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Abstract. We improve results in reference [6] concerning the effect of
the direction of the vorticity on the regularity of weak solutions to the 3D
Navier–Stokes equations. In particular, we prove that, if the direction
of the vorticity belongs to suitable Sobolev spaces, then there exists a
unique smooth solution of the Cauchy problem for the Navier–Stokes
equations.

1. Introduction

In this paper we study how the knowledge of some conditions on the
direction of vorticity field can be used to prove the smoothness of solutions to
the 3D Navier–Stokes equations. We improve results obtained by Constantin
and Fefferman in reference [6], by following essentially their approach. Here
we relax the assumptions on the direction of vorticity

ξ(x) =
ω(x)
|ω(x)| ,

needed to ensure the smoothness of the solutions.
We consider the Navier–Stokes equations

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f in R3 × [0, T ],

divu = 0 in R3 × [0, T ],

u(x, 0) = u0(x) in R3.

(1.1)

For simplicity we suppose that the external force f vanishes and that the
initial datum is smooth. A classical result, that dates back to Leray [12],
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states that for any fixed T > 0 there exists at least a weak solution of
system (1.1) in (0, T ), i.e., a divergence-free vector field u such that

u ∈ Cw(0, T ;L2) ∩ L2(0, T ;H1)

and that∫ T

0

∫
R3

[
u
∂φ

∂t
− ν∇u · ∇φ− (u · ∇)uφ

]
dx dt =

∫
R3

u(T )φ(T )− u0φ(0) dx,

for all divergence-free φ ∈ C1(0, T ;H1). In the sequel we denote by Lp :=
Lp(R3), for 1 ≤ p ≤ ∞ and equipped with norm | . |p, the usual Lebesgue
spaces, while Hs := Hs(R3), for s ≥ 0, are the classical Sobolev spaces. We
indicate with the same symbol both scalar and vector function spaces. We
also recall that Cw(0, T ;L2) is the space of weakly continuous functions on
(0, T ) with values in L2.

By a strong solution we mean a weak solution u such that

u ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2).

It is well-known that strong solutions are regular (say, classical) and unique
in the class of weak solutions. Unfortunately, it is not known whether a
strong solution exists or not in arbitrarily large time-intervals (0, T ). A main
problem is then to prove that for smooth, divergence-free initial data there
exists a strong solution for all times. There are some estimates on the Haus-
dorff dimension (in space-time) of the possible singular set and, as remarked
in Caffarelli, Kohn, and Nirenberg [3], where the best results in this direction
are obtained, . . . the theory remains fundamentally incomplete. In particular
it is not known whether or not the velocity u develops singularities even if
all the data are C∞.

It is important to note that for the problem in R2 the situation is com-
pletely different, since it is possible to prove the global existence in time of
strong solutions; see Ladyžhenskaya [11]—see also J.L. Lions [13] or Con-
stantin and Foiaş [7]. Another way to understand this result is to study the
vorticity field

ω(x, t) := ∇× u(x, t).
In two dimensions ω is a vector always perpendicular to the plane of motion.
Furthermore, by taking the curl of the first equation in (1.1) we have

∂ω

∂t
+ (u · ∇)ω − ν∆ω = 0,

and then the vorticity satisfies a linear evolution equation. In particular, the
modulus of the vorticity cannot increase.
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In three dimensions the situation changes drastically: if we take the curl
of the first equation in (1.1) we obtain

∂ω

∂t
+ (u · ∇)ω − ν∆ω = ω∇u, (1.2)

and the right-hand side is the so-called stretching term. The vorticity can
increase its modulus and can change its direction.

