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Abstract

Navier-Stokes equations with shear dependent viscosity under thzalagm-

slip boundary condition were introduced and studied in the 1960s by OaA. L
dyzhenskaya and, in the case of gradient dependent viscositylbyibns. A
particular case is the well-known Smagorinsky turbulence model. Thisnano
days a central subject of investigation. On the other hand, boundaditioms of

slip type seems to be more realistic in some situations, in particular in numerical
applications. They are a main research subject. The existence of wletikiss

u to the above problems, with slip- (or nonslip-) type boundary conditions, is
well-known in many cases. Howeveegularity up to the boundarstill presents
many open questions. In what follows we present some regularititsesuthe
stationary case, for weak solutions to this kind of problem; see Theoreand
Theorem 3.2. The evolution problem is studied in a forthcoming paperA6]
cornerstone in our proof is the classical Nirenberg translation meteed38].

(© 2004 Wiley Periodicals, Inc.

1 Introduction

The Navier-Stokes system of equations with shear dependent viscasibebn
studied in the last fifty years by a great number of researchers, hofropure
and applied mathematics, but also in engineering, physics, and biology.idaltyp
model is the well-knowr.adyzhenskaya model

1.1) i—‘t‘.-il;u:-OVu—V-T(u,n)zf
whereT denotes the stress tensor

1.2) T=—-nl +vr(u)Du.
Here,

Du=Vu+Vvu',

(1.3) vr(U) = vo 4 v1|Du|P~2,
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andyvg andv; are strictly positive constants. Note that (1.2) satisfies the Stokes
principle; see [50] and [45, p. 231], where this physical principle itedtin a
postulational form. Fop = n = 3, the above model is the classical Smagorinsky
model, introduced in reference [48] as a simple turbulence model; seefti9] a
references therein.

It is worth noting that, from the mathematical viewpoint, the crucial character-
istic of models like (1.3) is the growth of tt@nvexpotential| Du|P nearco (and,
to a minor extent, near 0). In this sense, we prefer to show the main points by
giving the proofs in the representative case (1.3), rather than riskghidiéas and
methods in a more general setting.

The first mathematical studies on the above kind of equations go back to
O. A. Ladyzhenskaya in a series of remarkable contributions; se@R 24, 25].
Similar results were obtained by J.-L. Lions for models in which + Vu' is
essentially replaced byu; see [30] and [31, chap. 2, sec. 5]. More precisely,

(1.4) T=-nl4+vUWVu
where
(1.5) v(U) = vg + v1|Vu|P72.

Essential existence, uniqueness, and regularity results for Ladsizdngntype
models under the nonslip boundary condition (1.10) can be found in f@bjefer-
ences therein. The recent literature on this subject seems particularlykhddee,
without any claim of completeness, we refer, for instance, to [1, 7,,9,1,AL.2, 13,
17, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 40, 41, 42, 44}atice references
given by these authors.

It should be emphasized that theoretical contributions (contrary to amghed
sults) mostly concern the homogeneous boundary conditierd. However, many
other boundary conditions are crucial in applications. In particular,aheing
nonhomogeneous slip-type boundary condition appears to be quite impiortan
many fields:

u-mir=0
Bu, + z(W|r = b(x)

wheren is the unit outward normal to the domain’s bound&rys > 0 is a given
constant, andb(x) is a given tangential vector field. We denotetby T - n the
normal component of the tens®dt by u, = u — (u - n)n the tangential component
of u, and byz the tangential component of

(1.7) w=t—(-mn.

Straightforward calculations show that

(1.6)

n
oU; 0
(1.8) T(U) v = vr(u) (i+ﬂ) Nevy
i k1 X 9%
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for eachw tangential to the boundary. Hencegif= R", then

n-1

(1.9) HOREIN )Y (ﬂ ¥ a“”) "
j=1

X | OXj

onT" = R7, sincev, = 0. The first deep mathematical study of this type of
boundary condition was done in the pioneering paper [49] by V. A. Sukon
and V. E. $adilov.

Here we also take into account the nonslip boundary condition
(1.10) ulr =0.

As shown in what follows, our proofs immediately apply to this problem by doing
suitable simplifications.

For results and applications of boundary conditions like (1.6), see,$tanoe,
[3,4,5,8,9, 14, 16, 20, 21, 28, 39, 43, 46, 49, 51] and refaetherein; see also
[45, p. 240] for a discussion of this subject.

We are interested here in proving strong regulatip/to the boundaryof weak
solutions. The reallypew obstacleghat one faces arise due to the interaction be-
tween the nonlinear terms containilgl + Vu' and the boundary conditions. We
concentrate our attention on this new point, by avoiding obstacles and sitiation
that can be tackled by appealing to complex but known techniques. Tisécalas
obstacle to proving the regularity of the solutions is the presence of theconv
tion term. However, as for proving regularity results for solutions to thesidabk
Navier-Stokes equations, this term can be treated here as a “rightidarid®on-
cerning the evolution problem, it seems that the regularity of the deriv%%i\'!e
not a substantial obstacle to proving the regularity of the solutions; semfbihe
remark below. Hence, we will concentrate our attention on the following statjon
problem inR'} :

—1V - (Vu+ vu')
(1.11) — V- ([Vu+Vu'|P2(Vu+Vu)) +Vr = f
V.-u=0.

