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Abstract. In this paper we consider a class of stationary Navier–Stokes equations with shear
dependent viscosity, in the shear thinning case p < 2, under a non-slip boundary condition. We
are interested in global (i.e., up to the boundary) regularity results, in dimension n = 3, for the
second order derivatives of the velocity and the first order derivatives of the pressure. As far as
we know, there are no previous global regularity results for the second order derivatives of the
solution to the above boundary value problem.

We consider a cubic domain and impose the non-slip boundary condition only on two opposite
faces. On the other faces we assume periodicity, as a device to avoid effective boundary conditions.
This choice is made so that we work in a bounded domain Ω and simultaneously with a flat
boundary. The extension to non-flat boundaries is done in the forthcoming paper [7], by following
ideas introduced by the author, for the case p > 2, in reference [5]. The results also hold in the
presence of the classical convective term, provided that p is sufficiently close to the value 2.
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1. Introduction and results

In the sequel u and π denote, respectively, the velocity and the pressure of a
viscous incompressible fluid. We are mainly interested in studying and improving
regularity results for solutions to the Navier–Stokes equations for flows with shear
dependent viscosity, namely

{
−∇ · T (u, π) + (u · ∇)u = f,

∇ · u = 0,
(1.1)

under suitable boundary conditions, where T denotes the Cauchy stress tensor

T = −π I + νT (u)D u (1.2)

and D u denotes the symmetric gradient, i.e.,

D u =
1

2
(∇u + ∇uT ).
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In order to fix ideas we consider the specific case

νT (u) = (µ + |D u|)p−2 , (1.3)

where µ > 0 is a given constant, under the non-slip boundary condition

u|Γ = 0. (1.4)

It is worth noting that vorticity is essentially created at the boundary of the phys-
ical domain, and that this boundary is nearly always present in realistic problems.
The cases p > 2 and p < 2 capture shear thickening and shear thinning phenom-
ena, respectively. Concerning Non-Newtonian fluids, we refer the reader to [21]
and [28]. In the following we consider the case 1 < p ≤ 2. For the case p > 2
regularity results up to the boundary are proved by us in references [3] and [4] for
flat boundaries. For generic regular bounded open sets see [5] and [24]. For an
improvement of the results in [4] see [6].

Below, we concentrate on the system (1.1) without the convective term; hence,
on the system {

−∇ ·
(
(µ + |D u|)p−2 D u

)
+ ∇π = f,

∇ · u = 0.
(1.5)

Note that (1.5) satisfies the Stokes Principle, see [33]. For an illuminating expla-
nation of this principle, we refer the reader to the classical work [32], p. 231, where
the Stokes Principle is stated in a postulational form.

It is not difficult to show that the regularity results stated in Theorem 1.1 below
still hold in the presence of the convective term (u · ∇)u provided that p > p0, for
a value p0 sufficiently close to the value 2. See Theorem 1.5 below and Remark 1.1
in reference [4].

In order to work with a flat boundary Γ, we are led to consider a cubic domain
Ω and to impose the boundary condition (1.4) only on two of the opposite faces.
On the other pair of faces we assume periodicity conditions (in this way we avoid
artificial singularities due to the corner points). Alternatively, we could work in
the half-space. However, in this case, the lack of the inclusion Lq ⊂ Lp, if q > p,
leads to secondary technicalities concerning the functional framework, as shown
in reference [3].

The same cubic domain and boundary condition are considered, for the case
p > 2, in reference [4]. As in this last reference, the above simplification enables us
to emphasize here the very basic ideas of our method. We remark that there is a
strong parallel between the present paper (case p < 2) and [4] (case p > 2). On the
other hand, in reference [5] we have extended the results proved in [4] to arbitrary
regular open sets. In a similar way, the results proved below can be extended to
arbitrary regular open sets Ω ⊂ R

3, as shown in the forthcoming paper [7].

When p 6= 2, there is an unusual increment in difficulty in passing from interior
to boundary regularity for solutions to the system (1.5). A reflection of this fact is
the lower regularity obtained for the second order derivatives of the velocity (and
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for the first order derivatives of the pressure) in the normal direction in compar-
ison to the other directions. One of the main reasons is that in proving interior
regularity by appealing to the classical differential quotients method, translations
are admissible in all the n independent directions. This allows suitable estimates
for ∇D u. Note that here the full gradient ∇ is obtained thanks to the possibility
of appealing to translations in all the directions. Furthermore, it is easily shown
that

c0 |∇
2 u| ≤ |∇D u| ≤ c1 |∇

2 u|. (1.6)

These two facts together lead to a not particularly distinct situation if we replace
Du by ∇u in equation (1.5). However, in proving regularity up to the boundary,
the two cases are completely distinct.

