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0. MAIN NOTATI.ON

an open bounded set in R*, locally situated on one side of its boundary T,
a regular (say C*) manifold.

the cylinder 10, T x Q.

unit outward normal to I

8/dx;, 8*/dx; 8x;, 3/a1.

norm and scalar product in L3().

norm in LP(Q), p € [I, +=].

Sobolev space H**(Q) with norm

k
lelz = ¥ [D'al?,
I=0
where
|1D'a? = HZ |D%a .
o =1
Further,
1D'sls = ¥ D%,
jal =1

Sobolev (Bessel} space H™*(€2), see [1}.

closure of C3(Q) in HY{Q).

norm in L*(Q).

Hilbert spaces of vectors v = (vy, v,, vy) such that v, € L%, v, € H*, v; € H}
(i = 1,2, 3), respectively. Corresponding notation is used for other spaces of
vector fields. Norms are defined in the natural way, and denoted by the symbols
used for the scalar fields,

Let us introduce the following functional spaces (see e.g. [2-4] for their properties):

HE = {aeH*:§$=00nrandj a(x)dx=0}, k=2,

1
V={ve Cy(Q):divy = 0in Q],
H=[vel’>:divb=0inQ,v-n=0o0nT},
V={veHi dive = 0 on Q).
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1230 H. BEIRAO DA VEIGA

H and V are the closures of 'V in L*(Q) and H}, respectively. Morcover, L* = H @ G, where
g = [Vp:p e H(Q)}. Denoting by P the orthogonal projection of L onto H, we define the
operator A = —PA on IXA) = H> N V. One has

(Au, v) = (u, v)) = ¥, (Dyuy, Dyvy, viueD(A), vveV.
iJ

The norms ||a|,, Ac| are equivalent in HZ, ||ol;, ||V Ac| are equivalent in Hy and ||v],,
lAv| are equivalent in P(A). We define ||¢{% = ((v, v)); the norms |v|,, ||vl, are equivalent
in¥

L0, T; X): Banach space of strongly measurable functions defined in 10, 7 with values in
(a Banach space) X, for which
T

2.2 = j 2Ol dt < +co.

C(0, T; X): Banach space of X-vector valued continuous functions on [0, T] endowed
with the usual norm {|z]l ¢, 7., -
@ viscosity (a positive constant).
A: diffusion coefficient (a positive constant).
uit, x); vg(x):  mean-volume velocity; initial mean-volume density. Further,

m = inf py(x), M = sup pyx),
xel

xe

p= ?slfl L‘ P dx,  olt,X) = plt,X) — B

We assume that m > 0.
n(t, x); p(¢, x): pressure; modified pressure
p=mn+Av-Vp— A2 Ap + AQu + 1) Alogp.
S(t, x):  external mass-force.

We denote by ¢, ¢, ¢, ¢, ..., &, G, €, etc., positive constants depending only on € and on
the parameters u, 4, m, M, g. For convenience we sometimes denote different constants by the
same symbol ¢ even in the same equation. Otherwise, we use the symbols ¢, ¢x, kK € N, ¢, etc.

1. DESCRIPTION OF THE PROBLEM AND MAIN RESULTS

In this paper we consider the motion of a viscous fluid consisting of two components, for
instance, saturated salt water and water. The equations of the model are obtained, for example,
in [5-8]. Let us give a brief sketch. Let g,, p, be the characteristic densities (constants) of the
two components, v(¢, x) and v (¢, x) their velocities and e, x), d(¢, x) the mass and volume
concentration of the first fluid. We define the density p(z, x) = dp; + (1 — d)}p,, and the mean-
volume and mean-mass velocities v = dv™® + (1 — dWw?, w = ev™ + (1 — &)v'®, Then the
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equations of motion are given by

plo,w + (w-Vyw — f1 —uAw — (u + p')Vdivw = —Vn,
dive = 0,
d,p + div(pw) = 0.

On the other hand, Fick’s diffusion law (see [5]) gives w = v — Ap~! Vp. Eliminating w in
the preceding equation one gets, after some calculations,

plo, v+ (v- V) — uAv — Al(v-V)Vp + (Vp- V)]
2

A 1
+ = (Vp-NIVp — —(Vp V) Vp + A v]m—v+ ,
p[(ﬁ }Vp pp p)Vp + ApVp P+ pf, .y

dp+v-Vo—AAp=0
divy = 0.