We have also obtained similar but stronger results for solutions to the simplest
Lions model

—VoAU — 11V - (]VU|P~2VU) + Vrr = f(X)

1.12
( ) V-u=0.

We do not present these results here.

Remarkl.l Inreference [6], by heavily appealing to Theorems 3.1 and 3.2 below,
we prove strong regularity results for solutions to the full Navier-Stokebkigon
system (1.1) under the boundary conditions (1.6) or (1.10) and giveal isata.
For regular data, it is known that € L>(0, T; W-P) and ! € L2(0, T; L?) if
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p > 2 is sufficient large. For th8tokes systeme., the system (1.1) without the
convection termu - Vu, the result holds for each > 2.
In [6] we show, in addition, that

(1.13) ue L0, T; W2F)
4n

wherep’ = p/(p—1) andp €] 4[; in particular,p € 12 + % 4[ whenn = 3.

n_+25
Moreover, forn = 3, we show that
(1.14) uelL*P@O,T; W)
wherel = 3(54:pp) andp e ]2+ 2,3

These results improve (and extend to slip boundary conditions) some of the
fundamental results stated in [35] for solutions to the nonslip boundanyitomm
(1.10) in the casa = 3. In this last reference it is proven (see theorem 1.17) that

(1.15) ue LPI(0,T; W2p)

for eachp € 12+ %1, 3[. It is worth noting that, for 2< p < 3, one had >
6/(p+1)and4— p > 2/(p—1). On the other hand, fop = 3, (1.14) and (1.15)
giveu e L0, T; W22), but (1.13) shows that € L2(0, T; W23%). Moreover,
(1.13) applies tgp > 3.

By appealing to (1.15), we may show that (1.13) and (1.14) hold as well if
pel2+ %, 2+ %[, at least for solutions to the boundary value problem (1.10) and
n=23.

It is significant that all the exponents that appear in equations (1.13%)(1
and (1.15) are equal to 2 whgn= 2. We point out that, for the Stokes system, all
the above results hold for eagh> 2.

2 Weak Solutions: Known Results and Notation

A formal integration by parts shows that

(2.1) %/uﬂu)bu-l)vdx:—/[V-(vT(u)Du)]-vdx+/g(u)-vdF
Q Q r

for each divergence-free vector fieldtangential to the boundary. For the time
being2 may be any sufficiently regular open set. It readily follows that (at least
formally; see below for the functional framework)s a solution to problem (1.11)
and (1.6) for somer if and only if u € V satisfies (2.8) for alb € V, where
V denotes the set of all divergence-free “regular” vector fields tatiggjeto the
boundary. Note thdt- v = 7 (u) - v, since the test functionsare tangential to the
boundary. In the case of the boundary value problem (1.10), veetdsfinV are
assumed to vanish on the boundary and, in equation (2.8), the termg waittb
must be dropped.

The existence of as a distribution follows from well-known results by using
divergence-free test functiomse C§°(€2) in equation (2.8).
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The above considerations give rise to the definition of a weak solutiomildedc
below.

Let us now introduce the functional setting used in the following and, in partic
ular, fix the spac# . If X is a Banach space, we denoteXjits strong dual space.
We use the same notation for functional spaces and norms for both stdleec
tor fields. The symbd| - ||, denotes the canonical normlir?(R"} ), and| - || that in
L2(R"). In general, “integer norms” as well as “integer Sobolev spaces” rate
R, and “fractional norms” concern the bounddty= R"-L. For instance| - [|12=
I+ llj2,r, andHY2 = HY2@Rh),

We defineD?! := D?(R") as the completion oE5°(RT}) (or C§([RY), k > 1)
with respect to the norriVv||. Moreover, Dé is the completion oC5°(R") with
respect td|Vu|. It is well-known (by Sobolev embedding theorems) that

(2.2) Dl={v:vel', Vvel?,

where? = 1 — 1 In particular, the norm¢Vv|| and||Vvl| + [[v]|.r are equiv-

alent in D! and in D}. This can be shown by extendir@(R") to CS(R") by
the well-known reflection method and then by applying the correspondsudf re
the whole space; see [29] and [18, theorems 1.2 and |.4 and remark 1234 o
Though it is not used in what follows, one can show that

1 ) 2 v 2| .
D _{U.VUEL AT X el },
see [18, theorem 1.2]. Clearly, the usual Sobolev spateand H! are dense
and strictly contained irD§ and D?, respectively. In particular, it follows that
L" < (DY) < (HY andL" < (D})’ < H~% wherer’ =r/(r — 1).

Since the restriction to a bounded $&bf any function inD* belongs to the
Sobolev spacei!(B), it follows that its trace on the boundaB/ ! is (locally)
well-defined as an element ¢'/2. Obviously, functions inD} have vanish-
ing trace onR"~%. Trace spaces iR"~! may be studied, in a convenient way,
by resorting to the Fourier transform. The trace spac®bfs denoted here by
DY2 = DY2(R"-1). Actually, it is the completion o£5°(R"~1) with respect to
the norm induced ilR"~* by the norm||Vv|| in ch(RT). It consists of functions
(distributions)y that have a “half derivative” ir.?(R"~Y) (in the usual Fourier
transform sense) and that, actually, belond_t6R"~!), wheres is given by the
Sobolev embedding exponent

1 1 1/2
(@3) sT2 n-1’
see [18, theorem 11.3 and def. 1l.1] and [15] and references.