A simple condition on ω that ensures regularity is that considered in
reference [2]: the solution is regular if the vorticity ω belongs to Lp(0, T ;Ls),
or equivalently if u belongs to Lp(0, T : W 1,s), for

2
p

+
3
s

= 2 with 1 ≤ p ≤ 2 (1.3)

(hence if 3 ≤ s ≤ ∞). This condition is a very natural extension to the
values 1 ≤ p ≤ 2 of the classical criterion that establishes the regularity of
the weak solutions that belong to Lp(0, T ;Lq) for

2
p

+
3
q

= 1 with 2 ≤ p <∞ (1.4)

(hence if 3 < q ≤ ∞); see Galdi and Maremonti [8] and references therein.
Let us show a heuristic, but significant, explanation of (1.3) in the light of
(1.4). It is well-known that for 1 ≤ s < 3 one has W 1,s ⊂ Lq, where

1
q

=
1
s
− 1

3
. (1.5)

Suppose now that for s ≥ 3 this embedding theorem and the above classical
regularity criterion are “still true.” Clearly, the “space” Lq is now just
a symbol, to be replaced in the true theorem by W 1,s, s given by (1.5).
Assume, moreover, that u belongs to some Lp(0, T ;W 1,s). Then, by the
“heuristic embedding theorem,” u ∈ Lp(0, T ;Lq), where

2
p

+
3
q

=
2
p

+
(3
s
− 1
)
. (1.6)

Hence by the “heuristic classical criterion,” u is regular if 2
p + 3

q = 1. Hence,
by (1.6), u is regular if condition (1.3) holds. This is just the result proved
in reference [2].

Note that for p = 2 condition (1.3) gives u ∈ L2(0, T ;W 1,3), and this
space is not included in L2(0, T ;L∞), the corresponding space in the above
classical condition (1.4). Recently Kozono and Taniuchi [9] have shown that
u ∈ L2(0, T ;BMO) is a regularity class, where BMO ⊃ L∞ ∪W 1,n is the
classical space of functions with “bounded mean oscillation.”



348 Hugo Beirão da Veiga and Luigi C. Berselli

It is interesting to note that the limit case p = 1 of condition (1.3) gives
the Beale–Kato–Majda condition u ∈ L1(0, T ;W 1,∞); see Beale, Kato, and
Majda [1]. This condition has been relaxed by Kozono and Taniuchi in
reference [10].

Finally, note that in the whole space R3 it is sufficient to assume the
above condition (1.3) just for two of the three components of the vorticity;
see Chae and Choe [4].

In the sequel, instead of regularity criteria involving the length of ω(x, t),
we consider criteria involving its direction. To our knowledge, the only
known condition involving the direction of vorticity is that considered in
Constantin and Fefferman [6]. In this last reference, instead of giving con-
ditions on the modulus (or on some norm) of the vorticity, some estimates
involving the direction of vorticity are found. It is proved that if θ(x, x+y, t),
the angle between the vorticities ω at points x and x+ y at time t, satisfies

sin θ(x, x+ y, t) ≤ |y|
ρ(t)

for ρ−12 ∈ L1(0, T ),

then the solution is smooth in (0, T ). Note that

sin θ(x, x+ y, t) = |P⊥ξ(x,t)ξ(x+ y, t)|,

where P⊥ξ(x,t)ξ(x + y, t) denotes the projection of ξ(x + y, t) on the plane
orthogonal to ξ(x, t).

In this paper we improve this result by proving a regularity criterion
involving the following assumption.
Assumption A. There exist α ∈ [1/2, 1], a positive constant k, and g ∈
La(0, T ;Lb), where

2
a

+
3
b

= α− 1
2

with a ∈
[ 4

2α− 1
,∞
]

such that
sin θ(x, x+ y, t) ≤ g(t, x)|y|α (1.7)

holds in the region where the vorticity at both x and x+ y is larger than k.

Remark 1.1. Note that (1.7) holds, in particular, if

sin θ(x, x+ y, t) ≤ c |y|1/2.

Assumption A will be used to prove the main result of this paper, namely
the following criterion for the regularity of weak solutions.
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Theorem 1.2. Suppose that u is a weak solution of (1.1) in (0, T ), with
u0 ∈ H1 and ∇ · u0 = 0. Suppose that Assumption A is satisfied. Then the
solution is strong in (0, T ), hence regular.

Remark 1.3. It is clear that it is possible to relax Assumption A by as-
suming that (1.7) is satisfied just for

|y| ≤ δ,
for an arbitrary positive constant δ.