Concerning local regularity, or existence and local regularity for boundary value
problems (including the space-periodic case) under the assumptions p < 2 and
n ≥ 3, we refer the reader to [1], [2], [?] [11], [12], [15], [17], [18], [20], [25], [29] and
references therein. References [30] and [31] concern the study of electrorheological
fluids, and reference [16] an Euler scheme for Newtonian fluids. It is worth noting
that for p < 2, the presence of a −∆ u term on the left-hand side of (1.5) leads
to additional regularity results. It is not difficult to show that u ∈ W 2,2(Ω).
Moreover, under extremely general assumptions, see [9], we have shown that u ∈
W 1,q(Ω), for each finite q.

In the sequel we prove the following results. For notation see the next section,
in particular (2.12) and (2.13). The constants c are independent of µ but may
depend on p.

Theorem 1.1. Assume that f ∈ Lp′

(Ω) and let u ∈ Vp be a solution to the problem
(1.5), (1.4), where µ > 0 and 1 < p < 2. Then D2

∗ u and ∇∗ π belong to Lp(Ω).
Moreover,

‖D2
∗ u‖p ≤ c ‖f‖

1
p−1

p′ + c ‖µ + |Du| ‖p (1.7)

and

‖∇∗ π‖p ≤ c µp−2
(
‖f‖

1
p−1

p′ + ‖µ + |Du| ‖p

)
+ c ‖f‖p . (1.8)

One has the following (conditional) result.

Theorem 1.2.Assume, in addition to the hypothesis of Theorem 1.1, that p > 3
2

and that

D u ∈ Lq(Ω), (1.9)

for some q satisfying

p ≤ q ≤ 6.

Then

u ∈ W 2, r(Ω), ∇π ∈ Lr(Ω), (1.10)
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and
‖u‖2, r + ‖∇π‖r ≤ c(µ)B

(
‖µ + |D u| ‖2−p

q + 1
)
, (1.11)

where
r =

p q

p(2 − p) + q
(1.12)

and

B = ‖µ + |Du|‖p + ‖f‖p + ‖f‖
1

p−1

p′ . (1.13)

Since (1.9) holds for q = p, one has the following result.

Theorem 1.3.Assume, in addition to the hypotheses in Theorem 1.1, that p > 3
2 .

Then
u ∈ W 2, p

3−p (Ω), ∇π ∈ L
p

3−p (Ω), (1.14)

and

‖u‖2, p

3−p
+ ‖∇π‖ p

3−p
≤ C(µ)

(
1 + ‖f‖

3−p

p−1

p′

)
. (1.15)

Theorem 1.2 allows a bootstrap argument, similar to that in references [3], [4],
that leads to the following result.

Theorem 1.4. Under the assumptions of Theorem 1.1, and p > 3
2 , u belongs to

W 1, s(Ω), moreover

‖u‖1, s ≤ c(µ)
(
B + B

1
p−1

)
, (1.16)

where s is given by

s =
3 p(p− 1)

3 − p
. (1.17)

Furthermore,

u ∈ W 2, l(Ω), ∇π ∈ Ll(Ω), (1.18)

and
‖u‖2, l + ‖∇π‖l ≤ C(µ)

(
B + B

1
p−1

)
, (1.19)

where

l =
3p(p − 1)

p2 − 2 p + 3
. (1.20)

Note that l = 2 if p = 2 (as expected), and that s > p. Moreover, s = l∗.
Also note that

‖u‖2, l + ‖∇π‖l ≤ C(p, µ, ‖∇u‖p)(1 + ‖f‖p′)
1

p−1 . (1.21)

The above results may be easily applied to consider the Navier–Stokes case. See,
for instance, the method followed in references [3] and [4]. This leads to the
following result.
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Theorem 1.5. Modify equation (1.5) by adding to the left-hand side the convective
term (u · ∇)u and let u be a solution to this modified equation under the boundary
condition (1.4). There is a value p0 < 2 such that the above regularity results
hold (with modified estimates for the corresponding norms), provided that p > p0.
Actually

p0 =
15

8
.

For a discussion on this point see the last section.