We setD~Y? = (D¥?)’. Norms inDY/? and D~%/? are denoted, respectively,
by [-112 and[-]_1/2. Note that, by (2.3), one has® < D~Y2 wheres =
2(n—1)/n.



6 H. BEIRAO DA VEIGA

It is worth noting that our main interest here is the local regularity up to the
boundary. This leads us to avoid more complex functional frameworkshvilave
been introduced to deal with the behavior at infinity. For this kind of apgtrosee
(without any claim of completeness) [2], [15, chap. 1], [18, 47]d &ibliography.

We define

D%:{veDlzvn=00nF} and Dé:{veDl:v=OOnF}.

V, denotes the space

(2.4) Vo ={veD;:V.v=0inR"}
if the boundary value problem under consideration is (1.6) and
(2.5) V,={veD§:V-v=0inR}

if the boundary value problem under consideration is (1.10). The ahdw&paces
of D! are endowed with the norif’u||. Moreover, - ]_; denotes the strong norm
in the dual spacéVvs,)’.
We set
V ={veVe:|Dv|p < oo}
endowed with the norm

[lvllv = IVvllz2 + [ Dvllp.

It should be remarked that, by appealing to inequalities of Korn's type, ame c
verify thatV = {v € Vo : ||Vv]p < oo} and also thaf|Vv|, + ||Dv||, and
[Vvll2 + Vv, are equivalent norms . However, this device is not necessary
here and will not be used.

Convention.It is understood, once and for all, that when dealing with the bound-
ary condition (1.10), all the terms containiggor b should be dropped from the
equations.

Weak solutions exist under the assumptions

(2.6) fe (V)
and, concerning the tangential vector field
2.7) be D Z(R"™Y).

Note that (2.6) holds iff € L™, and (2.7) holds ib € LS (R"1).

DEFINITION 2.1 We say thatl is aweak solutiorto problem (1.11) and (1.6) if
u € V satisfies

1
(2.8) E/w(u)Du-Dvdx—i—,B/u-vdF:/f-vdX+/b-vdF
Q T Q r
forallv e V.
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If we consider the Dirichlet boundary value problem (1.10), this definiipplies
as well, by dropping in (2.8) the terms withandb.

By defining (Au, v) for each pai, v € V as the left-hand side of (2.8), the
operatorA : V — V'’ satisfies the assumptions in [31, theorems 2.1 and 2.2,
chap. 2, sec. 2]. This shows existence and uniqueness of the wat&rso

By replacingv by u in equation (2.8), one gets
(2.9) vol VUll? + va[[Dullf + BllullZ = (b, u)r + (f, U)g,

where the symbols. , - ) denote “duality pairings” and the tracewbn the bound-
ary is denoted simply by. Note that the left-hand side of equation (2.9) is just
(Au, u). This shows that assumption (2.3) in [31, theorem 2.1] holds.

From (2.9) there readily follows the basic estimate

(2.10) IIVUII + vov1 | DUl § + Bllullf < Cn([f] L+ [b1? 1/2)
where the constarﬂ;1 depends only om. In proving (2.10), we use the estimate
[Uly2 < [[VU].
Remark2.2 We remark that
IVully < cnplDully, and [[Vullpr < CnplDullpRr-
However, we point out that we will not appeal to these estimates.

By restriction of (2.8) to divergence-free test functianaith compact support
inRY and by (2.1), there follows the existence of a distributio(determined up
to a constant) such that

(211)  Va ==V -[wVu+un|DulP?Dul+ f =V - (U + U+ K),
where, for convenience, we represdnin the form

(2.12) (f,w):/K-dex:/Z K 2“"
J

i,j=1
for all w € D*2(RY) whereK € L%(R"). Actually, this representation holds with
Kl = "g' andg € D2(R"). Moreover,
(2.13) [floe=1K].

Equation (2.11) shows that the first equation in (1.11) holds in the distritaition
sense.
Let us make some remarks concerning the pressure. Not&tlidU,; =

—weVu belong toL2 andU, = —v4|Du|P~2Du belongs toLP. In fact, from
(2.10) and (2.13) it follows that
(2.14) 1U1)12 + vovy - ||U2|Ip + voBllullZ < ca([f12, + [b12 12) -

On the other hand, it is well-known that if
Vo =V.U
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for someU € L%(B}Y), then
(2.15) 7 llLe ety < ClIU Nz -
whereLg = L*/R and
Bt = {x:|X| < R, X, > 0},
hence )
Telb RY).
On the other hand, one has, fog < p,

1_1
T
(2-16) ” ' ||LP0(B*R') = |BR| o P1 ” : |||_D1(BJRr) ’

where|B;| denotes the Lebesgue measurdgf

It readily follows from (2.11), (2.14), and (2.15) (with= p’) that

1 1 1 1

s = Brl? 2([f]1-s+[b]_y) +c([fl-s+[bl_3)” 2.
A difficulty similar to the one above (the need to localize the estimates, due to
the fact that the canonical inclusidnft < LP, py < pg, fails near infinity)
will occur as well in studying the.® regularity of Vz. In this case, however,
this difficulty will propagate from the gradient of the pressure to the ss:awder
derivatives ofu that are not included iD2u.