From Theorem 1.2 one can derive regularity criteria that depend on suit-
able norms of ξ, instead of depending on pointwise relations, like (1.7). In
this regard, see Corollaries 4.2 and 4.3.

2. Some kinematic estimates

In this section we recall some important results, proved in Constantin [5].
They are referred as kinematic (or “frozen time”) estimates since some spa-
tial properties of the velocity and vorticity are obtained by the Biot–Savart
law, at each time t. Recall that the Biot–Savart law reads

u(x) = − 1
4π

∫
R3

(
∇ 1
|y|
)
× ω(x+ y) dy. (2.1)

By differentiating (2.1) we obtain the following expression for the strain
matrix:

S[ω](x) :=
1
2

[∇u(x) + (∇u(x))∗] =
3

4π
P.V.

∫
R3

M(ŷ, ω(x+ y))
dy

|y|3 .

For convenience we set S(x) = S[ω](x). In the last formula ŷ is the unit
vector in the direction of y, while

M(ŷ, ω) :=
1
2

[ŷ ⊗ (ŷ × ω) + (ŷ × ω)⊗ ŷ]

is a symmetric traceless matrix. It defines a proper singular operator, since
its mean value on the unit sphere is zero, when ω is held fixed. With this
formula we can give a representation for the term

α(x) := S(x)ξ(x) · ξ(x), (2.2)

the stretching rate, that is defined in the set {x ∈ R3 : |ω(x)| > 0}. The
importance of the formula representing α is made clear by recalling the
equation satisfied by the vorticity magnitude:

1
2

( ∂
∂t

+ u(x, t) · ∇ − ν∆
)
|ω(x, t)|2 + ν|∇ω(x, t)|2 = α(x, t)|ω(x, t)|2.
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From the representation formula for S(x) one can deduce the following ele-
gant formula:

α(x) :=
3

4π
P.V.

∫
R3

D(ŷ, ξ(x+ y), ξ(x))|ω(x+ y)| dy|y|3 , (2.3)

where
D(v1, v2, v3) := (v1 · v3) Determinant(v1, v2, v3).

As remarked in [5], it is interesting to note that in formula (2.3) the stretching
term vanishes if ξ(x + y) = ±ξ(x), because the determinant of (ŷ, ξ(x +
y), ξ(x)) equals the volume of the prism whose edges are ŷ, ξ(x + y) and
ξ(x). One can easily infer that the local (anti) alignment of the vorticity
depletes the nonlinearity.

3. A priori estimates on weak solutions

When dealing with weak solutions of the Navier–Stokes equations, the
strongest quantitative result, known up to now, is the energy estimate. If
the external force vanishes, the kinetic energy of the fluid dissipates since

1
2
|u(t)|22 + ν

∫ t

0

∫
R3

|∇u(x, σ)|2 dx dσ ≤ 1
2
|u0|22, ∀ t ≥ 0. (3.1)

This inequality, stated in the seminal paper by Leray [12], is a fundamental
tool in the proof of existence of weak solutions.

A more recent estimate is that obtained in Constantin and Fefferman [6],
equation (20), Section 3. By multiplying (1.2) by the vorticity direction
ξ (and with a smoothing process), and by integrating in the space-time
variables it is possible to prove that

|ω(t)|1+ν
∫ t

0

∫
{x:|ω(x,σ)|>0}

|ω(x, σ)||∇ξ(x, σ)|2 dx dσ ≤ |ω0|1+
2
ν
|u0|22, (3.2)

provided that the initial vorticity belongs to L1.
As remarked in [5], this inequality shows that in region of high vorticity

the direction of vorticity is regular, at least in an average sense. In particular,
in the region where the modulus of vorticity is large the vortex lines can not
bend too much.

Remark 3.1. In Constantin and Fefferman [6] estimate (3.2) is used to prove
their regularity criterion. In particular, the uniform boundedness of the L1

norm of the vorticity is used. Our proof is independent of this estimate and,
consequently, we do not need an L1 bound for the initial vorticity.
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4. Proof of Theorem 1.2

In the sequel the symbol c denotes a generic positive constant independent
of u, ν, and k. Distinct constants will be denoted by the same symbol c.