Added in proof. In the meantime, by following the main lines established here, the
results were improved in the two subsequent papers [10] and [8]. Actually, two
new ideas allow interesting improvements. In reference [10] the author improves
the results by appealing to anisotropic embedding theorems of Sobolev type, a
fruitful idea in the general context of regularity up to the boundary for p-fluid
flows. Further, in reference [8], we use this last idea together with a new device
that overcomes the need of results like that stated in the Lemma 3.2 below, typical
in treating the shear thinning case, see [17]. This leads to an improvement of the
results established in references [10] and [8]. Furthermore, in reference [9] (as
above, see equation (1.21)) we obtain very accurate estimates in terms of f .

2. Notation, weak solutions and some auxiliary results

In the sequel Ω denotes the 3-dimensional cube Ω = ( ]0, 1[ )3.
Further, we set

Γ− = {x : |x1|, |x2| < 1 , x3 = 0 } , Γ+ = {x : |x1|, |x2| < 1 , x3 = 1 } .

The Dirichlet boundary condition will be imposed only on

Γ = Γ− ∪ Γ+.

The problem will be assumed periodic, with period equal to 1, in both the x1

and the x2 directions. In the following the significant boundary is Γ. Actually
Γ = ∂ Ω provided that Ω and Γ are indefinitely reflected in the x1 and x2 directions.
Sometimes we use the term “boundary” to denote Γ. For convenience we set

x′ = (x1, x2).

By x′-periodic we mean periodic of period 1 in both x1 and x2. Further, we set

∂i f = ∂ f
∂ xi

, ∂2
i j f = ∂2 f

∂ xi ∂ xj
.

We use the same notation for functional spaces and norms for both scalar and
vector fields. The symbol ‖ ·‖p denotes the canonical norm in Lp(Ω) and ‖ ·‖, that
in L2(Ω). W 1,p(Ω) denotes the usual Sobolev space.

We set

Vp =
{
v ∈ W 1,p(Ω) : (∇ · v)|Ω = 0 ; v|Γ = 0 ; v is x′ − periodic

}
. (2.1)

Note that, by appealing to inequalities of Korn’s type, one gets the following result.



Vol. 11 (2009) Navier–Stokes Equations with Shear Thinning Viscosity 263

Lemma 2.1. There is a positive constant c such that the estimate

‖∇v‖p + ‖v‖p ≤ c ‖Dv‖p (2.2)

holds for each v ∈ Vp. Hence the two quantities above are equivalent norms in Vp.

For the proof see, for instance, [27], Proposition 1.1.
Lemma 2.1 is one of the cornerstones of our proof, in the absence of (1.6).

Definition 2.1. Assume that
f ∈ (Vp)

′. (2.3)

We say that u is a weak solution to problem (1.5), (1.4) if u ∈ Vp satisfies

1

2

∫

Ω

νT (u)Du · Dv dx =

∫

Ω

f · v dx (2.4)

for all v ∈ Vp .

The typical proofs of the existence of weak solutions appeal to techniques com-
ing from the minimization of convex functionals, see [20] and [2], or from the
related theory of monotone operators. From this last point of view, basic ideas are
described in [23]. See Theorems 2.1 and 2.2, Chap. 2, Sect. 2, in this last reference.
For a more general situation we also refer to the clear treatment in references [18]
and [29].

By replacing v by u in equation (2.4) one gets

1

2

∫

Ω

(µ + |Du|)p−2 |Du|2 dx = 〈f, u〉 , (2.5)

where the symbols 〈·, ·〉 denote a duality pairing. It readily follows that

2p−3

∫

|D u|≥µ

|Du|p dx ≤ 〈f, u〉 ≤ ‖f‖−1,p′ ‖u‖1, p , (2.6)

where, in general, we denote by q′ the dual exponent of q, namely

q′ =
q

q − 1
. (2.7)

Consequently,
‖Du‖p

p ≤ 2p−3 ‖f‖−1,p′ ‖u‖1, p + |Ω|µp.

Finally, by appealing to (2.2), it follows that

‖∇u‖p−1
p ≤ c(‖f‖−1,p′ + µp−1). (2.8)

By restriction of (2.4) to divergence-free test-functions v with compact support
in Ω, and by De Rham’s theorem, there follows the existence of a distribution π
(determined up to a constant) such that

∇π = −∇ ·
[
(µ + |Du|)p−2 Du

]
+ f. (2.9)

Equation (2.9) shows that the first equation (1.5) holds in the distributions sense.
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The following result is well known.

