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Abstract. It is well known that a weak solution (v, p} to the Navier—Stokes equations is regular
if v satisfies some suitable extra conditions (see (1.2), (1.3)). However, with the exception
of the recent papers [BV4], [BV5] (see also [K], {Be]) rot so much attention has been payed
to “alternative natural assumptions” that p may fulfill, in order thai (v,p) be regular. By
“alternative natural assumptions”, we mean assumptions that formally follow from the Poisson
equation relating pressure and velacity {see {1.4)). The objective of this paper is to prove that
{v,p} is regular il |p{/{1 + |2|)} cbeys some conditicns that are in formal agreement with this
relation.

Mathematics Subject Classification (2000}, 35B65, 35K55, T6D05.

1. Imtroduction and main results

This paper is concerned with the regularity of weak solutions, in the sense of
Leray—Hopt [Se], to the Navier—Stokes equations:
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dive=10 in Qr; | (1.1)
v="0 on L7

v(z,0) = vo(x).
Here € is a regular, open, bounded, connected subset of R*, n > 3, T is its
boundary, @ = §2 x [0,¢], By =" x [0,1], and 7" is an arbitrary positive number.
It is well known (see, e.g. [S] and the references cited therein; see also [BV3]
for a more elementary proof) that a weak sclution in the sense of Leray-Hopf is
regular if*

ve LT0,T; LA(5Y)) (1.2)
with (r, ¢) satisflying
2
;+§:L g €n, +o0]. (1.3)

* We use standard notations for funclion spaces; sce also the end of this section.
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However, the well-known equation:
—Ap= Y 8:i;(vivy), (1.4)
ii=1

relating p and v suggests that, at most, the inequality |p| < [v|? holds (but not the
reverse inequality, as needed later on). In [BV4], we showed that if

P
< L7{0,T;, L), 1.5
e LT L4(9) (15)
with 0
7
-+ — 1.6
- + 7 <1, (1.6)

then v € L®°(Qr), implying regularity [S]. More specifically, in {BV4]| we prove
that the solution is regular if (1.5) holds just on a subset of Qr where ju(z,1)| > k,
for some (arbitrary large) k; see (BV4], eq. (1.6). This fact is of a certain interest,
since a priori, according to (1.4) there is no relation between regions where |p| is
large, and regions where |v| is large.

A question left open in [BV4], is to ascertain if regularity can be obtained under
conditions (1.5), (1.3). The objective of this paper is to answer this question in
the affermative. The method we shall use is completely different than that used
in [BV4], and rests upon very simple L%-estimates for regular solutions to (1.1}.
It is worth of noticing that relaxing (1.6} to (1.3) under condition (1.5) requires a
different method than that usually adopted under condition (1.2}. This because,
in the latter case, regularity can be recovered from a suitable linearization of the
term v - Vo in (1.1), as in [S] and [GaMa); see also [LUS], Chapter III, Remark
7.3, with the coefficients b; replaced by v;. This procedure, of course, would not
produce any result under the assumption (1.5).

Before stating our main theorem, we wish to mention the related results proved
in [BV5]. Specifically, there we showed regularity results for v, under suitable
assumptions on |p|/(1+ |v])?, 8 € [0,1). These results are stated in the framework
of Marcinckiewicz spaces Li(Qr). As is known, such spaces are interpolation
spaces satisfying LY — LI «— L9, for each € > 0. In the particular case & = 0, we
proved that if p € LY (Qy), for some y € (2, N}, thenv € L¥{Qr), u = Nvy/(N-).
For v = N/2, it follows that 2 = N. Note that, to present, N = n+2is the smallest
exponent known to guarantee the regularity of a weak solution v € LN(Qr).

For an extension of condition (1.2) to values of r belonging to [1,2], we refer
to [BV2]. For the case r = oo, we refer to [BV3] and [KoS}.

