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Abstract

The problem of the existence of time-periodic flows in infinite cylin-
drical pipes in correspondence to any given, time-periodic, total flux, was
solved only quite recently in [4]. In this last reference we solved the above
problem for flows under the non-slip boundary condition as a corollary of
a more general result. Here we want to show that the abstract theorem
proved in [4] applies as well for solutions of the well known slip (or Navier)
boundary condition (1.7) or to the mixed boundary condition (1.14). Ac-
tually, the argument applies for solutions of many other boundary value
problems. This paper is a continuation of reference [4], to which the reader
is referred for some notation and results.

1 Introduction

Let Ω be a bounded, regular, connected open set in Rn, n ≥ 1, and consider a
cylindrical, (n + 1)−dimensional infinite pipe Λ = Ω×R. We denote by Γ the
boundary of Ω and by Σ = Γ×R the boundary of Λ. We set x = (x1, ..., xn) and
denote by z the longitudinal coordinate along the axis of the pipe, say z = xn+1.
We denote by χ the component of the velocity v in the axial direction z. Note
that the physical dimension is N = n+ 1. In the sequel we consider the problem
of the existence of T-periodic flows of the Navier-Stokes equations

(1.1)





∂v
∂t − ν ∆ v + (v · ∇) v + ∇p = 0,

∇ · v = 0 in Λ×Rt ,

under the slip boundary condition (1.7) or the mixed boundary condition (1.8),
in the cylindrical domain Λ. Here the differential operators ∆ and ∇ act on all
the variables (x1, ..., xn, z) and there is an (arbitrarily given) T-periodic total
flux g(t), i.e.,

(1.2)
∫

Ω

χ(x, z, t) dx = g(t)
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for each cross section Ω(z) = {(x, z) : x ∈ Ω}. We call the flux g(t), in the cross
sections of the pipe, the total flux.

In reference [4] we considered the non-slip boundary condition

(1.3) v = 0 on Σ× Rt

and proved that to each T-periodic total flux g(t) there corresponds one and
only one T-periodic flow, parallel to the z-axis, independent of z and satisfying
the flux constraint (1.2). See Theorem 1 in reference [4]. Particularly related
papers are [8] by Galdi and Robertson and [13] by Pileckas. In reference [8],
drawing on [4], the authors show an interesting relation between the total flux
and the pressure gradient for solutions to the above problem. In reference [13]
the author considers the initial-boundary value problem for solutions of (1.1),
(1.2), (1.3). We also recall here the classical papers [1], [11] and [19].

Theorem 1 in reference [4] is proved as an application of a more abstract
result, Theorem 2 in the same reference (see 2.1 below). In the sequel we show
that this last theorem still applies if we replace the adherence (or non-slip)
boundary condition (1.3) by the Navier (slip) boundary condition (1.7) or by
the mixed boundary condition (1.8). Actually, the above theorem yields the
same kind of results under a variety of boundary conditions, as easily verified.
To fix ideas we consider here the slip boundary condition, due to its importance
in many theoretical and applied problems. Let us recall this boundary condition.
Denote by

T = −p I + ν(∇v +∇vT )

the stress tensor and by t = T ·n the stress vector. Hence, with obvious notation,

(1.4) Tik = −δikp + ν

(
∂vi

∂xk
+

∂vk

∂xi

)
,

(1.5) ti =
3∑

k=1

Tiknk.

We also define the linear operators vτ = v− (v · n) n (the tangential component
of v) and the tangential component of t

(1.6) τ(v) = t− (t · n)n.

Note that τ(v) is independent of the pressure p.
The (homogeneous) slip boundary condition reads

(1.7)





(v · n)|Σ = 0,

β vτ + τ(v)|Σ = 0,

where β ≥ 0 is a given constant. When β > 0 this boundary condition is called
slip boundary condition with friction. This type of boundary conditions was
proposed by Navier himself, see [12].

For a mathematical study of this boundary condition we refer the reader
to the pioneering paper [17] by Solonnikov and Scadilov and to references [3]
and [2], where a very complete study is presented. It is worth noting, however,
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that in the particular case under consideration here we do not need to appeal
to the general results proved in these references since, as shown below, under
the hypothesis (1.10) the slip boundary conditions become simpler.

For the study of problems under the above, or strongly related, boundary
conditions see, for instance, [2], [3], [5], [6], [7], [9], [10], [14], [15], [17], [18], and
references.