In this section we prove the main theorem of this paper. By using the
continuation principle for strong solutions it is enough to prove the following
lemma.

Lemma 4.1. Let u, a weak solution of system (1.1) on (τ−δ, τ), be a strong
solution in (τ − δ, τ ′) for each τ ′ < τ. Assume moreover that Assumption A
is satisfied. Under these hypotheses, u is a strong solution in (τ − δ, τ).

Since we work with solutions that are strong (hence regular) in the in-
terval (τ − δ, τ ′), it is possible to handle the estimates without introducing
smoothing processes to justify the formal calculations.

Proof of Lemma 4.1. By multiplying equation (1.2) by ω, and by some
integration by parts, we get

1
2
d

dt
|ω|22 + ν|∇ω|22 =

∫
R3

S(x)ω(x) · ω(x) dx. (4.1)

Let k be the positive constant in Assumption A and split ω(x) as ω(x) =
ω1(x) + ω2(x), where

ω1(x) =
{
ω(x), if |ω(x)| ≤ k,

0, if |ω(x)| > k,

and

ω2(x) =
{

0, if |ω(x)| ≤ k,
ω(x), if |ω(x)| > k.

This induces the natural decomposition S[ω](x) = S[ω1](x) + S[ω2](x), or,
with the simplified notation, S(x) = S1(x) + S2(x). Note that, by the
Calderón–Zygmund inequality,

|Si|q ≤ c |ωi|q, (4.2)

where 1 < q <∞ and i = 1, 2.
The integrand S ω · ω in the right-hand side of equation (4.1) splits into

a sum of eight terms of the form Si ωj · ωk, for i, j, k = 1, 2. By using (4.2)
with q = 2 it is immediate to show that∣∣∣ ∫

R3

Si(x)ωj(x) · ωk(x) dx
∣∣∣ ≤ c k |ω|22, (4.3)

when (j, k) 6= (2, 2). Note that |ωi|2 ≤ |ω|2, for i = 1, 2.
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Next, we want to prove that

B :=
∣∣∣ ∫
R3

S1(x)ω2(x) · ω2(x) dx
∣∣∣ ≤ ν

4
|∇ω|22 + c ν−3/5k4/5|ω|4/52 |ω|22. (4.4)

Let us recall that (see Ladyžhenskaya [11], Section 1.1, Lemma 2)

|ω|4 ≤ 4 |ω|1/42 |∇ω|
3/4
2 . (4.5)

By Hölder’s inequality and by (4.2) with q = 4 one gets

B ≤ c |ω1|4 |ω|4 |ω|2.
Therefore, due to (4.5),

B ≤ c |ω1|4 |ω|1/42 |∇ω|
3/4
2 |ω|2,

and by Young’s inequality

B ≤ ν

4
|∇ω|22 + c ν−3/5|ω1|8/54 |ω|22.

Since |ω1|44 ≤ k2|ω|22, estimate (4.4) follows.
Finally, we consider the term regarding the values i, j, k = 2. This term

is just the one that requires the additional Assumption A. By (2.2) one has
S2 ω2 · ω2 = |ω2|2 S2 ξ2 · ξ2. Consequently, by using (2.3),

S2 ω2 · ω2 =
3

4π
|ω2(x)|2 P.V.

∫
R3

D(ŷ, ξ2(x+ y), ξ2(x))|ω2(x+ y)| dy|y|3 .

Moreover, Assumption A, together with ξ2 = ξ, shows that

|D(ŷ, ξ2(x+ y), ξ2(x))| ≤ g(t, x)|y|α.
It readily follows that

|S2(x)ω2(x) · ω2(x)| ≤ 3
4π
|ω2(x)|2 g(t, x) I(x), (4.6)

where
I(x) =

∫
R3

|ω2(x+ y)| dy

|y|3−α .

