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Yort?city and Smoothness
in Viscous Flows

Hugo Beirao da Veiga

On the birthday of Ol
‘ n th ga A. Ladyzhensk
with the deepest admiration for her outstanding sci;tiﬁcswg;

\Sﬁiz ;:;0\:‘; Zatlilfrtl:;eflt ct(;lndl;mn fo'r the {egularity of solutions to the evolution Navier—

e Vm . _et t ree-dlmens.lona.l case which relates the direction to the

smpltude of the | r:;r 1c1{ :r The proof is done by applying ideas introduced by Con-
e 1ia.n ] and re.cent 1m}?rovements due to the anthor and Berselli
_ ast reference in a straightforward way.

ntroduction

his:n}c;:z;i ma.ir‘liy a small tribute to the cutstanding scientific work of Olga A
wskaya, in particular, to her fundamental work, pi i ‘
e 'Navier-Stokes equations. We R A
he Navi . present recent results h i
lutions to the Navier-St i e with Desach
sol okes equations obtained t i i
e ed together with Berselli
2 ) adapt the proofs devel i i i
it o new related sl eveloped in this last reference in

ur st i 1
Ez? udy taikes as a st.artmg. point the results of Constantin and Fefferman
2], we relax the assumptions on the direction of vorticity

tised in [1] to ensure the smoothness of the solutions.
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We consider the Navier-Stokes equations

—a—uw+{u-V)ur—VAu+Vp=f in &% x [0, 7T,

bt
dive =0 in & x0,7], (1.1)

u(z,0) = wo(z) in R?,

where, for simplicity, we suppose that the external force f is zero and the initial

datum is smooth.

We denote by L? = PR3, 1 £ p the usual Lebesgue spaces
equipped with the norm |- ]p and by H® = He (R, 5 2 0, the classical
Sobolev spaces. We indicate with the same symbol both scalar and vector

function spaces. Cw(0,T5 L?) denotes the space of weakly continuous functions

on (0,7 with the values in L2
A classical result (cf. Leray [3])
ast a weak solution of the system

uE Cm(O,T;Lz)ﬂLZ(O,T;Hl)

states that for any fixed T' > 0 there exists
at le (1.1)in {0,T),1e., & function u such that

]Ka
0,T; H'). However, it is not known whethe

and
fT [ [”%? ~vVu Ve - (“'V)WJ] dz dt = f W TYp(T) — uop(0) de

mﬂ
for all divergence-free ¢ € o
weak solutions are unique.
By a strong solution we mea.
we L=(0,T; A L*(0.T; H?).
> (0. However, it is not knos

n a weak solution such that

A strong solution exists at least for some T’

in general, whether it is or not global in time.
Strong solutions are unigue and reguiar. The main problem is then to

that for smooth divergencefree initial data there exists a strong (nec

unique) solution for all time. -
It is worth noting that for the problem in R2 the situation is cormple

different since it is possible to prove the global existence in time o
solutions (cf. Ladyzhenskaya [4]).

In the two-dimensional case, b
wiz,t) = V x ufz,1),
perpendicular to the plane of motion (2
even for n = 3). On:
(1.1}, we get

he vorticity field o,

\ is always a vector that 15
condition for the regularity of the solution,
hand, taking the curl of the first equation in

Ow
Et——l-(u-V)w-—u/_\w_O.
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I"Ience bhe VOI ;ICltY Sa.t;lSﬁ.eS & e evo 100 equation Ir artic lla[ the
mear )}
lut
maximum Ot the ]IlOduiuS Of Lhe vor thlty cannot ncrease

In the three-dimensional i
. al case, taking the curl of the first equation in (1.1)
Ou

_gf+{u.v)w—qu:(w‘V)u. (1.3)

NO th Yy g -
W, e I!lOduluS 0{ the vorticit Call 1ncrease and 1ts d]re(:!l(}l’l can Chall (5]