Below we also consider the case in which the boundary Γ is the union of two
disjoint portions

Γ = Γ1 ∪ Γ2 ,

each of them with a non vanishing (n−1)-dimensional measure, and the bound-
ary condition (1.7) is replaced by the mixed boundary condition

(1.8)





v|Σ1 = 0 ,

(v · n)|Σ2 = 0,

β vτ + τ(v)|Σ2 = 0,

where Σ1 = Γ1 ×R, Σ2 = Γ2 ×R.
As in reference [4] we assume here that

(1.9) |Ω| = 1 , and that T = 2 π ,

where |Ω| denotes the Lebesgue measure of Ω. In order to avoid misunderstand-
ings between z and t, we denote by Rt the real line R when referred to the time
variable t.

One has the following preliminary result.

Lemma 1.1. Let g(t), t ∈ Rt, be a given real 2 π-periodic function. A 2 π-
periodic solution v of the Navier-Stokes equations (1.1) in the infinite space-
cylinder Λ, v of the form

(1.10) v(t, x, z) = (0, ..., 0, χ(t, x))

and satisfying the boundary condition (1.7) and the flux constraint (1.2), exists
if and only if χ is a solution to the problem

(1.11)





∂ χ
∂ t − ν ∆ χ + ν

∫
Ω

∆ χdx = g′(t) , in Ω×Rt ,

χ(t + T ) = χ(t) ∀t ∈ Rt ,

which satisfies the boundary condition

(1.12) β χ|Γ + ν
∂χ

∂n |Γ
= 0,

and the flux constraint

(1.13)
∫

Ω

χ(x, t) dx = g(t) .

The above result still holds if we replace (1.7) by (1.8) and (1.12) by

(1.14)





χ|Γ1 = 0 ,

β χ|Γ2 + ν ∂χ
∂n |Γ2

= 0 .
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The reduction of the original problems to the above simplified versions for
velocity fields having the form (1.10) is proved here just as was done in section
2 of reference [4] for the boundary condition (1.3).

One has the following existence and uniqueness result. For notation see the
next section. The symbol # denotes 2 π-periodicity.

Theorem 1.2. Let Ω be an open, bounded and connected, set in Rn and con-
sider the infinite cylinder Λ = Ω × R. Let g ∈ H1

#(Rt) be given. There is a
unique solution v of the Navier-Stokes equations (1.1) in Λ which, for each t,
satisfies one of the the boundary conditions (1.7) or (1.8), and such that:

v is (2π)-time periodic.
v has the form (1.10), namely

v(t, x, z) = (0, ..., 0, χ(t, x)) .

The total flux satisfies (1.13).
Moreover χ satisfies the estimates

(1.15) ‖∆ χ‖2L2
#(Rt;H) ≤ c ‖g‖2L2

#(Rt)
+

c

ν2
‖g′‖2L2

#(Rt)
,

(1.16) ‖χ′‖2L2
#(Rt;H) ≤ c ν2 ‖g‖2L2

#(Rt)
+ c ‖g′‖2L2

#(Rt)
,

and

(1.17) ‖χ‖2C#(Rt;V ) ≤ c ν ‖g‖2L2
#(Rt)

+
c

ν
‖g′‖2L2

#(Rt)
.

As shown in the sequel this result follows as a corollary of Theorem 2 (see
Theorem 2.1 below) in reference [4].

Remark 1.1. If β = 0 the resolution of the problem (1.1), (1.2), (1.7) is trivial
since the integral on the right hand side of the first equation (1.11) vanishes
identically. For this reason, in considering the boundary condition (1.7), we
will assume that β > 0.

Under the Navier boundary condition (1.7), if Ω is locally situated on one
side of Γ and if Γ is a differentiable manifold of class C1,1, well known elliptic
regularity results show that

‖∆ χ‖2L2
#(Rt;H) ' ‖χ‖2L2

#(Rt;H1
0∩H2) .

Moreover, regularity results for the heat equation yield regularity results for χ
and v, depending on the regularity of Γ and g(t). In particular, if Γ and g(t)
are infinitely differentiable, so is v in Λ× R.

Finally we note that, by doing the change of variables τ = 2π
T t, it readily

follows that all the results proved below still hold if we replace the period 2 π
by an arbitrary period T . It is worth noting that the estimates (2.4), (2.5) and
(2.6) (hence (1.15), (1.16) and (1.17)) hold with the same constants on the right
hand side. In particular these constants do not depend on the period T .
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2 The abstract theorem. Proof of theorem 1.2

