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1. INTRODUCTION

In this paper we study the following system of nonlinear partial differential equa-
tions, that describes the transport of holes and electrons in a semiconductor device

7

8%5) = V(D1 Vp + apVu) = R(p,n}

?9_?; =V (D2Vn — panVu) = R(p,n) oy
-V (aVu)=f+p—n in Ry x

with boundary conditions

p=$(a) , n = Ba) on Ryx D
(1.2}
(DhVp + papVu) - v = (DeVin —panVu)-v =0 on Ry x B,
u=U(z} on Ry x D),
(1.3)
@ =0 on Ry xB,
Jv
and initial conditions
p{0,2) = po(x) , n(0,2) =ne(z) in N . (1.4)

Here {1 is a bounded Lipschitzian domain in B” (see Netas, 1967). We assume that
the boundary T of ) is the union of two disjoint sets D and B, where D is closed. For
convenience we assume that I) has non vanishing (n — 1)- dimensional measure. We
denote by » the unit outward normal to T'. We refer to van Roosbroeck (1950), Moll
(1964), Markowich, Ringhofer and Schmeiser {1990) for more detailed descriptions of
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the model. The unknowns u, p and n denote the electrostatic potential, the free hole
carrier concentration and the free electron carrier concentration. The solutions plz,8)
and n{z,t) are required to be nonegative. Usually, the above equations are written in
the form

p an

EE_V'JPZR(pJTL) 3 g _V'JTA:R(?J:H)

where the hole and eleciron current densities are given by
Jp = DWIVp+ mpVu |, jo = DyVn — panVu

respectively. We do not assume that the hole and electron diffusion coefficients Dy
and [J; and the hole and electron mobilities ¢ and g, are (necessarily) connected by
the Einstein relations D; = (kdo)p;, ¢ = 1,2, where k is the Boltzmann’s constant
and #g the constant temperature. We assume that Dy, Dy, gy, gty and a (the dielectric
permittivity) are positive constants. This leads to the equations {1.1).

In the sequel we assume that ¢,v € H'(Q) N LY(Q) and U € H'Y(Q) 1 L=(5).
The symbol “4” means the cone of nonegative functions (we point out that we will not
define standard notation). Finally, we assume that the net density of ionized impurities
f satisfies

fe L0, +oo; L7(1)) (1.5)
for some fixed s € [4,+o0] and some fixed r €]2N,+oo|. In particular, the case
of an arbitrary bounded measurable f(¢,z) is included. The most important case in
applications is that in which f is independent of time. However, it has mathematical
interest considering the above more general case (a similar remark holds if N > 3).
Concerning the initial data we assume that

P, no € L2(Q) (1.6)

The recombination term R(p,n) is assumed to be a locally Lipschitz continuous fune-
tion, defined on Ry % Ry, such that

Ben) (1.7)

Hm ,

ptrn—too P +n
where 2% = max {z, 0}, moreover

B{p,0)=0 , Vp=0,
(1.8)
RO,n)20 , ¥Yn>=0.

We point out that (1.7), {1.8) hold for the Shockley-Read-Hall recombination term

1—pn
s 1:9
R(p,n) P {1.9)

in which rg, 1, and ry are positive constants. It is worth noting that the solutions p
and n must be nonegative. Under suitable hypotheses (see below) Gajewski and Gréger
(1986}, show that the solution of the above problem satisfies

pn € L7(0,T; LY () (1.10)
for each fixed T'. However, the L*{{?)-norm of p{t) and n(t} may blow up, at most

exponentially, as { goes to +oo. For different boundary conditions a similar result is
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proved by Setdman and Troianiello (1985). For previous, related results, see Mock {1974,
1975) and Gajewski (19853). A main open question, in order to approach the problem
of the qualitative behaviour of solutions for large values of £, is to know whether the
solutions are uniformly bounded in [0, +oo[ xQ. This is our main concern here. We
will prove, under no smallness or under other restrictive assumptions, that

pon € L0, 4oo); L)) - (1.11)

A partial result in this divection was obtained by Groger, 1986. This author exhibits
" a sufficient condition in order that (1.11) holds. For the Shokley-Read-Hall recombina-
tion term (1.9) Groger’s condition corresponds to the following smallness assumption
on f: —M; < flz) < M; ae. in §), where M, and M, satisfy M; < a/D(ri + 1),
t=1,2. Here p; = ;.

With respect to Gajewski and Gréger (1986), we do not assume that ¢ and 2
are bounded from below by a strictly positive constant and that ¥ {log ¢ + U/) and
V (log ¥ — U) are bounded. On the other hand, in Gajewski and Gréger (1986}, the

authors assume a more general boundary condition on the Neumann boundary 5.

