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in smooth domains. The regularity problem
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Abstract. We establish regularity results up to the boundary for solutions to generalized Stokes and
Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means
the presence of a shear dependent viscosity. We treat the case p ≥ 2. Actually, we are interested
in proving regularity results in Lq (�) spaces for all the second order derivatives of the velocity
and all the first order derivatives of the pressure. The main aim of the present paper is to extend
our previous scheme, introduced in [3] and [4] for the flat-boundary case, to the case of curvilinear
boundaries.

1. Introduction

In the sixties Olga Ladyzhenskaya proposed a new set of equations conceived in order to
build a model for turbulence phenomena. A typical model is the following:{

∂tu+ (u · ∇)u−∇ · T (u, π) = f,

∇ · u = 0,
(1.1)

in �×]0, T ], where T denotes the stress tensor

T = −πI + νT (u)Du, Du =
1
2
(∇u+∇uT ), (1.2)

νT(u) = ν0 + ν1|Du|p−2, (1.3)

and ν0, ν1 are strictly positive constants. This system satisfies the Stokes principle, a fun-
damental physical requirement (see Appendix 1).

This new model prescribes that the stress tensor T depends on the symmetric part
Du of the gradient of the velocity in a nonlinear, polynomial way, with p-rate of growth,
for p > 2 (as originally proposed). By setting p = 3, we get the classical Smagorinsky
model, introduced by him in [31], as a turbulence model (see also [12] and [26]). In [19]
and [20, Chap. 2, n. 5], J.-L. Lions considers the case in which Du is replaced by ∇u.
However, in this case the Stokes principle is not satisfied.
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One of the features of the above p-rate of growth was to prove existence and unique-
ness of solutions, taking advantage of such an increased coercivity; indeed the nonlin-
earity induced by the (u · ∇)u term is not any longer critical when p is assumed to be
large enough. This overcomes the lack of the corresponding solvability property of the
Navier–Stokes equations. Such kind of models were intensively investigated in the eight-
ies and nineties by J. Nečas and his school, in order to study certain particular kinds of
fluids, and in particular to describe shear thickening (p > 2) and shear thinning (p < 2)
phenomena. In particular, Lq regularity results, up to the boundary, for the second order
derivatives of the solutions u to Ladyzhenskaya type models in bounded domains �, for
p > 2 and under the nonslip boundary condition

u|0 = 0, (1.4)

are stated in [22].
Peculiar features of certain fluids can indeed be described in a better way using poly-

nomial, rather than linear, growth conditions on the stress tensor. We refer the reader to
the basic book [21], particularly relevant for fluids of the type analyzed in this paper. We
also refer to [11] and [27].

The mathematical analysis concerning the above kind of models is far from being
trivial, and usually involves a large amount of delicate arguments of both technical and
substantial nature. We are mainly interested in the question of integrability up to the
boundary, with some exponent, of the second derivatives of the velocity and the first
derivatives of the pressure. In [3] we give a solution to this problem for half-space, in
the stationary case. See also [4]. The scheme proposed in [3] is as follows. At first, the
steady state problem with no convection term is considered. It is a kind of nonlinear
Stokes problem. For p ∈ [2, 3], characterizing the growth of the dissipative potential, the
starting regularity is proved. More precisely, it is shown that the second derivatives of the
velocity field are integrable with power p′ = p/(p − 1). Then this exponent is improved
up to some exponent l > p′, if p < 3, by bootstrap arguments. For p = 2, the results
are the same as in the case of the classical Stokes problem with the right hand side in L2.
Further, all the results remain true in the presence of a convective term. For p > 2, its
role is not so crucial.

The aim of the present paper is to extend the above scheme to the case of curvilinear
boundaries. This is a quite difficult technical problem, especially for nonlinear equations
containing a viscosity term depending on the modulus of the symmetric part of the gradi-
ent. Actually, the latter circumstance makes the problem difficult even in the case of flat
boundaries. The known scheme developed for the case in which the coefficients in the
equations depend on the modulus of the gradient (Lions model) does not work here (see
Remark 3.1 below). The proof is done via a careful analysis up to the boundary, and a
suitable application of a modified difference quotient method (which is the novelty of the
paper) overcoming the simultaneous appearance of three difficulties: boundary regularity
(that is, how to recover the vertical derivatives of Du from the tangential ones), the diver-
gence constraint to be met at each choice of the test functions, and the fact that the system
actually depends on the symmetric part of the gradient, rather than on the gradient itself.
This leads to the introduction of a certain number of interesting new tricks. The results
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are anyway proved by first arguing locally, via a suitable flattening of the boundary, and
then by a covering argument to recover the final global estimate. The main scientific im-
portance of our work could be that all the results that are valid for flat boundaries remain
valid for general smooth domains.

Nowadays, the electrorheological fluids are a class of fluids of interest. We refer the
reader to [29], and also to [28] where the original modeling developed in [29] is proposed.
See also [1] for a detailed analysis for nonsimplified models in the stationary case. A
similar modeling, using a variable exponent structure, is also proposed in [33]. Other
interesting models are proposed, for instance, in [23] and [7]–[9].

2. Main results

In the following, � is a bounded, connected, open set in R3, locally situated on one side
of its boundary

0 = ∂�,

a manifold of class C2. Further, we assume that p ≥ 2.
We consider generalized Stokes and Navier–Stokes equations in the stationary case

and in the evolution case, where the viscosity is given by (1.3). The very basic results are
those proved for the generalized Stokes stationary problem{

−∇ · (ν0Du+ ν1|Du|p−2Du)+∇π = f,
∇ · u = 0.

(2.1)

Note that ∇ · (Du) = 1
21u.

Before stating our main results let us introduce some simplified notation. Weak solu-
tions satisfy the estimates (4.3) and (4.5) below. Hence, given f ∈ L2(�), the quantities
‖∇u‖p and ‖π‖p′ are bounded. For convenience we denote by P ,

P = P(‖∇u‖p, ‖π‖p′), (2.2)

very simple expressions that depend only on the two quantities indicated above. In par-
ticular, these quantities are independent of the exponent q that appears in the inclusion
(2.4). Explicit expressions for these quantities follow immediately from our calculations
(we will write explicit expressions up to a certain point).

Concerning the lack of dependence on the exponent q, it is worth noting that in the
following 2 ≤ p ≤ 3 and p ≤ q ≤ 6 (more precisely, for a fixed p the exponent q lies
in the range p ≤ q ≤ q∞ = 3(4 − p)). In particular, Sobolev embedding constants and
similar (used in the following) are bounded by constants which are independent of q in
the above ranges.

2.1. The stationary problem

Concerning the stationary case, we prove three main theorems. Theorem 2.1, which can be
considered as a “starting point”, ensures the global higher differentiability of the solution.
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Theorem 2.1. Let 2 ≤ p ≤ 3. Assume that

f ∈ L2(�) (2.3)

and let (u, π) be the weak solution to problem (2.1) under the boundary condition (1.4).
Assume, in addition, that

Du ∈ Lq(�) (2.4)

for some p ≤ q ≤ 6. Then

‖u‖W 2,r (�) + ‖π‖Lr (�) ≤ C(1+ ‖∇u‖
(p−2)/2
q )(P + ‖f ‖2) (2.5)

and
‖∇π‖Lp(�) ≤ C(1+ ‖∇u‖

p−2
q )(P + ‖f ‖2) (2.6)

where r = r(p, q) and p = p(p, q) are given by

1
r
=
p − 2

2q
+

1
2
,

1
p
=
p − 2
q
+

1
2
. (2.7)

Note that at this stage the assumption Du ∈ Lq is only satisfied with q = p, since a
solution, by standard monotonicity methods, can be initially found in W 1,p. Therefore
the application of this result with q = p leads to the following intermediate regularity
result.

Theorem 2.2. Let 2 ≤ p ≤ 3. Assume that

f ∈ L2(�) (2.8)

and let (u, π) be the weak solution to problem (2.1) under the boundary condition (1.4).
Then

‖u‖
W 2,p′ (�) + ‖π‖Lp′ (�) ≤ C(1+ ‖∇u‖

(p−2)/2
p )(P + ‖f ‖2) (2.9)

and
‖∇π‖Lp0 (�) ≤ C(1+ ‖∇u‖

p−2
p )(P + ‖f ‖2), (2.10)

where p0 = 2p/3p − 4. Note that both the above right hand sides are bounded by an
expression of the form P(1+ ‖f ‖).

The next step, which leads to the main regularity result of the paper, is to iterate Theorem
2.1 starting from Theorem 2.2 as follows: Theorem 2.2 allows one to get higher integra-
bility of Du via standard Sobolev embedding, say Du ∈ Lq ; then Theorem 2.1 yields
higher integrability of the second derivatives; this in turn implies higher integrability of
Du and so on. Note that this kind of iteration usually leads to establishing higher inte-
grability for every exponent strictly less than a certain limiting one, say l. Actually, the
exponent l can be reached since in Theorems 2.1 and 2.2 explicit boundary estimates are
provided, in turn allowing for a precise control of the constants in the iteration proce-
dure. Getting such precise estimates requires considerable technical efforts. We have the
following result.
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Theorem 2.3. Let 2 ≤ p ≤ 3, and let f, u and π be as in Theorem 2.2. Then

‖u‖W 2,l(�) ≤ C(P + ‖f ‖2)+ (P + ‖f ‖2)
2/(4−p)

≤ P(1+ ‖f ‖2/(4−p)2 ), (2.11)

where

l = l(p) = 3
4− p
5− p

, (2.12)

and
‖∇π‖m ≤ P(1+ ‖f ‖

p/(4−p)), (2.13)

where

m = m(p) =
6(4− p)

8− p
. (2.14)

The above iteration process requires that p < 3. For p = 3, the proof of Theorem 2.3 is
much simpler, by following the proof of Theorem 2.1 with q = p. We point out that the
main lines of our proofs apply as well to p < 4, with some quite obvious modifications.

Note that the exponent l turns out to be just the exponent for which Theorem 2.1, with
q = l∗ (see (8.3)), yields u ∈ W 2,l . Then, by the Sobolev embedding theorem, u ∈ W 1,l∗ .
In other words, q = l∗ is the fixed point of the map q 7→ r 7→ r∗. So, further regularity
cannot be obtained by appealing to Theorem 2.1.

When p = 2, the statements and estimates established in Theorems 2.2 and 2.3 coin-
cide with the classical results for the linear Stokes problem.

As shown in the proofs below, the above regularity theorems hold locally. More pre-
cisely, if (u, π) is a weak solution in some neighborhood of a point x0 ∈ 0 then the
regularity results hold, say, in a neighborhood of one-half the radius.

The extension to the stationary generalized Navier–Stokes system (2.15) below is
straightforward. We prove the following result.

Theorem 2.4. All the regularity results stated in Theorems 2.1–2.3 hold for the general-
ized Navier–Stokes equations{

−
ν0

2
1u− ν1∇ · (|Du|p−2Du)+ u · ∇u+∇π = f,

∇ · u = 0.
(2.15)

Moreover, the estimates in the above statements hold provided that ‖f ‖ is replaced by
P ‖f ‖ .

2.2. The evolution problem

Finally, we turn to the evolutionary case:
∂tu+ (u · ∇)u− ν0∇ ·Du− ν1∇ · (|Du|p−2Du)+∇π = f,
∇ · u = 0,

u(0) = u0(x).

(2.16)



6 H. Beirão da Veiga

The regularity up to the boundary of the second order derivatives in the time-dependent
case is easily reduced to a steady state problem in which the solution depends on t as
a parameter, and the derivative in t is considered as part of the right hand side. This is
why (in the presence of the convective term) an additional restriction on p comes up:
p ≤ 2 + 2/5. This restriction provides solutions u such that ∂tu ∈ L2(0, T ;L2(�)),
a well known result, the proof of which is straightforward. See, for instance, Theorem
7.2 in [17]. Note that L2(�) is exactly the regularity assumed here for the external force
field f . This situation allows us to consider ∂tu as part of the right hand side of our main
equation, and hence allows us to regularize the solution with respect to the space variables
simply by appealing to our regularity theorems for stationary solutions.

We prove the following results.

Theorem 2.5. Let u be a weak solution to problem (2.16) under the boundary condition
(1.4), where u0 ∈ Vp and f ∈ L2(0, T ;L2). Assume that

2+
2
5
≤ p ≤ 3. (2.17)

Then 
u ∈ L2(0, T ;W 2,p′) ∩ L∞(0, T ;W 1,p),

∇π ∈ L2(0, T ;Lp0),

∂tu ∈ L
2(0, T ;L2).

