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Abstract. In [2] we proved global boundedness for the system (1.1); see Theorem 1.1 below. Here
we show global existence for weak solutions (Theorem 1.2), existence of a global bounded attractor
(Theorem 1.3}, and strong continuous dependence on the data (Theorem 1.4} for the weak solutions.

1. Introduction. In this paper we study the following system of nonlinear partial dif-
ferential equations that describes the transport of holes and electrons in a semiconductor
device

d

a_f — V(D1 Vp + i pVu) = R(p, n),

d

5’_; =V (D Vi — uanVu) = R(p, n), (D
—V-@Vu)=f+p—n in R} x €,

with boundary conditions

{ PP = d)(x)s n= W(x) on R+ x D,
{(DWp+pu pVu) -v= (Ve —unVu) - v=0 onR, x B, (1.2)

Au (1.3)
o = () onR; x B,

[u:U(x) onRy x D,
dv

and initial condition
p0, x} = polx), n,x}) =rnp(x) in Q. (1.4)

It is worth noting that the solutions p and n must be nonnegative. Here € is a bounded
Lipschitzian domain in RV, We assume that the boundary I' of € is the union of two
disjoint sets D and B, where B is closed. For convenience we assume that D has
not-vanishing (N — 1)-dimensional measure. We denote by v the unit outward to T.
We refer to [20, 18, 15] for more detailed descriptions of the model. The unknowns
u, p, and n denote the electrostatic potential, the free hole carrier concentration and the
free electron carrier concentration. The solutions p(x, ¢) and n(x, t) are required to
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be nonnegative. We assume that Dy, D, u1, g2 and a (the dielectric permitivity) are
positive constants. This leads to the equations (1.1).

In this paper we assume that ¢, ¥ € H'(Q) N LL(Q) and U € H'(Q2) N L®(Q),
where the symbol “4+” means the cone of nonnegative functions. We remark that the
boundary condition p = ¢ on D does not change if we replace ¢ by the variational
solution ¢ of the problem A¢ = 0in Q,¢ = ¢ on D, 3¢/3v = 0 on B. Hence,
we assume in the sequel that ¢ = ¢. Note that, by the maximum principle, supg ¢ =
supp, ¢. We also replace ¥ by v

For convenience, we assume that the net density of ionized impurities f satisfies

~ f € L0, +o0; L*(Q)). (1.5)

However, in Theorems 1.1 and 1.3 we may replace the above assumption by the assump-
tion (1.5) in reference {2] and by weaker assumptions in Theorem 1.2.
Concerning the initial data we assume that

po, 1o € LS. (1.6)

As in reference [2], in the Theorems 1.1 and 1.3 we can assume that the recombination
term R(p, n) is a locally Lipschitz continuous function on R, x R, such that

. R(p, my*
lim —— =

0, (1.7)
ptn—>too p+4n

where z+ = max{z, 0}; moreover,

R(p,0} =0, V¥p=0,
(1.8)
RO, 7 >0, ¥Yn=>0.

However, for convenience, we will assume (unless assumed otherwise) that R is given
by the Shockley-Read-Hall recombination term

R(p,n) = (1 — pn)/(ro+nrp+rn), (1.9)

in which rg, 1, and r, are positive constants. Here and there we will make suitable
comments about more general conditions that may be assumed.

Before stating our results we introduce some notation. We set 8y = (0, 7) x Q,
0 = Q. Wedenote by |- |I, # € [1, +oc], the canonical norm in L™ = L7 ($2) and
by || - llrs:rs ros € {1, +00]l and T € (0, +o0], that in L*(0, T; L"). For convenience,

wesetll-|| =|-lzand || - ll,s = || - lrs:400- We denote by [E| the N-dimensional
Lebesgue measure of a set E.
For convenience, we use notation like ||(p, n)|)> = [Ipi? + =3, [V(p,n)|* =

IVp|? + |Vn|?, and so on. We denote by V the Hilbert space V = {v e H! : v = 0
on D} and by V' its dual space. In order to use here a standard notation, let us set
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H = L*(2). By identifying H with its dual H' one has V < H <> V’, where each
space is dense in the next one. The spaces, V, H, and V' are in a typical situation, often
considered in studying weak solutions of partial differential equations. We denote by
{-, -) the scalar product in H (orin H” —we use the same notation for scalar and for vector
fields) and by {-, -) the duality pairing between V' and V or, more in general, between
the dual of a functional space and the space itself. If v belongs to LE (0, +o0; V) we
sometimes denote by v’ the derivative of v as a distribution in (0, +o00) with values in
V. Since V — V' it could be that v' € L2 (0, 4+00; V’). For properties connected to

loc

this (already classical) setting up we refer the reader to [14], [4].
We set g = /piitz, 3 = max{py, uz}, pg = minfper, w2}, p = min{D;/py,
Dy/us}, b = ry! ua. Moreover,

