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Abstract. We improve regularity criteria for weak solutions to the Navier–Stokes equations
stated in references [1], [3] and [12], by using in the proof given in [3], a new idea introduced
by H. O. Bae and H. J. Choe in [1]. This idea allows us, in one of the main hypothesis (see
eq. (1.7)), to replace the velocity u by its projection ū into an arbitrary hyperplane of Rn; see
Theorem A. For simplicity, we state our results for space dimension n ≤ 4, since if n ≥ 5 the
proofs become more technical and additional hypotheses are needed. However, for the interested
reader, we will present the formal calculations for arbitrary dimension n.
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1. Introduction

In the sequel we consider the Navier–Stokes equations in (a, b)×Rn, n ≤ 4, namely

∂tu+ (u · ∇)u− ν∆u+∇p = 0,
∇ · u = 0.

}
(1.1)

We assume, for simplicity, that the external forces f are potential-like. How-
ever, it is not difficult to include non-potential external forces, under appropriate
assumptions.

The problem treated here goes back to the classical works [15] and [16], and
to their further development as, for instance, the well known result stating that
Lq(a, b;Lp), 2/q + n/p ≤ 1, n < p, is a regularity class for weak solutions to the
Navier–Stokes equations (for a very simple proof see [3]). However, it remains
open the case p = n, q = +∞. In some sense the results proved in this note are
along this line of research.

The well known symbols Lp(Rn), 1 ≤ p ≤ +∞, Hk(Rn), k positive integer,
and Lp(a, b;X), where X is a Banach space, stand for classical functional Lebesgue
and Sobolev spaces, and will not be defined here. In the sequel, we shall omit the
symbol Rn. The canonical norm in Lp is denoted by ‖ · ‖p. In our notation we
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will not distinguish between spaces consisting of scalar or vector functions. For
instance we denote the space (Lp)n = Lp × . . .× Lp (n times) simply by Lp. The
same convention applies to norms.

C(α, β;X), X a Banach space, denotes the functional space consisting of con-
tinuous funtions on [α, β] with values in X . Cw(α, β;X) denotes the linear sub-
space of L∞(α, β;X) consisting of all the weakly continuous functions in [α, β)
with values in X .

We say that u is a weak solution in (α, β) to the Navier–Stokes equations (1.1)
if

u ∈ Cw(α, β;L2) ∩ L2(α, β;H1) (1.2)

satisfies (1.1) in the usual distributional sense in (α, β) for some distribution p(t, x).
We say that a weak solution in (α, β) is a strong solution if, moreover,

u ∈ L2(α, β;H2),

∂tu ∈ L2(α, β;L2).

}
(1.3)

In particular, it follows from (1.3) that strong solutions satisfy

u ∈ C(α, β;H1),

∇u ∈ C(α, β;L2),

∂t∇u ∈ L2(α, β;H−1).

 (1.4)

Since H1 ↪→ L6 if n = 3 and H1 ↪→ L4 if n = 4 it follows from (1.4) that strong
solutions u belong to C(α, β;Ln) and satisfy ∇u ∈ L2(α, β;Ln). Note that |∇u|3
and the product |u| |∇u| |∇2u| are integrable over (α, β)× Rn, if n ≤ 4.

In the sequel ū = (u1, . . . , un−1) denotes the projection of the vector field
u(t, x) ∈ Rn into the hyperplane V generated by the first n− 1 vectors of a fixed
basis of Rn. Note that, due to the rotational invariance of the Navier–Stokes
equations, the above hyperplane can be chosen in the most appropriate way. |B|
denotes the n–dimensional measure of the set B.

Set
A(t, k) = {x ∈ Rn : |v(t, x)| ≥ k} (1.5)

for each t in which v(t) is defined and for each real positive k. In the sequel our
main assumption is the following.

Hypothesis A. We say that a vector field v(t, x) satisfies the hypothesis A at τ ,
with respect to the positive constant Λ, if there is a positive constant ε0 such that

v ∈ L∞(τ − ε0, τ ;Ln), (1.6)

and a real nonnegative function k(t) defined and square integrable on (τ − ε0, τ)
such that ∫

A(t,k(t))
|v(t, x)|ndx ≤ Λn, a.e. in (τ − ε0, τ). (1.7)
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A main point here is the possibility of using suitably the free choice of the
square integrable function k(t) (in this regard see also [10], eq. (1.4)). The above
hypothesis was introduced by us in reference [3]. In [3] we also proved the following
result.