(2.18)

The first assumption in (2.17) is not necessary if the convective term is not present in the
equations.

Theorem 2.6. Under the assumptions of Theorem 2.5 one has
u ∈ L4−p(0, T ;W 2,l) ∩ L∞(0, T ;W 1,p),

∇π ∈ L2(4−p)/p(0, T ;Lm),

∂tu ∈ L
2(0, T ;L2).

(2.19)

The assumption (2.17) is not necessary if the convective term is not present in the equa-
tions.

3. Remarks

We point out that Remark 3.4 and Proposition ?? were added after the acceptance of this
paper by the editors.

Remark 3.1 (On the regularity up to the boundary). In going from interior to boundary
regularity, when p 6= 2, quite specific obstacles appear, unusual in other typical problems
of mathematical fluid mechanics. An indication of this situation (see [3] and [4]) is the
lower regularity obtained for the normal derivatives in comparison to that obtained for the
tangential derivatives. Note the following. In proving interior regularity by the classical
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translation method (see [25]), the translations are admissible in all the n independent di-
rections. This allows suitable L2 estimates for ∇Du, where the full gradient ∇ is obtained
thanks to the possibility of appealing to translations in all directions. On the other hand,
it is easily shown that c|∇∇u| ≤ |∇Du| ≤ C|∇∇u|. These two facts together lead to a
small distinction if we replace Du by ∇u in the expression of the stress tensor. However,
in proving regularity up to the boundary, the two cases are completely distinct. In fact,
solutions to the J.-L. Lions model (whereDu is replaced by ∇u) belong toW 2,2 up to the
boundary.

Summarizing, it seems not accidental that there is a very extensive literature on in-
terior regularity for the above class of problems but, as far as we know, scant literature
concerning regularity up to the boundary, in the 3-D case.

Remark 3.2 (The slip boundary condition). In [3] we prove regularity results also for
solutions to the slip (or Navier) boundary condition. The same extension can be done
here in the case of an arbitrary regular boundary 0. This requires just a more careful
transformation formula for vector fields under local changes of coordinates (5.2). In fact,
in the following, we change each of the three components of a vector field as if they
were scalars. This is sufficient under the boundary condition (1.4) since the constraint
u = 0 on the boundary is preserved by the above transformation. However, in the case
of slip boundary conditions, the constraint that should be preserved is the tangency to the
boundary. Hence, in order to extend our results to the slip boundary condition we should
use the covariant transform of a vector field v given by

ṽj (y) = vj , ṽ3(y) = v3 − (∂1h)v1 − (∂2h)v2, (3.1)

where j = 1, 2, and the vi functions are calculated at the point (y′, y3 + h(y
′)) (the

notation is that introduced below). See equation (4.5) in [3]. We believe that in this case
there is not a substantial difference in the calculations to be done. However, they become
more elaborate.

For the use of the transformation (3.1) under the slip boundary condition, we also
refer the reader to [2].

Remark 3.3 (The case ν0 = 0). In the proof presented below, the presence of the term
−1u is necessary. However, by appealing to a new device (see Remark 5.1 in [4]; see
also [5], where the case p < 2 is considered), we may prove all the results stated in
Section 2 even if ν0 = 0, provided that the term |Du|p−2 is replaced (for instance) by
(1+ |Du|)p−2.

Remark 3.4 (Further improvements). Concerning the flat boundary case, very recently
(after this paper was accepted by the editors), the results stated in [4] have been im-
proved in two forthcoming papers, namely, [10] and [6]. In this last reference we show
that u ∈ W 2,l

∩W 1,p+4, where l = 3(p + 4)/(p + 1). Further, the method introduced
in the present paper allows the extension of these improvements from flat boundaries to
curvilinear boundaries. In other words, Theorems 2.4 and 2.6 still hold with the above
better exponents.
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4. Weak solutions

Notation. The symbol ‖ · ‖p denotes the canonical norm in Lp(�). Further, ‖ · ‖ = ‖ · ‖2.
We denote by W k,p(�), k a positive integer and 1 < p < ∞, the usual Sobolev space
of order k, by W 1,p

0 (�) the closure in W 1,p(�) of C∞0 (�), and by W−1,p′(�) the strong
dual ofW 1,p

0 (�), where p′ = p/(p−1). The canonical norms in these spaces are denoted
by ‖ · ‖k,p. Moreover, Lp# (�) denotes the subspace of Lp consisting of the functions with
vanishing mean value.

In notation concerning duality pairings and norms, we will not distinguish between
scalar and vector fields. Very often we also omit from the notation the symbols indicating
the domains � or 0, provided that the meaning remains clear.

We set

Lp(�0) = [Lp(�0)]3, Wk,p(�0) = [W k,p(�0)]3, W1,p
0 (�0) = [W 1,p

0 (�0)]3,

for any open subset �0 of R3. We remark that ‖Dv‖p is a norm in W1,p
0 , which is equiv-

alent to the canonical norm.
We set

Vp = {v ∈ W
1,p(�) : (∇ · v)|� = 0; v|0 = 0}.

Note that, by appealing to inequalities of Korn’s type, one shows that there is a positive
constant c such that

‖∇v‖p + ‖v‖p ≤ c‖Dv‖p (4.1)

for each v ∈ Vp. Hence the two quantities above are equivalent norms in Vp.
We denote by c, c, c1, c2, etc., positive constants that depend, at most, on �, ν0, ν1

and p. Nevertheless we allow the constants ν0 and ν1 to appear each time this helps to
understand the passage from one equation to the next one.

The dependence of the constants c on p is not crucial provided that 1 < p0 ≤ p ≤

p1 <∞.
The same symbol c may denote different constants, even in the same equation.

Definition. We say that a pair (u, π) is a weak solution of problem (2.1), (1.4) if it
belongs to W1,p

0 (�)× L
p′

# (�) and satisfies

ν0

2

∫
�

∇u · ∇φ dx + ν1

∫
�

|Du|p−2Du ·Dφ dx

−

∫
�

π(∇ · φ) dy +

∫
�

(∇ · u)ψ dx =

∫
�

f · φ dx. (4.2)

for each (φ, ψ) ∈W1,p
0 (�)× L

p′

# (�).

Since a solution u of (4.2) necessarily satisfies∫
�

∇ · u dx = 0,

it readily follows that (4.2) holds for each (φ, ψ) ∈W1,p
0 (�)× Lp

′

(�).
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Existence and uniqueness of the above solution is well known; see [21]. By setting
(φ, ψ) = (u, π) in the above definition we show that weak solutions satisfy, in particular,
the estimates {

ν0‖∇u‖ ≤ c‖f ‖,

ν1‖∇u‖p ≤ c‖f ‖
1/(p−1)
p′

.
(4.3)

Moreover, by setting in (4.2) ψ = 0 and by using test functions φ ∈ C∞0 (�) one gets

∇π = −∇ · [ν0∇u+ ν1|Du|p−2Du]+ f. (4.4)

By appealing to a classical result of Nečas we prove that

‖π‖
Lp
′ ≤ c(ν0‖∇u‖ + ν1‖Du‖p−1

p + ‖f ‖p′). (4.5)

For convenience we fix π by assuming that its mean value in � vanishes.
Now let �0 ⊆ � be an arbitrary open subset of � (in particular � itself), assume that

∇u ∈ Ls(�), set ψ = 0 and use test functions φ ∈ C∞0 (�0). Then

‖π‖
L
s/(p−1)
#

≤ c(ν0‖∇u‖s/(p−1) + ν1‖Du‖p−1
s + ‖f ‖2), (4.6)

where the norms relate to �0 and s/(p − 1) ≤ 6. In particular,

‖π‖Ls/(p−1) ≤ c(ν0‖∇u‖s/(p−1) + ν1‖Du‖p−1
s + ‖f ‖2 + ‖π‖p′) (4.7)

in any �0 ⊆ �.

5. The change of variables

In order to reduce our problem, by a suitable change of variables, to a problem involving
a flat boundary, we need to consider functions with a sufficiently small support.

Let x0 ∈ 0 be given and let 5 be the tangent plane to 0 at x0. We assume that
the xi axes, i = 1, 2, 3, are such that the origin coincides with x0, and the x3 axis has the
direction of the inward normal to 0 at x0. Hence the xi axes, i = 1, 2, lie in the plane 5.
We may use this particular system of coordinates since the analytical expressions that
appear on the left hand side of (4.2) are invariant under orthogonal transformations, due
to the invariance of the analytical expressions of the divergence and gradient.

We assume that 0 is a manifold of class C2. Let x0 ∈ 0 be given and let (x′, x3) =

(x1, x2, x3) be the above system of coordinates. There is a positive real a and a real
function x3 = η(x

′) of class C2 defined on the sphere {x′ : |x′| < a} such that: the points
x for which x3 = η(x′) belong to 0; the points x for which η(x′) < x3 < a + η(x′)

belong to �; and the points x for which −a + η(x′) < x3 < η(x′) belong to R3
− �.

Without loss of generality, we assume that a ≤ 1. We define

Ia = {x : |x′| < a,−a + η(x′) < x3 < a + η(x′)},

�a = {x ∈ Ia : η(x′) < x3}, 0a = {x ∈ Ia : x3 = η(x
′)}.

(5.1)

Clearly �a = � ∩ Ia and 0a = 0 ∩ Ia .
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Actually, we extend the function η(x′) to the whole of �a by setting η(x′, x3) =

η(x′). Nevertheless, since η is independent of x3, we use the notation η(x′).
Next we introduce the change of variables y = T x given by

(y1, y2, y3) = (x1, x2, x3 − η(x
′)), (x1, x2, x3) = (y1, y2, y3 + η(y

′)), (5.2)

and set
Ja = {y : |y′| < a,−a < y3 < a},

Qa = {y ∈ Ja : 0 < y3}, 3a = {y ∈ Ja : y3 = 0}.
(5.3)

The map T is a C2 diffeomorphism of Ia onto Ja that maps �a ontoQa and 0a onto3a .
Note that the Jacobian determinant of the map T is equal to 1.

We define functions g̃ by setting g̃(y) = g(x) or, more precisely, by

g̃(y) = g(T −1(y)), (5.4)

where g denotes an arbitrary scalar or vector field. As a notational rule, g = g(x) and g̃ =
g̃(y). Moreover, partial derivatives and differential operators when applied to functions g
concern the x variables and when applied to functions g̃ concern the y variables. We write
∂kg instead of ∂g/∂xk . Hence

∂k g̃ =
∂g̃(y)

∂yk
and ∂kg =

∂g(x)

∂xk
.

Note the distinction between ∇̃f and ∇f̃ . Actually, ∇̃f (y) = (∇xf )(T
−1(y)) and

(∇f̃ )(y) = ∇y[f (T −1(y))].
Since some expressions are quite long, in addition to the “tilde” notation we also use

the symbol T for the map f 7→ f̃ . In other words,

(T f )(y) = f̃ (y).

Vector fields are transformed here coordinatewise (as independent scalars). More pre-
cisely,

ṽj (y) = vj (x) = vj (y
′, y3 + η(y

′)), (5.5)
where j = 1, 2, 3. Conversely,

vj (x) = ṽj (y) = vj (x
′, x3 − η(x

′)). (5.6)

Given x, if y = T x then y′ = x′. Hence η̃(y) = η(x) = η(x′) = η(y′), moreover
∂η(x′)/∂xj = ∂η(y′)/∂yj , and so on. In the following we identify the above functions
and use the sole notation η(y′).

We set

V(�a) = {v : v ∈W1,p
0 (�a), supp v ⊂ Ia},

V(Qa) = {̃v : ṽ ∈W1,p
0 (Qa), supp ṽ ⊂ Ja}.

Clearly, if a test function φ(x) belongs to V(�a) the transformed function φ̃(y) belongs
to V(Qa).

A main point in what follows is that

∂jη(0) = 0, j = 1, 2, (5.7)
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which holds since 5 is tangent to 0 at x0. The following result is a consequence of (5.7)
together with the continuity of ∇η over 0.

Lemma 5.1. Given a positive real ε0, there is an a(ε0) > 0 such that if a ≤ a(ε0) then

|(∇η(y′)| < ε0 for all y′ such that |y′| < a. (5.8)

Moreover, a(ε0) is independent of the point x0.