Lemma 2.2. If a distribution g is such that ∇ g ∈ W−1,α(Ω) then g ∈ Lα(Ω) and

‖g‖Lα
#
≤ c ‖∇ g‖W−1,α , (2.10)

where Lα
# = Lα/R.

From (2.9) and (2.8), together with the above lemma, it readily follows that

‖π‖
Lp′

#

≤ c
(
‖f‖−1,p′ + µp−1

)
. (2.11)

We end this section by introducing some more notation.
We denote by D2 u the set of all the second derivatives of u. The meaning of

expressions like ‖D2 u‖ is clear. The symbol D2
∗ u denotes any of the second order

derivatives ∂2
i k uj except for the derivatives ∂2

3 3 uj , if j = 1 or j = 2. Moreover,

|D2
∗ u|2 := |∂2

3 3 u3|
2 +

3∑

i,j,k=1
(i,k)6=(3,3)

|∂2
i k uj|

2 . (2.12)

Similarly, ∇∗ may denote any first order partial derivative, except for ∂ /∂ x3. In
particular,

|∇∗ π|2 :=

2∑

j=1

|∂j π|2 . (2.13)

Some integrability exponents play a crucial role in our proofs and are, for the
reader’s convenience, introduced here.

In the sequel p denotes an exponent that lies in the interval

1 < p ≤ 2 . (2.14)

In general, for 1 < r < 3 we define the Sobolev embedding exponent r∗ by the
equation

1

r∗
=

1

r
−

1

3
. (2.15)

We denote by c, c0, c1, etc. generic positive constants that may change from
equation to equation. Constants of this type are independent of the positive pa-
rameter µ (assumed bounded from above).

3. Regularity of the tangential derivatives

In this section we prove the estimates (1.7) and (1.8).
In the sequel, in order to avoid arguments already developed in similar contexts
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(see, for instance, [3] or [4]) we replace the use of the translation method in the
tangential directions by differentiation in these same directions.

In the sequel s = 1, 2. Hence xs denotes the two tangential directions to Γ.
Consequently translations in these two directions are admissible in the usual sense.

In order to fix ideas we state some well known results in the context of the
particular case considered here. We define the tensor S as

S = (µ + |D|)p−2 D , (3.1)

where D is an arbitrary tensor. One has

∂Si j

∂Dk l
Ci j Ck l ≥ (p − 1)(µ + |D|)p−2 |C|2 , (3.2)

for all tensors C. Summation on repeated indexes is assumed except for the index
s below.

Define, for s = 1, 2,

Js(u) =:

∫

Ω

∇ ·
[
(µ + |D|)p−2 D

]
· ∂2

s s u dx. (3.3)

For convenience, here and in the sequel, we set

D = D u .

Remark. Under periodic boundary conditions there are no distinction between
the coordinates xs, s = 1, 2, 3. Hence, in the right-hand side of (3.3), the single
tangential derivatives ∂2

s su, s = 1, 2, may be simply replaced by ∆u. See [17].

By two integrations by parts, and by taking into account that Du is symmetric
one shows, after some manipulations, that

Js(u) =

∫

Ω

∂s

[
(µ + |D|)p−2 D

]
: ∂s D dx. (3.4)

Consequently,

Js(u) =

∫

Ω

∂

∂Dk l

[
(µ + |D|)p−2 Di j

]
(∂s Dk l)(∂s Di j)dx, (3.5)

where derivatives with respect to Dk l are evaluated at the point D = D. Hence,
by (3.2), the following result follows.

Lemma 3.1. Let be s = 1, 2. Then

Js(u) ≥ (p − 1) Is(u), (3.6)

where

Is(u) =

∫

Ω

(µ + |D|)p−2 |∂s D u|2 dx. (3.7)
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Next multiply both sides of the first equation (1.5) by ∂2
s s u and integrate over

Ω. By appealing to (3.3) and(3.6), it readily follows that

Is(u) ≤
1

p − 1
‖f‖p′ ‖∂2

s s u ‖p , (3.8)

for s = 1, 2. It is worth noting that the single derivatives that appear in the
expression ∂s D u can not be point wisely estimated by that in ∂s D u. This was
the obstacle which requires (see references [3] and [4]) the addition of a −∆ u
term to the left-hand side of the main equation (1.5), in order to estimate all the
D∗ u derivatives; recall the impossibility of appealing to (1.6), when considering
boundary value problems. A new, simple but crucial idea, is realizing that (2.2)
applies with v = ∂s u, if s = 1, 2. This device yields the following estimate:

‖∂s ∇u‖p + ‖∂su‖p ≤ c ‖∂s D u‖p ≤ c ‖∇∗D u‖p . (3.9)

Hence,

Is(u) ≤
1

p − 1
‖f‖p′ ‖∂s D u‖p , (3.10)

for s = 1, 2.
In particular, by appealing to the the constraint ∇ · u = 0, the estimate (3.10)

allows us to extend the estimates proved from ∇∗ D u to ∇∗ ∇u. More precisely,
one has the following result.

Lemma 3.2. Let be s = 1, 2. Then

‖D2
∗ u‖p ≤ c(‖∇∗ ∇u‖p + ‖∇∗u‖p) ≤ c ‖∇∗D u‖p . (3.11)

Proof of equation (1.7). Let a ≥ 0 and b > 0 be two reals and let 0 ≤ q ≤ r. Then

aq ≤ bq−r ar + bq.

In fact, if a ≤ b then aq ≤ bq . On the other hand, if b ≤ a, then aq = ar aq−r ≤
ar bq−r.

The clever idea of appealing to the above very simple inequality in order to
estimate the Lp norm below is borrowed from Lemma 6 of Diening and Růžička
(see [17]).

We get, from the above inequality,

‖∂s D u‖p
p ≤ Is(u) + ‖µ + |Du| ‖p

p . (3.12)

From (3.10) and (3.12) it readily follows that

Is(u) ≤ c ‖f‖p′

p′ + c ‖µ + |Du| ‖p
p . (3.13)

Hence, by appealing to (3.11), we prove (1.7). �
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Proof of equation (1.8). Next, by differentiation of the first equation (1.5) with
respect to xs, one gets

∇ ∂s π = −∇ · ∂s

(
(µ + |D u|)p−2 D u

)
+ ∂s f. (3.14)

On the other hand, one easily shows that

∂s

(
(µ + |D u|)p−2 D u

)

= (µ + |D u|)p−2 ∂s D u + (p − 2)(µ + |D u|)p−3 |D u|−1(D u · ∂s D u)D u. (3.15)

Hence,

|∂s

(
(µ + |D u|)p−2 D u

)
| ≤ (3 − p)(µ + |D u|)p−2 |∂s D u| , (3.16)

almost everywhere in Ω. Hence, by (3.14), and by appealing to Lemma 2.2, we
prove that

‖∂s π‖p ≤ c ‖(µ + |D u|)p−2 ∂sD u ‖p + c ‖f‖p , (3.17)

for s 6= 3. By appealing to (1.7), one proves (1.8). �

4. Normal derivatives of the velocity. The basic linear system

We follow here the pioneering paper [3]. Let us consider, for almost all x ∈ Ω, the
2 × 2 matrix A = A(x) with elements aj l given by

aj l = (µ + |D u|)p−2 δj l + 2(p − 2)(µ + |D u|)p−3 |D u|−1 Dl3 Dj3 , (4.1)

for j, l ≤ 3. Note that aj l = al j. One has the following result (the proof is
immediate).

Lemma 4.1. For almost all x ∈ Ω one has

2∑

j,l=1

aj lξjξl = (µ+|D u|)p−2 |ξ|2−2(2−p)(µ+|Du|)p−3 |D u|−1 [(D u) · ξ]
2
3 . (4.2)

In particular,
2∑

j,l=1

aj lξjξl ≥ 2

(
p −

3

2

)
(µ + |D u|)p−2 |ξ|2. (4.3)

Hence the following result holds.

Lemma 4.2. If p ≥ 3
2 the matrix A(x) is positive definite for almost all x ∈ Ω.