Here p is the modified pressure. We add to system (1.1) the following initial boundary-value
conditions

v=20 on]0, T[xT,

P

% _ 9 on |0, T[x T,

an (1.2)
Ult:(} = vﬂ(x) in Q;

Plico = Pl  in Q.

The first two conditions mean that there is no flux through the boundary. In [7, 8} Kazhikhov
and Smagulov consider the simplified system obtained from (1.1}, by omitting the term
containing A%, Moreover, they assume that

2u

F Yt (1.3)

0<ix

Under these conditions, Kazhikhov and Smagulov state the existence of a local solution
in time. They also prove, in the two-dimensional case, that the solution is global in time.
A challenging open problem is to prove this last result without assumption (1.3} (or to find a
counterexample). '

Local existence in the general case (i.e. with the A*term and, clearly, without assuming (1 3)
was proved for inviscid fluids (u = 0) in [9], by partially foliowing some ideas from [10]. As
remarked in [9], the above result leads us to believe that, in the viscous case, the assumption
(1.3) is superfluous. This was shown, in [11], for Q@ = R?, by following the proof for inviscid
fluids given in [9]. In {12] we gave a proof completely different from that in [9]. This proof,
specific for viscous flows, relies essentially on a balanced estimate obtained by taking the inner
product in H, of the projection of the main equation (1.1), into H with d,v + g,Av, and
choosing &, > 0in a convenient way. This estimate together with a suitable use of the continuity
method allows us to reduce the existence of the solution of the main linearized equation
(equation (2.2) in [12]) to that of the Stokes evolution probiem. These devices had been
successfully used also in [13].
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In theorems 1.1-1.3 below, we summarize results proved in {12] that will be useful in the
sequel. Weset g =py —

TueoreM 1.1. Let v, € V, 6, € H2, f € L}0, T; L?). Then, there exists a 7} € 10, T] such that
problem (I.1), (1.2) is uniquely solvable in Q. Moreover, ve IXO, T,; HHY N CO, T, V),
a,v e L0, Ty; H), o € L0, T;; H) N CO, Ty; HE), d,p eL2(0 T, HY and m < p(t, x) = M.

We denote by ¢, = ¢,(Q) a positive constant such that |al., < ¢llall,, for each o € HE ().

THEOREM 1.2. Assume that f e L2 (0, +o0; L?) and that
laoll; < (2c0) ' (1.4)

Then, there is a constant & such that the local strong solution in theorem 1.1 satisfies

dfuy 2 2 2 2
— |8 Avt VA
& (Baots + 180lP) + 5 1ok + {225 vk + 517 acl

= &(llolly + laal® + 1717, (1.5)

as long as the solution exists and belongs to the functional spaces in theorem 1.1.

EBquations (1.4) and (1,5) are, respectively, equation (4.1) and the equation between (4.3) and
(4.4), in [12].

Tueorem 1.3, There are constants ¢, ¢; and ¢; such that
d
3; ol + 1AalPy = —fey = exllolly + facl®?® - dlvlf + lacl®] + ol A1 (1.6)

In particular, if

elllvolly + Agel* < /2,
{Callflliw(o, vty < €/ DNC 20, 0D
then the solution is global in time. Moreover,
olv®l} + lAe®I?)? < ¢/2,  vt=0. (1.8)

Equations (1.6) and (1.7) correspond (respectively) to equations (4.4) and (4.5) in [12].
Equation (1.8} can be found in [12], just after equation (4.4).
In the sequel we will prove the following theorems.

TueoreM 1.4, Under the assumptions (1.7), and if necessary, choosing a smaller constant ¢;,
one has
la@liz = cse™ oz (1.9)

If, moreover, (0, @) is another solution of problem (1.1), (1.2) with initial data (7, 6,)
satisfying (1.7), then
() — )|, = cge™ ™, vi=0, (1.10)
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for each fixed s € [0, }{. Here the positive constants ¢4 and ¢; may also depend on s. In
particular, if (w, 0) is a solution of the homogeneous Navier-Stokes equations

PE,w+ (w-V)w) — uAw = —Vr + pf,

divw =0 in Q,x,

(1.11)
w=10 on]0, T[xT,
wlt:() = w()(x) in Q)
with initial data w, satisfying c,||w,]} = ¢,/2, then
loge) — w3 + o0 — Ali3 < cge™, (1.12)

for each ¢ = 0.