Note that a(ε0) depends on the C1(Ja) norm of η. Since 0 is compact the desired inde-
pendence holds.

From (5.4) it follows that, for each y,

∂̃kφ = ∂kφ̃ − (∂kη)(y
′)∂3φ̃, (5.9)

where ∂kη is calculated at y′. Note that the first equation (5.9) holds for k = 3 since
∂3η = 0. By iteration, the above formula may be extended to higher order derivatives (not
used later):

T (∂2
jkφ) = ∂

2
jkφ̃ − (∂kη)∂

2
j3φ̃ − (∂jη)∂

2
k3φ̃ + (∂jη)(∂kη)∂

2
3 φ̃ − (∂

2
jkη)∂3φ̃.

Remark 5.1. We want to emphasize that, basically, our regularity results will be proved
in the following local form. Let x0 and �a be as above. If (u, π) ∈W1,p(�a)×L

p′(�a)

satisfies (2.1) in the weak sense in �a and satisfies (1.4) in 0a , then the regularity results
hold in �r for r < a (for instance, for r = a/2). We prove this local result by assuming
that a > 0 is sufficiently small. Our final value of a is not necessarily equal to the initial
one. As we proceed through the proof we may need to consider smaller values of a.
However, we will show explicitly that each new (smaller) value of a depends only on
an upper bound of the C2(Ja) norm of η. In particular, a positive lower bound for a,
independent of the point x0, exists since 0 is compact. This leads to the global result in
the whole of �.

6. Translations and related properties

In general we set

Tsym =
1
2
(T+ TT ), (6.1)

where T denotes a generic tensor field, and TT is its transpose. In particular, Du =
(∇u)sym.

We assume the reader is acquainted with the classical differential quotients (or trans-
lations) method. Nevertheless, we make some preliminary remarks. Roughly speaking, in
order to prove regularity results for higher order derivatives of solutions with respect to a
particular xj variable, this method requires that small translations of test functions in the
xj (positive and negative) directions are still admissible test functions. This requirement
immediately precludes the normal direction to the boundary. Actually, if 0a is not flat
near x0, it precludes (in general) all the xj directions (this is obvious). However, if 0a is
flat, the tangential directions are admissible. In fact, if φ vanishes on 0a , small transla-
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tions of φ in any tangential direction are well defined in �a and vanish on 0a (actually,
for a smaller value of the parameter a). This leads to the possibility of applying the differ-
ential quotients method with respect (roughly speaking!) to the tangent directions x1 and
x2 at the point x0, simply by making the change of variables introduced in the previous
section and by doing translations with respect to the new tangent directions y1 and y2.
This explains why, below, we deal with translations of hj in the yj -directions, j = 1, 2.
For notational convenience we consider the case j = 1 and set h = h1. All the results
hold for j = 2. We use the following convention:

y + h = (y1 + h, y2, y3), y′ + h = (y1 + h, y2).

The amplitude |h| of the translations is always assumed to be smaller than the distance
from the support of φ̃ to the set (∂Qa) \3a .

The following remark concerns a fundamental point in our approach.

Remark 6.1. A test function φ(x) is transformed into a function φ̃(y). Since in the fol-
lowing we make translations with respect to the y variables we need to determine (and
study the differential properties of) the particular test function φh(x) such that (φ̃h)(y) =
φ̃(y + h), for each test function φ(x) and each small amplitude h. This is the aim of this
section.

The above functions φh(x) are called pseudo-translations.

Lemma 6.1. Let φ(x) ∈ V(�a). Define φh by

φh(x) = φ(x1 + h, x2, x3 − η(x
′)+ η(x′ + h)). (6.2)

Then
φ̃h(y) = φ̃(y + h). (6.3)

The verification is left to the reader.
Next we want to establish the transformation law for derivatives of the pseudo-trans-

lations φh(x). One has the following result.

Lemma 6.2. Let φ(x) ∈ V(�a), let φh(x) be as in the previous lemma, and let k ≤ 3 be
fixed. Then

(∂̃kφh)(y) = (∂̃kφ)(y + h)+ (∂̃3φ)(y + h)[(∂kη)(y′ + h)− (∂kη)(y′)]. (6.4)

If k = 3 the second term on the right hand side vanishes identically.

Proof. From (6.2) it readily follows that

(∂kφh)(x) = (∂kφ)(x
′
+ h, x3 + η(x

′
+ h)− η(x′))

+ (∂nφ)(x
′
+ h, x3 + η(x

′
+ h)− η(x′))[(∂kη)(x′ + h)− (∂kη)(x′)].

(6.5)

Note that the last term is not taken into account if k = 3. By the definition of the “tilde”
functions

(∂̃kφh)(y) = (∂kφh)(T
−1y) = (∂kφh)(x)
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where
x = (x1, x2, x3) = (y

′, y3 + η(y
′)).

Hence from (6.5) with x replaced by x we get an expression for (D̃kφh)(y) in terms of x.
By taking into account the definition of x we obtain

(∂̃kφh)(y) = (∂kφ)(y
′
+ h, y3 + η(y

′
+ h))

+ (∂3φ)(y
′
+ h, y3 + η(y

′
+ h))[(∂kη)(y′ + h)− (∂kη)(y′)]. (6.6)

Since (y′ + h, y3 + η(y
′
+ h)) = T −1(y + h) it follows that

(∂kφ)(y
′
+ h, y3 + η(y

′
+ h)) = (∂̃kφ)(y + h).

Consequently, (6.4) follows from (6.6). ut

By setting in general
(∇φ)ik = ∂kφi

it follows from (6.4) that

(∇̃φh)(y) = (∇̃φ)(y + h)+ (∂̃3φ)(y + h)⊗ [(∇η)(y′ + h)− (∇η)(y′)] (6.7)

where, since η does not depend on the third. variable, we set

∇η = (∂1η, ∂2η).

In particular, since Du = (∇u)sym (recall (6.1)),

(D̃φh)(y) = (D̃φ)(y + h)+ {(∂̃3φ)(y + h)⊗ [(∇η)(y′ + h)− (∇η)(y′)]}sym. (6.8)

Moreover,

(∇̃ · φh)(y) = (∇̃ · φ)(y + h)+ (∂̃3φ)(y + h) · [(∇η)(y′ + h)− (∇η)(y′)]. (6.9)

Now we express the derivatives with respect to the y variables of functions φ̃(y) in terms
of the transformations of the derivatives of the original functions φ(x).

Lemma 6.3. One has the following formulas:

(∂kφ̃)(y) = (∂̃kφ)(y)+ (∂kη)(y
′)(∂̃3φ)(y), (6.10)

(∂̃kφ)(y) = (∂kφ̃)(y)− (∂kη)(y
′)(∂3φ̃)(y). (6.11)

If k = 3 the second terms on the above right hand sides vanish identically.

Proof. Since φ̃(y) = φ(T −1y) it follows that

(∂kφ̃)(y) = (∂kφ)(T
−1y)+ (∂3φ)(T

−1y)(∂kη)(y
′) = (∂̃kφ)(y)+ (∂kη)(y

′)(∂̃3φ)(y).

Note that ∂3φ̃ = ∂̃3φ. ut

From the above lemma it follows that

(∇̃φ)(y) = (∇φ̃)(y)− (∇η)(y′)⊗ (∂3φ̃)(y), (6.12)

(∇̃ · φ)(y) = (∇ · φ̃)(y)− (∇η)(y′) · (∂3φ̃)(y). (6.13)
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Lemma 6.4. Given an ε0 ∈ ]0, 1[ there is an a(ε0) > 0 such that if a ≤ a(ε0) then

|(∇φ̃)(y)− (∇̃φ)(y)| ≤ ε0|(∂̃3φ)(y)|, ∀y ∈ Qa . (6.14)

The same result holds if we replace y by y − h. Clearly we may replace ∇ by D.

Proof. From (6.10) one shows that the left hand side of (6.14) is bounded by
|∇η(y′)| |(∂̃3φ)(y)|. Since ∇η(0) = 0 it follows that |∇η(y′)| ≤ ε0 in a sufficiently
small neighborhood of x0. ut

Remark 6.2. Note that the identity ∇φ(x) = (∇̃φ)(y) together with (6.14) leads to a
“pointwise equivalence” between |∇φ(x)|, |(∇̃φ)(y)| and |(∇φ̃)(y)|. In particular, the
Lq -norms of these quantities are equivalent.

Lemma 6.5. Given an ε0 ∈ ]0, 1[ there is an a(ε0) > 0 such that if a ≤ a(ε0) then

|((∇̃φ)(y)− (∇̃φ)(y − h))− ((∇φ̃)(y)− (∇φ̃)(y − h))|

≤ ε0|(∂3φ̃)(y)− (∂3φ̃)(y − h)| + |h| ‖η‖C2(Qa)
|(∂3φ̃)(y − h)|. (6.15)

Proof. From (6.11) one has

((∇̃φ)(y)− (∇̃φ)(y − h))− ((∇φ̃)(y)− (∇φ̃)(y − h))

= −∇η(y′)⊗ ((∂3φ̃)(y)− (∂3φ̃)(y − h))− (∇η(y
′)−∇η(y′ − h))⊗ (∂3φ̃)(y − h).

Hence, in a sufficiently small neighborhood of x0, (6.15) holds. ut

7. Estimates for some second order derivatives of the velocity in terms of the
pressure

Further notation. For convenience, in the following C denotes positive constants which
are bounded from above provided that the quantities ‖∇η‖C1(3a)

and ‖∇θ‖C1(�a)
are

bounded from above. In particular, this means that

C = C(‖∇η‖C1(3a)
, ‖∇θ‖C1(�a)

).

Nevertheless, for the reader’s convenience (and for completeness) we often write the ex-
plicit dependence on the above quantities before including them in a constant of type C.
Multiplicative constants of type c will be incorporated in C.

In the following, in the absence of an explicit indication, tilde-functions inside inte-
grals are calculated at the generic point y. Compare equations (7.1) and (7.2). Moreover,
in the absence of an explicit indication, norms of functions of the x variable concern the
domain �a and norms of tilde-functions concern the domain Qa .

From (4.2), by making the change of variables x 7→ T x = y, it follows that

ν0

2

∫
∇̃u · ∇̃φ dy + ν1

∫
|D̃u|p−2D̃u · D̃φ dy

−

∫
π̃(∇̃ · φ) dy +

∫
(∇̃ · u)ψ̃ dy =

∫
f̃ · φ̃ dy (7.1)
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for each φ̃ ∈ V(Qa) and each ψ̃ ∈ Lp(Qa). Recall that the Jacobian determinant of the
T -transform is equal to one.

Next we consider the equation (7.1) with φ and ψ replaced by the admissible test
functions φh andψh respectively (recall (6.2)). Then by the change of variables y 7→ y−h

we show that

ν0

2

∫
∇̃u(y − h) : ∇̃φh(y − h) dy + ν1

∫
|D̃u(y − h)|p−2D̃u(y − h) : D̃φh(y − h) dy

−

∫
π̃(y − h)(∇̃ · φh(y − h)) dy +

∫
(∇̃ · u(y − h))ψ̃h(y − h) dy

=

∫
f̃ (y − h) · φ̃h(y − h) dy (7.2)

for each φ̃ ∈ V(Qa) and each ψ̃ ∈ Lp(Qa).
By appealing to (6.3), (6.4), (6.7), (6.8) and (6.9) we may write (7.2) in the form

ν0

2

∫
∇̃u(y−h) : ∇̃φ(y) dy+

ν0

2

∫
∇̃u(y−h) : [(∂̃3φ)(y)⊗[(∇η)(y′)−(∇η)(y′−h)]] dy

+ ν1

∫
|D̃u(y − h)|p−2D̃u(y − h) : D̃φ(y) dy

+ ν1

∫
|D̃u(y − h)|p−2D̃u(y − h) : [(∂̃3φ)(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]sym dy

−

∫
π̃(y − h)(̃∇ · φ)(y) dy −

∫
π̃(y − h)(∂̃3φ)(y) · [(∇η)(y′)− (∇η)(y′ − h)] dy

+

∫
(̃∇ · u)(y − h)ψ̃(y) dy =

∫
f̃ (y − h) · φ̃(y) dy. (7.3)

Finally, by subtracting (7.1) and (7.3) we get

ν0

2

∫
(∇̃u(y)− ∇̃u(y − h)) : ∇̃φ(y) dy

+ ν1

∫
(|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) : (̃Dφ)(y) dy

−

∫
(π̃(y)− π̃(y − h))(̃∇ · φ)(y) dy +

∫
((̃∇ · u)(y)− (̃∇ · u)(y − h))ψ̃(y) dy

= −

∫
f̃ (y) · (φ̃(y + h)− φ̃(y)) dy

+
ν0

2

∫
∇̃u(y − h) : [(∂̃3φ)(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]] dy

+ ν1

∫
|D̃u(y − h)|p−2D̃u(y − h) : [(∂̃3φ)(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]sym dy

−

∫
π̃(y − h)(∂̃3φ)(y) · [(∇η)(y′)− (∇η)(y′ − h)] dy. (7.4)
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Remark 7.1. A fundamental remark: Now we would like to replace in (7.4) ∇̃φ(y) with
∇̃u(y)− ∇̃u(y − h), and consequently D̃φ(y) with D̃u(y)− D̃u(y − h). Unfortunately,
this is not allowed since ∇̃u(y − h) is not the transformation of the gradient of an x-test
function. However, our goal will be obtained “up to a perturbation term” by setting in
equation (7.4)

φ(x) = (u(x)− u−h(x))θ
2(x), (7.5)

where θ is an arbitrary regular real function such that

supp θ ⊂ Ia .