Let H.(Q) be the completion in the L*(£2)-norm of the subset of of vector
functions w from C$°(0) satisfying divw = 0. Our main result reads as follows.

Theorem L. Let be @ > n. Assume that vg € Ho(Q) and that F' is regular. Let
(v,p) be a weak solution of problem (1.1) in Q7 such that (1.5) holds for some pair
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(r,q) satisfying (1.3). Then
ve CO,T; Ho()), W]o/? e L2(0,T; HE Q). (1.7)
Moreover, if q < +co, the solution v satisfies the estimate given in (2.14). If

g = +oo a similar estimate holds (see the end of Section 2).

Remark 1. For simplicity, we assume f regular. However, Theorem I continues
to hold if only f e L*(0,T; L*())see (2.14).

Remark 2. We could obtain estimates sharper than those proved in (2.2) and
(2.14). However, this would produce no jmprovement on the main result.

Remark 3. In the light of results proved, e.g., in [8], Theorem I ensures, in
particular, that if f € C*(Q x (0,T]} and € is of class C°°, then v,p € O™ (0 x
(0,T]).

The proof of Theoren I will be given in the next section.

We end this section by introducing some notation.* We denote by L%, 1 < a <
00, the usual Lebesgue spaces with corresponding norm || ||o. The space .8
was already introduced before Theorem I, For a vector v defined in © with values

in R™ we set
lvy;z — i a'UJ 2

Gi=1

Sometimes, we shall write simply {| V|, instead of [[[Vv||ls. As customary, ol =
HE(?) denotes the space of functions defined and square-integrable in {1 together
with their first derivatives, and vanishing at I'. In the sequel we shall use the
Sobolev inequality:

3 < el Val3, Vge H, (1.8)

g

where 2* = 2n/(n — 2).

By C(0,7;X), where X is a Banach space, we denote the functional space
consisting of continuous functions on the closed interval [0, 7] with values in X.
We also consider, with usual definitions and notations, spaces L7(0,T; X).

2. Proof of Theorem 1

The following quantities play a leading role in the sequel {see also [BV1]; note
that below N, is the 1/c power of the quantity N, defined in [BV1], and similarly

* In general, we shall use the same symbol for spaces of scalar and vector functions.
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for My).
1/
No(v) = (f |VU|2|U|““2d:I;) ,
« (2.1)

Mo (v) = (fgiwuw/ﬂzdx)w.

Let us start by showing that in order to prove Theorem T it is sufficient to prove
in {0,T} the estimate ;

1d, 1o . Hre a—2, .
a“'a“g”’u”a + §Na (U) + 2!“‘ o ﬂ{{a (U) (22)

< e+ ealip/ (L + PDIURL + o) + 1 Flalloll

for regular solutions (v, p) of problem (1.1). In fact, with this last result in hand
we can argue as follows. Denote by ¢* the lower upper bound of the set of values
7 for which v satisfies {1.7) with T replaced by 7. By well known results t* is
strictly positive {see, for instance, [v.W], [M], 3], [G.M]), morcover the solution
is regular in )0, t*[. Tence our estimate {2.2) holds in this last interval. It follows
from this estimate that v belongs to L=(0,¢*; H). This implies that v belongs to
C(0,*; Hy), since o > n. Taking v(t*) € Hy as “initial data” one shows that, if it
were t* < T, it would exist a positive € such that v would belong to C(0,2" +¢; H,).
Hence it must be t* = 1",

It is worth noting that if n = 3 (and, more in particular, if also vo € HEin L)
then the auxiliary results quoted above can be obtained by elementary techniques.

In the light of the above argument our aim is simply reduced to prove the
estimate (2.2) for regular solutions.