Before stating our main theorem we introduce some notation.  We set
Qr = (0,7) x Q, @ = Q. We denote by || - ||, r € [1,+400], the canonical norm
in L' = L7(9) and by | - {|ss7, 75 € |1, +00] and T €]0, +o0] that in L0, T; L7).
For convenience, we set || - || = || - ||z and ||« |lbse = § - |lrsitce- We denote by |E| the

N-dimensional Lebesgue measure of a set B.

We denote by V the Hilbert space V = {v € H* : v = 0 on D} and by V' its dual
space. In order to use here a standard notation, let us set H = L*(f)). By identifying
H with its dual A’ one has V — H — V', where each space is dense in the next one,
The spaces V, H, and V' are in a typical situation, often considered on studying weak
solutions of partial differential equations. We denote by (-,-) the scalar product in H
(or in H™). We use the same notations for scalar and for vector fields) and by {-,-} the
duality pairing between V' and V. If v belongs to L (0, +oo; V) we denote by v’ the
derivative of v as a distribution in ]0, +oo| with values in V. Since V < V' it could be
that v’ € LE.(0,+00; V'). For properties connected to this (already classical) setting
up we refer the reader to Lions and Magenes (1968), Dautray-Lions {1992).

We set po = \Jpafa, i3 = max {sta, 2}, pa = min {1, pa}, p = min {D1/p,
Dafua}, b=rg ' pts. Moreover

Mo = max {[ipoflec, lInollsas llocs [follco) - (1.12)

We denote by ¢y a positive constant such that the Poincaré’s inequality
/ vidz < Co_/ \Vul*de, YvecV , (1.13)

holds and by ¢; a positive constant such that the Sebolev’s emhedding theorem

. 1/2* 1/2
(f v? dm) < (f Evu§2ds;) , YoV, (1.14)

holds. If N > 3, we denote by 2* the embedding Sobolev exponent 2* = 2N/(N — 2)
and by 2 its dual exponent 2 = 2N/(N + 2). If N =2 (hence r € |4, +00]; recall (1.5))
we set 2% = dr/{r —4) and 2 = 4r/(4 + 3r). Note that (1.14) also holds for N = 2.
Moreover 1/2* +1/2=1.
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Next we set

2
Plg ]
S0 = 1
o dpiscy {1 15)

and we define Ny as being a positive constant such that

Rip,n)" < é(p +n) fp+nzNy . (1.16)
Ny exists, by the assumption (1.7). We set Ny = 2718 sup R{p,n)? and we define
p+n<iNg
M = max {Mo, 1, No, Ny} . (1.17)

In the particalar case of the Schokiey-Read-Hall recombination term (1.9), we simply

set
M = max {Mg, 1} . (1.18)

Under the above hypotheses there is a weak solution (p,n,u) of problem (1.1)-(1.4)
in the following class: p — ¢ and n — ¢ belong to L2 (0,400; V}; u — U belongs to
L15c(0, +00; V); p and n are nonegative a.e. in @ and helong to L{2.(0, +o0; L*°). More-
over, the solution is unique in the above class. Functions p,n and u in the above
class are said to be a weak solution (1.1)-(1.4) if, for each fixed v € V, one has
a{Vu,Vv) = (f + p — n,v), and also, in the sense of D'(]0, +oof) {or equivalently,
almost everywhere in 0, +oo[)

{7, v) + (D1Vp, Vo) + p1(pVu, Vo) = (R(p,n),v) ,
and
(n', v} + (D2Vn, Vo) + jta(—nVau, Vo) = (R(p,n),v) .

Moreover, p(0) = pg, n(0) = ny. Note that p and n are continuous on {0, +oc with
values in H = L*(2). We may also write the above equations in terms of y = p — ¢,
z=n—pandw=u—-U.

Our main result is the following

Theorem 1.1. The abouve solution (p,n) of problem (1.1-(1.4) is uniformly bounded
in J = Ry x 2. More precisely,

sup (p(t,2) + n{t,2)) < OM (L4 |1f]l2e*Y) (1.19)
where . 4 {9
=—_—— i > Y=--2 3 =92 . .
X=5—= i N23, x=o-= if N=2 (1.20)

The constant C depends only on N, o, cra, Dy, Do, pia, pa, |Q] and r.