A 1 p 1LEOT h 1) ula.] 1t IS ] at cons (1€Z e
S1m ie cO d Lton tha €nsures re;
g ¥y l'ed n [5]. If h

we LP0,T;L7) for = 4 2
) O[‘p+q$2, 1<p, €2,

(14)

then the solution is re
b gular. We note that the limi
itcase p =11
ng?nds tolthe well-known regularity condition due to B N in (o
T T iy eale, Kato, and Majda
In [1], the authors i
! prove the regularity of the i
. . . solut i
€513 aivcl)ivgnf only the dlre.ct.ion of the vorticity. As ilso I;f]:v{r:s i"l ;mng ot
ngle between the vorticity w at points x and ¢ + y at tirr'aei (:a!t'xi-i'_ y’til),
, satisfies the

vl
plt)

lution is necessarily smooth in (0, 7). In [2], we improve this result
, Su

sin f _
| (z,z2+y,1)| < for p~% € LY0,T),

|sin 8z, z +y,1)| < P
Y, )l \g(t,a:),yl (15)

here the vorticit ;
et v at both po .
tive constant K. points © and & +y 1s larger than an

- Hypothesis A is satisfied, in particular, if
|sinf{z, z + y,8)] < cly|*/?.

Suppose th ' o
ppose that u is a weak solution of (1.1) in (0,T) with

0, and that H 1 ] ]
: ypothesis A is satisfied :
and:, consequently, is reqular. fled hen the sotution

:;derl the case in‘which B € {0,1/2] by stating a

iﬁgu :.rll}ty of s9l}xt:ons that involves, simultaneously

o n 3 t e vorticity. The proof follows that presented’
placed with the following assumption
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Hypothesis B. Let § € [0,1/2]. Suppose that
|siné(z, = +4,1)| < clyl” (1.7)

in the region where the vorticity at both points & and © + y is larger than an
arbitrary fized positive constant K. Moreover, suppose thet

we L0, T;L7), (1.8)
where
3
= —. 1.9
"T B4 (19)

We will prove the following assertion (cf. Sec. 3).

Theorem 1.2. Suppose that u s a weak solution of (1.1) in (0,T) with
up € H' and V -up = 0. Let Hypothesis B be satisfied. Then the solution u is
strong in (0,T) and, consequently, is regular.

Remark 1.3. It is clear that it Is possible to relax Hypotheses A and B
by assuming that (1.5) and (1.7) are satisfied only for |y| € é for an arbitrary

positive constant é.

Remark 1.4. It is worth noting that in the two extreme cases, § = 1/2
and # = 0, the above result coincides with two already known results. For
g =1/2 the assumptions of Theorem 1.9 coincide with those of Theorem 1
since, in both cases, they reduce to (1.6). In this regard, we note that iftg=1/2
then r = 2. Hence the assumption (1.8) in Theorem 1.2 is necessarily satisfied
(due to the energy estimate (2.6)).

On the other hand, if § = 0, the proof given below fails. However, thé‘

statement in Theorem 1.2 still holds as a consequence of the results proved
us in [5]. In fact, since 7 = 3, the assumption (1.4) is satisfied for n = ¢
and p = 2 (since 7 = 3).

2. Some Known Results

We recall some results proved in [7].
The Biot—Savart law reads

ulz) = "41—,7[ (VT;-I) % wiz +y) dy.

m.!

Differentiating (2.1), we obtain the following expression for the strai

Slwi(z) = %[Vu(m) +{Vu(z))']= %p,v,[M(g,w(m +ynw
R? (e
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Here, ¥ is the unit vector in the direction of y, while

~ 1 .
M(Gw) =78 [Fxw)+ ([Txw) @]

is a symmetric traceless matrix th -
at defines a pro i
_ per singul i
for eacb ﬁxec? w, its mean value on the unit sphire vanishis ar operslor since,
Using this formula, we can express o as folIQWS' .

a(z) = Slw](z)€(z) - (=)
on the set {r € R*: |w(z)] > 0}. J “
From the representation formula for Sfw}(z} one can deduce the formul
r} one ¢ ula

[ype— 3 o~
ofz) = rrl g V‘fD(y,E(:v +y) €(z))w(z + y)l_dy (2.4)
R3 |y|3’ .