THEOREM 1.5. Assume that v, o, and f satisfy (1.7) and assume that fis T-periodic for some
T > 0. Then (1.12) holds, where now w(¢) is a periodic solution to the homogeneous Navier-
Stokes equation (1.11); 5 ;.

2. PRELIMINARIES

For the reader’s convenience we briefly show how to establish (1.5) as an @ priori estimate.
This is the main point in the proof of theorem 1.1. From (1.5) we deduce theorems 1.2 and 1.3,

as done in [12].
An application of the maximum principle to the solution of the parabolic equation (1.1),,
with boundary and initial conditions (1.2}),, (1.2}, shows that

m = plt,x) < M. (1.13)

Note, moreover, that the derivative with respect to time of the integral of p(f,x) over Q
vanishes. Hence

i
— j plt, x)dx = 5, for each f = 0.
1] Jo
Next, apply the operator A to both sides of (1.1),, multiply by Ag, and integrate over Q. This

shows that (1/2)(d/d6)||Ac|* + (VL Ae — v - Vo), V Ag) = 0 since (3/dn)(L Ag—v-Va) =0
on I'. Hence

id
3 a‘}"AUHZ + A|v Ac|? = o(|Dv Dol + |lvD?al|V Acl. (1.14)

Using Sobolev’s embedding theorem H' = L% and Hélder’s inequality we obtain

d

1 2 2
1Al + A1 Ao

=< ey(|Dull Dol Vally + [loll|Dali IV Aa] ¥V Aal.
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Since abd =< a*b*/¢ + ed*/4 < a*/2e* + eb*/2 + ed?/4 it readily follows that

- IAal® + AV Acl? <= IIDUII2 e IIDvII Ivallt

NS
Q-]Q_,

+ ceV Aal + 55 = loltival?,

where ¢ = ¢;. By assuming that ¢ satisfies the condition
& < A/(2cp) (1.15)

and by taking into account that ||[Dv]? < c|4v||*, one finds
d \ c
3 180l + Alv Acll? < =2 lolf + IVall}) - [olHlVal + cpeldel®. @.16)
t

Note that |[al, = elAal, |ol; < c]V Aa].
Next, we consider equation (1.1),. Set

Fp,v) = P{mp(v S V) + Al(v - V)p + (Vp - V)u]

2
+H(Vp‘va—%(\m-vm W+ (Ap)VpH ot (1.17)

By using Sobolev’s embedding theorem ' — Lf and Hoélder’s inequality one easily obtains
1F(p, )7 = cllolillDoll; + cllvllitDall| Dol
+ cllvl iDell |1 Dallf + clDol3D?aly + clDal$ + cll £1%.

Hence,
£, )I* = e(lol} + lallell, + lolls) + clalls + el f1% (1.18)
By taking into account (1.1); and the boundary condition (1.2),, we write equation (1.}, in
the form
P(po, v} + pAv = F(p, v). (1.19)

Next, take the inner product in H of (1.19) with 3,v + gyAv, & > 0. Since (3,v, Av) =
(1/2)(d/dt}||v]|% one is led to

sl + % S 1ol + eosl vl

< [IF]113,0ll + eolFlllAel + eot |3, vll]lAv].

By using the inequalities ||F|[id,v] = 47 'mla, 0l + m Y F|?% [FlllAv] < 47 ull4o|? +
w7 YF|? and |8, vl 4v] < 41\4r'1,u||1¢1u[|2 + u 'M|ia,v||* one shows that

3
Zmlaol? +

1
= — Av|? = Fi* + a, vl 1.20
: Lol + oo st = (L4 21 22 g, )

Zdt
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By setting &, = mu/4M? and by using (1.18) it readily follows that

mu®
sM?

m
I + 5 ool + 5 Aol

#d
2 dt
c? 6 6 2 2 6 2
= 55 (17 + llol2)y + adlavl® + IV Al + cllalz + €l /1" (1.21)
We have used that [|v]|, = c[4v| and |ofs = ]|V Ag|. Here, 6 > 0.