We end this section by introducing some more notation. We denoR?bythe
set of all the second derivatives of The meaning of expressions lik®?u|| is
clear. The symbolD2u may denote any of the second-order derivatives
d2u; /9x; 9% except for the derivatived?u; /ax3, if j < n. Moreover,

|l

2 n 2
9%u 92u;
2,12 n j
DUl = |—-| + E
2 ;
OXg e 0X; 0Xk
(i,K)#(n,n)

Similarly, V* may denote any first-order partial derivative excepiofaix.
We set

I ller =1 - lLeBy) -
Finally,

If,bl> = [ 11>+ bl5, and [f,bl*=[f1*;+[b]*;,.
3 Resaults
Now we state the two main theorems. We set, for epehl,

1 1
Kq = caR(IBRIT2[ 1, b] + v1|B5 |97 | Dull5~Y)
(3.2) L o\ 3 - b2
+cn(|B;|F—z+<p—1> (U—;) B3 7 | Dullp? )nf,bu.

For convenience we sét = K.
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THEOREM 3.1 Assume tha? < p and that
fe Li(Ri)
be Dz(R"™Y).

Let u, = be the weak solution to problef¢h.11)under boundary conditio(iL.6) or
(1.10) Then the derivatives i belong to I2(R") and satisfy the estimate

(3.2)

(3.3) voll D2u]l + (vovy) || DI’z V*Dul| < ol f. b .
On the other hand,
D2u, |DulP-2V*Du, V*r € L2 (RT)
where
p

In particular, if p < -1, then ue C2¢(RT) wherea = _nf(npfzm'

More precisely, for each B 0,
1
(35 571V lr+ 0l DUlly,r + vall DUV Dulyr < K.
where
1_1

K = cR(IBE? ?[f,b] + vi|Duf ) )

1
1 1 vy 2 P2
+cn(|B$|p’ ‘+(p-1 (V—;) IDullp* )II f, bl

and ||Dul|, satisfies estimat.10) Moreover,(,fT”n satisfies the estimate

(3.6)

) _
(3.7) ‘% < Cnp[ (Vo + 11|DUX) P2 D2u(X)| + |V*7| + | f|]] a.e.inR .
n

In particular, if p < 4,

o 5 —
. € Lioc(RD),
where
2p
3.8 P= ,
(3.8) P=3p_2
and, for each R> 0,
om 1.1 1_1 _
S| = CupR(BEIPT2[F, bl + va|BR > ¥ [ Dullg™)
(3.9) nipR

ol

_1 V1 -~
+cn,p(|B;| *+ IDulp 2)uf,bn.

In particular, Vzr € LP_(RT); see alsq3.14)

loc
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f2 <p<2+ % the second part of the above theorem may be improved.

Merely for convenience we prove this result fo= 3 and leave to the interested
reader the straightforward extension to higher dimensions. For bressétynze that
Vo=V = 1.
THEOREM 3.2 Assume thatnr= 3, v9 = v1 = 1, and

2<p<3.

Let f b, u, andxw be as in Theorer3.1 Then, in addition to the results stated in
this last theorem, one has

D2u, |DulP~2V*Du, V*r € L}, (RT)

where

3(4-p)
3.10 | = ——.
In particular, u e Co¢' (R}) wherea = 3-2.

More precisely, for each R 0,
2
(3.11)  |V*zlir+ [ID?ullir + [|DulP72V*Dul) r < Ki + Cpll f, b|| =P .

Finally,
o

(3.12) ix € r(@RY)
where
6(4 —
(3.13) m=208"P
8—p

In particular, L

Vr € Lg.(RY)
and
(3.14) IV llmr < Cr(IIDUllp + Dullp 2 + || f, bl + || f, b]| #?)

where Gk depends oBf| and on the various exponents.

Remark3.3. Concerning (3.14), a more precise estimate is easily obtained by fol-
lowing its proof. This is left to the interested reader. Note that p’if p > 2+§.

COROLLARY 3.4 Under the hypotheses of Theor&2 one has
u € Wi (R]);
moreover,
1_1
(3.15) IVulli«r < clD?ulli,r + cIBE =~ ?(|Vullp

where
I*=34-p).
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PrROOF. The proof of (3.15) follows by appealing to (5.15) wigh= Vu and
s=1. Note that* > pfor2 < p < 3.

The linear casep = 2, is well studied and will not be considered in the proofs
that follow; see [4, 5, 49]. Nevertheless, it is significant that, wipega: 2, the
statements and estimates established in Theorems 3.1 and 3.2 coincide with the
classical results. Note that (3.11) improves (3.9) sipce: | if 2 < p < 3. For
p:2onehasp’:|:2,andforp:3onehasp/:s:g. OJ

To end this section, we recall a well-known result that is a main tool in our
proofs.

LEMMA 3.5 Let g(x) be a scalar field defined in Bsuch that

g=V-wg and vg=V.-W
wherewo and W belong to £(B;) for somex > 1. Then
(3.16) 191 Leesy < Cn(Rllwoll ey + IW I Less))
where ¢ is independent of R.

The lack of dependence ddfollows by a scaling argument. It is worth noting
that the constard may be chosen independentlyoprovided that 1< o < @ <
az < 0. Inthis case = c(a1, a2). The above result (for a bounded domain with
a Lipschitz-continuous boundary) is proven in reference [37].

4 Main Estimates: Proof of Theorem 3.1

Roughly speaking, inequality (3.3) shows ttetgentialderivatives are square
integrable. The proof of this main estimate appeals to Nirenberg's translation
method; see [38].