To fix ideas also assume from now on that 0 < θ(x) ≤ 1. Note that θ̃2 = (θ̃)2 and
∇̃θ2 = 2θ̃∇̃θ . Clearly

φ̃(y) = (̃u(y)− ũ(y − h))(θ̃)2(y). (7.6)

Lemma 7.1. Let φ(x) be the admissible test function given by (7.5). Then the y-trans-
forms of ∇φ(x), Dφ(x), ∂3φ(x) and ∇ · φ(x) are respectively given by (7.7), (7.8), (7.9)
and (7.10) below.

Proof. By taking the gradient of both sides of (7.5), by passing from the x to the y vari-
ables and by appealing to (6.7) it readily follows that

∇̃φ(y) = (∇̃u(y)− ∇̃u(y − h))(θ̃)2(y)

+ (∂̃3u)(y − h)⊗ [(∇η)(y′)− (∇η)(y′ − h)](θ̃)2(y)

+ 2θ̃ (y)(̃u(y)− ũ(y − h))⊗ ∇̃θ(y). (7.7)

In particular, one has

D̃φ(y) = (D̃u(y)− D̃u(y − h))(θ̃)2(y)
+ {(∂̃3u)(y − h)⊗ [(∇η)(y′)− (∇η)(y′ − h)](θ̃)2(y)}sym

+ 2θ̃ (y){(̃u(y)− ũ(y − h))⊗ ∇̃θ(y)}sym, (7.8)

and also (since ∂3η = 0),

∂̃3φ(y) = (∂̃3u(y)− ∂̃3u(y − h))(θ̃)
2(y)+ 2θ̃ (y)(̃u(y)− ũ(y − h))∂̃3θ(y). (7.9)

Similarly, from (6.3) and (6.9) it readily follows that

∇̃ · φ(y) = (∇̃ · u(y)− ∇̃ · u(y − h))(θ̃)2(y)

+ (∂̃3u)(y − h) · [(∇η)(y′)− (∇η)(y′ − h)](θ̃)2(y)

+ 2θ̃ (y)(̃u(y)− ũ(y − h)) · ∇̃θ(y). (7.10)

ut
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On the other hand, by setting

ψ(x) = (π(x)− π−h(x))θ
2(x), (7.11)

it follows that
ψ̃(y) = (π̃(y)− π̃(y − h))(θ̃)2(y). (7.12)

Next we replace in (7.4) the test functions φ and ψ by the expressions in (7.5) and (7.11).
We start by estimating each of the terms that appear in (7.4). In order to treat the second
integral on the left hand side of (7.4) we appeal to the following well known result.

Let U,V be two arbitrary vectors in RN , N ≥ 1, and p ≥ 2. Then

(|U |p−2U − |V |p−2V ) · (U − V ) ≥
1
2
(|U |p−2

+ |V |p−2)|U − V |2,

| |U |p−2U − |V |p−2V | ≤
p − 1

2
(|U |p−2

+ |V |p−2)|U − V |.

(7.13)

Proposition 7.1. Let φ̃(y) be given by (7.5). Then

ν1

∫
(|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) : D̃φ(y) dy

≥
ν1

4

∫
(|(D̃u)(y)|p−2

+ |(D̃u)(y − h)|p−2)|(D̃u)(y)− (D̃u)(y − h)|2(θ̃)2(y) dy

− C‖∇ũ‖
p
ph

2. (7.14)

Proof. For convenience, denote by S1 the left hand side of (7.14). By (7.8) one has

S1 = ν1

∫
(|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h))

· (D̃u(y)− D̃u(y − h))(θ̃)2(y) dy

+ ν1

∫
(|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h))

· {(∂̃3u)(y − h)⊗ [(∇h)(y′)− (∇h)(y′ − h)]}sym(θ̃)
2(y) dy

+ 2ν1

∫
(|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h))

· {(̃u(y)− ũ(y − h))⊗ ∇̃θ(y)}symθ̃ (y) dy. (7.15)

From (7.13) it follows that

S1 ≥
ν1

2

∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)|D̃u(y)− D̃u(y − h)|2(θ̃)2(y) dy

−
ν1

2
(p − 1)

∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)|D̃u(y)− D̃u(y − h)|

· |(∂̃3u)(y − h)| |(∇η)(y
′)− (∇η)(y′ − h)|(θ̃)2(y) dy

− ν1(p − 1)
∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)

· |D̃u(y)− D̃u(y − h)|θ̃ (y)|̃u(y)− ũ(y − h)||∇̃θ(y)| dy. (7.16)
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By appealing to the Cauchy–Schwarz inequality one easily shows that

S1 ≥
ν1

4

∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)|D̃u(y)− D̃u(y − h)|2(θ̃)2(y) dy

−
ν1

2
(p − 1)2

∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)|(∂̃3u)(y − h)|
2

· |(∇η)(y′)− (∇η)(y′ − h)|2(θ̃)2(y) dy

−2ν1(p−1)2
∫
(|D̃u(y)|p−2

+|D̃u(y−h)|p−2)|̃u(y)−ũ(y−h)|2|∇̃θ(y)|2 dy. (7.17)

The last two integrals are bounded by

ch2(‖D2η‖2∞ + ‖D
2θ‖2∞)‖∇̃u(y)‖

p
p . ut

Next we estimate the third integral on the right hand side of (7.4).

Proposition 7.2. Let φ̃(y) be given by (7.5). Then

ν1

∣∣∣∣∫ |D̃u(y − h)|p−2D̃u(y − h) : [(∂̃3φ)(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]sym dy

∣∣∣∣
≤
ν

8

∫
(|D̃u(y)|p−2

+|D̃u(y−h)|p−2)|D̃u(y)− D̃u(y−h)|2(θ̃)2(y) dy+Ch2
‖∇ũ‖

p
p .

(7.18)

Proof. Denote by S the integral on the left hand side of (7.18). By (7.8) one has

ν1S = ν1

∫
|D̃u(y − h)|p−2D̃u(y − h)

· [(∂̃3u(y)− ∂̃3u(y − h))(θ̃)
2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]sym dy

+ 2ν1

∫
|D̃u(y − h)|p−2D̃u(y − h)

· [(̃u(y)− ũ(y − h))∂̃3θ(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]symθ̃ (y) dy. (7.19)

The second integral on the right hand side of (7.19) is easily seen to be bounded by

c‖∇θ‖∞‖D
2η‖∞‖∇ũ‖

p
ph

2,

hence bounded by the last term on the right hand side of (7.18).
Denote by I1 the first integral on the right hand side of (7.19). By splitting it into two

integrals, the first including ∂̃3u(y) and the second including ∂̃3u(y−h); by appealing to
the change of variables y1 − h 7→ y1 in the second integral; and, finally, by splitting this
last integral in a convenient and obvious way, we get
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I1 =

∫
|D̃u(y − h)|p−2D̃u(y − h) : [∂̃3u(y)(θ̃)

2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]sym dy

−

∫
|D̃u(y)|p−2D̃u(y) : [∂̃3u(y)(θ̃)

2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]sym dy

−

∫
|D̃u(y)|p−2D̃u(y) : {[∂̃3u(y)(θ̃)

2(y + h)⊗ [(∇η)(y′ + h)− (∇η)(y′)]]sym

− [∂̃3u(y)(θ̃)
2(y)⊗ [(∇η)(y′)− (∇η)(y′ − h)]]sym} dy. (7.20)

The last integral on the right hand side of (7.20) is bounded by C‖∇η‖∞‖∇ũ‖
p
ph

2, hence
by the last term on the right hand side of (7.18). It remains to estimate the absolute value
of the difference of the first two integrals on the right hand side of (7.20). By appealing
to (7.13) one shows that this absolute value is bounded by

p − 1
2

∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)

· |D̃u(y)− D̃u(y − h)| |∂̃3u(y)|(θ̃)
2(y)|(∇η)(y′)− (∇η)(y′ − h)| dy.

In turn, this quantity is bounded by

1
8

∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)|D̃u(y)− D̃u(y − h)|2(θ̃)2(y) dy

+C

∫
|∂̃3u(y)|

2
|(∇η)(y′)− (∇η)(y′−h)|2(|D̃u(y)|p−2

+|D̃u(y−h)|p−2)|(θ̃)2(y) dy.

As the last integral is bounded by C‖D2η‖2∞‖∇ũ‖
p
ph

2
1, the estimate (7.18) follows. ut

From (7.14) and (7.18) we get the following result.

Proposition 7.3. Denote by S(ν1) the difference between the two ν1 terms that appear in
equation (7.4) and let φ̃(y) be given by (7.5). Then

S(ν1) ≥ cν1

∫
(|(D̃u)(y)|p−2

+ |(D̃u)(y − h)|p−2)|(D̃u)(y)− (D̃u)(y − h)|2(θ̃)2(y) dy

− C‖∇u‖
p
ph

2. (7.21)

Next we consider the “ν0” terms that appear in (7.4). A simplification of the above argu-
ment (alternatively, set p = 2 in (7.21)) leads to the following result.

Proposition 7.4. Denote by S(ν0) the difference between the two ν0 terms that appear in
equation (7.4) and let φ̃(y) be given by (7.5). Then

S(ν0) ≥ cν0

∫
|(∇̃u)(y)− (∇̃u)(y − h)|2(θ̃)2(y) dy − C‖∇u‖22h

2
1. (7.22)
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Next we consider the f -term. A classical result shows that∣∣∣∣∫ f̃ (y) · (φ̃(y + h)− φ̃(y)) dy

∣∣∣∣ ≤ h‖f̃ ‖2‖∇φ̃‖2. (7.23)

Since φ̃(y) is given by (7.6), straightforward calculations yield (recall that 0 ≤ θ(x) ≤ 1)∣∣∣∣∫ f̃ (y) · (φ̃(y+h)− φ̃(y)) dy

∣∣∣∣ ≤ h‖f̃ ‖2,Qa(∫ |∇ũ(y)−∇ũ(y−h)|2(θ̃)2(y) dy)1/2

+h2
‖f̃ ‖2‖∇ũ‖2‖∇(θ̃)

2
‖∞. (7.24)

At this point it looks convenient to the reader to establish here a full stop. In this
regard we write the equation that follows from (7.4) by appealing to Propositions 7.4 and
7.3, and to (7.24). One has

cν0

∫
|(∇̃u)(y)− (∇̃u)(y − h)|2(θ̃)2(y) dy

+ cν1

∫
(|(D̃u)(y)|p−2

+ |(D̃u)(y − h)|p−2)|(D̃u)(y)− (D̃u)(y − h)|2(θ̃)2(y) dy

≤

∫
π̃(y)(∂̃3u)(y − h) · [(∇η)(y′)− (∇η)(y′ − h)](θ̃)2(y) dy

+

∫
(π̃(y)− π̃(y − h))θ̃(y)(̃u(y)− ũ(y − h)) · ∇̃θ(y) dy

−

∫
π̃(y − h)(∂̃3u)(y) · [(∇η)(y′)− (∇η)(y′ − h)](θ̃)2(y) dy

−

∫
π̃(y − h)(̃u(y)− ũ(y − h))∂̃3θ(y) · [(∇η)(y′)− (∇η)(y′ − h)]θ̃ (y) dy

+ C(‖∇u‖22 + ‖∇u‖
p
p )h

2
+ c

h2

ν0
‖f̃ ‖22 + h

2
‖f̃ ‖2‖∇ũ‖2‖∇(θ̃)

2
‖∞. (7.25)

By recalling, if necessary, (6.10) one easily shows that the fourth integral on the right
hand side above is bounded by C‖∇θ‖∞‖π‖p′‖∇u‖ph2. Similar estimates hold for the
first and third integrals. The above arguments prove the following result.