Finally, by choosing & = minfiA/2¢,, mu?/32M%c,;} in (1.16), & = min{mu®/32M?, 1/2} in

(1.21) and by adding side by side the two equations, one proves (1.5). This yields (1.6).
Next, assume that (1.7) holds. Clearly, (d/de)(||o®)|% + [Ac@)|?) < 0 for ¢+ = 0. Let us
show that (1.8) holds. If not, let #, be the smailest ¢ > 0 for which e;([v()]]} + |Aa(D]?) = ¢]

(/2. This equality together with (1.6) and (1.7), implies that (d/dO)(o(?}|7 + {|Aa(®]? < 0 for
t = t,. This contradicts the above assumption.

Remark 1.5, 1t is immediate that the statement of theorem 1.3 holds by replacing c¢; by any
positive constant &, smaller than c;.
2, PROOF OF THEOREMS 1.4 AND 1.5
Write the equation (1.1), in the equivalent form
do+v-Va~ LA =0, 2.1
multiply both sides by & and integrate over €. This shows that
lo®? < e~llaol?,  vz=zo0. (2.2)
Next, by multiplying (2.1) by —Aa, by integrating over © and by using Sobolev’s embedding

theorems H' « L% H'? < [3 and Hélder’s inequality one shows that

id
3 5 IVl + 21l < ol I¥all 1ol 3

Since [{vffy = ¢ and [[Vol|,,, =< clla||'#||Aal*4, it readily follows that the right-hand side of
(2.3} is bounded by cligl? + (1/2)|Ac|®. Here, we have used a well-known inequality with the
exponents 8 and 8/7. Hence, by taking into account (2.2), one finds

d A -
3 Vol + 5 1Vo]* = ce™llaoll,

where the positive constants ¢ should not necessarily be the same. By integration of this
differential inequality it follows that

laOli < ee a3 24)

Next, we study the behaviour of |a(#)|,. Since

d
ar lAa|? = 2(Ad,0, Ag) = —2(9(3,0), V Ag)
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(note that 9,(da/dn) = 0 on the lateral boundary ]0, + [ X I', in a standard weak sense) one
gets, from equation (2.1),

d
o [Acl? + 2(V(A Ag — v-Va), VAg) = 0.
Hence

1d
5 31801 + AV Adl? = c(I1Dvll| Dol + |vl6lD*al )]V Adl. 2.5)

By taking into account that |vlg = ¢|Dvi, that |Dol., = c|Dols,s, that |DPal; < c||\Dall,,,
and that |Dals,y < cl|Va| 6 Val3’®, it readily follows that the left-hand side of (2.5) is
bounded by ¢| Vo]V Ag||'"5. By using a classical inequality with exponents 12 and 12/11
one easily shows that

d
3 180l + claal® = clal:.

Integration of this differential inequality together with (2.4) proves (1.9).
Next, we prove (1.10). Let £ and the two couple of initial data (v, o,) and (,, ) satisfy
(1.7), and set (see [12, Section 5])

u=v - 0, n=p-p (2.6)

By subtracting the equation (1.19) written for (7, #) from the same equation written for (p, v),
and by taking the inner product with u in H of both sides of the equation obtained in that way,
one gets

1d

1 i _
el R PT 2 - 2y _ 7. F - F .
5 37 (2% W) + plul] o0 Vo, u) + - (Ao, i) = (1,8,0- u) + ( L), (2.7)

where F = F(p, 7). From (1.8) it follows that |[v(0)|,, |#2)l, and |u()|, are uniformly
bounded. So are the Z%-norms of u(f), (7} and u(f). By using these properties, Holder’s
inequality and (1.9) it readily follows that

A
—é(v Vo, u?) + E(AG’ uh < ce viz 0. (2.8)
Similarly,
|(n, 8,0 w)| < ce™™, vtz 0. 2.9

For convenience, we denote simply by £ {p, v) the part on the right-hand side of the definition
of F(p, v} (see (1.17)) that depends on A and A% Similarly, for F. One easily shows that

IE, wl = c(lvls| Dol + |oll[vels + [Vals|D%a| + [Vald)uls
and, similarly, for |(f,, u){. Hence,

|(F - B, ) < ce™. (2.10)
On the other hand,
(Pafy — P(af), w) = elloll | £l < ce. 2.11)
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Furthermore,

ct

l((p — p)E - O, u)| = clp — plelols|Volllulg = ce™, (2.12)
and
(oo - Vyu + (u - V)], w)| < $1(Va, vu?)| + M|ulgllvol.