LEMMA 4.1 Under the assumptions of Theoré the derivatives Bu satisfy
inequality(3.3).

PROOF. Letu be a weak solution, i.ey € V is a solution to the problem

4.1) %f@u-@vdx—l—%/ll?ulpZDU-DvdX—I-,BfU-UdF:
r

/f-vdx—i-/b-vdl“ for eachv € V.
r

For arbitrary scalar or vector fieldswe set
Tho(X) = v(X1, « ooy X1, Xk + D Xipa, -0, Xn)
whereh € R andk, k # n, is assumed to be fixed. We also set
h
v — v

h

o = Thv, Apv=
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Note that the above translations are done in the tangential directions.

By writing (4.1) withv replaced byw" and by replacing, in the integrals on the
left-hand side, the variabbg by xx — h , one easily shows that

U—ZO/DUh-Dvdx-i—%/ﬂ)uh|p2Duh-Dvdx+ﬂfuh-vdF=

I
/f-vhder/b-vhdF.
r

Taking the difference between equations (4.1) and (4.2), respectingftrend
right sides, one gets

4.2)

%/(Du—Du‘h)-Dvdx
+ % /(|Du|”‘2Du — |Du™™P2Du™) - Dudx
(4.3)
+ﬁ/(u—uh)-vdr‘
r
=/ f -(v—vh)dx+/b-(v—vh)df‘.
r

By settingv = u — u~" in equation (4.3) and by taking into account the estimate

h
V—UV
(4.4) ‘/ fo—u"dx| <hlf] H e IhIfIvoll
and the inequality (see the proof below)
(4.5) ‘/b-(v—vh)dl“‘ =< alhilbl Vo]l ,
r

it follows that
E/u)u — Du"2dx
2
+ % /(|Du| P=2Dy — |DUMP2Du™") . (Du — DuMdx
(4.6)
+ ,B/ lu—uM?dr
r

< calhl(I f Il + [bly2) V(U —u™™].



FLOWS WITH SHEAR DEPENDENT VISCOSITY 13
On the other hand, an inequality of Korn’s type (see, for instancesf&jjvs that
‘/|Daj—u—%Fdx::z/ﬂvaj—u—hﬁdx.

Since the second term on the left-hand side of (4.6) is nonnegative, iwko{kfter
dividing by h?) that D2u € L2(R"}.); moreover,

n
(4.7) vo||Dfu||zvo< a;uz” > 382‘;" )fcnllf,bll,
X4 i ket Xj 0 Xk
(1, k)#n,n)

where, from now on, the symbdD? denotes any of the second derivatives
d2u; /9x; dx except for the derivative8®u;/axZ whenj < n. The inclusion of
the derivatived?u,/9x2 in the above estimate follows by differentiation with re-
spect tox, of the equatiorv - u = 0. O

PROOF OF(4.5): One has

/b-(v—vh)dF:h f b_b‘“-adg
r Rn-1

h

Wherea(s) denotes the Fourier transform ¢fin R". Since

T (§) = e PG (),
straightforward manipulations show that

o _ 12 3
'/b-(v—vmdr §|h|</ e IR IEN — dé)
r

h?j|

Rn-1

( / Iﬁ(é)lzléldé)z-

Rn
Since|(€? — 1)/6| < 1, it readily follows that the right-hand side of the last
equation is bounded byi2h|[v]/2[b]1/2. Since[vly2 < ¢y Vo], inequality (4.5)
follows. [

The following Taylor expansion is a main tool in what comes later:

LEMMA 4.2 Let U and V be two arbitrary vectors iRN, N > 1. Then there are
realsae andg, 0 < «, B < 1, that depend on the paitJ, V) such that

(4.8) p(UIP2U — [VIP2V). (U = V) =
%(U ~WVIHU) + HWIU = W)T

where
U=aU+1—-a)V, V=8U+1-pH)V,
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and the Nx N matrix field H(W) satisfies
(4.9) EHW)ET = pIW[P2[£ + p(p — D[W|P~H(W - £)?
forall W, & e RN,

ProoFE Consider the real functiotr (U) = |U|P. One has

% = plU "y,
and
3%y
oU; aU;
whereH is the Hessian matrix. By Taylor's formula

Hij(U) = = plU[P35; + p(p — 2)|U[P~*UY;

1 _
yU)=yvyNV)+VyNV)- (U -V)+ E(U —V)HV)U —=W)T.

By interchangindJ andV in the above formulae and by adding the respective sides
in the two equations, one obtains the symmetrized form of Taylor expansi&n (4
O

Note that
PIW|P=2g12 < EH(W)ET < p(p — DIW|P2|g |2,

It is worth noting that the particular form of the convex functigiU ) is not es-
sential here or later.

LEMMA 4.3 The vector field u satisfies estim#83).

PROOF. The first part of the estimate was already proven in the previous lem-
ma. Settingd = Du andV = Du~" in equation (4.8) and taking into account
(4.9), it follows that

(|DulP~?Du — |DuMP2Du") . (Du— Du™")

1 - -
= E('U |P=2 4 |V|P~2)|Du — Du"?

(419 + p%z|\7|p4(\7 - (Du — Du™M)?