Lemma 2.1. Let (v,p) be a regular solution to problem (1.1} in Ox]0,T]. Then

1d, o a—2, .
=l + ENE@) - 4p=—— M2 )
(o= 2)2 2 2 1 23)
<22 24 | flla ol
o | o ool
Proof. Note, first, that
1V}o]*/?| < %|v|%"1{V'u§, ae. in Q. (2.4)

In order to prove (2.3) we multiply both sides of equation (1.1); by [v|*~2v, and
integrate over . After suitable integration by parts, and by taking into account
that dive = 0, we get

o —

S Iollg + RN ) + 4 ME )

o2

(2.5)
:m/ Vp-v|vi"‘_2d$+f f-vju]*2dz.
o Q
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On the other hand, one has

#f\_/'p-vlm“‘gdx
~(a- 2}2/ v o]t
i,j=1

_ 2(a—" / plu]*/2 ZZ E,Uia/z

From (2.5) and (2.6);, since

n

Ov;
> Uiv.?’“éx_j < [vf*|Vel,

ig=1
one gets
d )
*agllvlliJr#N”‘( )+4ﬂ M (v)
<(a-2) ]Q o] V0] |v|°f“2d:n+ el
Since

— N2
(o) [ 1ol 1vel i < 2 [ gtpltae + vz
2 f 9]

{2.3) follows.

Lemma 2.2. Let |1}/ belong to H}. Then
ol < oME(),

where ¢ is the constant in equation (1.8).

Proof. Apply the estimate (1.8) to g = |2,
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(2.6)

2.7

(2.8)

(2.9)

1

Let now (r,¢) be the exponents in equation (1.3). Assume that ¢ < 400 (the

case g = -Foo is easier, but requires small modifications). Obviously

fﬂp%lwd"‘? = fﬂ (1 f|,vl>2(1 )T (14 o) T de

Since 2/q -+ (g —n)/q + (n — 2)/q = 1 Holder’s inequality shows that
o = e
fp ol 2da < lp/(1+ D IZ 1L+ ol 1201+ 1ol 1 2,

Since (g — n)/q -+ n/q =1 one gets

fp folo—2dz < e [|p/(1+ [l f 11+ [l 1S+ /ML + o] s,

(2.10)

(2.11)
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where ¢ > 0. Hence (2.3) shows that

1d o o a—2 o
E\f- a””ila + §Na (’U) -+ 4/-""05_]"4; (U)

__a O!-—Q 2 oo— s

< et 2#) llp/ (Lt Tl 2574120+ H1)12)
q (Q{ — 2)2 a1 n—2 a a—1
RS (105 4 ol ) + I vl

Finally, by using (2.9) and by fixing € by

o (a0 —2)2 -2
coen Mgﬂ—z — Qua_
i oY

one obtains {2.2) where

2 _ 2 n—2
1 = —,u(a )IQI_

[ 75y]
and

(o —2)? (253 — 2)60/#2}"%"-

Cg = 2&_2

Next, from (2.2) and by comparison theorems for 0.D.E. one shows that

y(t) < M(t) = (y([)) + /0 t h(s)ds) edo Klsyds (2.12)

where
h(t) = aer + ol lp/ (1 + DI + 1 £ll)

and

k(t) = afez + lp/(L+ DG + 11 flla)-
From (2.2) together with (2.12) it readily follows that

i t
y(t) + % / N(v)ds + 2p(c— 2) / M2 (v)ds
0 4]

A . (2.13)
< 4(0) -I-f h{s)ds —F—f k(s)M (s)ds.
0 0
Since M (s) < M(t) if s <t we obtain, in particular,
IOl + 5 [ (Vo bldadt + 2t —2) [ (9l
2 Ja o (2.14)

< (Iivalii + /0 th(s)ds) [1 + ( /D tk(s)d3>efl;'k(3)d.s],

for each ¢ & [0,T).
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Finally, if ¢ = 400 one has (instead of (2.10))

[Pl < I/ )+ ol (2.15)
Hence
2ol + Eve () + 462 2arz )
Y N (2.16)
< 2“_2THP/(1 F D]+ vlE) + 1 laliwlis?,
which corresponds to (2.2). O
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