The right-hand side of this last inequality is bounded by | Vo, 9oll|#iZ + |u|2} Vo) which,
in turn, is bounded by ce™ + c|uli3|ly. This fact together with (2.12) shows that

l(p(v - VYo = (5 V)3, | < ce™ + clofiyluly. (2.13)
From (2.10), (2.11) and (2.13) we obtain the estimate
((F - F,w)l < ce ™ + clalyluli. Q.14

Finally, (2.7), (2.8), (2.9} and (2.14) yield

1d —e _ _
5 3; (o ) + atlully < ce™0 4 1a,00) + coaliolluli.

Choose the constant ¢, in (1.7) in such a way as to have Ccpa(cy/26,)"* < p/2. By using (1.8) one
shows that

d N _a _
S (pu, )+ &pu ) = cip e+ o 2.15)

since (pu, u) < cllull?.
Next, by integration of (1.5) one gets

t
Lol + 140l + ¢ || dool? + 1Adk® + 1V Aol ds
0

I
<2 huuly 1 18l + €| ol o Nl + 171y o
0
In particular,

f
g dla,v)® + |4v]* + {VAalHds<c+ct, vEzO. (2.16)

0

Integration of (2.15) shows that, for each £ = 0,

(pu, u)(t) < e % (pu, u)0) + cze™™ j e~ DL + i, 0Y) ds.
[

Hence,
mllu®|? = Me *uO)* + AQ), (2.17)

‘ 2/t 12
A(?) = ¢y ea(ﬁ e 2 dS) (S ( + 8, aly ds) .
0 0

where
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By using (2.16) it readily follows that
Aty s ce ™, (2.18)

The estimates (2.17) and (2.18) show that [|u(?)|* = cexp(—cr). Since [[u(t)|ly = ¢, (1.10)
follows by interpolation. In order to prove (1.12), under the assumptions of theorem 1.4, it is
sufficient to note that the solutions of problem (1.12) are just particular solutions of problem
(1.11), ,, corresponding to the case in which the initial density po(x) is constant (equal to £).

Next, we prove theorem 1.5. Let (g, v) be a solution of problem (1.1), let (1.7) be satisfied
and let f(f + T) = f(¢) for £ = 0. In view of (1.8), the couple (2(f), (N =(pt+ T), v+ T)
is a solution of equation (1.1) and, moreover, the initial data {7y, Tp) = (p(T’), v{T)) satisfies
(1.7 (recall that we set p = § + o, and so on). From (1.9), (1.10) it follows that

lo@y = A5 + vt + T) — vl < ce™,  viz=0, 2.19)

Let ¢, € [0, T}. Then (2.19) shows that

oty + (n + DT) — vty + 0T, < cze™™, vneN.
In particular, for each pair &, n € IN, on¢ has
o0
oty + (n + OT) — vty + T, = cue'“"TS e "™ da,
0

and, hence, the left-hand side is bounded by (¢;5/¢T} - exp{—cnT). It follows that v(t, + nT)is
a Cauchy sequence in H* which converges uniformly with respect to £, € [0, T]. Consequently,
there is a periodic function w € C(0, T; H®), w(t + T) = w(f), such that (1.12) holds. Clearly,
by (1.8},

ollw®ly < c /2, VvE=0.

Moreover, as 0 — +oo, v(nT + ) converges to w(f) weakly in L*0, T; D(A)) and 8,v converges
to 3, w weakly in L*(0, T; H). Similarly, besides (1.12), p converges weakly to § in L0, T; HY
and 3, p converges weakly to 0 in L2(0, T; H*). By passing to the limit in equation (1.1) it readily
follows that (4, w(¢)) is a periodic solution to the homogeneous Navier-Stokes equations (1.11).
In particular, w € C(0, +o0; V).
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