Let us recall that the Hardy–Littlewood–Sobolev inequality in Rn (see, for
instance, Stein [14], Chapter V) states that if α ∈ (0, n) and if ω2 ∈ Lr, for
some r ∈ (1, n), then I belongs to Lq, 1 < q < ∞, for 1/q = 1/r − α/n.
Furthermore, the linear map ω2 7→ I, between Lr and Lq, is continuous.
Clearly, in the above statement, ω2 denotes an arbitrary function of Lr(Rn),
and in the definition of I(x), the symbol 3 must be replaced by n.

By applying this inequality with r = 2 and n = 3 we show that

|I|q ≤ c |ω2|2, (4.7)
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where 1/q = 1/2− α/3. By (4.6) and by Hölder’s inequality one gets

C :=
∣∣∣ ∫
R3

S2(x)ω2(x) · ω2(x) dx
∣∣∣ ≤ 3

4π
|ω(x)|22p |g(t, x)|b |I(x)|q, (4.8)

where 1/b+ 1/p+ 1/2− α/3 = 1; i.e.,
1
b

+
1
p

=
1
2

+
α

3
. (4.9)

Note that b ∈ [6/(2α − 1),∞] and that p ≥ 6/(3 + 2α). In the sequel we
restrict p to the values

6
3 + 2α

≤ p < 3,

since we need 2p < 6. By (4.7) and (4.8) it follows that

C ≤ c |g|b |ω|22p |ω|2.
By using the classical interpolation results in Lp-spaces (note that 2 ≤ 2p <
6)

|ω|22p ≤ |ω|2β2 |ω|
2−2β
6 , β =

1
2

[3
p
− 1
]
,

we get

C ≤ c |g|b |ω|
3
p

2 |∇ω|
3(p−1)
p

2

since, by a Sobolev’s embedding theorem, |ω|6 ≤ c |∇ω|2. Next, we apply
Young’s inequality with exponents 2p/(3− p) and 2p/3(p− 1). This yields

C ≤ c ν−
3(p−1)

3−p |g|
2p

3−p
b |ω|

6
3−p
2 +

ν

4
|∇ω|22. (4.10)

Finally, by (4.3), (4.4), and (4.10)
d

dt
|ω|22 + ν|∇ω|22 ≤ cG(t)|ω|22, (4.11)

where
G(t) = k + ν−3/5k4/5|ω|4/52 + ν

− 3(p−1)
3−p (|g|b |ω|2)

2p
3−p . (4.12)

By using (4.11) and (4.12) we show that ω ∈ L∞(τ−δ, τ ;L2)∩L2(τ−δ, τ ;H1),
hence that u is a strong solution in the time interval (τ −δ, τ), provided that
G(t) ∈ L1(τ − δ, τ), hence provided that

|g|
2p

3−p
b |ω|

2p
3−p
2 ∈ L1(τ − δ, τ). (4.13)

Let us show that this holds under Assumption A.
We start by setting p = 3/2 in condition (4.13). Hence, by (4.9), we

have that b = 6/(2α − 1) (note that b = +∞ if α = 1/2). For p = 3/2
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condition (4.13) is simply |g|26/(2α−1)|ω|22 ∈ L1(τ − δ, τ), which holds if g ∈
L∞(τ −δ, τ ;L

6
2α−1 ). This covers the proof of Lemma 4.1 in the case in which

a =∞, for each α ∈ [1/2, 1].
Assume now that a <∞ (hence 1/2 < α ≤ 1), and let p satisfy

6
3 + 2α

≤ p < 3
2
. (4.14)

By applying the Hölder inequality with exponents θ = 3−p
3−2p and θ′ = 3−p

p ,

and, by recalling the energy estimate (3.1), we get∫ τ

τ−δ
|g|

2p
3−p
b |ω|

2p
3−p
2 dt ≤

[ ∫ τ

τ−δ
|g|

2p
3−2p

b

] 3−2p
3−p
[ 1

2ν
|u0|2

] p
3−p

.