Theorem 7.1. The following estimate holds:

cν0

∫
|(∇̃u)(y)− (∇̃u)(y − h)|

2(θ̃)2(y) dy

+ cν1

∫
(|(D̃u)(y)|p−2

+ |(D̃u)(y − h)|p−2)|(D̃u)(y)− (D̃u)(y − h)|2(θ̃)2(y) dy

≤

∣∣∣∣∫ (π̃(y)− π̃(y − h))θ̃(y)(̃u(y)− ũ(y − h)) · ∇̃θ(y) dy∣∣∣∣
+ C(1+ ‖∇θ‖2∞)(‖∇u‖

2
2 + ‖∇u‖

p
p + ‖π‖p′‖∇u‖p)h

2

+ c
h2

ν0
‖f̃ ‖22 + h

2
‖f̃ ‖2‖∇ũ‖2‖∇(θ̃)

2
‖∞.
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For convenience we define the nonnegative quantities Ã0 and Ã1 by

Ã2
0 =

∫
|(∇̃u)(y)− (∇̃u)(y − h)|2(θ̃)2 dy (7.27)

and

Ã2
1 =

∫
(|(D̃u)(y)|p−2

+ |(D̃u)(y − h)|p−2)|(D̃u)(y)− (D̃u)(y − h)|2(θ̃)2 dy, (7.28)

and also
U(u, π) = ‖∇u‖2p + ‖∇u‖

p
p + ‖π‖

p′

p′
. (7.29)

Theorem 7.1 yields the following result.

Theorem 7.2. The following estimate holds:

ν0Ã
2
0 + ν1Ã

2
1

≤ C|h| ‖∇ũ‖p‖(π̃(y)− π̃(y − h))θ̃(y)‖p′ + CU(u, π)h
2
+ C‖f ‖22h

2. (7.30)

8. Estimates for the tangential derivatives of pressure in terms of velocity

In the following, p denotes an exponent that lies in the interval

2 ≤ p ≤ 3 (8.1)

and q an exponent that lies in the interval

p ≤ q ≤ 6.

Actually, for a fixed p, it is sufficient that q ≤ q∞ where

q∞ = 3(4− p). (8.2)

In general, for 1 < r < 3 we define the Sobolev embedding exponent r∗ by the equation

1
r∗
=

1
r
−

1
3
. (8.3)

Given p and q as above we define r = r(q) by

1
r
=
p − 2

2q
+

1
2
. (8.4)

Note that
1
r ′
=
q − p + 2

2q
.

In what follows we assume that ∇u ∈ Lq . In particular, (4.7) holds. In this section we
prove the following result.
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Theorem 8.1. For sufficiently small positive values of a (which are independent of the
particular point x0) one has

‖(π̃(y)− π̃(y − h))θ̃‖r ≤ cÃ0 + c‖∇u‖
(p−2)/2
q Ã1

+ C|h|(‖∇u‖2 + ‖∇u‖
p−1
(p−1)r + ‖π‖r)+ C|h| ‖f ‖2.

(8.5)

This result follows as a corollary of the crucial estimate stated in the following theorem.

Theorem 8.2. Given ε0 > 0 there is a(ε0) > 0 (independent of the point x0) such that
for a ≤ a(ε0), one has∣∣∣∣∫ ∇[(π̃(y)− π̃(y − h))θ̃ ] · φ̃ dy

∣∣∣∣
≤ c(Ã0 + C|h| ‖∇u‖2)‖∇φ̃‖2 + c‖∇u‖

(p−2)/2
q Ã1‖∇φ̃‖r ′

+ ε0‖(π̃(y)− π̃(y − h))θ̃‖r‖∇φ̃‖r ′

+ C|h|(‖∇u‖2 + ‖∇u‖
p−1
(p−1)r + ‖π‖r + ‖f ‖2)‖∇φ̃‖r ′ (8.6)

for each φ̃ ∈ C2
0(Qa).

Proof of Theorem 8.1. We start proving Theorem 8.1 by assuming that (8.6) holds. This
implies that ∇[(π̃(y)− π̃(y − h))θ̃ ] ∈ W−1,r(Qa) and

‖∇[(π̃(y)− π̃(y − h))θ̃ ]‖−1,r ≤ ε0‖(π̃(y)− π̃(y − h))θ̃‖r

+ cÃ0 + c‖∇u‖
(p−2)/2
q Ã1

+ C|h|(‖∇u‖2 + ‖∇u‖
p−1
q + ‖π‖r + ‖f ‖2). (8.7)

A main point here is that θ̃ has compact support in Ja . To fix ideas the reader may assume,
once and for all, that

supp θ̃ ⊂ Qa/2,

and that the translation amplitude satisfies |h| < a/2. Next, by appealing to a well known
Nečas result (see the appendix), one shows that

‖(π̃(y)− π̃(y − h))θ̃‖r ≤ ε0‖(π̃(y)− π̃(y − h))θ̃‖r

+ cÃ0 + c‖∇u‖
(p−2)/2
q Ã1

+ C|h|(‖∇u‖2 + ‖∇u‖
p−1
q + ‖π‖r + ‖f ‖2). (8.8)

This proves Theorem 8.1. ut

The rest of this section is devoted to the proof of (8.6). We start by proving the following
lemma.
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Lemma 8.1. For each φ̃ ∈ C2
0(Qa) one has∣∣∣∣∫ ∇[(π̃(y)− π̃(y − h))θ̃ ] · φ̃ dy

∣∣∣∣
≤ ν0

∣∣∣∣∫ (∇̃u(y)− ∇̃u(y − h)) : ∇̃(θφ)(y) dy
∣∣∣∣

+ ν1

∣∣∣∣∫ (|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) : ∇̃(θφ)(y) dy
∣∣∣∣

+ ε0‖(π̃(y)− π̃(y − h))θ̃‖r‖∇φ̃‖r ′ +

∣∣∣∣∫ f̃ · ((̃θφ)(y + h)− (̃θφ)(y)) dy

∣∣∣∣
+ C|h|(‖∇u‖2 + ‖∇u‖

p−1
(p−1)r + ‖π‖r)‖∇φ̃‖r ′ , (8.9)

where ε0 and a are chosen below.

Proof. From (7.4) with ψ = 0 and φ replaced by θφ one easily gets∫
(π̃(y)− π̃(y − h)) ˜(∇ · (θφ))(y) dy

=
ν0

2

∫
(∇̃u(y)− ∇̃u(y − h)) : ∇̃(θφ)(y) dy

+ ν1

∫
(|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) · D̃(θφ)(y) dy

+

∫
f̃ (y) · ((̃θφ)(y + h)− (̃θφ)(y)) dy + cR, (8.10)

where R satisfies

|R| ≤ ν0|h| ‖η‖C2‖∇̃u‖2‖∂̃3(θφ)‖2

+ ν1|h| ‖η‖C2‖∇̃u‖
p−1
(p−1)r‖∂̃3(θφ)‖r ′ + |h| ‖η‖C2‖π‖r‖∂̃3(θφ)‖r ′ . (8.11)

Since ∂̃3(θφ) = θ̃∂3φ̃ + φ̃∂̃3θ (recall, in particular, (6.11) for k = 3) it follows that

‖∂̃3(θφ)‖r ′ ≤ C‖∇φ̃‖r ′ .

Hence, with a simplified notation,

|R| ≤ C|h|(‖∇u‖2 + ‖∇u‖p−1
(p−1)r + ‖π‖r)‖∇φ̃‖r ′ . (8.12)

Note that 2 ≤ r ′.
On the other hand, by appealing to (6.13), one shows that

˜(∇ · (θφ)) = θ̃∇ · φ̃ + φ̃ · ∇̃θ − θ̃ (∇η) · (∂3φ̃)− (∂3θ̃ )(∇η) · φ̃.
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Hence we may decompose the left hand side of (8.10) as∫
(π̃(y)− π̃(y − h)) ˜(∇ · (θφ)) dy =

∫
[(π̃(y)− π̃(y − h))θ̃ ](∇ · φ̃) dy

+

∫
(π̃(y)− π̃(y − h))(∇̃θ) · φ̃ dy −

∫
[(π̃(y)− π̃(y − h))θ̃ ](∇η) · (∂3φ̃) dy

−

∫
(π̃(y)− π̃(y − h))(∂3θ̃ )(∇η) · φ̃ dy. (8.13)

By means of a suitable translation one shows that∫
(π̃(y)− π̃(y − h))(∇̃θ) · φ̃ dy = −

∫
π̃(φ̃(y + h)− φ̃(y)) · (̃∇θ) dy

−

∫
π̃ φ̃(y + h) · (∇̃θ(y + h)− ∇̃θ(y)) dy. (8.14)

Hence the second integral on the right hand side of (8.13) satisfies∣∣∣∣∫ (π̃(y)− π̃(y − h))(∇̃θ) · φ̃ dy∣∣∣∣ ≤ |h| ‖∇̃θ‖C1‖π̃‖r‖∇φ̃‖r ′ . (8.15)

A similar device applied to the last integral on the right hand side of (8.13) shows that∣∣∣∣∫ (π̃(y)− π̃(y − h))(∂3θ̃ )(∇η) · φ̃ dy

∣∣∣∣ ≤ c|h| ‖∇η‖C1‖∂3θ̃‖C1‖ ‖π̃‖r‖∇φ̃‖r ′ . (8.16)

On the other hand,∣∣∣∣∫ [(π̃(y)− π̃(y−h))θ̃ ](∇η)∂3φ̃ dy

∣∣∣∣ ≤ ‖(π̃(y)− π̃(y−h))θ̃‖r‖∇η‖C0‖∇̃φ‖r ′ . (8.17)

From (8.13), (8.15), (8.16) and (8.17) it follows that∫
(π̃(y)− π̃(y − h)) ˜(∇ · (θφ)) dy = −

∫
∇[(π̃(y)− π̃(y − h))θ̃ ] · φ̃ dy +R2 (8.18)

for each φ̃ ∈ C2
0(Qa), where R2 satisfies the estimate

|R2| ≤ C|h| ‖π̃‖r‖∇φ̃‖r ′ + ε0‖(π̃(y)− π̃(y − h))θ̃‖r‖∇φ̃‖r ′ , (8.19)

for an arbitrarily small positive ε0, provided that a ≤ a(ε0).We have applied the fact that
∇η(0) = 0. From (8.18), (8.19) and (8.10), (8.12) the estimate (8.9) follows. ut

Next we estimate the ν0 and ν1 terms on the right hand side of (8.9). We prove the fol-
lowing result.
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Lemma 8.2. The following estimates hold:

ν1

∣∣∣∣∫ (|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) : ∇̃(θφ) dy
∣∣∣∣

≤ c‖∇u‖
(p−2)/2
q (Ã1 + C|h| ‖∇u‖

p/2
q )‖∇φ̃‖r ′ (8.20)

and

ν0

∣∣∣∣∫ (∇̃u(y)− ∇̃u(y − h)) : ∇̃(θφ) dy
∣∣∣∣ ≤ c(Ã0 + C|h| ‖∇u‖2)‖∇φ̃‖2. (8.21)

Proof. From (6.12) it follows that

∇̃(θφ) = θ̃∇φ̃ − θ̃ [(∇η)⊗ ∂3φ̃]+ φ̃ ⊗ ∇̃θ

for each y ∈ Qa . Moreover,

|θ̃∇φ̃ − θ̃ [(∇η)⊗ ∂3φ̃]| ≤ C|θ̃ | |∇φ̃|. (8.22)

Hence, by (7.13), it follows that

ν1

∣∣∣∣∫ (|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) : ∇̃(θφ) dy
∣∣∣∣

≤ Cν1

∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)|D̃u(y)− D̃u(y − h)| |θ̃ | |∇φ̃| dy

+ ν1

∣∣∣∣∫ (|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) : (φ̃ ⊗ ∇̃θ) dy
∣∣∣∣. (8.23)

Next,∫
(|D̃u(y)|p−2

+ |D̃u(y − h)|p−2)|D̃u(y)− D̃u(y − h)| |θ̃ | |∇φ̃| dy

≤ c

∫
(|D̃u(y)|(p−2)/2

+ |D̃u(y − h)|(p−2)/2)

× [(|D̃u(y)|(p−2)/2
+ |D̃u(y − h)|(p−2)/2)|D̃u(y)− D̃u(y − h)|θ̃ ]|∇φ̃| dy. (8.24)

By taking into account the definition of r and by appealing to Hölder’s inequality one
shows that∫

(|D̃u(y)|p−2
+ |D̃u(y − h)|p−2)|D̃u(y)− D̃u(y − h)| |θ̃ | |∇φ̃| dy

≤ c‖∇̃u‖
(p−2)/2
q Ã1‖∇φ̃‖r ′ , (8.25)

which is the desired estimate for the first integral on the right hand side of (8.23).
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We could appeal to similar devices to obtain as well a useful estimate for the second
integral there. However, the lack of θ̃ (y) in this integral would require some tricky argu-
ments. We prefer to introduce a more elegant device. Denote by I the integral in question.
An obvious translation shows that

I =

∫
|D̃u(y)|p−2D̃u(y) : (φ̃(y)⊗ ∇̃θ(y)) dy

−

∫
|D̃u(y)|p−2D̃u(y) : (φ̃(y + h)⊗ ∇̃θ(y + h)) dy.