+ p%zujw—“(u -(Du—Du™M)? ae.inR",
where
(4.11) U=aDu+ (1 —a)Du™"

V = BDu+ (1— B)Du™.
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The realsx = a(x) andg = B(x) take values between 0 and 1 and depend on the
pointx € RY. Clearly,

(4.12)

3 _ _ yy-h
{'U bul = [Du—Du™| a.e.inRf .

IV — Du| < |Du — Du"

Next, by using (4.7) to estimate the right-hand side of (4.6), dividing this last
equation byh|?, and using (4.10), it follows that

__=h
vo/‘pu hu
+v1/{(|0|p—2+|\7|"—2>

—uh\)\ 2
19 +(p—2>|0|"4(0'(pu hu ))

UM\ 2
+(p—2)|\7|p4(\7-(7>“ L )) }dx

-1 2
< cCyvg |l f, blI7.

2
dx

—_h |2
u—u
D—
h

Next we pass to the limit in (4.13) &s— 0. From (4.12) it follows thatl — Du
andV — Du almost everywhere iR} . On the other hand, due to (4.7), we know
that

u—u"h

ou Cn
7 Van a.e.inRj .
In particular, the same property holds by replacvdy D. The above consid-
erations, together with the nonnegativity of all the integrands that appetireo
left-hand side of inequality (4.13), allow us to pass to the limit by using Fatou’s

lemma. This yields

/ ‘ ou
Vo D—
0 Xk

(4.14) +"1f {lpu|p—z

\%

2
dx

ou
D_

2 u 2
+(p— 2)|Du|p‘4(Du . D—) }dx
0 Xk

0
0 Xk

< Cavg M1 F112 + [012 )

for each index, k # n. Hence,

n—1
-2 __du
(4.15) vl D2ulP+ v Yy |Du|"TDa—Xk < v H(IF 12+ [013,) -
k=1
The proof of estimate (3.3) is accomplished. d

The next step is to prove estimate (3.9) Yo .
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LEMMA 4.4 For each k# n, the termgDu|P~*D 2 and the derivativeg” satisfy
estimatg3.5). In particular,

om

4.16
(4.16) ‘ %

PR

PrRoOOF Straightforward calculations show that

9
4.17) —(|Du|P?Du) =
(4.17) axk(| | )

au au
Du|P?D—— —2)|DulP~*(Du-D— ) Du.
|Dul axk+(p )| Du| ( 8xk)
On the other hand, by differentiation of equation (1.11) with respext,tk # n,
it follows
am au 0
V—=V.-|=56D— |+ V.| =v1—(DulP?Du) |+ V-G
(4.18)  oxc [ v axJ * [ V1% P! )] +
=V .[Us+Us+G],

where, for uniformity of notation, we introdudg;; = dy; fi. HenceVv - G = ot

Xk !
moreover||G| = || f I ‘
Next we estimate suitable norms of the terms inside square brackets that appea
on the right-hand side of equation (4.18). By (4.7),

(4.19) IUsll = < call f. bl

ou ‘
VOD—
0 Xk

On the other hand, by using (4.17), one shows that

0 Jau .
4.20 —(|Du|P~?Du)| < ca(p — 1)|Pu|P2|D—| a.e.inR".
+
Xk 01Xk

Moreover, by Holder’s inequality,

ou p2 -2 __du
(4.21) 1DulP2D——| < |Dull,? | |DuZ D .

0 Xk P 0 Xk

Hence, by (4.15), it follows that

1
1 2 —2)/2
<G (—) IDullP=272) f, bl
p VoV1

5
(4.22) ” ipulP-2p Y
0 Xk

This proves the first statement in the lemma. Furthermore,

Uallp =

0
—(|Du|P~?Du
Ulaxk(| | )

(4.23) P

1
v 2
<t(p—-1 (v—;) IDullP~272| £, b .
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Recall that|Dul|, is bounded; see (2.10). From (2.11) and (4.18), and by using
(3.16) and (2.16) witly = 7 anda = po = p', p1 = 2, it follows that

om 11
‘a— < e R(IB&IP 2 (lU1ll + IKID + [IU2ll . r)
(4.24) Xcllp R
11
+ cn(IBRIP " 2(IUsll + IGI) + IVallp.r) -
Next, by (4.19) and (4.23), (4.16) follows. g

LEMMA 4.5 The derivativesi;—uzj, ] # n, satisfy estimaté3.5).

PROOF, By using (4.17), thg ™ equation (1.11) may be written in the form

92u 92Uy
97u;j 2 j
vok; @ P Z(@xk 3xj8xk>

X

(4.25) 5 52 5
— u| Um T
—(p—2 Dup4§jDD — = fj,
(P = 2 Dul Tk <8xm8xk * 8x|8xk> * ax;
I,m k=1
whereDj; = (Du)j; = 25' + - du’ and 1< j < n. Let us write the firsn — 1

equations (4.25) as foIIows

Py 20U o~ 2y DulPD, §:D o
V1 in N> =
oX 2 ox2 ax2
am
FlOO+ oo — 1,

Xi
where theF; (x), j # n, are given by

Fj (X) :=

n—-1 n—1 n-1
32U 9°u 92Uy

—VQZ —v|Du|pZZ——v|Du|pZZ
(4.27) o % 7 9% 9%
8 ]

-2 21| Du|P~*! D D; DimD;

(P —2vq] | { nn Jn lm; Im jkax 8Xk}
(m.k)z(n.n)

In what follows, equation (4.26), i j < n — 1, will be treated as an
(n — 1) x (n — 1) linear system in the unknowrt¥u; /9x2, j # n. Note that,
with an obviously simplified notation, the measurable functiBpsatisfy

(4.28) |F; ()] < ¢ (vo+ (p— Dv1|Dux)|P~?) [D2u(x)| a.e.inR’.
We denote byF; the right-hand sides

~ )
(4.29) Fx) = Fo)+— — f
3Xj
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that appear in the abova — 1) x (n — 1) system (4.26).