The reader is assumed to be well acquainted with the formulation of PDE’s in weak
form. We adopt, here classical terminology and notations in order to bring out clearly
the underlying ideas. The interpretation of some of the terminology and the justifica-
tion of some of the calculations {in terms of weak solutions, distributional derivatives,
duality pairing, and so on) is done by using well known standard devices. We refer
the unexperienced reader to Dautray- Lions (1992), Ladyzhenskaya, Solonnikov and
Ural’ceva (1968), Lions and Magenes {1968), Ladyzhenskaya (1973); see, in particular
Dautray- Lions (1992) Chapt. XVIIL §§ 1 and 3.
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Some words about the proof of the Theorem 1.1. are in order. The proof consists in
four steps. The first one consists in giving (g, m) (see (3.2)) and in solving for (p,n,u)
the linear problem (3.3)-(3.6); the definition of § and ri is given in (3.1). For the time
heing, the value of the positive constant g in the definition of ¢ and 7 is arbitrary.

The second step consists in proving the existence of a weak solution (p,n,u) of
problem (3.11)-(3.14). This is done by proving the existence of a fixed point (p,n) =
(g,mm) for the map S which asseciates to each (g,m) the (unique) sclution of the linear
problem (3.3)-(3.6).

& The third step consists in showing that the solutions p and n of problem (3.11)-
{3.14) are nonegative. In particular, from this result it follows that p = max {p, x} and
i = max {n, u}.

The proof of the above three steps is done by following Gajewski and Gréger (1986},
and will be postponed to Section 3.

The fourth step is the main point in our paper. Here, we show that the solution
p and 7 of problem (3.11)-(3.14) constructed above {solutions that depend on the par-
ticular value of the parameter p) are bounded from above by the right hand side of
equation (1.19). Hence, by choising y lazger than the above right hand side it follows
that p = p and # = n. Consequently, p,n (and u) are a (weak) solution of problem
(1.1)-(1.4),

The above steps prove the existence part together with the main estimate (1.19).
In order to give a better understanding of the underlying 1deas developed in the fourth
step (proof of the main estimate (1.19)} we rather prefer to present the corresponding
calculations in the form of an a priori estimate. This is done in Section 2. The proof
of (1.19) for the solution (p,n) of problem (3.11)-{3.14) (the above step four) is done
by making {quite obvious) minor changes on the argument developed in Section 2. The
few modifications to be done are indicated i Section 3.

Finally, the proof of the uniqueness of the solution follows the usual devices and is
presented (at the end of Section 3} just for the reader’s convenience.

Before going on let us remark that our proof can be adapted to more general
situations: dependence on time of the data ¢ > 0, ¢ > 0, provided that they belong
to L=(0, +o0; H1 N L°°) and that ¢4 belong to L, (0, +oo; V') (this generalization
requires only a few modifications in the proofs); other boundary conditions (for mstance,
unilateral contraints, see Beirdo da Veiga and Dias, 1972; Beirdo da Veiga, 1974);
dependence of the coefficients D;, z;(f = 1,2), and « on the solution itsell and on (2,1),
under snitable assumptions.

_ We also note that many regularity results follow as straightforward applications

of well-known theorems or techniques. For instance, u € C(0, +o00; C%*((1)) for some
a > 0, since p,n &€ C(0, +oo; [7), for arbitrarily large r; see Stampacchia (1960), and
also Beirfio da Veiga, 1972. We conjecture that p and n are I6lder-continuous on @ if
N = 2 or 3 {under slight regularity assumptions on the boundary of D as a subset of
942 but that (in general) this result is false if N > 4, However, we did not investigative
in this direction.

1t is worth noting that obvious modifications {in fact, simplifications) in our proofs
(set dp/dt — On/8 = 0 everywhere ...) yield the following result for stationary solu-

tions.

Theorem 1.2. Let ¢,t,U be as above and let f € L'(1), r € N4l Then,
the problem (1.1)-(1.3) admiis a time independent solution (p,n,u) such that p — ¢,
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n—1, u—U€EV. Moreover p> 0, n > 0 and
sup (p(z) +n(2)) < C M1+ [[f7059) (1.21)
f

Here, X and C are as in Theorem 1.1.. In the definition of M drop ||ps|| and ||no|so-

A second basic question in order to study the asympiotic behaviour of the set of
solutions is that of the existence {or non existence) of a (significant) functional space
X and of a bounded set By C X that atracts (unifermly) each bounded subset B of
X. We prove that this property holds for X = L*(Q2). In order to prove this result, the
first step consists in showing the existence and the uniqueness of a solution

pym € C(0, +o0; L)) (1.22)

in correspondence to each (arbitrary) pair of initial data ps,no € L%(§1). We prove
the existence of a weak solution (p,n) to our problem in the class p — ¢, n — ¥ €
LE. (0,400, V), pyms € L2, (0,+00;Vy) is the dual space of Vy = {v € V : Vo €
IN{()}; if N = 2 replace N by ¢, ¢ > 2. In order to prove the uniqueness of the
solution and also that p;,n, € Li,. (0, +oo; V') (hence that {1.22) holds) we assume the
property described below. Consider the elliptic mixed boundary value problem