Problem (1.11), (1.13), under one of the boundary conditions (1.12) or (1.14)
can be easily seen, and solved, as a particular case of a more general problem.
In the sequel we state an abstract result proved in reference [4] (see sections 3, 4
and 5 of this last reference). Let H and V be real separable Hilbert spaces, with
V densely and compactly embedded in H and denote respectively by ( , ) and
‖ ‖ the scalar product and the norm in H. We identify H with its dual H ′. We
have V ⊂ H ' H ′ ⊂ V ′ where V ′ denotes the dual of V . Define an operator A
by means of (Au, v) = a(u, v), where a is any symmetric, continuous, bilinear,
V -elliptic form over V × V . We take a(u, v) as the scalar product in V , and set
((u, v)) = a(u, v). Hence, (Au, v) = ((u, v)); moreover

(Av, v) = ‖v‖2V ,

for each v ∈ V . A is an isomorphism between D(A) and H, where

D(A) = {v ∈ V : Av ∈ H}
and the norm of an element v ∈ D(A) is given by ‖Av‖.

Denote by e a fixed element e ∈ H, such that e /∈ V . Without any loss
of generality, we normalize e by assuming that ‖e‖ = 1. Finally, we define
w ∈ D(A) as the unique solution of the equation

(2.1) Aw = e .

We set
C2

1 = (Aw, w) = ‖w‖2V ,

and
C2

0 = ‖w‖2 .

Consider the following problem:
Problem. Let H, V, A and e be as above and let g(t) be a given real, 2 π-time

periodic function. We look for solutions χ of the linear problem

(2.2)





χ′ + ν A χ − ν (Aχ, e) e = g′(t) e ,

χ(t + T ) = χ(t) ,

such that

(2.3) (χ(t), e) = g(t) .

We set L2
#(Rt) = L2

#(Rt;R) and H1
#(Rt) = H1

#(Rt;R). Recall that the
symbol # means 2 π-periodicity with respect to time.

One has the following result (Theorem 2 in reference [4]).

Theorem 2.1. Let g ∈ H1
#(Rt) and e ∈ H, ‖e‖ = 1 and e /∈ V , be given.

Then there is a unique solution χ to the problem (2.2) such that (2.3) holds.
One has χ ∈ L2

#(Rt; D(A)) ∩ C#(Rt; V ), χ′ ∈, L2
#(Rt; H) and

(2.4) ‖χ‖2L2
#(Rt;D(A)) ≤ C̃0 ‖g‖2L2

#(Rt)
+

C̃

ν2
‖g′‖2L2

#(Rt)
.
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Moreover,

(2.5) ‖χ′‖2L2
#(Rt;H) ≤ 8 C̃0 ν2 ‖g‖2L2

#(Rt)
+ (2 + 8 C̃) ‖g′‖2L2

#(Rt)
,

where the constants C̃ and C̃0 depend only on C0 and C1. In particular,

(2.6) ‖χ‖2C#(Rt;V ) ≤ c ν ‖g‖2L2
#(Rt)

+
c

ν
‖g′‖2L2

#(Rt)
.

For the proof see [4].
The problem (1.11), (1.13), under a large class of boundary conditions, is a

particular case of problem (2.2), (2.3) by setting H = L2(Ω) and by choosing
V and a(u, v) in dependence on the particular boundary condition under con-
sideration. Moreover, we define e as being the constant function e(x) = 1, for
each x ∈ Ω.

Let us consider the two cases under consideration here. The proof of Theo-
rem 1.2 follows immediately from Lemma 1.1 and Theorem 2.1. If the boundary
condition is (1.7) or, equivalently (after appeal to the above lemma) (1.12), we
apply Theorem 2.1 with V = H1 and

(2.7) a(u, v) =
∫

Ω

∇u · ∇v dx + β

∫

Γ

u v dΓ .

If the boundary condition is the mixed boundary condition (1.8) or, equivalently
(1.14), we apply the Theorem 2.1 with

V = {v : v = 0 on Γ1}

and

(2.8) a(u, v) =
∫

Ω

∇u · ∇v dx + β

∫

Γ1

u v dΓ .

Note that in all the above cases A = −∆ with domain D(A) = {v ∈ V : Av ∈ H} .
We may extend the above types of results to other operators and boundary con-
ditions (as well as to suitable constraints depending on the choice of e). In
particular, see [4], if the boundary condition is (1.3) we set V = H1

0 (Ω) and

a(u, v) =
∫

Ω

∇u · ∇v dx .

As remarked in section 1, under the slip boundary condition without friction
(i.e.,β = 0) the problem becomes trivial and appeal to theorem 2.1 is superfluous
(actually, this theorem is not directly applicable since the equation (2.1) has no
solution).

Finally, note that under the slip boundary condition, if Ω is of class C1,1, or
convex, one has

D(A) = H2(Ω) ∩H1
0 (Ω) .
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