My = max{lipolico, Inoliccs Nllocs NI¥llec}, M = max{Mp, 1}. (1.10)

We denote by ¢g a positive constant such that the Poincaré inequality
fvzdx gc()finEzdx, YueV, (1.11)
holds and by ¢; a positive constant such that the Sobolev embedding theorem

(f v dx)" < c;([}Vulzdx)l/z, YoeV, (1.12)

holds. If N = 3, we denote by 2* the embedding Sobolev exponent 2* = 2N /(N — 2)
and by 2 its dual exponent 2 = 2N /(N +2). If N = 2 (hence r € (4, +oc]; recall
(1.5)) we set 2* = 4r/(r — 4) and 2 = 4r/(4 + 3r). Note that (1.14) also holds for
N = 2. Moreover 1/2* 4 l/ﬁ =1.

Before going on, we want to point out that we assume the reader to be well acquainted
with the formulation of PDE’s in weak form. We adopt here classical terminology and
notation in order to bring cut clearly the underlying ideas. The interpretation of some
of the terminology and the justification of some of the calculations (in terms of weak
solutions, distributional derivatives, duality pairing, and so on) is done by using well-
known standard devices. We refer the reader to [4], [11], [13], [12], [14]; see, in
particular, [4], Chapter XVIIIL, Section 1 and Section 3.

Under the above hypotheses and, moreover, if pg, no € L5(£2), then there is a weak
solution {p, n, u) of problem (1.1)-(1.4) in the following class: p — ¢ and n — i+ belong
tol? (0,400, V)iu—U belong to L;_.(O, 400; V); p and n are nonnegative almost

foc loc

everywhere in Q and belong to L) (O, +o00; L°). Moreover, the solution is unique in
the above class. Functions p, x, and « in the above class are said to be a weak solution
of (1.1)-(1.4) if, for each fixed v € V, one has a(Vu, Vv) = (f + p — n, v), and also,

in the sense of D'((0, +00) ) (or equivalently, almost everywhere in (0, -+00))

(P, v) + (D1 Vp, Vo) + i (pVu, Vo) = (R(p, n), v) ,
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and
(0, v) + (DaVn, V) + wa(—nVu, Vv) = (R(p, n), v)

Moreover, p(() = pg, n(0) = ng. Note that p and » are continuous on [{, +-o¢) with
values in H = L*(). We may also write the above equations in terms of y = p ~ ¢,
z=n—yrandw =u—U.

Let us start by recalling the following result, a particular case of Theorem 1.1 in
reference [2].

Theorem 1.1, Let py, ng € LY (2). Then the above solution (p, n} of problem (1.1)—
(1.4) is uniformly bounded in Q = R, x Q. More precisely

2(i+1)
Slép(P(t,x) +n(t,x) =CM{OA+1flls ©), (1.13)
where 5 ’
x=ﬁifN33,x=5ifN=2. (1.14)

The constant C depends only on N, cg, c1, a, Dy, Da, j11, pia, and |S2].

If N =3, we denote by Vy thespace Vy = {v € V : Vv € LY. IEN =2 we
denote by Vy the space {v € V : Vv € L¥(Q)} for some fixed N > 2. V), denotes
the dual space of Viy.

In the sequel we prove the following existence theorem, under the assumption (1.6).

Theorem 1.2. To each pair of initial data py, ng in the class (1.6) there corresponds (at
least) a weak solution (p, n, u) for the problem (1.1)-(1.4) inthe class p —¢p,n — €
LE (O, +00; V), ppom, € LE (O, +00; V), u — U € LE (O, +o0; V). Moreover,

(1.17) holds. In particular p,n € L (O, +00; Li).

loc

In order to prove the existence and the uniqueness of a stronger solution we introduce
the following assumption,
Consider the elliptic mixed boundary value problem

—Au=g in €, u=U on D, 0du/dv=0 on B. (1.15)

‘We assume that there is a functional space Y and areal numberg{(g > 21N =2; g =N
otherwise) such thatif g € L2(2) and U € ¥ then the variational solution « of problem
(1.15) satisfies

IVully, = cdlgll+ 11U y)- (1.16)

