identify the angle between unit vectors with the length of a geodesic connecting

them on a spherical unit surface. In this way we see that

6
(
ω̂(x0), ω̂(y)

)
≤ 6

(
ω̂(x0), e3

)
+ 6

(
e3, n(Πy)

)
+ 6

(
n(Πy), ω̂(y)

)
,

where Πy ∈ ∂Ω is the point of the boundary obtained by projecting y on ∂Ω, along the
direction of x0 −Px0 = e3, see Figure ??.

First, note that (roughly speaking) the angle between the direction of the normal unit
vectors n(Px0) and n(Πy) is small, if |x0 − y| is small. In fact, the magnitude of the angle is
determined by the curvature of the boundary, which is uniformly bounded. Hence, the angle
6 (n(Px0), n(Πy)) is (at least) bounded by c |Px0 − Πy|. Then, since Px0 is the origin, and
since the first two components of x0 vanish, it follows that

|Px0 −Πy|2 =

3∑
i=1

([Px0]i − [Πy]i)
2 =

3∑
i=1

([Πy]i)
2

≤ y2
1 + y2

2 + c(d)(y2
1 + y2

2) ≤ y2
1 + y2

2 + c(d)(y2
1 + y2

2) + ([x0]3 − y3)2

≤ c1(d)

3∑
i=1

([x0]i − [y]i)
2 = c1(d)|x0 − y|2.

Recall (again by the regularity of the boundary) that |[Πy]3| ≤ c(d)
√
y2

1 + y2
2. Finally

sin 6
(
n(Px0), n(Πy)

)
≤ c |x0 − y|.

Then, Hypothesis (4), together with the above remarks on the distance between y and Πy,
imply that

sin 6
(
ω̂(x0), ω̂(y)

)
≤ c
(

[x0]
1/2
3 + |x0 − y|+

∣∣∣2y2
3 + c(d)(y2

1 + y2
2)
∣∣∣1/4).
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By using the calculus inequalities (1 + a2)1/4 ≤ 1 +
√
|a| and |a+ |b| | ≤ |a+ b|+ |a− b|, we

can increase the rhs of the last expression as follows:(
[x0]

1/2
3 + |x0 − y|+

∣∣∣2y2
3 + c(d)(y2

1 + y2
2)
∣∣∣1/4) ≤ c([x0]

1/2
3 + |y3|1/2 + |x0 − y|+

∣∣∣(y2
1 + y2

2)
∣∣∣1/4)

≤ c
(
|x0 − y|1/2 + |x0 − y|1/2 + |x0 − y|

)
.

Now we observe that

|x0 − y| ≤ 2|Tx0 − Ty| ≤ 2|Tx0 − Ty|+ 2|Ty − Ty|.

In addition, by using the explicit expression (33) for the transformation T , we get

|Ty − Ty| ≤ 2|F (y′)| = 2|F (y′)− F (x0)| ≤ c(d) |x0 − y|.

Then, since x0 and y belong to ω1, their distance is bounded by the “small” number d > 0.
Hence, the term |x0 − y| can be absorbed into |x0 − y|1/2, by increasing the constants c.

Finally, by collecting all the previous inequalities, we get, for x0, y ∈ ω1:

sin 6
(
ω̂(x0), ω̂(y)

)
≤ c (|x0 − y|1/2 + |x0 − y|1/2

)
≤ c
(
|Tx0 − Ty|1/2 + |x0 − y|1/2

)
.

By using (46) and (28) it readily follows that

|Tx0 − Ty|1/2 + |x0 − y|1/2

|Tx0 − Ty|3
≤ |Tx0 − Ty|1/2

|Tx0 − Ty|3
+
|x0 − y|1/2

|Tx0 − Ty|3
≤ c

|x0 − y|3−1/2
.

We have finally proved that:∣∣B2
ij(x0)ωi(x0)ωj(x0)

∣∣ ≤ c |ω(x0)|2
∫
ω1

|ω(y)|
|x0 − y|3−1/2

dy,

and this ends the proof of the Proposition 3.10.

4 Proof of the main result.

We have now at disposal all the results needed to give the proof Theorem 1.6. By using the
results of the previous section, we deduce the following result.

Proposition 4.1. Let us assume that Hypothesis (4) holds and that u is a strong solution
in [0, T [. Then, to each ε > 0 there corresponds a positive Cε > 0 such that the following
inequality holds:∣∣∣∣∫

Ω
(ω(x) · ∇u(x)) · ω(x) dx

∣∣∣∣ ≤ ε‖∇ω‖22 + Cε(‖ω‖42 + ‖ω‖32), a.e. t ∈ [0, T [. (51)

Proof. The above inequality follows easily from the uniform bounds previously proved, to-
gether with Hölder’s inequality. Actually, one shows that∣∣∣∣∫

Ω
(ω(x0) · ∇u(x0)) · ω(x0) dx0

∣∣∣∣ ≤ C ∫
Ω
|ω(x0)|2

[
1 + S(x0) + ‖ω‖2

]
dx0

≤ C ‖ |ω|2 ‖3/2
∥∥1 + ‖ω‖2 + S

∥∥
3

≤ C‖ω‖23 ‖ω‖2
≤ C‖ω‖22(‖ω‖2 + ‖∇ω‖2) ,
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where the last inequality is obtained by using convex interpolation and the Sobolev inequality
‖f‖6 ≤ C(‖f‖2 + ‖∇f‖2). Finally, an application of Young’s inequality ends the proof.

The proof of the main result is now a simple consequence of Proposition 4.1.