Let us show that thén — 1) x (n — 1) system (4.26) can be solved for the
unknownsd?u; /dx2, j # n, for aimost allx € R. The elementsy; of the matrix
systemA are given by

ay = (vo+ v1|DulP2)8) + 2(p — 2v1|DulP*DinDjy
for j, | # n. Note thata; = &;. One easily shows that

n—1
3" aukié = (vo+ valDUP )7 + 2(p — 2u1[DuP[(Du) - £12.
j=1

Hence the matriXA is symmetric and positive definite. Moreover, the above iden-
tity shows that all the eigenvalues are larger than or equaHte;|Du|P~2. Hence,

detA > (vo + va|DulP?)" .
Next, by setting; = 92u,/0x2, we get from (4.26), i.e., from

n—-1
(4.30) Zan%‘l =F,
=1
that
n—-1 n—-1
(4.31) Y ayag =) Fg.
=1 =1
Consequently(vo + v1|DulP~2)|€|2 < |F||€|, which shows that
n—-1 82U| n—-1 1
_ ~ ~ 2 .
(432)  (vo+wilDuP?) Y 52| < IFli= (Z |F,-|2) a.e. inR" .
=1 =1
In particular,
n-1 8ZU|
(4.33) UQZ e < (P — Dol DAUMX)| + (V| + | f])  a.e.inR? .
=1

There readily follows, by appealing to (4.16) and(4.7), that

32U|
ax32

<K.

p’.R

n-1
(4.34) vo Y
=1

LEMMA 4.6 Estimate(3.9) holds.

PROOF. We note that, by Hélder’s inequality, it readily follows that
(4.35) I1DulP~2D2ullp < | Dul|2~?|D2ul,
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wherep is given by (3.8). Hence, by (4.7), one gets
(4.36) I1DulP~?D2ully < [Dullf2cavg ' f, bl -

From equation (4.25) written fof = n, we get an expression f% in terms of
functions already estimated. More precisely,

o

| =6 (vo+ (p — Dva|Du(x)|P~2) |D2U(X)|
n

(4.37) 524

|
2
IXg

n—-1
+ Ca(p — 2 [DUX)| P2 Y +]fa(x)| ae.inR" .
=1

By appealing to (4.28), (4.29), and (4.32), we prove (3.7). Hencédxyualities
(2.16) and (4.36),

am

dXn

NI=

1_
< Cn.p (voll D2ull + [ T11) IBS|?
P.R

(4.38) ‘

V1 —2 + i
+Cn,pv_0||Du”S I, bl + Copll V7l RIBR [P 7.

T

By appealing to (3.3) and (4.16) one proves (3.9). Note that

1
V1 2 b2 1_
(—) IDullp” |BAI?
Vo

is bounded by the last term on the left-hand side of (3.9). O

T

PROOF OFTHEOREM3.1: Estimate (3.3) is just (4.15). Estimate (3.5) follows
from (4.16) and (4.34). The inclusion of the derivati@&u on the left-hand side
of (3.5) follows from (4.36) and from (2.16) and (4.7). O

5 Proof of Theorem 3.2

The above result may be improved ik2p < 2+ n%l Merely for convenience
we will assume thah = 3. Hence, in the following we assume that2p < 3.
Note thatp is fixed, once and for all.

LEMMA 5.1 Assume tha3.2) holds and let(u, ) be the corresponding solution
to problem(2.8) under one of the boundary conditiofis6)or (1.10) R > 0Ois
arbitrary but fixed. Assume that

(5.1) Du € LY(BY)
where

3<q<6.
Then, beside3.3), one has

(5.2) D?u, |Du|P2V*Du, V¥ € L' (BY)
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where
1 p-2

5.3 - <
(5.3) - 2 +5
More precisely,
(5.4) IV*7llr r + ID?Ullr g + vill|DUIP~2V* DUl r < K
where

K = caR(IBRI? 31, bl + vi|BEIT 7 [ Duj|p-?)
(5.5)

1_1 V1 5=
—I—Cn<|BJR“|r 2+v—0||DU||q,2R>||f,b||-

Notethat2< p < 3,3<q < 6,and 2< r < 3. The lack of dependence
of the constants, on p, g, andr follows from this fact, since the constants that
appear in the embedding theorems used in what follows, as well as in (ar&5),
uniformly bounded from above if the exponents in the Lebesgue spacasdig
from 1 and frompo.