Note that this is an assumption on {€2, B, D}. This assumption never holds if N > 4
since H%(Q) is not contained in LV ($2). If N = 4 the assumption holds only in some
very special cases. In fact it does not hold if T is regular in a neighborhood of a point
of the boundary of D in I". In fact, in this case, it is false in general that u € W4
(see counterexample in Shamir’s paper, [19]). If N = 2 the assumption holds if €2 is a
bounded domain with a polygonal boundary (or a regular transformation of such a set).
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In this case ¢ > 2 can be arbitrarily fixed; moreover, ¥ = Wl“”?i"’q(B). This follows
from results by Lorenzi ([10]). In fact, it is not difficult to reduce the problem (1.15)
(in a neighborhood of each point of the boundary of D in I') to the problem (1.3) in
reference [10], and then to apply Theorem 1 in this last reference in order to prove the
above result. Since it is sufficient to have (1.16) for some g > 2, it could be possible to
use Groger’s results ([6]). If N = 3 and if  is a bounded convex set with a polyhedral
boundary (or a regular transformation of it) then the solution of problem (1.15) belongs
to H*2(Q). This follows from Theorem 2.6.3 in Grisvard’s book ([9]). For regular
boundary points (w = ) the result is still true since it can be reduced (by a reflection
argument) to the case of a cut (w = 2x), for which H3/?-regularity still holds ([9],
Section 2.7, page 83). Recall that, if N = 3, then H¥2(Q) — W!3(Q). It is worth
noting that in [9] the author considers only homogeneous boundary conditions, but this
looks inessential there. We also note that W/3-regularity holds under much weaker
hypotheses on the angles between faces than that needed to get H*/2-regularity. But we
do not know about precise statements in the literature. However, 37/2 should be the
correct upper bound to the angles, in order to get (1.16) when N = 3.

One has the following result where, for brevity, we assume that f € L>®(Q) and that
R(p, n) is given by (1.9). See also [3].

Theorem 1.3. Let the assumption (1.16) hold and let ¢, yr, U, f and R(p, n) be as
in Theorem 1.1; moreover, U € Y. Then, to each pair of initial data (py, ng) €
Li(Q) there corresponds a unique solution (p, n) of problem (1.1)—(1.4) in the class
p—¢,.n—Y € LIZDC(O, +o0; V); pi,n, € LI?'OC(O, +o0; V). Moreover, p,n €
Clo, +00; LY2(Q)) and there is a positive constant Cy (that depends on the norms

Htlloos ¥ lloos 11 filloo brt not on po, ng and U) such that
1PN + In®I* < Co+ ce™ (Il poll® + llnol?) {L.17)

Joreacht = 0. The positive constant c and v are independent of the data ¢, ¥, U, f, py
and ng.

The above result shows that the set
Bo={(p,R) e LX) : p=0,74>0, and ||5l> + nl* < Co}

is a global bounded attractor in the space L*(2).

Next, we consider the problem of the uniqueness of the solution. Except for some
very special situations, uniqueness results is not very interesting if existence in the same
class is unlikely. Obviously, the situation in which existence and uniqueness hold in the
same class is particularly important. Under the assumptions of Theorem 1.1 uniqueness
is easy to prove since p and n belong to L*®(0, +o00; L°). This is mainly due to the
fact that the initial data pg and ng belong to L™ (Q).

We do not know whether uniqueness holds under the assumptions of Theorem 1.2.
However it holds under the assumptions of Theorem 1.3, as follows from Theorem 1.4
below.
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Due to lack of regularity for solutions of the mixed problem, instead of imposing it
artificially we prefer to assume the condition (1.18) below. This assumplion is quite
natural in view of the regularity result known for solutions of the mixed problem in
Lipschitz domains, provided that N < 4. If N = 4 the assumption holds only in very
special cases. See remarks after the related assumption (1.16). The assumption is the
following. For each g € L? let u be the variational solution of the elliptic problem
—Au=gin2, u=00n D, du/dv =0on B. Then,if N =3 or N = 4 we assume
that Vi € LY and that

Vully = cllgll. (1.18)

If N = 2 we replace N by some N; > N. Our assumption holds in general if N = 2
and seems to hold, when N = 3, if angles between faces are smaller than 37 /2.

The next condition concerns the recombination function R, a locally Lipschitz con-
tinuous function defined for nonnegative p and n. We assume that

|R(p,n) — R(g,m)| < c(1 +|pl +Ig| + In| + mDP - (Ip — gl + |n — m]), (1.19)

for all nonnegative p, g, n, m, where 8 =4/Nif N =30orN=4,and 8 < 4/N =2
if N = 2. Obviously, this assumption holds for the Shockley-Read-Hall recombination
term (1.9).