~Vu=gin @, u=Uon D, dufdv=0on B . (1.23)

We assume that there is a functional space ¥ and ateal ¢ (> 21 N =2, 9= N
otherwise) such that if ¢ € L*({2) and I/ € Y then the variational solution u of problem
(1.23) satisfies

(Vully < e (llgll + [1T71l¥) - (1.24)

Note that this is an assumption on {Q, B, I}, This assumption is out of place if N > 4
since H*{§) is not contained in ZV(Q). If N = 2, it holds if @ is a bounded domain
with a polygonal boundary (or a regular transformation of such a set). In this case
g > 2 can be arbitrarily fixed, moreover ¥ = i/Vl_%’q(B). This follows essentialy from
results by Lorenzi (1975). Since it is sufficient to have (1.24} for some g > 2, it seems
possible to use Groger’s results (1989).

If N = 3 and if §} is bounded convex set with a polyhedral boundary (or a regular
transformation of it} then the solution of problem (1.23} belongs to H3?(Y). This
follows from results of Grisvard (1992), at least if /' = 0. Note that Vu € L3() since
H3?(Q) «s W'3(). Tt is worth noting that in Grisvard (1992), the author considers
only homogeneous boundary conditions, but that looks inessential there, We also note
that W3 regularity holds under weaker hypotheses on the angles hetween faces than
that needed to get H*?regularity. But we do not know about precise statements in
the lLiterature.

The following result is proved in a forthcoming paper. For brevity, we assume that
fe L*(@) and that R{p,n) is given by {1.9}.

Theorem 1.3. Let the assumption (1.24) hold and let ¢,+4, U, f and R(p,n) be as
in Theorem 1.1.; moreover U € Y. Then, to cach pair of initial data (po,mo) € L*(f})
it corresponds a unique solution (p,n) of problem (1.1)-(1.4) in the class p — ¢, n—1 €
L2 _(0,400;V); poymy € LE, (0, +00; V'). Moreover, p,n € C(0,+00; L*(Q)) and there

is a positive constant Cy which depends on the norms ||¢|co, i|¢llco, |[If]llee but not on
Po, 7o and U} such that

(I + I < Co -+ ce” (lpoll* + lImol*) - (1.25)
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for eaeh t > 0. The positive constant ¢ and v are independent of the data ¢,9,U, f,po
and ng.

The above result shows that the set
By={(p,7) € L*(2): 520, w20, |p||* + 17> < Co}

is a global bounded atractor in the space L*(2).

2. PROOF OF THE MAIN ESTIMATE

As explained in Section I, the proof of (1.19) will be carried out here as an a
priori estimate for solutions of problem (1.1)-(1.4). However, according to the above
explanation, the proof should be applicable to the solution of problem (3.11)-(3.14).
We assume here that the solution of problem (1.1)-(1.4) belongs to the existence class,
described before the statement of Theorem 1.1., since the solution of problem (3.11)-
(3.14) belongs to this class and since the justification of each single calculation is the
same in both cases.

For & = 0 we set

T = w® = max {w — k,0} .
The notation @ will be used when there is no danger of misunderstanding. In the sequel
k > M,. Hence p and # belong to L2 (0, +oo; V), moreover p{0) = n(0) = 0. See,
for instance, Dautray- Lions (1992) Vol. 2, Chap. IV, §7, Prop. 6. Next multiply the
equation (1.1); by B, integrate over {2 and made suitable integrations by parts. This

yields

1d

1
5 S IBI 4 DB+ [V (5 V4 kV5) do= [ Rppde (21)

where integrals are over . Again by suitable integrations by paris, and also by taking
into account the equation (1.1); and the boundary conditions, one gets

1 d
Sl + DV + 22 (74 p = miptda + Bk [(F 4 p—n)pde =
= fR(p,n)}‘J dz.
In a similar way, by starting from (1.1}, one gets
1 d
S Sl + Dal| VAP — 52 [ (54 pn)ide + B2 [(f 4 p— ) de =
2 di (2.2)

Next, multiply equation (2.2) by us, equation (2.2 '} by y;, and add both equations.
This yields

d 2
% dt /(“2?‘2 + mit) de + ppg / V(5 m)|? dz + 57‘; /(f tp-—n) (@ -7")ds+
2
+% k_/(f +p-—n)(F-a)de = /R(p,n) (2P + pmi7i) dz (2.3)
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where, for convenience, we set
[V =|Vpl* + [Va]*