By appealing to an obvious decomposition of (φ̃(y+h)⊗∇̃θ(y+h))− (φ̃(y)⊗∇̃θ(y)),
it readily follows that

|I | ≤ c|h| ‖∇̃θ‖C1‖∇̃u‖
p−1
(p−1)r(‖φ̃‖r ′ + ‖∇φ̃‖r ′).

Hence

ν1

∣∣∣∣∫ (|D̃u(y)|p−2D̃u(y)− |D̃u(y − h)|p−2D̃u(y − h)) : (φ̃ ⊗ ∇̃θ) dy
∣∣∣∣

≤ Cν1|h| ‖∇u‖
p−1
(p−1)r‖∇φ̃‖r ′ . (8.26)

From (8.23), (8.25) and (8.26) one deduces (8.20). Simpler devices show that (8.21) holds.
Alternatively, we may set p = q = 2 in (8.20). ut

Finally, by an obvious decomposition of the θφ terms, one shows that∣∣∣∣∫ f̃ · ((̃θφ)(y + h)− (̃θφ)(y)) dy

∣∣∣∣ ≤ C|h| ‖f ‖2‖∇φ̃‖2. (8.27)

Alternatively, we could replace the right hand side of (8.27) by C|h| ‖f ‖p′‖∇φ̃‖p.
From (8.9), (8.21), (8.20) and (8.27) the estimate (8.6) follows. Theorem 8.2 is proved.

9. Estimates for the “tangential derivatives” in terms of the data

For convenience we set

U0(u, π) = ‖∇u‖
2
p + ‖∇u‖

2(p−1)
p + ‖π‖2p′ + ‖π‖

p′

p′
. (9.1)

Below ∇∗ denotes the gradient with respect to the variables yj , j = 1, 2. Hence

|∇∗(∇̃u)(y)|
2
=

∑
j=1,2

3∑
i,k=1

(∂j (∇̃u)ik)
2,

|∇∗(D̃u)(y)|2 =
∑
j=1,2

3∑
i,k=1

(∂j (D̃u)ik)2,
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and
|∇∗π̃(y)|

2
=

∑
j=1,2

(∂j π̃)
2.

In this section we prove the following result.

Theorem 9.1. Let x0 ∈ 0 and let a0 > 0 be as in Section 5. Assume that (u, π) ∈
W1,q(Qa0) × L

r(Qa0) is a weak solution of problem (2.1) in Qa0 which satisfies the
boundary condition (1.4) in 0a0 . Then there is a > 0 (which depends only on the C2-
norm of η in the sphere {x′ : |x′| < a0}) such that

∇∗(∇̃u), |D̃u|p−2
∇∗D̃u ∈ L2(Qa) and ∇∗π̃ ∈ L

r(Qa).

Moreover,

‖∇∗(∇̃u)‖
2
2 + ‖ |D̃u|

(p−2)/2
∇
∗D̃u‖22 ≤ C(‖∇u‖

2
p + ‖∇u‖

p
p + ‖π‖

p′

p′
+ ‖f ‖22),

‖∇
∗π̃‖2r ≤ C(1+ ‖∇u‖

p−2
q )(‖f ‖22 + ‖∇u‖

2
p + ‖∇u‖

p
p + ‖π‖

p′

p′
)

+ C(‖∇u‖
2(p−1)
(p−1)r + ‖π‖

2
r ),

(9.2)

where the norms on the left hand sides concern the set Qa/2 and those on the right hand
side concern �a .

Remarks.
• For convenience the reader may assume that the norms ‖∇u‖p, ‖π‖p′ and ‖f ‖2 concern
the whole of �. On the other hand, it is worth noting that in the proofs below the norms
‖∇u‖(p−1)r and ‖π‖r in�a are obtained via their equivalence with the norms ‖∇̃u‖(p−1)r
and ‖π̃‖r in Qa respectively. In fact, we may use these last quantities in the second
inequality of (9.2).
• The constants C depend on the C2-norms of η and θ in Qa . However the C2-norm of η
is bounded from above on 0, hence is independent of the particular point x0. On the other
hand, the particular truncation function θ may be fixed once and for all in our proofs as a
regular function equal to 1 for |x′| ≤ a/2 and with compact support inside Ia . This shows
that the dependence of the constants C on θ is just a dependence on a.
• The smallness of a in our proofs is required just to get a sufficiently small ε0 in (5.8).
This value does not depend on the point x0. Hence a strictly positive lower bound for a
exists, independently of x0.

Proof of Theorem 9.1. From (7.30) and (8.5), and by setting in this last inequality q = p
(hence r = p′), it readily follows that

Ã2
0 + Ã

2
1 ≤ C|h|(‖∇u‖p + ‖∇u‖

p/2
p )(Ã0 + Ã1)

+ Ch2(‖∇u‖2p + ‖∇u‖
p
p + ‖π‖

p′

p′
)+ Ch2

‖f ‖22.

Hence
Ã2

0 + Ã
2
1 ≤ Ch

2U(u, π)+ Ch2
‖f ‖22. (9.3)
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By (8.5), straightforward calculations show that

‖(π̃(y)− π̃(y − h))θ̃‖2r ≤ h
23, (9.4)

where, for convenience, 3 denotes the right hand side of the second inequality of (9.2)
and the constants C may be incorporated in 3.

Let us write (9.3) in a more explicit form, by taking into account the definitions of A0
and A1. One has∫
Qa

∣∣∣∣ ∇̃u(y)− ∇̃u(y − h)h2

∣∣∣∣2θ̃2(y) dy

+

∫
Qa

(|D̃u(y)|p−2
+ |D̃u(y − h)|p−2)

∣∣∣∣ D̃u(y)− D̃u(y − h)h2

∣∣∣∣2θ̃2(y) dy

≤ C(‖∇u‖2p + ‖∇u‖
p
p + ‖π‖

p′

p′
)+ C‖f ‖22. (9.5)

Similarly, from (9.4), [∫
Qa

∣∣∣∣ π̃(y)− π̃(y − h)h2

∣∣∣∣r θ̃2(y) dy

]2/r

≤ 3. (9.6)

By fixing θ to be a regular function equal to 1 in Ia/2 we get estimates like (9.5) and (9.6)
but with the following modifications of the left hand sides: We drop the function θ̃ and
take integrals over Qa/2. This leads to the estimate of ‖D2

∗ũ‖
2
2 in (9.2). In particular, this

last result implies the convergence almost everywhere inQa/2 of the differential quotients
that appear on the left hand side of the modified equation (9.5). By appealing to Fatou’s
lemma, we pass to the limit as h goes to zero and obtain the estimate of the second term
in the first inequality of (9.2). The estimate concerning π follows from the modified (9.6).

10. Normal derivatives

We set
|D2
∗u(x)|

2
= |∇∗(∇u(x))|

2
+ |(∂2

3u3)(x)|
2,

where the derivatives are with respect to the x-variables, and also

ξ(x) = ∂2
3u(x), ξ ′(x) = (ξ1(x), ξ2(x)), M(x) = |Du(x)|.

Due to (5.8), we may replace (on the “right hand sides” of estimates) the derivatives ∂kη
for k = 1, 2 simply by ε0. Recall that ∂3η = 0. In the same line, cε0 and ε2

0 can be
replaced by ε0.

We will use without specific mention the fact that

∂3g̃ = ∂̃3g. (10.1)

Lemma 10.1. One has, a.e. in Qa ,

|̃ξ3| ≤ |∇∗(∇̃u)| + ε0|ξ̃ ′|. (10.2)
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Proof. From ∇ · u = 0 it follows that

ξ̃3 = −∂3(∂̃1u1 + ∂̃2u2). (10.3)

On the other hand, from (5.9),

∂3(∂̃mul) = ∂m∂̃3ul − (∂mη)∂3(∂̃3ul). (10.4)

Hence, for m, l 6= 3,
|∂3∂̃mul | ≤ |∇∗(∇̃u)| + ε0|ξ̃ ′|.

By taking into account (10.3), the assertion follows. ut

Lemma 10.2. One has, a.e. in Qa ,

|D̃2
∗u(y)| ≤ |∇∗(∇̃u)| + ε0|ξ̃ ′|. (10.5)

Proof. From (5.9),
T (∂j∂kul) = ∂k(∂̃jul)− (∂kη)∂3(∂̃jul).

By appealing to the above estimates the conclusion follows easily. Note that if j = k =
l = 3 the result follows from (10.2). ut

Straightforward calculations show that

∂k(|Du|p−2Du) = |Du|p−2D∂ku+ (p − 2)|Du|p−4(Du ·D∂ku)Du. (10.6)

By using (10.6), the j th equation of (2.1) may be written in the form

− ν0

3∑
k=1

∂2
kuj − ν1|Du|p−2

3∑
k=1

(∂2
kuj + ∂

2
jkuk)

− (p − 2)ν1|Du|p−4
3∑

l,m,k=1

DlmDjk(∂2
mkul + ∂

2
lkum)+ ∂jπ = fj , (10.7)

where we have set Dij = (Du)ij . Let us write the first two equations (10.7) as follows:

ν0∂
2
3uj + ν1|Du|p−2∂2

3uj + 2(p − 2)ν1|Du|p−4Dj3

2∑
l=1

Dl3∂2
3ul

= Fj (x)+ ∂jπ − fj , (10.8)

where the Fj (x), j 6= 3, are given by

Fj (x) := − ν0

2∑
k=1

∂2
kuj − ν1|Du|p−2

2∑
k=1

∂2
kuj − ν1|Du|p−2

3∑
k=1

∂2
jkuk

− 2(p − 2)ν1|Du|p−4
(
D33Dj3∂

2
3u3 +

3∑
l,m,k=1

(m,k)6=(3,3)

DlmDjk∂2
mkul

)
. (10.9)
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The measurable functions Fj satisfy

|Fj (x)| ≤ c(ν0 + ν1|M(x)|
p−2)|D2

∗u(x)|

a.e. in �a . Hence, from (10.5) it follows that

|F̃j | ≤ (ν0 + ν1|M̃|
p−2)(|∇∗(∇̃u)| + ε0|ξ̃ ′|). (10.10)

Lemma 10.3. One has, a.e. in Qa ,

|∇̃∗π | ≤ |∇∗π̃ | + ε0(ν0 + ν1|M̃|
p−2)(|∇∗(∇̃u)| + |ξ̃ ′|)+ ε0|f̃ | (10.11)

and
|∂̃3π | ≤ (ν0 + ν1|M̃|

p−2)(|∇∗(∇̃u)| + |ξ̃ ′|)+ |f̃ |. (10.12)

Proof. From (10.7) for j = 3, we get an expression for ∂3π . In particular, it follows that

|∂3π | ≤ c(ν0 + (p − 1)ν1|M(x)|
p−2)|D2

∗u(x)|

+ c(p − 2)ν1|Du(x)|p−2
2∑
l=1

|∂2
3ul | + |f3(x)|. (10.13)

By transforming the inequality (10.13) from the x to the y variables and by appealing to
(10.5) one gets (10.12). Since for j = 1, 2,

|∂̃jπ | ≤ |∂j π̃ | + ε0|∂̃3π |,

the estimate (10.11) holds. ut

Lemma 10.4. One has, a.e. in Qa ,

3∑
l=1

|∂̃2
3ul | ≤ c|∇∗(∇̃u)| +

c

ν0 + ν1|M̃|p−2
(|∇∗π̃ | + |f̃ |). (10.14)

Proof. Consider the system (10.8) in terms of the y variables, i.e., the system

ν0ξ̃j + ν1|M̃|
p−2ξ̃j + 2(p − 2)ν1|M̃|

p−4D̃j3

2∑
l=1

D̃l3ξ̃l = F̃j + ∂̃jπ − f̃j . (10.15)

We show that the 2×2 linear system (10.15) can be solved for the unknowns ξ̃j , j = 1, 2,
for almost all y ∈ Qa/2. The elements ãj l of the matrix Ã of the system are given by

ãj l = (ν0 + ν1|M̃|
p−2)δj l + 2(p − 2)ν1|M̃|

p−4D̃l3D̃j3

for j, l 6= 3. Note that ãj l = ãlj . One easily shows that

n−1∑
j,l=1

ãj lλjλl = (ν0 + ν1|M̃|
p−2)|λ|2 + 2(p − 2)ν1|M̃|

p−4[(D̃u) · λ]2
3.
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Hence the matrix Ã is symmetric and positive definite. Moreover, the above identity
shows that all the eigenvalues are larger than or equal to ν0 + ν1|M̃|

p−2. In particular,

det Ã ≥ (ν0 + ν1|M̃|
p−2)2.