Proposition 1.1. Assume that v satisfies (1.6), that v is left continuous in (τ −
ε0, τ ] with respect to the weak topology in Ln and, moreover, that

lim sup
t→τ−0

‖v(t)‖nn < ‖v(τ)‖nn + 41−nΛn. (1.8)

Then the hypothesis A holds at τ with respect to the constant Λ. In this particular
case, the square integrable function k(t) is simply a suitable constant k defined for
t ∈ (τ − k−1, τ ].

For the proof of this result we refer the reader to the proof of the Proposition
2.1 in reference [3].

Our main result is the following.

Theorem A. There is a positive constant C(n), depending only on the dimension
n, such that the following statement holds. Let u be a weak solution to the Navier–
Stokes equations (1.1) in (a, b) and let τ ∈ (a, b]. Assume that ū = (u1, . . . , un−1)
satisfies the hypothesis A at τ with respect to the constant

Λ = 41− 1
nC(n)

1
n ν

where C(n) is defined in equation (2.1) below. Then, there is an ε > 0 such that u
is a strong solution of (1.1) in (τ − ε, τ + ε).

In particular the result holds if the assumption (1.7) on ū is replaced by the
assumption (1.8) on ū.

Note that Theorem A implies that u is smooth in (τ−ε, τ+ε)×Rn. We remark
that the constant C(n) can be easily estimated.

Corollary 1.1. Let u be a weak solution to (1.1) in (a, b). Assume that u(a) ∈ H1,
that ∇ · u(a) = 0, that

ū ∈ L∞(a, b;Ln), (1.9)

and that there is a real positive function k(t), defined and square integrable in
(a, b), such that ∫

A(t,k(t))
|ū(t, x)|ndx ≤ Λn, a.e. in (a, b). (1.10)

Then u is a strong solution in (a, b). In particular u is a strong solution in
(a,b) if, instead of (1.10), we assume that (1.8) holds for ū at each τ ∈ (a, b].
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If we assume that u(a) ∈ L2 instead of u(a) ∈ H1, the solution is strong in
(a′, b) for each a′ > a.

The above result also covers Theorem 1 in reference [1]. In fact, this theorem
states two main results. The first one shows, essentially, that there is an ε0 > 0
such that if the L∞(a, b;Ln) norm of ū is less than ε0 then u is a strong solution
in (a, b). Clearly the above assumption implies that (1.8) holds in (a, b], hence
the result is covered by corollary 1.1. The second one can be summarized in the
following.

Corollary 1.2 (Bae and Choe). Assume that u is as in Corollary 1.1 with the
assumptions (1.9) and (1.10) replaced by

ū ∈ Lq(a, b;Lp)

where 2/q + n/p ≤ 1, n < p. Then u is a strong solution.

This is a classical result if ū is replaced by u. Let us show that this result
follows also as an immediate consequence of the above Corollary 1.1.

Proof. Set

I ≡
∫
A(t,k(t))

|ū(t, x)|ndx.

By Hölder’s inequality
I ≤ ‖ū(t)‖np |A(t, k(t))|

p−n
p .

Obviously, ∫
{|v|≥k}

|v|sdx ≥ ks|{|v| ≥ k}|, 1 ≤ s < +∞.

Hence
I ≤ ‖ū(t)‖ppk(t)n−p.

It follows that the Corollary 1.1 applies if there is a square integrable function k(t)
such that

‖ū(t)‖ppk(t)n−p ≤ Λn, a.e. in (a, b),

or equivalently, if

k(t) = Λ
n
n−p ‖ū(t)‖

p
p−n
p

belongs to L2(a, b). This latter statement holds, since p
p−n = q

2 . �

Other results follow from Theorem A as, for instance, the fact that u is smooth if
ū is of bounded variation with values in Ln. This follows from the classical result
that establishes the existence of left and right limits for functions of bounded
variation in (a, b). This, clearly, implies (1.8). This fact was first remarked in
reference [12], Corollaries 2 and 3.
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A crucial point in our proof is the estimate∣∣∣∣∫
Rn
∇[(u · ∇)u] · ∇udx

∣∣∣∣ ≤ c1(n)
∫
Rn
|ū| |∇u| |∇2u|dx, (1.11)

for a.a. t ∈ (α, β), where n ≤ 4 and u in a strong solution in (α, β). This estimate
is due to H. O. Bae and H. J. Choe, see [1]. For the reader’s convenience we present
here its proof. Note that the estimate (1.11) is obvious if ū is replaced by u.