In Theorem 1.4 below we consider weak solutions (p, i, u) of problem (1.1)-(1.4)
in the class

neL®0,T: LY): —¢p,n—y € L20,T; V),
{pn ( Dop—¢ 4 ( ) (1.20)

pn € L3O, T VY, u—Ue€L?0,T; V).

Theorem 1.4. Assumne that N < 4 and let ¢ and & be as above. Moreover, let [ €
L0, T; LYYifN # 20r f € L2(0, T; L™), forsome Ny > N, if N = 2. Let (p, n, u)
and (g, m, v) be two solutions of problem (1.1)~(1.4) in the class (1.20), and denote by
{(po, no) and (qo, mo) respectively their initial data in the space Lﬁ_(Q). Assume that
Vu € LY, T; LYY if N #£ 2, or Vu € L®(0, T; L™), for some N, > 2, if N = 2.
Then, under the assumptions (1.18), (1.19), there is afunction h(t), integrable on [0, T},
such that

Ip@) — g + ln@) — m@®I* < " po — goll* + lno — moll®).  (1.21)

In particular, the solution of problem (1.1)-(1.4) is unique in the above class.
Concerning the above hypothesis on Vu, one has the following auxiliary result.

Proposition 1.5. In Theorem 1.4, the assumption Vu € L0, T; LYY if N # 2,

Vu € L%, T; LM) if N = 2, is satisfied whenever (1.16) holds and f belongs to

L0, T; L?).

Remark. We have begun the study of problem (1.1)—(1.4) in the light of references [7],

[5]. After having obtained the results stated here, we have come across the Gajewski
and Groger paper ([8]), where the authors obtain results related to ours. The interested
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reader is strongly advised to consult the above reference, also in order to compare proofs
and results.

2. Proofs. We denote by ¢, ¢,¢,¢;, i =0,1,2,..., positive constants that depend
onlyon N, 2, a, Dy, Dy, py, u3, and on the particular recombination function R. Dif-
ferent constants will be denoted by the same symbol ¢, even in the same equation. We

set _
Mo = max{||¢llco, N lloall). (2.1)

and define & = wyy = max{w — k, 0}. By arguing as in the proof of (2.5), (2.8) in
reference [2] we show that

14
2dt

e 1
< —Offz(ﬁ-l-ﬁ)dx+—°kff2dx+bf(,5+ﬁ)dx.
4q 2a

2
f(uzﬁz + i) dx 4 220 [ V(5. ) dx
2.2)

We estimate the last term on the left-hand side of equation (2.3) in reference [2] by using
the inequality written just after the equation (2.4) in this last reference. Note that the
right-hand side of (2.3) in [2] is bounded by the last term in the above equation (2.2).
Next,

2 2
2 _ — L - -
£ f 6+ dx = PO R + el fIL,
and

Ho

h / Kf2dx < ok 4+l fIL.

Hence it readily follows, by setting k = A;IO in (2.2), that
IO + 17201 < ce™ Ul poll> + I70)) + c(hfIIE, + ME+ b7,
where v = p,u% /8co. Consequently, for each ¢ > 0,

KON + InO)? < ce™ Ul poll® + linol) + Co, (2.3)

where
Co=cs(If 1% + llZ + w2 + 1). [l

This estimate is satisfied by the solutions in Theorem 1.1. Hence the set By is a
global bounded attractor in the sense that bounded sets in L), consisting of initial
data in L (R2), are uniformly attracted by By. However, by working in the functional
space L2(), the desirable result is to consider initial data in Li(Q) and to be able to
prove uniqueness of the solution together with (2.3). The first step in this direction is to
prove that to each pair (pg, ng) € L%r (£2) there corresponds a global weak solution of
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our problem satisfying (2.3) (Theorem 1.2). The second step (Theorem 1.3) is to prove
the existence of a umque more regular, solution in correspondence with each pair of
initial data (pg, ng) € L2 1 (€2). The existence part will be proved first. Uniqueness will
be proved separately, since it is a consequence of Theorem 1.4.
Set
Po = min{pg, k), i = min{ny, k}, (1.4)

fork = 1,2,3,.... In proving the results below it would be sufficient to assume that
FEeL™(Q), r=4N/(N +2),s € [4, +oo]. Under this more general assumption we
must also introduce the function f = max{f, k}. However, for simplicity, we assume
here that f € L®(Q).