More precisely

det A ≥

[
2

(
p −

3

2

)
(µ + |D u|)p−2

]2

. (4.4)
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By appealing to (3.15), the jth equation (1.5) may be written in the form

− (µ + |D u|)p−2
3∑

k=1

∂2
k k uj

− 2(p − 2)(µ + |D u|)p−3|D u|−1
3∑

l,m,k=1

DlmDjk ∂2
m k ul + 2∂jπ = 2fj , (4.5)

where Dij = (D u)ij = ∂j ui + ∂i uj and 1 ≤ j ≤ 3. Let us write the first two
equations (4.5), j = 1, 2, as follows:

(µ + |D u|)p−2 ∂2
3 3 uj + 2(p − 2)(µ + |D u|)p−3 |D u|−1 Dj3

2∑

l=1

Dl3 ∂2
3 3 ul

= Fj(x) + 2 ∂jπ − fj , (4.6)

where the Fj(x), j 6= 3, are given by

Fj(x) : = −(µ + |D u|)p−2
2∑

k=1

∂2
k k uj

− 2(p−2)(µ+|Du|)p−3|Du|−1

{
D33 Dj3∂

2
3 3u3 +

3∑

l,m,k=1
(m,k)6=(3,3)

DlmDjk∂2
m kul

}
.

(4.7)

In the sequel, equations (4.6), j = 1, 2, will be treated as a 2 × 2 linear system in
the unknowns ∂2

3 3 uj, j 6= 3. Note that, with an obviously simplified notation, the
measurable functions Fj satisfy

|Fj(x)| ≤ c(µ + |D u|)p−2 |D2
∗ u(x)|, (4.8)

a.e. in Ω.
We denote by F̃j the right-hand sides

F̃j(x) := Fj(x) + 2 ∂j π − 2 fj , (4.9)

that appear in the above 2 × 2 system (4.6).

Let us study the 2 × 2 system (4.6) in terms of the unknowns ∂2
3 3 uj, j = 1, 2,

for almost all fixed x ∈ Ω. The elements aj l of the matrix system A = A(x) are
given by (4.1). In particular Lemma 4.2 applies. By setting ξl = ∂2

3 3 ul, we get
from (4.6), i.e. from

2∑

l=1

aj l ξl = F̃j , (4.10)
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that
2∑

l,j=1

aj l ξlξj =

2∑

j=1

F̃j ξj . (4.11)

Consequently

2

(
p −

3

2

)
(µ + |D u|)p−2

2∑

l=1

|∂2
3 3 ul| ≤

( 2∑

j=1

|F̃j |
2

)1/2

, (4.12)

almost everywhere in Ω. By appealing to (4.8) and (4.9) one shows that

(
p −

3

2

) 2∑

l=1

|∂2
3 3 ul| ≤ c

(
|D2

∗ u(x)| + c(µ + |D u|)2−p(|∇∗ π| + |f |)
)
, (4.13)

almost everywhere in Ω. Since (µ + |D u|)2−p ∈ L
q

2−p and ∇∗π ∈ Lp, Hölder’s
inequality shows that the right-hand side of (4.13) is integrable with power r.
More precisely, by appealing to (1.7) and (1.8), and to the inequality r ≤ p, it
readily follows that

(
p −

3

2

) 2∑

l=1

‖∂2
3 3 ul‖r ≤ c

(
‖f‖

1
p−1

p′ + A + ‖µ + |D u| ‖2−p
q

(
‖f‖

1
p−1

p′ + A + ‖f‖p

))
,

(4.14)
where

A = ‖µ + |Du|‖p .

Hence,
2∑

l=1

‖∂2
3 3 ul‖r ≤ c B

(
‖µ + |D u| ‖2−p

q + 1
)
, (4.15)

where B is given by (1.13). This shows that ‖u‖2, r satisfies (1.11).
The regularity of ∂π

∂x3
, hence the global regularity of ∇π, is easily obtained from

(4.5). In fact, this equation, written for j = 3, furnishes an explicit expression for
∂π
∂x3

in terms of functions already estimated. Actually,

|∂3 π| ≤ c(µ + |D u(x)|)p−2 |D2 u(x)| + |f(x)|, (4.16)

almost everywhere in Ω. Hence

∂3 π ∈ Lr(Ω).

Moreover (1.11) holds.

Theorem 1.3 follows immediately by setting p = q in Theorem 1.2. The expres-
sion on the right-hand side of (1.15) follows by appealing in particular to (2.8).
This same device can be used in the other estimates. Straightforward manipula-
tions show that the the right-hand side of (4.15) is bounded by the left-hand side
of (1.15). This yields (1.15).
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Finally we prove Theorem 1.4. By Theorem 1.2, and by a well know Sobolev
embedding theorem, one has

u ∈ W 1,q(Ω) ⇒ u ∈ W 1,r∗

(Ω), (4.17)

moreover
‖u‖1,r∗ ≤ c(µ)B(1 + ‖D u‖q)

2−p , (4.18)

where
1

r∗
=

1

r
−

1

3
=

2 − p

q
+

1

p
−

1

3
.