Theorem A, under the hypothesis A on u, was proved in reference [3] and,
under the stronger hypothesis (1.8), in references [3] and [12]. In [12] the reader
also finds other very interesting related results, references, and remarks.

In reference [3] we consider the case of a bounded domain Ω, however the proof
works also if Ω = Rn. On the contrary, in the present case, in replacing u by ū
the absence of boundary conditions is crucial in proving the estimate (1.11).

In order to extend the proofs to the case n ≥ 5 some more refined background
results, together with suitable additional assumptions (since H1 ↪→ Ln is false),
are needed. It is useful, in particular, to resort to uniqueness of solutions in
L∞(a, b;Ln) and to existence of local regular solutions for initial data in Ln. These
results are due to many authors. In particular we quote here [7], [8], [9], [11], [12],
[13], [14], [17], [18], [19], [20] and references therein. More recent developments
can be found also in [10]. In particular, in [10] it is shown that there is a positive
constant λ (see [10], Eq. (1.4)) such that (in our notation) if[

sup
R≥k(t)

R|A(t, R)|1/n
]n
≤ λn a.e. in (a, b), (1.12)

for some square integrable function k(t), then the solution u is smooth ([10], The-
orem 3).

It is interesting to compare the assumption (1.12) with the hypothesis A in
reference [3], since they lead to similar results. If f(x) is a nonnegative function
defined on a measurable set B then∫

B

f(x)dx =
∫ +∞

0
|{x ∈ B : f(x) > t}|dt.

It readily follows that, for each t,∫
A(t,k(t))

|u(t, x)|ndx =
∫ +∞

k(t)
[R|A(t, R)|1/n]n

dR

R
+ k(t)n|A(t, k(t))|. (1.13)

Hence, the hypothesis A is equivalent to assuming that the right hand side of
(1.13) is bounded by Λn, which is related to (1.12).

Finally, we remark that the hyperplane V may depend on t. For each t, let
e1(t), . . . , en(t) be an orthonormal basis of Rn such that each ei(t) is a continuous
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function of t with respect to a fixed basis. Let

u(t, x) =
n∑
i=1

ui(t, x) ei(t),

ũ(t, x) =
n−1∑
i=1

ui(t, x) ei(t).

(1.14)

The results proved in this paper also hold if u is replaced by ũ, as is easily seen.
The continuity of the moving basis is useful when (1.8) is assumed for ũ (in order
to get the left continuity of ũ with respect to the weak topology). This continuity
assumption can be substantially weakened if one directly uses the assumption A
for ũ.

2. Proof of Theorem A

In order to prove Theorem A, it is clearly sufficient to prove it in the following
form.

Theorem 2.1. Let u be a weak solution u of (1.1) in (τ − ε0, τ) and a strong
solution in (τ − ε0, τ ′), for each τ ′ < τ . Assume, moreover, that ū satisfies (1.6)
and (1.7). In (1.7) Λ is defined as in Theorem A and C(n) is defined by

C(n) = 1/(
√

241− 1
n c0(n)c1(n))n, (2.1)

where c0(n) is the constant in equation (2.10) and c1(n) that in equation (1.11).
Under the above hypothesis u is a strong solution in (τ − ε0, τ). In particular

the result holds if (1.7) is replaced by (1.8).

Proof. We set
|∇u|2 =

∑
i,k

|∂kui|2, |∇2u|2 =
∑
i,j,k

|∂2
kjui|2,

where summations, without otherwise stated, are taken from 1 to n. The symbol
∂k means differentiation with respect to xk, and ∂kj = ∂k∂j .

Differentiating both sides of equation (1.1) with respect to xk, taking the scalar
product with ∂ku, adding over k and, finally, integrating by parts over Rn, we show
that

1
2

1
dt

∫
Rn
|∇u|2dx+ ν

∫
Rn
|∇2u|2dx = −

∫
Rn
∇[(u · ∇)u] · ∇udx (2.2)

where obvious integrations by parts have been done. Since ∇ · u = 0 it readily
follows that

−
∫
Rn
∇[(u · ∇)u] · ∇udx =

∑
i,j,k

(∂kui)(∂iuj)(∂kuj)dx.
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Next, we prove estimate (1.11). Following [1], we consider separately the three
cases i 6= n; i = n and j 6= n; i = j = n.