By Theorem 1.1, for each fixed k, there is a unique solution {5, 7z, &) of problem (1.1)-
(1.3) in correspondence with the above initial data (1.4). Tn particular, p, i € LE(Q),
p—¢.h— 1 € LIOC(O +o0; V), pr Ay € me(O 400; V'), Our aim is to establish
estimates for (p, 7, i) that are independent of &, and then pass to the limit in the equation
as k — +oo. A first estimate of this kind is obtained from (2.3), since || Goli < || poll
and ||rig]| < flngll. Hence

1A+ IAON < ce™ (I poll® + lnoll?) + Co. (2.4)

We denote the equatlons (1. D, (1.2), (L. 3), (1.4), when p, n, u, po, ng are replaced by
B, i, i, po, fig, by (1.1), (1.2), (1. 3, (1.4), respectively. The calculations that follow
concern the variables with “~”, However, for convenience, we drop the symbol “~”
from the variables g, 11, &, po, fig With this convention, multiply the equation (1.1), by
p— ¢ (e by P — ¢) and integrate over 2. By takmg into account that 3(p — ¢)/dt
belongs to Lloc({) +o0; V'), that p — ¢ belongs to L2 (0, +-00; V) and that (in the usual
weak sense) d(p — ¢)/3v = 0 on B (since 3¢ /3v = 0 on B) we get

‘z'a'“’ SIP+D f Vp-V(p—) dxtisi fqu-V(p—¢)dx= f R(p, n)(p—d)dx.

Hence
an BI2 + DiIV(p — P2 +me¢-V(p~¢)dx
+m[(p-¢)w-V(p—¢)dx+mf¢w-wp»~¢)dx=fR(p—¢)dx.

Since ((p — ¢)Vu, V(p — @) = (2a) ' ((f + p — n), (p — ¢)*) we show, by using
suitable devices, that

- = 2 & - 2 M - Y
57 1p =9+ 2V -0 + 42 [+ p - mip — 92as

(2.5)
+ [cm V(p— $)dx < c| VoI + f R(p— ¢)dx.
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Next, since a(V{u — U), Vw) = —a(VU, Vw) + (f + p — n, w) foreach w € V, by
setting w = u — U, one shows that

a a [ I

—|V@ =D < ZIVUIP + =IIf + p—nl®.

4 2 a
Hence

2 2, 20 2
[Vull® < 6[IVU] +7f|f+P—nll . (2.6)
This estimate, together with
HoVu, V(p — oD < cllolZ IVall® + (D1 /4u)|IV(p — )1

allows us to deduce from (2.5) that

1d
2dt

< cllglZ,AVUIR + I1f + p —nl®) +cl VoI +fR(P,n)(p—¢)dX-

D
o — olI* + Tlilv(p — e+ % [(f—l— p—n)p—¢)Pdx
(2.7

A similar estimate holds for n — 1. By multiplying this last estimate by i, the estimate
(2.7) by u» and by adding, side by side, the two estimates one finds

1d
2dr
M% 2 2
+ 58 [0+ p=nl(p = 8 — (1= 971
<clel + 1w IZ)UNVU I+ 1 + 2 —nl®) + el Vg, ¥
4 f R(p, m)ia(p — ) + pan — P01 dx.

2
(allp = BI + palln = 1P + ELL1V(p = 9, n = )7

(2.8)

Next, we prove that

(FHp+nlp—¢)?—n—v)’1= -1 +3@ +¥)lp - )+ —¥)I. 2.9)
Denote by A the left-hand side of (2.9). One has
A=(f+¢—Plp—9Y —(—y)Y1+(p~¢)— n —WPl(p — ) + (1 — P)].
Moreover

1
I(f +¢—WIp—¢)* —(n—¥)*] < Z|f+¢—w|2|(p—¢)+<n—w)|
+Up—¢)—(n— P p— P+ (n—¥)|.
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Assumethat p+n > ¢+ Then A > —(1/D)|f+d— V- ((p—)+(n —yr)), hence
(2.9)holds. If p+n < ¢y then |A| = | f+p—n||(p—¢)—(n—y)|-|(p~) +(n— ).
Since this last quantity is less than or equal to (| |-+ ¢+ ) 2(¢ + )| (p—d)+{n—y)|,
(2.9) holds.

Finally, one easily verifies that

R(p,m)[pa(p — @) + pi(n — ¥)] < (1 4+ 2 + y2), (2.10)

by considering, separately, the case in which the expression between square brackets is
positive and the case in which it is negative. From (2.8), (2.9), (2.10) one gets, by doing
straightforward calculations, and by using (2.3),

M(uzup O + puafln — wl|2)+p”°||wp ¢, n— )P < @11)

Ul FI& L+ HolZ + I l%) + Iohs, + ilwuio + IVeI> + IVYl® + IVU I + 1]
+ ce™ (lpllZ, + I 23 poll® + lluoll®).