D{a,b,¢) 1= (a - ¢) Determinant(a, b, ). (2.5)

We note that, in (2.4), the determi v
o ; In (2.4), erminant D(7,&(x + y), €(z i i
4 y) = +£(z). Alignment or anti-alignment of the var_fsici(tynd;’[?lzltseieihg

nally, we recall the well-known energy estimate for weak solutions
¢

Lo

sl +v [ [ Vute, o) de do < 2uol (2.6)
0 K3

Leray’s paper [3].

tl{zqgati;:)n principle fozi strong solutions, it is easy to see that, in
the above theorems, it suffices to prove the following ]emma.)

Lettu be a weak solution of (1.1) on (0,7), 0 < 7 < T and
€,a strong solution in (0, 7') fc'rr' Ieach ol < » ;
€, a str , 1 <7r. L ]
hen:u is a strong solution in (0, 7). o Hupothesis
0 15 C:'i:’;l be ell,ssumed_‘to be regular in (0,7'), we can prove
= J:without introducing smoothing processes to justify our
- 'eI:?fl ofz’l‘h_eoreml 1.2. The proof is a straightforward
siven [ ]‘, to which the reader is referred for details

Iy w and integrating by parts, we get .

&+ u%Vmﬁ = fS[w}(z)w(a:) ~wiz) dax. (3.1)

ka2
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stant that depends on
¢ will denote distinct

n =3 for 3 and r as in Hypothesis B (hence g = 3), we get
[{z)]s < elwlr < elwls.

Using Holder’s inequality with exponents 3, 2, and 6, one can show that

[ [ sele)ote) iz dz
J

¢ denotes any positive con

bol
In the seane, o & and v. The same symbol

neither the solution u nor k
constants.

Let K be t
w(z) + wa(x), where

he positive constant in Hypothesis B. We split w(z) as w(z)} =

< walrgw!ﬁlwlg. (32)

wlz), >k,
wle) = { (2), (=)l

0, jwiz)} < k. Since |wls < ¢[Vw|y, from (3.2) it follows that

v -_—

:« rives rise, in the natural way, to a decomposition S[w] = S[wﬁ-i—}S’(Egﬂ "I:Le ]S[w] (eJole) -wix) sl < Zlvwﬁ v ot -
'_I‘hls gl"il S[wiw .w splits into a sum of eight terms of tbe form h[w, z) j: _,. 2, | J
1'n;eirin1 2. Clearly, the more difficult term to est;mat%lslthi;:rszéiziJ,we:vili o (3.1) and (3.3) we find
1 s ’ ‘ ; i i n i .

tis j the use of Hypothesis L. A y

It is just the one that requires tie : B I e e assamption s 2 -
focus on this term. Actually, this s gzssfngla:;)é) IZ?:E alent Lo the 23 for the d Bt 1Tl < o ol o

K = 0. Hence we will assume that
treatment of the remaining terms.
By (2.3), we have

energy inequality (2.6) shows that |w|3 is integrable on (D, r) since |w|; =
- On the other hand, by the assumption (1.8}, |w|? is integrable on (0, 7}.

ce the right-hand side of (3.4) is integrable on (0, 7). By a standard argu-

‘we have w € L™(0,7; L) N L0, r; H1). It follows that u satisfies {1.2)

}. Hence u is a strong solution in that interval.

;. we can extend u, as a strong (regular) solution, to some interval
£ > 0, by starting from the “initial” data u(r) which belongs to i!.

Slwlw -w = jw|?e & - €.
Consequently, using {2.4), one gets

dy
Sl - = pelwle) PPV, mf D(F.£(z + 1), £ + D s
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