Set q1 = p and define qn+1, for n ≥ 1, by

1

qn+1
=

2 − p

qn
+

1

p
−

1

3
.

The increasing sequence qn converges to the value s obtained by setting qn =
qn+1 = s in the above definition. Actually, s is given by (1.17).

Moreover, from the estimate

‖u‖1,qn+1 ≤ c(µ)B(1 + ‖u‖1,qn
)2−p, (4.19)

and by taking into account that 0 < 2 − p < 1, it readily follows that ‖u‖1, qn
is

uniformly bounded by the right-hand side of (1.16). Hence (1.16) holds.
Finally, by appealing to Theorem 1.2 with q = s, we prove (1.19).

5. The Navier–Stokes equation

Since ∫

Ω

(u · ∇)u · u dx = 0,

it readily follows that all the estimates stated in section 2 for weak solutions hold
for solutions u to the complete Navier–Stokes equations

{
−∇ ·

(
(µ + |D u|)p−2D u

)
+ ∇π = F,

∇ · u = 0,
(5.1)

where
F = f − (u · ∇)u.

In particular, by (2.8),

‖u‖W 1,p ≤ c
(
‖f‖

1
p−1

p′ + µ
)
. (5.2)

Moreover, by (1.21), it follows that

‖u‖W 2,l ≤ C(1 + ‖
(
u · ∇u‖

1
p−1

p′

)
, (5.3)

where the constant C depends on p, µ, ‖∇u‖p and ‖f‖p′ . It is clear that the first
term C on the right-hand side of (5.3) is irrelevant here. Hence, for the reader’s
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convenience, we drop this term. In the same line of simplifications, we replace C
in the second term on the right-hand side by 1. Hence we simply write

‖u‖2,l � ‖(u · ∇)u‖
1

p−1

p′ , (5.4)

and left details to the reader. Let us write equation (5.4) in the equivalent form

‖u‖2, l �

(∫
|u|p

′

|∇u|(1−α)p′

|∇u|α p′

dx

) 1
p

. (5.5)

Next we estimate the above integral by appealing to Hőlder’s inequality with
exponent q′ applied to |u|p

′

|∇u|(1−α)p′

and exponent q applied to |∇u|α p′

. We
determine α and q by the equations

α p′ =
s

q
,

1

p q
=

1

s
.

It follows α = p − 1 and q = 3(p−1)
3−p . In this way we prove that

‖u‖2, l � K(u)λ ‖∇u‖s , (5.6)

where

K(u) =

∫
|u|p

′ q′

|∇u|(1−α)p′ q′

dx (5.7)

and λ = 1
p q′ (however, the exact value of λ is irrelevant here).

Actually,

K(u) =

∫
|u|

3 p

2(2p−3) |∇u|
3 p(2−p)
2(2p−3) dx. (5.8)

By assuming p > 9
5 and by Hőlder’s inequality with exponents 2(2p−3)

3−p and 2(2p−3)
5p−9

one gets

K(u) ≤ ‖u‖
3 p

2(2p−3)

p∗

(∫
|∇u|β dx

) 5p−9
2(2 p−3)

, (5.9)

where

β =
2(2 − p)

3 − p

p(p − 1)

5p − 9
.

One has β ≤ p if and only if p ≥ 1 5
8 . Now, the reader easily verifies that if

p > 15
8 we may obtain (5.6) with a bounded K(u)λ (similar, but different from the

previous one. Nevertheless we use the same symbol) and s replaced by a smaller
exponent t. In this way we get an estimate of the form

‖u‖2,l � K(u)s ‖∇u‖t , (5.10)

where t < s. Consequently there is a γ, 0 < γ < 1, such that W γ, l is continuously
embedded in Lt. Hence, by (5.10),

‖u‖2,l � C ‖u‖1+γ, l . (5.11)
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By appealing to the compact embedding of W 1+γ, l into W 2, l, one shows that to
each positive real ǫ there corresponds a positive Cǫ such that

‖u‖1+γ, l � Cǫ ‖u‖1,p + ǫ ‖u‖2, l .

Consequently,

‖u‖2, l � C Cǫ ‖u‖1,p + C ǫ ‖u‖2, l . (5.12)

By fixing a sufficiently small ǫ, we obtain the desired a priori estimate for ‖u‖W 2, l .
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