Proof of Theorem 1.6. Let us suppose -per absurdum- that the weak solution u is strong in
[0, T1[, for some T1 < T and that u cannot be continued as a smooth solution beyond T1. By
scalar multiplication of both sides of (16) followed by integration in Ω (recall also (23)2), and
by appealing to Proposition 4.1, the following differential inequality holds:

d

dt
‖ω(t)‖22 + ‖∇ω‖22 ≤ C

(
1 + ‖ω(t)‖2 + ‖ω(t)‖22

)
‖ω(t)‖22, a.e. t ∈ [0, T1[.

Consequently, Gronwall’s lemma implies that

lim sup
t→T−

1

‖ω(t)‖2 < +∞.

Hence, by Lemma 2.7, ‖∇u(t)‖2 is uniformly bounded in [0, T1], i.e., u is a strong solution
in [0, T1]. By standard arguments one proves that the solution u is regular in [0, T1 + ε[, for
some positive ε, contradicting the maximality of T1.

Appendices

As announced in Section 3 we report here the (simple) calculations that lead to the estimates
of some of the “secondary terms.”

A.1

We start by considering the term J2
1 (x), defined in Eq. (36), whose explicit expression is

− 1

4π
εjkl

∫
ω1

ωl(y)G(Tx, Ty)

[
∂kχ1(y) ζ

(
|Tx− Ty|

d4

)
+ χ1(y) ζ ′

(
|Tx− Ty|

d4

)
Tpy

d4|Tx− Ty|
∂Tpy

∂yk

]
dy.

Next we differentiate with respect to xj and multiply by ωi(x)ωj(x). For convenience we split
∂jJ

2
1 (x) as follows:∫

ω1

εjkl ωl(y) ∂xjG(Tx, Ty)

[
∂kχ1(y) ζ

(
|Tx− Ty|

d4

)
+ χ1(y) ζ ′

(
|Tx− Ty|

d4

)
Tpy

d4|Tx− Ty|
∂Tpy

∂yk

]
dy+

+

∫
ω1

εjkl ωl(y)G(Tx, Ty)

[
∂kχ1(y) ∂xjζ

(
|Tx− Ty|

d4

)
+ χ1(y)∂xj

[
ζ ′
(
|Tx− Ty|

d4

)] Tpy

d4|Tx− Ty|
∂Tpy

∂yk

]
dy.

Note that the first and the second derivatives of the cut-off function ζ vanish if the argument is
small enough (recall “for instance” the estimate (44) of A3

ij(x0)). Hence, we have to consider
just the term

1

4π

∫
ω1

εjkl ωl(y) ∂xjG(Tx, Ty) ∂kχ1(y) ζ

(
|Tx− Ty|

d4

)
dy =

=
1

4π

∫
ω1

εjkl ωl(y)

[
Tmx− Tmy
|Tx− Ty|3

− εjεm
Tmx− Tmy
|Tx− Ty|3

]
∂Tmx

∂xj
∂kχ1(y) ζ

(
|Tx− Ty|

d4

)
dy,
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which is bounded by

C

∫
ω1

|ω(y)|
|Tx− Ty|2

dy.

A.2

Now we consider the terms present in formulas (34)-(48), which are not treated in the previous
sections. The function g(x, y) includes only terms that are not of leading order, and it
satisfies (30). In particular, the contribution of the lower order term ∇xJ3(x) (where J3(x)
is defined in Eq. (34)) can be bounded as follows:∣∣∣∣∇x ∫

Ω
g(x, y) curlω(y) dy

∣∣∣∣ ≤ c∫
Ω

1

|x− y|2−γ
|∇ × ω(y)| dy

≤ c
(∫

Ω

dy

|x− y|4−2γ

)1/2

‖∇ × ω‖L2(Ω).

The last integral defines a function of x that is uniformly bounded (due to the fact that Ω is
a bounded domain with compact closure), provided that γ > 1/2. Consequently,∣∣∣∣∫

Ω
(ω(x) · ∇x)

[∫
Ω
g(x, y) curlω(y) dy

]
ω(x) dx

∣∣∣∣ ≤ c‖∇ω‖L2(Ω)‖ω‖2L2(Ω)

≤ ε‖∇ω‖2L2(Ω) + Cε‖ω‖4L2(Ω),

with ε > 0 arbitrarily small.
To end up, we now consider the term∫

ω2

χ2(y)G2(x0, y) [curlω(y)] dy.

We observe that this term appears in both (34)-(48). In both these equations the function
G2(x, y) satisfies

∃C = C(d) > 0 : |G2(x, y)|x=x0 |, |∇xG2(x, y)|x=x0 | ≤ C, ∀ y ∈ ω2,

since x0 and ω2 are far “enough” from each other (recall Fig. ??). Finally, just in the way
used to prove the above results, we show that there exists C > 0, independent of x0, such
that∣∣∣∣(ω(x0) · ∇

∫
ω2

χ2(y)G2(x, y) curlω(y) dy
)
· ω(x0)

∣∣∣∣ ≤ C|ω(x0)|2
∫

Ω
|curlω(y)| dy, ∀x0 ∈ Ω.
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[23] P. Lévy, Sur l’allure des fonctiones de Green et de Neumann dans le voisinage du contour,
Acta Math. 642 (1920), 207–267.
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value problem for a stationary system of Navier-Stokes equations, Proc. Steklov Inst.
Math.,125 (1973), 186-199.

[29] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, Princeton, N.J., 1970, Princeton Mathematical Series, No. 30.

[30] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Second
Edition. Springer-Verlag, New York, 1997, Applied Mathematical Sciences, 68.

28



[31] R. Temam, Navier-Stokes equations. Theory and numerical analysis. Reprint of the 1984
edition. AMS Chelsea Publishing, Providence, RI, 2001.

[32] R. Temam, and M. Ziane, Navier-Stokes equations in three-dimensional thin domains
with various boundary conditions, Adv. Differential Equations 1 (1996), 499–546.

29