Hence we deduce from (10.15), i.e. from
2∑
l=1

ãj l ξ̃l = F̃j + ∂̃jπ − f̃j , (10.16)

that
2∑

l,j=1

ãj l ξ̃l ξ̃j =

2∑
j=1

(F̃j + ∂̃jπ − f̃j )̃ξj . (10.17)

Consequently,
(ν0 + ν1|M̃|

p−2)|ξ̃ ′| ≤ |F̃j + ∂̃jπ − f̃j |

a.e. in Qa/2. By appealing to (10.10) and (10.11) we show that

(ν0 + ν1|M̃|
p−2)|̃ξ ′| ≤ c(ν0 + ν1|M̃|

p−2)|∇∗(∇̃u)| + c|∇∗π̃ | + c|f̃ |. (10.18)

This estimate together with (10.2) proves (10.14). ut

Corollary 10.1. One has

‖∇u‖2
W 1,r (�a/2)

≤ C(1+ ‖∇u‖p−2
q )(‖f ‖22 + ‖∇u‖

2
p + ‖∇u‖

p
p + ‖π‖

p′

p′
)

+ C(‖∇u‖
2(p−1)
(p−1)r + ‖π‖

2
r ), (10.19)

where the norms on the right hand side concern �a .

Proof. From (10.14) and (9.2) (recall (10.1)) it follows that

‖∇(∇̃u)‖2Lr (Qa/2)
≤ C3, (10.20)

where3 is the right hand side of (9.2). Clearly ‖∇̃u‖2
W 1,r (Qa/2)

satisfies this last estimate.
Hence (10.19) holds. ut

Next we appeal to the following algebraic lemma.

Lemma 10.5. Let 2 < p < 3 and p ≤ q ≤ 6 and set

β0 =
3(p − 2)

6− p
.

Define α by the equation
1
r
=

1− α
p′
+

α

r∗/(p − 1)
(10.21)

and set
β = (p − 1)α.

Then β < β0 < 1 for each q ≥ p.

The proof is left to the reader.
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Lemma 10.6. One has

‖π‖r ≤ ε
−

1
1−β0 ‖π‖

1−α
1−β0
p′
+ cε

1
β0 (ν0‖∇u‖

1
p−1
p +ν1‖Du‖r∗+‖π‖

1
p−1
p′
+‖f ‖

1
p−1
2 ) (10.22)

for each ε > 0, where the norms may be taken in any open regular subset �0 ⊂ �.

Proof. From (10.21) it follows that

‖π‖r ≤ ε
−1
‖π‖1−α

p′
ε‖π‖αr∗

p−1
. (10.23)

By Young’s inequality with exponents 1/(1− β0) and 1/β0 we get

‖π‖r ≤ ε
−

1
1−β0 ‖π‖

1−α
1−β0
p′
+ ε

1
β0 ‖π‖

1
p−1
r∗

p−1
. (10.24)

Finally, by appealing to (4.7) with s = r∗ one proves (10.22). For convenience, we take
into account that r∗ ≤ 6, hence r∗/(p − 1) ≤ p. ut

Lemma 10.7. Let 2 ≤ p < 3 be fixed and define r and r∗ as above, where p ≤ q ≤ 6.
Set

α0 = 1−
2

15
(3− p), γ0 =

1+ α0

2
. (10.25)

Then, for an arbitrary g,

‖g‖
p−1
(p−1)r ≤ (ε

−1(1+ ‖g‖p−1
p )(γ0/α0)

′

+ (2ε)γ0/α0(1+ ‖g‖γ0
r∗ ). (10.26)

Proof. Define α by
1

(p − 1)r
=

1− α
p
+
α

r∗
.

Then

(p − 1)α = 1−
2
( 1
p
−

1
3

)
1
p
−
(p−2

2q +
1
6

) .
The maximum of the above quantity is attained for q = 6 (we may get better exponents
by assuming that q ≤ q∞). By setting q = 6 one easily shows that (p − 1)α ≤ α0.

From the definition of α and interpolation it follows that

‖g‖
p−1
(p−1)r ≤ ‖g‖

(p−1)(1−α)
p ‖g‖

(p−1)α
r∗ .

In particular,

‖g‖
p−1
(p−1)r ≤ ε

−1(1+ ‖g‖p−1
p ) · ε(1+ ‖g‖α0

r∗ ).

The conclusion follows by appealing to Young’s inequality with exponents (γ0/β0)
′ and

γ0/β0 . ut
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For convenience we denote in the following by

P = P(‖∇u‖p, ‖π‖p′)

very simple expressions (that can be reduced, for instance, to low order polynomials) that
depend only on the two quantities indicated above. Explicit expressions follow immedi-
ately from our calculations.

From (10.22) we get, with an obvious simplified notation,

‖π‖r ≤ C(ε)(P + ‖f ‖)+ cε
1/β0‖∇u‖r∗ , (10.27)

where the norms of π and ∇u may concern any �0 as above.
By (10.26) with g = ∇u, and by (10.27), we obtain the following estimate:

Lemma 10.8. One has

‖∇u‖
p−1
(p−1)r + ‖π‖r ≤ C(ε)(P + ‖f ‖2)+ c(ε

γ0/α0 + ε1/β0)(1+ ‖∇u‖r∗), (10.28)

where the norms could be taken in any �0 as above.

By taking into account the continuous immersionW 1,r
⊂ Lr , and by appealing to (10.19)

and (10.27), we get the following result:

Proposition 10.1. One has

‖∇u‖W 1,r (�a/2)
+ ‖π‖Lr (�(a)/2) ≤ C(ε)(1+ ‖∇u‖

(p−2)/2
q )(P + ‖f ‖2)

+ c(εγ0/α0 + ε1/β0)(1+ ‖∇u‖W 1,r (�a)
). (10.29)

In particular

‖u‖W 2,r (�) + ‖π‖Lr (�) ≤ N [C(ε)(1+ ‖∇u‖(p−2)/2
q )(P + ‖f ‖2)

+ c(εγ0/α0 + ε1/β0)(1+ ‖∇u‖W 1,r (�))], (10.30)

where N is the number of sets of type �a/2 plus the number of spheres contained in the
interior of � sufficient to cover �. It is worth noting that W 2,2 interior regularity for u is
trivial. Finally, by fixing a sufficiently small value of ε we prove that (2.5) holds.

Note that by the second inequality of (9.2) and (10.28) it readily follows that

‖∇
∗π̃‖Lr (Qa/2) ≤ C(1+ ‖∇u‖

(p−2)/2
q )(P + ‖f ‖2). (10.31)

Finally, from (10.12) and (10.18) one gets

|∂̃3π | ≤ c(ν0 + ν1|M̃|
p−2)|∇∗(∇̃u)| + c|∇∗π̃ | + c|f̃ | (10.32)

a.e. in Qa . Set

p =
2q

2(p − 2)+ q
. (10.33)
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From Hölder’s inequality

‖ |M̃|p−2(∇∗(∇̃u))‖p ≤ ‖M̃‖
p−2
q ‖∇∗(∇̃u))‖2.

It readily follows that

‖∂̃3π‖p ≤ c(1+ ‖M̃‖
p−2
q )‖∇∗(∇̃u))‖2 + c‖∇∗π̃‖p + c‖f̃ ‖2, (10.34)

where all the norms are taken in Qa/2. From (10.34) it follows that ‖∇π̃‖Lp(Qa/2) is
bounded by the right hand side of (10.34) (replace c by c + 1 and recall (10.1)). By
appealing to the first estimate in (9.2) one shows that the right hand side of (10.34) is
bounded by the right hand side of (10.35) below. Hence

‖∇π‖Lp(�a/2) ≤ C(1+ ‖∇u‖
p−2
q )(P + ‖f ‖2)+ ‖∇∗π̃‖p, (10.35)

where a simple expression for the term P = P(‖π‖p′ , ‖∇u‖p) is easily obtained.
By appealing to (10.31) and by taking into account the interior regularity of the weak

solutions one proves that (2.6) holds. Thus Theorem 2.1 is completely proved. Moreover,
Theorem 2.2 follows by setting q = p in Theorem 2.1.

Remark. It is quite easy to show that ∇π ∈ Lp1
loc(�) where p1 = 12/(p + 4). Note that

p1 > p (actually stronger results hold).

11. Proof of Theorem 2.3

Since we know that weak solutions belong to W 1,p, the above results are effective if we
set q = p. In this particular case r = p′ and by (10.19) and a Sobolev immersion theorem
one gets u ∈ W 1,(p′)∗ . If 0 < p < 3 it follows that (p′)∗ > p. hence the above results
also hold for q = (p′)∗. This same argument, used again and again, leads to a bootstrap
argument.

We advise the reader that (as usual in the framework of Sobolev embedding theorems
and similar theories) it is preferable to work with the inverse of the integrability expo-
nents, rather than with the exponents themselves. Below, ‖ ‖k,s denotes the norm in the
Sobolev space W k,s(�).

We define r = r(q) by (8.4), and the Sobolev embedding exponent r∗ by (8.3). Hence
r∗ = r∗(q) is defined by

r∗(q) =
6q

3(p − 2)+ q
(11.1)

for p ≤ q ≤ 6. In the following r = r(q) and r∗ = r∗(q).
Note that r∗(p) ≥ p for p ≤ 3 (r∗(3) = 3), and q 7→ r∗(q) is a strictly increasing

function for each fixed p > 2. In particular, for p < 3,

r∗(q) > p if q > p and p ≤ 3.

Theorem 2.1 shows that if u ∈ W 1,q then u ∈ W 2,r . Moreover, by (2.5),

‖u‖2,r ≤ C(1+ ‖∇u‖
(p−2)/2
q )(P + ‖f ‖2).
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Hence, by a Sobolev embedding theorem, u ∈ W 1,r∗ and

‖u‖1,r∗ ≤ c0‖u‖2,r ≤ C(1+ ‖∇u‖
(p−2)/2
q )(P + ‖f ‖2).

Since 1 + 2/(p − 2) ≤ r ≤ 2, the distinct values of the embedding constants c0 are
bounded from above by a constant independent of r .

This shows the following result.

Lemma 11.1. If a solution u belongs to W 1,q then it belongs to W 1,r∗ , where r∗(q) is
given by (11.1), and moreover

‖u‖1,r∗ ≤ C(1+ ‖∇u‖
(p−2)/2
q )(P + ‖f ‖2). (11.2)

Since p ≥ 2 the function r∗(q) is increasing and bounded from above (for instance, by 6).
Next we define the increasing sequence

q1 = p, qn+1 = r
∗(qn). (11.3)

Clearly
q∞ = 3(4− p) (11.4)

is a fixed point of r∗, r∗(q∞) = q∞, and moreover

lim
n→∞

qn = q∞. (11.5)

From (11.2) it follows that

‖u‖1,qn+1 ≤ c(1+ ‖u‖
(p−2)/2
1,qn )(P + ‖f ‖). (11.6)

Next we appeal to an induction argument. Note that for n = 1 one has

‖u‖1,q1 = ‖u‖1,p.