By integration over [0, T] one gets, in particular,

T
fo IV(p = ¢, n—y)|*dt < c(L+ [[gl* + IV DA + || poll® + lmol®)

+cTIA + @15, + BRI FIL + Bl + v is, + VU )? (2.12)
+IVelP +1vVy P +11. O

Now, recall that we have been denoting by (po, ng) the initial data (B, 7ig) given
by (1. 4) and by (p, n, u) the solution of problem (1.1)-(1.3) with initial data (Po, Aig).
By Theorem 1.1, since (py, fig) belongs to L (), the solution p, 7, & satisfies, for
each fixed k, p — ¢, 7 — ¢ € LIOC(O +oo; V), p',\ A € L,zoc(O, +o0; V), p,hi €
L%(0, +00; L), i — U € L™(0, +00; V). For convenience, w’ = w;,.

Next, we pass to the limit as k — +o0. For convenience, we denote by C positive
constants that may depend on the same parameters on which the constants of type ¢ may
depend plus an eventual dependence (increasing) on the norms || poll, lnolls | f lloes lidlloo
and || {|oc butnot on k and on 7. If dependence on 7 is atlowed, we write C (T'). Hence,

{ (P, Wiz = C, IV(p, m)ll227 = C(T), 2.13)
1P —¢. 7 —¥llzorvy <CT), i —Ullp=er.vy < C(T). .
On the other hand, for each v € V O Vy, one has

(5, v) = f (D\V5+ w1 Vi) - Vodx + f RG idr.  (214)

Forconvenience we assume that N > 3, and leave some details to the reader when N = 2.
From (2.13) it follows, by interpolation between L>® (0, T; L?) and L2(0, T; L"), that

(B, m}lxs7 < C(T), (2.15)
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if
. 2= < +o0. (2.16)

If N =2itmustbe (2/#) 4+ (N/A) > N/2.
For completeness we note that the assumption

IR(p, m)| < c(1+4]p" +in|*), (2.17)

for some positive constants ¢ and o, where ¢ < 2 4 2/N, is sufficient here in order to

prove that
JIR(p, ﬁ)||L2(0,T;v,(,) =C). (2.18)

In fact, under the above assumption, one has
|| R ipvdx| = c (14151, , + 1, ) 1ol

since Vy C L7 for each finite p, hence for p = 2(N + 1)/[2(N + 1) — aN]. Hence,
by using (2.16), (2.18) foliows.
If we assume the stronger conditiono = 1 4+ 4/N{w < 14 4/N if N = 2) then

[R(p, m)ll20,1,vy = C(T). (2.19)

In fact .
- “Ba | a0a )Y
|[ R wax| < oy [ (14158 +1it) " ax,
2

where 2 = 2N J(N + 2). Since the exponents ¢ = 2o and A = Do satisfy (2.16), the
integral on the right-hand side of the above inequality belongs to L2(0, T), fort € [0, T].
This yields (2.19). Note that the recombination term defined in (1.9) satisfies the above
assumption fore = 1. O

Next we study the first term on the right hand side of (2.14). From (2.13), it follows
that

T
|f0 ([ V- Vodx)dt| < C(D)lvlizerv- (2.20)

On the other hand (we left the case N = 2 to the reader) one has |(pVu, Vv)|} <
WPl Vil Vvl y. Hence

T
|f (f pVii - Vodx)dt| < C(T)vllrz0,r,vy)- (2.21)
0

We get a stronger result under the assumptions of Theorem 1.3. In fact, if (1.16) holds
and if &7 belongs to ¥, then

T
| fo ( f PV - Vudx)dt| < C(T)|vll 20.1:v)- (2.22)
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In fact, |(5Vi, Vo)| < Cllpllo- | VilwliVoll. Since [ Vidlly < (1 flloo + 1121+ Il +
Uy < €(T), (2.22) follows easily, by using (2.13)2.