PrROOF. The proof follows step by step that of Theorem 3.1. The proof remains
unchanged until the end of the proof of Lemma 4.3. The main point is that now,
in the proof of Lemma 4.4, assumption (5.1), together with Hélder's inequality,
allows us to replace estimate (4.21) by

(5.6) pur2p | < puj pM
0 Xk IR a Xk
Hence, we start from the beginning of the proof of Lemma 4.4 by doing theeab
substitution, and we follow, step by step, the proofs given in the previecttsos
(roughly speaking, we repla¢e” norms byL" norms and.P norms byL% norms).
More precisely, start from (5.6) instead of (4.21). Then replace ¢bgwing,
in an obvious way, the corresponding proofs) equations (4.22),)44£236), and

(4.34) by, respectively,

IDUI

au
(5.7) DulP?D—|| < —||Du||<p 21211, bl
Xk llr,r
0
(5.8) [lUsllrr = [v1i=—(DulP2Du)| < ca(p-— 1) ||Du||<p 2121 £,
an rR
o
(5.9) ]— <K,
8Xk rR
2 [ 92U
(5.10) wy || =k
X7 Iy r

I=1
Estimate (5.4) follows by appealing to (5.9) and (5.10). The proof of Lemma 5.1
is accomplished. a
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Next we show the following result (for the reader’'s convenience, ete s
vo=v; = 1):

COROLLARY 5.2 Assume tha{3.2) holds and let(u, 7) be a weak solution to
problem(1.11)under one of the boundary conditio(ls6) or (1.10) In addition,
assume that, for some R 0,

(5.11) D?u e L3(BY)
where

3
(5.12) 5=S=< 3

Then, beside€3.3), one has
D2u, V*r, |DulP~V*Du € L"(BY)

where

1_(p-2@-9 1
(5.13) = o +35-

More precisely,

IV*zllr.r + 1D?Ullr.r + [ |DUlP2V* DUl g
s < CR(IBEIF3[f, bl + BRI 7 [ Dujl5Y)
544 +c(IBLITE + BT [VUIP2/2 4 | D?u) P 272
< (I 1l + [bly/2) ,
where the constant ¢ is independent ok, and R.

PROOF. We start by noting that

11
(5.15) lgllg.r < ClIVOllsr + CIBEI3 ?|lgllpr
where

1 1 1
5.16 =,
(5.16) 4" s 3

and the constarttis independent oR. In fact, by a Sobolev embedding theorem,
WS(B") is continuously embedded I (B;"). Clearly,||Vglls + [|gllp is @ norm

in Wlﬂs(Bf), equivalent to the canonical one. Hence the above estimate holds for
R = 1. The result for an arbitrariR follows by a scaling argument. By applying
(5.15) toVu, we prove that (5.1) holds, wheggs given by (5.16). Estimate (5.14)
follows from (5.4). O

PROOF OFTHEOREM3.2: Definer = ¢p(s) by (5.13) and (5.16), i.e.,
6s
G—-ps+3(p-2

r=a¢p(s) =
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wherep € [2, 3]. Note thats andr belong, at most, to the interv{ag, 3]. The
particular ranges of the parameters, ands are not significant here. We merely
want to note that these ranges remain away from 1 and fxomNote that, for
p > 2, the functionp,(s) is strictly increasing.

In what follows we define

(5.17) r=p, rpa= ¢p(rn),
for each positive integar. We observe that

Next we define, for each positive integer
(5.18) a0 = [IV*7llr,.r + [ D?Ullr,. & + I1DUIP~2V*Dul;, &
Note that, by (3.5), it follows that

1 1
a; < CR(IBEI” "2[f,b] + | Du|5Y)

11
+c(IBEIP 2 + IDulP272) ([l f 1l + [bl1j2) -
From (5.14) one gets
ant1 < (Co+ CE)By + E&

whereE = c([ || + [bl1/), By = |BE[7, p = 252 (hence O< § < 1),

Co = CR(IBEI 3, bl + [BE| 7 [DullEY),
and
C = IBEI 2 +1BEI 7 IDullt.
R > 0 is arbitrary but fixed. MoreoveB, — B := |B}|¥! asn — oo.

Setb; = & andb,,1 = (Co + CE)B, + Eb.. Clearly,a, < b, for eachn.
On the other hand, it is easily shown that lim= b whereb is the solution of the
equation

b= (Co+CE)B+ Eb’.

It is easily shown that
b < 2(Co+ CE)B +4ET7.
Clearly, lim supa, < b. By taking into account the definition of tteg's and well-
known properties of Lebesgue spades it readily follows that
IV*7llu g, + D2l igs) < 2(Co+ CE)B +4ET7 .

This proves (3.11). Alternatively, we may sgt,; = (Co+ CE)(B +¢) + ELE,
with € > 0, show that the above inequality holds wlreplaced byB + ¢, and let
¢ — 0.
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Finally, we prove (3.14). By Holder’s inequality it follows that
— —2
IIDUP~?D2ullmr < [Dull ZlID2u] .

By appealing to (3.3), (3.11), and (3.15), it readily follows that

2 —
(5.19) DUl 2D2Ullmr < Cr(Ki + II f, bI =P + [Vullp) "I f. b .
Hence, from this last inequality together with (3.7) and (3.11), one eadiy ge
am 2
‘ — < Cr(Ki + I f, bl &P + | f, b||)
9%n | m.r

2 _
+ Cr(Ki + [ f, bI 75 + [Vullp) " %I £, b

Note that|| V' ||mr < [[V*7|i.r, Sincem < |. Finally, by taking into account the
expression o, and by appealing to Young’s inequalities, one proves (3.14). Note
that, in particular,

2
IDUllP=272 £l < c(IDullp + 11 F1177).
Il
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