Hence, the coefficient of |ω|22 on the right hand side of (4.11) is integrable
over (τ − δ, τ) if

g ∈ L
2p

3−2p (τ − δ, τ ;L
6p

(3+2α)p−6 ), (4.15)
for p satisfying (4.14). Consequently, u is a strong solution on (τ − δ, τ),
provided that condition (4.15) is satisfied.

By setting a = 2p
3−2p and b = 6p

(3+2α)p−6 (note that the value of b is given
by (4.9)), it follows that 2

a + 3
b = α − 1

2 . The restriction on p imposed
by condition (4.14) shows that 4

2α−1 ≤ a < ∞, which corresponds, in the
statement of Lemma 4.1, to all the cases in which a <∞. ¤

After having proved Lemma 4.1, we can now prove the main result of this
paper.

Proof of Theorem 1.2. The proof follows immediately from Lemma 4.1,
by using a standard continuation argument, together with the existence of
a (unique) local strong solution for arbitrary divergence-free initial data in
H1.

In fact, the local existence theorem for strong solutions (see for instance
Leray [12]) implies that system (1.1) has a unique strong solution in some
interval [0, T ′), for some strictly positive T ′. For convenience, we assume
that this interval is the maximal interval of existence of the strong solution
starting from u0 at time t = 0.

Let us suppose, by contradiction, that T ′ < T. Lemma 4.1 implies that
the solution is strong up to T ′. The local existence theorem ensures that
there exists a unique strong solution for the Cauchy problem with initial
datum u(T ′) in some interval [T ′, T ′ + ε), for some strictly positive ε. This
is absurd, since T ′ was the endpoint of the maximal interval of existence.
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Observe that if the initial datum u0 does not belong to H1, but just to
L2, then the regularity result holds on (t′, T ) for each t′ > 0. ¤

In the case in which α = 1, condition (1.7) holds in particular if g belongs
to La(0, T ;Lb), with 2/a+ 3/b = 1/2. We observe that

|D(ŷ, ξ(x+ y, t), ξ(x, t))| = |D(ŷ, ξ(x+ y, t)− ξ(x, t), ξ(x, t))| .
Since |ξ(x, t)| = 1, the condition (1.7) can be replaced by

|ξ(x+ y, t)− ξ(x, t)| ≤ g(t, x)|y|.
It is well-known that this condition is equivalent to requiring that

∇ξ ∈ La(0, T ;Lb). (4.16)

We have then the following corollary.

Corollary 4.2. Suppose that a weak solution u in (0, T ) satisfies (4.16) for
2
a

+
3
b

=
1
2
.

Then the solution is strong, hence regular in (0, T ).

It follows that it is not necessary to resort to a pointwise estimate of the
direction of the vorticity. In fact, the global estimate (4.16) can be related
to some mean properties of the flow.

The condition with α noninteger can be related, as well, to some regularity
of ξ. In this case the right framework is that one of the Nikol’skij spaces Np,λ.
We recall that the spaces Np,λ, for 1 ≤ p < ∞ and 0 < λ < 1, are defined
by

Np,λ :=
{
u ∈ Lp s.t. sup

0 6=h∈Rn
|u(x+ h)− u(x)|p

|h|λ <∞
}
,

equipped with the norm

‖u‖Np,λ = |u|p + sup
0 6=h∈Rn

|u(x+ h)− u(x)|p
|h|λ .

Observe that Np,λ is isomorphic to the Besov space Bλ,∞
p . Furthermore,

Np,1 = W 1,p, for p > 1. Moreover, we define the following space N p,λ:

N p,λ :=
{
u measurable s.t. sup

0 6=h∈Rn
|u(x+ h)− u(x)|p

|h|λ <∞
}
.

A comprehensive reference regarding these spaces is Triebel’s book [15].
Hence, the following result derives immediately from Theorem 1.2.
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Corollary 4.3. Suppose that u is a weak solution of (1.1) in (0, T ) and
suppose also that the following condition is satisfied:

ξ ∈ La(0, T ;N b,α), with
2
a

+
3
b

= α− 1
2

for
1
2
≤ α ≤ 1,

where 4/2α− 1 ≤ a ≤ ∞. Then the solution is strong in (0, T ), hence regular.
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