The above arguments apply as well to . Hence, from (2.14), (2.20}, (2.21), and
(2.18), and from similar equations concerning n, one shows that

18P, Al 20,75y < C(T). (2.23)

Moreover, if @ < 1 +4/N(“<,”if N = 2), if (1.16) holds and if U € Y, then we can
use (2.22) and (2.19) in order to prove that

N8B, Allorivy < C(T). (2.24)

Passage to the limit as k — +o0o. Next, we use the uniform estimates (2.13),
(2.21), (2.22) or (2.13), (2.23), (2.24) in order to pass to the limit, as k — 400, by
using compactness theorems. We start by using Theorem 5.1, Chapter 1, page 17 in
reference [13]. We set in this theorem po = p1 = 2, By =V, B = Vy for proving
Theorem 1.2, B, = V' for proving Theorem 1.3, and B = L), go < 2*(gp < 400,
if N = 2). The theorem guarantees the compactness of the sequences {(p,7)} in
L0, T: L), as k — +o0, for each fixed T > 0. Let us denote by {(p,7)} a
subsequence which is convergent in the above topology to some limit, denoted by
(p, m). Convergence in L2(0, T; L2) together with the boundedness in L*(0, T'; H b,
hence in L2(0, T; L), yields (by interpolation) convergence in 120, T; H*), for each
s < 1,andin L2(0, T; L%), for each ¢ < 2*. We also can assume that p and 71 converge
to p and n almost everywhere in Q7.

On the other hand, (2.13) shows that

(p-¢.i—yY)—=>(p—d.n—¥) (2.25)
weakly in L2(0, T; V); moreover, (2.23) or (2.24) show that
(3, p. 3n) — (B, p, 1) (2.26)

weakly in L2(0,T; V) or in 12(0, T; V'), depending on the assumptions (those of
Theorem 1.2 or those of Theorem 1.3). Finally, & —U —u—U weakly in L2(0, T; V)
(weakly-x in L*(0, T; V)).

Next, consider the sequence of intervals of time [0, m], m € N. Choose first a subse-
quence {p, 7, it) that converges, as explained above, with respect to the interval [0, 1].

Denote this subsequence by ( pﬁ), ng) ) u,(cll)), where k, is a strictly increasing sequence of

positive integers. Then pickupa subsequence ( pg) , n,(c?, u,(é)) of the previous sequence,

that converges with respect to the interval [0, 2]. And so on. The diagonal sequence
(p,(c':), n,((:), u,(c’:}), m = 1,2,...,is convergent (with respect to the above topologies)
on each fixed interval [0, T1, to a well-defined limit (p, n, 1) in [0, +00). It is now
a standard exercise to verify that the limit (p, n, u) is the desired solution (in Q) of
our problem. In particular, this limit satisfies the global estimate (2.3) and the estimate

(2.12).
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Nevertheless, let us make some remarks on the way to passing to the limitask — +oco.
We denote by (p, 7, it) the subsequence constructed above. Just for convenience, we
set here Iy = Dy = p; = o = 1. Let v be a “testing-function” belonging to
LY0, T; Vo), € > 0. One has

T
—(V - (Vp + pVi), v) =[ (V5 + pVi, Vv) dr.
0

Clearly,

T
| [ (5 — VD dt] < 17— pllyar IViElsoor Vo llvee .
0

where 1/g = (1/2) — 1/(N + €). Hence the right-hand side of the above inequality
goes to zero as k — +oo (k runs over a subsequence of the positive integers).
Since (pVii, Vv) = ((p — p)Vi, Vv) + (pVii, Vv), it readily follows that

T T
Iim f (Vp+ pVi,v)dt = f (Vp -+ pVu,v)dt. 2.27)
0 0

k— 400

By using (2.25) or (2.26), (2.27), and the almost-everywhere convergence of R(p, i)
to R{p, m) together with (2.18) or (2.19), one shows that the limit {p, n, ) satisfies
the equation (1.1); in L0, T; V,{,+€), for each fixed T > (. Since in the equation
(1.1}; each term belongs to L%, T; Vy), the equation holds in this space. Under the
hypothesis of Theorem 1.3 each term belongs to L0, T: V"), hence the equation holds
in this space. Similar results hold for the equation (1.1}, (passing to the limit in equation
{1.1); is obvious).

Next, (1.2), is satisfied in the sense that p — ¢ and 7 —  belong to L (0, +o0; V),
and similarly for (1.3);. The boundary conditions of the Neumann type are satisfied in
the usual weak (variational) sense, since the text functions v belong to L2(0,T; Vy) or
to L2(0, T; V), hence are “free” on B.

Finally, by setting in the lemma at the end of page 5024 in reference [1], A = H!,
Ay =V (or V), po = p1 =2, m = 1, j = 0, one shows that p converges to p in
C(0,T; Vy), as k — +o00. Since p(0) = min{py, k} it follows that 5(0) converges to
poin L2(2), hence in V. It follows that p(0) = py. Similarly, we show that n(0) = no.
Note that p and n belong to C (0, +o00; Vy,) and that, under the assumptions of Theorem
1.3 they belong to C'(0, +-00; V) and that, under the assumptions of Theorem 1.3 they
belong to C(0, +00; L2(R2)). See [14, Chapter 1, Section 3, Theorem 3.1 and Section
2 Proposition 2.1].