If i 6= n one has∫
Rn

(∂kui)(∂kuj)(∂iuj)dx = −
∫
Rn
ui∂k[(∂kuj)(∂iuj)]dx. (2.3)

If i = n but j 6= n,∫
Rn

(∂kun)(∂iuj)(∂kuj)dx =−
∫
Rn

(∆un)(∂iuj)ujdx

−
∫
Rn

(∂kun)(∂2
ikuj)ujdx.

(2.4)

Finally, since
∂nun = −

∑
` 6=n

∂`u`,

it readily follows that∫
Rn

(∂kun)(∂nun)(∂kun)dx = 2
∑
` 6=n

∫
Rn
u`(∂kun)(∂2

k`un)dx. (2.5)

From (2.3), (2.4), (2.5) the estimate (1.11) follows. Note that the constant
c1(n) can be easily estimated.

From (1.11) and (2.2) one gets

1
2
d

dt

∫
Rn
|∇u|2 + ν

∫
Rn
|∇2u|2dx ≤ c1(n)

∫
Rn
|ū| |∇u| |∇2u|dx.

By Cauchy–Schwarz inequality we find

d

dt

∫
Rn
|∇u|2dx+ ν

∫
Rn
|∇2u|2dx ≤ c21ν−1

∫
Rn
|ū|2 |∇u|2 dx (2.6)

where c1 = c1(n).
From now on k denotes a constant such that (1.7) holds for the function ū

when t ∈ (τ − ε0, τ). From (2.6) we get

d

dt

∫
Rn
|∇u|2dx+ ν

∫
Rn
|∇2u|2dx ≤

≤ c21ν−1k2(t)
∫
Rn
|∇u|2dx+ c21ν

−1
∫
A(t,k(t))

|ū|2 |∇u|2dx.
(2.7)

By Hölder’s inequality∫
A(t,k)

|ū|2 |∇u|2dx ≤ ‖∇u‖22∗
(∫

A(t,k)
|ū|ndx

)2/n

(2.8)
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where A(t, k) = A(t, k(t)) and 2∗ = 2n/(n − 2). Since, by a well known Sobolev
embedding theorem,

‖v‖2∗ ≤ n−(1/n)[2(n− 1)/(n− 2)]
∑
i

‖∂iv‖2 (2.9)

one gets
‖∇u‖2∗ ≤ c0(n)‖∇2u‖2. (2.10)

From (2.7), (2.8) and (2.10) it follows that

d

dt

∫
Rn
|∇u|2dx+ ν

∫
Rn
|∇2u|2dx ≤

≤ c21ν−1k2(t)
∫
Rn
|∇u|2dx+ c21ν

−1c20 ‖∇2u‖22

(∫
A(t,k)

|ū|ndx
)2/n

.

By using (1.7) and (2.1) one has

d

dt

∫
Rn
|∇u|2dx+

ν

2

∫
Rn
|∇2u|2dx ≤ c21ν−1k2(t)

∫
Rn
|∇u|2dx (2.11)

for t ∈ (τ−ε0, τ). Theorem 2.1 then readily follows by integration with respect to t
for n = 3. If n = 4, from u ∈ L2(τ−ε0, τ ;H2) it follows that u ∈ L2(τ−ε0, τ ;W 1,4).
Since, for n = 4, W 1,4 ↪→ L∞ is false, we are not allowed to a priori assume
that u belongs to Lq(τ − ε0, τ ;Lp) with 2/q + n/p = 1 (which is a well know
criterion for regularity of solutions to the Navier–Stokes equations). However
u ∈ L2(τ − ε0, τ ;W 1,n) is sufficient to guarantee the smoothness of solutions u, as
proved by us (in a quite simple way) in reference [2]. �

The proof of Theorem A is now straightforward. First of all, it is sufficient to
prove the thesis of the theorem with respect to (τ − ε, τ ] since u(τ) ∈ H1 allows
the continuation of the regular solution for t > τ . Let u(τ − ε′) ∈ H1 for a fixed ε′,
0 < ε′ < ε0. Then u coincides on [τ − ε′, τ ′) with the unique (local) strong solution
with initial data u(τ − ε′), where [τ − ε′, τ ′) is the maximal interval of existence of
this strong solution. Theorem 2.1 shows that it can not be τ ′ < τ . �
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