If we are able to show that the quantities an = ‖u‖1,qn , at least for large values of n,
are uniformly bounded by a finite number L, then well known results from real analysis,
together with (11.5), yield

‖u‖1,q∞ ≤ L. (11.7)

For convenience we write (11.6) in the form

‖u‖1,qn+1 ≤ b + b‖u‖
α
1,qn , (11.8)

where b = c(P + ‖f ‖) and

α =
p − 2

2
.

Note that 0 ≤ α < 1 provided that 2 ≤ p < 4. Denote by λ the (unique) solution
of the equation λ = b + bλα . By (11.6) one has an+1 ≤ b + baαn . Set b1 = a1 and
bn+1 = b + bbαn . Clearly an ≤ bn for each n. It is easily seen that if b1 < λ then the
sequence bn is strictly increasing and converges to the fixed point λ. If b1 > λ then the
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sequence decreases to the value λ. Hence the sequence bn converges to λ, so an < 2λ for
large values of n. On the other hand, one easily shows that

λ ≤ 2b + (2b)1/(1−α).

Hence, under the hypothesis of Theorem 2.3, one has

‖u‖1,q∞ ≤ c(P + ‖f ‖)+ c(P + ‖f ‖)
2/(4−p). (11.9)

Theorem 2.3 now follows by applying once more Theorem 2.1, this time with q = q∞
given by (11.4). In this case the equation (8.4) shows that r = r(q∞) = l, with l given by
(2.12). Hence, from (2.5), it follows that

‖u‖W 2,r (�) ≤ P(1+ ‖f ‖
2/(4−p)). (11.10)

Finally, from (2.6) written with q = q∞, together with (11.9), one obtains (2.13).

12. Proof of Theorem 2.4

We show here the a priori estimate that leads to the desired results. A complete proof
follows by using standard devices.

Since ∫
�

(u · ∇)u · u dx = 0,

it readily follows that all the estimates for weak solutions, stated in Section 2, hold here.
On the other hand, by Hölder’s inequality,

‖(u · ∇)u‖ ≤ ‖u‖p∗‖∇u‖s

where s = 6p/(5p − 6). By well known embedding theorems it follows that

‖(u · ∇)u‖ ≤ ‖u‖W 1,p‖u‖W 3/2,p′ .

By appealing, in particular, to the compact embedding of W 2,p′ into W 3/2,p′ one proves
that to each positive real ε there corresponds a positive Cε such that

‖(u · ∇)u‖2 ≤ ‖u‖W 1,p (Cε‖u‖W 1,p + ε‖u‖W 2,p′ ). (12.1)

Next we treat the term (u · ∇)u as a “right hand side”, by adding it to the external forces
f in the estimate (2.9). This gives

‖u‖2,p′ ≤ P(1+ ‖f ‖)+ CεP + εC0(1+ ‖u‖
p/2
1,p )‖u‖2,p′ , (12.2)

where the quantities P = P(‖∇u‖p, ‖π‖p′) may change from equation to equation and
C0 denotes a particular constant C. By fixing a sufficiently small value of ε we easily
show that

‖u‖2,p′ ≤ P(1+ ‖f ‖)
for some P . From (12.1) it follows that

‖(u · ∇)u‖ ≤ P(1+ ‖f ‖).

Consequently, if in the estimates stated in Theorems 2.1–2.3 we replace f by f +(u ·∇)u
this simply leads to replacing ‖f ‖ by P ‖f ‖.
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13. The evolution Navier–Stokes equation

It is well known, and easily shown, that under suitable conditions one has ∂tu ∈
L2(0, T ;L2(�)). See, for instance, Theorem 7.2 in [17] (for the reader’s convenience,
we give a straightforward proof below). Since our regularity results for the second order
derivatives |∇2u| of solutions u to the stationary problem (2.1) hold if f ∈ L2(�), corre-
sponding regularity results for solutions to the evolution problem follow immediately by
considering ∂tu as a “right hand side”.

In what follows we merely prove the a priori estimates that lead to Theorems 2.5 and
2.6. Complete proofs are done by applying the estimates to the approximate solutions
obtained by the Faedo–Galerkin method. By now this is a well known device. See, for
instance, [21] and [26, Section 2].

Multiplication by u and integration in � followed by suitable integrations by parts
show that

1
2
d

dt
‖u(t)‖2 +

ν0

2
‖Du‖2 +

ν1

2
‖Du‖pp =

∫
�

f u dx. (13.1)

By integration of (13.1) with respect to time, one gets the following result:

Lemma 13.1. Let u be a weak solution to problem (2.16) under the boundary condition
(1.4) plus x′-periodicity. Then u satisfies the estimate

‖u(t)‖2
L∞(0,T ;L2)

+ ν0‖u‖
2
L2(0,T ;H 1)

+ ν1‖u‖
p

Lp(0,T ;W 1,p)

≤ c

(
‖u(0)‖2 +

1
ν0
‖f ‖2

L2(0,T ;H−1)

)
. (13.2)

Next we prove a stronger estimate “in time” (see (13.4)). A complete proof of this estimate
is done by passing through the solutions of a suitable family of approximate problems.
This can be done by appealing to a Faedo-Galerkin procedure as, for instance, in Theorem
2.2 of [26].

We define M by the equation

M2
= 2 exp

{
c

ν1

∫ T

0
‖Du‖4−pp dt

}
·

{
ν0‖Du0‖

2
+ ν1‖Du0‖

p
p + c

∫ T

0
‖f (t)‖2 dt

}
. (13.3)

Note that, by (13.2), the first integral on the right hand side of (13.3) can be estimated in
terms of the data since 4− p ≤ p.

One has the following result:

Lemma 13.2. Let u be as in Lemma 13.1 and assume that u0 ∈ Vp, (2.17) holds and
f ∈ L2(0, T ;L2). Then

‖∂tu‖
2
L2(0,T ;L2)

+ ν0‖∇u‖
2
L∞(0,T ;L2)

+ ν1‖∇u‖
p

L∞(0,T ;Lp) ≤ cM
2. (13.4)

Proof. By suitable integrations by parts, it follows that

−

∫
�

[∇·(ν0∇u+ν1|Du|p−2Du)+∇π ]·
∂u

∂t
dx =

ν0

2
d

dt
‖Du‖2+

ν1

2p
d

dt
‖Du‖pp . (13.5)
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On the other hand, ∫
�

|(u · ∇)u|2 dx ≤ c‖u‖22p/(p−2)‖∇u‖
2
p. (13.6)

Furthermore,
‖u‖2p/(p−2) ≤ c‖u‖p∗ (13.7)

provided that (2.17) holds.

Remark. The assumption (2.17) is superfluous if we drop the term (u·∇)u from equation
(1.1).

By appealing to a Sobolev embedding theorem together with (4.1), one shows that

‖(u · ∇)u‖ ≤ c‖Du‖2p. (13.8)

Hence, from (2.16) and (13.5), one gets

‖∂tu‖
2
+ ν0

d

dt
‖∇u‖2 + ν1

d

dt
‖Du‖pp ≤ c(‖f ‖2 + ‖Du‖

4−p
p ‖Du‖pp ). (13.9)

From (13.9) straightforward, well known manipulations show that

‖∂tu‖
2
L2(0,T ;L2)

+ ν0‖Du‖2L∞(0,T ;L2)
+ ν1‖Du‖pL∞(0,T ;Lp) ≤M

2. (13.10)

Finally, by (4.1), (13.4) follows for some constants c. ut

In particular, the following result holds.

Corollary 13.1. The constants of type P (see (2.2)) are now time depending uniformly
bounded functions P = P(t) in (0, T ).

Proof of Theorem 2.5. One has, almost everywhere in ]0, T [,

−ν01u− ν1∇ · (|Du|p−2Du)+∇π = f (x)− (u · ∇)u− ∂tu.

Hence, by taking into account (2.9), one shows that for each t ∈ ]0, T [,

‖u‖2,p′ ≤ P(t)(1+ ‖f ‖ + ‖(u · ∇)u‖ + ‖∂tu‖). (13.11)

Consequently, by (13.4) and (13.8), straightforward calculations show that the norm
‖u‖

L2(0,T ;W 2,p′ ) is bounded.
Similarly, by appealing to (2.10), one proves that ‖∇π‖L2(0,T ;Lp0 ) is bounded.

Proof of Theorem 2.6. Now p′ is replaced by l and we combine (13.4) with (2.11) to get

‖u‖2,l ≤ P(t)(1+ ‖f ‖2/(4−p) + ‖Du‖4/(4−p) + ‖∂tu‖2/(4−p)), (13.12)

a.e. in ]0, T [. Hence, by taking the (4 − p)th power of both sides of (13.12) and by
integrating in �, one shows that ‖u‖L4−p(0,T ;W 2,l) is bounded. By appealing to (2.13) one
proves that ‖∇π‖L2(4−p)/p(0,T ;Lm) is bounded.
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14. Appendix 1: The Stokes principle

Let us briefly illustrate this principle, in a postulational form, by borrowing from Serrin’s
fundamental work [30, p. 231].

1. T is a continuous function of the deformation tensorD, and is independent of all other
kinematic quantities.

2. T does not depend explicitly on the position x (spatial homogeneity).
3. There is no preferred direction in space (isotropy).
4. When D = 0, T reduces to −πI .

For further comments and references, see Serrin’s work above.

15. Appendix 2

This appendix is connected with the proof of Theorem 8.1, to which the reader is referred.
We recall that Nečas’ result (see [24]) states that if g ∈ W−1,r(Q) and ∇g ∈ W−1,r(Q)

then g ∈ Lr(Q), and moreover

‖g‖r ≤ c(‖g‖−1,r + ‖∇g‖−1,r). (15.1)

We claim that if g is a distribution in Q and ∇g ∈ W−1,r(Q) then g ∈ Lr(Q), and
moreover

‖g‖Lr# ≤ ‖∇g‖−1,r . (15.2)

However, for the reader’s convenience, we show here that (π̃(y) − π̃(y − h))θ̃ ∈

W−1,r(Qa), and that the corresponding norm is bounded by the right hand side of (8.8).
Straightforward computations show that∣∣∣∣∫ (π̃(y)− π̃(y − h))θ̃ · φ̃ dy∣∣∣∣

≤ ‖θ̃‖C0‖π̃‖p′‖φ̃(y + h)− φ̃(y)‖p + |h| ‖∇ θ̃‖C0‖π̃‖p′‖φ̃‖p

≤ |h| ‖θ̃‖C1‖π̃‖p′(‖φ̃‖p + ‖∇φ̃‖p) (15.3)

for each scalar field φ̃ ∈ C2
0(Qa). Hence,

‖(π̃(y)− π̃(y − h))θ̃‖−1,p′ ≤ |h| ‖θ̃‖C1‖π̃‖p′ . (15.4)

Since p′ ≤ r , it follows from (8.7) that ‖∇[(π̃(y) − π̃(y − h))θ̃ ]‖−1,p′ is bounded by
the right hand side of (8.7). Consequently, by the above result of Nečas (applied with
exponent p′) it follows that ‖(π̃(y) − π̃(y − h))θ̃‖p′ is bounded by a constant times the
right hand side of (8.7). Since Lp

′

⊂ W−1,r , one shows that ‖(π̃(y) − π̃(y − h))θ̃‖−1,r
is bounded by a constant times the right hand side of (8.7).
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[23] Málek, J., Růžička, M., Shelukhin, V. V.: Herschel–Bulkley fluids: Existence and regularity
of steady flows. Math. Models Methods Appl. Sci. 15, 1845–1861 (2005) Zbl 1098.76008
MR 2189915
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Zbl 0147.07801

[25] Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 116–
162 (1959) Zbl 0088.07601 MR 0109940

[26] Parés, C.: Existence, uniqueness and regularity of solutions of the equations of a turbu-
lence model for incompressible fluids. Appl. Anal. 43, 245–296 (1992) Zbl 0739.35075
MR 1284321

[27] Rajagopal, K. R.: Mechanics of non-Newtonian fluids. In: Recent Developments in Theoret-
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