Uniqueness. Here, we prove Theorem 1.4. Without loss of generality, we set
Dy = Dy =y = py = 1. By taking the difference between the equation (1.1); written
for a solution (p, n, u} and the same equation written for a solution (g, m, v} one gets

d(p—q)

o~V IVp—a)+(p— q)Vu +qgV{u —v) = R(p,n) — R(g,m),
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which is satisfied in the sense of L?(0, T; V) due, in particular, to the fact that Vu €
L0, T; LY). We consider below the case N # 2 and leave to the reader the small
modifications to be done if N = 2. In general, the modification consists in replacing N
by Ni(N, > 2) and 2* by a suitable, sufficiently large, real number.

Since p — ¢ € L*(0, T; V) one gets from the above equation

1d
S p =gl + IV — )P + f(p —g)Vu-V(p —q)dx 2.28)
+ j V(=) V(p— q)dx = [[R(p,n) — R(g, m)](p — q)dx.

Similarly,
1d
2dt

— f mV{u—v)-Vn —m)dx = f[R(p, n)} — Ri{g, m)](n —m)dx.

In—m)*+IV(n — myf> — j(n —~m)Vu -Vin —m)dx (2.29)

Moreover,
af V{u—v) Vwdx = f{(p —q)— (n—m)]w dx, (2.30)
for each w € V. On the other hand
[o-avu-vo-gax =5 [¢+r-mo -0

Note that p — g € L3(0, T; L¥), Vu € L®©,T; L") and V(p — q) € L*(0, T; L?).
Since V < L% one has

5[ (p—n)(p—q)?dx| < lp—nlnlp —qll2llp — 4l (2.31)
Q2
< Cllp—nlllp —gl* +€llVip — DI,

for an arbitrary € > 0. Moreover ||p — nll3 € L'(0, T) since N < 4. Similarly,
If fp— @ dx| 2 Cll fIlp —al* +elVr — 1% (2.32)

morcover, || f]13 € L1(0, T).
Next, by using (2.28), and by taking into account that V(i —v) € L0, T: L) (by
the assumption (1.18)), one has

i
[V(u ) Vig(p — @)ldx = - [[(p _g) — (n— m)lg(p — ) dx.
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Hence,

fqvw _ W) V(p—q)dx = ~qu-V(u —u)(p - g)dx
(2.33)

1
2 et -0 = 6 -mp -z =1+ 1

Since 11| < IVg|l2- |V (u — v) x|l p — gl it readily follows, by the assumption (1.18),
that
hf < cliVallz (Ilp — gl + lin = ml1?), (2.34)

where | Vg|l» € L2(0, T). On the other hand
L] < llgllvlip — gl Ulp — gl + lIn —m|)).

Hence
11 < Celiglly (lp — gl + lIn — m|®) + €l V(p — I

MOrEOVer, |§ql|ﬁ, e L'(0, T). From this last estimate, and from (2.33) and (2.34), one
gets

|/qv(u—v)-V(P—Q)dX| <h@ (lp —gl* + lln —m|?)+elVip— I, (2.35)

where 4(¢) € L'(0, T). Finally, (1.19) shows that the absolute value of the integral on
the right-hand side of {2.28) is bounded by

c(1+1p, g, mmdllgn)’ Ulp = qlize + In —mll) (lp — gll + lln — m)
hence by
Cc+1(p. g, n, m)Ipa) P (lp — g +In—ml*) +eIV(p — OI2 + | V(n—m)|%).

Since B == 4/N (when N # 2), this shows that

|f{R(p,n) ~ R(g, m)l(p — q)dx| < h()(Ilp — qli* + lIn — m|?)
+e(IV(p — QI? + IV(n —m)})*)

where h(t) € L'(0, T).
From (2.28), together with (2.31), (2.32), (2.35), (2.36), and also from (2.29), together
with estimates (for n — m, etc.) similar to (2.31), (2.32), (2.35), (2.36), one gets

2 dr (e = DI + 12 = m)I?) < k() (p — DI + 1 e — m)|1?)
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where i(t) € L1(0, T). This proves (1.21). O
Finally if f belongs to 1.°(0, T'; L?) the right-hand side of (1.1)3 belongs to the same
space. The assumption (1.16) shows that the conclusion of Proposition 1.5 holds.
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