Since p and n are nonegative, one easily proves that (¥ —7){p —n) > 0 and that
i —7| < |p—n| In particalar (T —7) (p —n) < (p —n)?. Hence

@F-a)p-n)2@E-7) F+7) .
On the other hand
- m) < P Gty () ()
1t readily follows that
Ftp=m)@ ) > G- G175 PG . (24

Similarly, (f +p—n) (5 —%) > 3 (5 — 7)* — 1 f* (however, we will estimate the corre-
sponding term in equation (2.3) in a chﬂ'elent way). From (2.3) and (2.4) one gets

Zdt](mp +#1n)dw+moflvp, )N? de +

K [ —m) (pam) o+ Bk [(p ) o 2.5)

<'MU/|f|2 p+"ﬁ}d;r+ L/§f||pfn|d:r:+pr, {poF + paFi) do

Next, we estimate the last term in the above inequality. In the specific case {1.9), one
has
R(p,n) (p2p + pam) < B +7) - (2.6)
In the general case (1.7), (1.8) one has R(p,n)t < 8y(F+ 7+ 2k) for k > max { N, MV, }.
Hence
R(p,n) (2P + i17) < pabo(p + 7)* + 2bopuak(P+70) .

By taking into account (1.15) one gets

2
R(p,n) (4ap + ) < L0 (0 7)* + 2005 k (B 47) (2.7)
Hence, by (1.13), (2.5) shows that
1 d
5 o [P 1 ) do 20 p‘° (IV5 + |VaP?) de

' (2.8)
2
<8 [pEem et @ kU1 47 da 4 2opok [(F4+7) da
In the specific case (1.9) we could replace 28pu3k by b. However (for convenience) we
rather prefer replacing 260us by b and assuming that £ > 1. Under this assumption
(2.8) holds for each £ > M.

Next, we define

A ={z e Q:plt,x) >k} U {2 e:n(t,z) >k} . (2.9
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We set N +2) (N +9)
+2)r + 2)r
=y 0 PE (N +2)r —4N (2.10)
if N > 3, and
4+ 3r 4 + 3r
o= =TT p= (2.11)
if N =2. Note that a~! 4+ 87! =1 and that 2/(28) = 1 + X.
By Holder's inequality one gets
1
/fZ(?H*ﬁ) dz < [P+ A2 ] 5.l A6 ()%
Since || + 7l2x < \/iclf|\7’(ﬁ,ﬁ)|! it follows that
[ 7 G+m) de < e IVERIP 4o 1P 40P . (202)

By setting ¢ = ap/2¢? one obtains
B [ P4 m) da < 28 0 mIP + S48 ¢ g

Note that r = 22«. In this section, for convenience, we denote by ' positive constants
that depend, at most, on the constants N, ¢y, 01,6, D1, D, gy, 2,7 and ||, The same
symbol ' can be used to denote distinct constants, even in the same formula. 1t is
worth noting that all the constants C that appear in the sequel can be easily estimated
(as in (2.12}).

By replacing in equation (2.12) f? by kf we show that

E[ 151G de < QY@+ IRLAOM . (.13)

and by replacing in (2.13) f by 26y we show that
bk [(p+7) do < de [V(ERIE+ 20 20U AOM . (@10
By making ohvious choices for £ in the above estimates, we show from (2.8) that

dtf pop” + i) du +Vf(#zp + ) de < C {71+ RAZ + D] AP

(2.15)
where v = pu2/4dcops. We have used also Poincaré’s inequality (1.13). Recall that
%a = r/2. Since we are not looking for the sharpest estimates, we replace in (2.15) the
term || f1|f by £%||f]|}. We get the simplified expression

v (t) + ve(t) < CRg(d) [Ax(8) (2.16)
where
= f(.uszQ +mit) do
(2.17)
g(t) =1+ [IF A7 -
Note that y;(0) = 0 since & > M. It readily follows from (2.16) that
t -
yu(t) < C’k?‘f e g(s) [Au(s)[' ds (2.18)
o
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In particular

¢
w(ty< S (L sup a) (o 1At ) (219)
v Ot +oo G<i<+o0
Let now & > & > M. One has
ye(l) 2 palh — k) JAR(E)] (2.20)
Set,
O(h)= sup |Au(B)*, (2.21)
0<i<+oo

for each b > M. Note that ®(h) < |Q|Y*. From (2.19) and (2.20) it follows that
B(h) < %%@(k)”x , forh> k> M, (2.22)

where
o\
=|— L+Hf2 ) - 2.23
v= ()" e (229)
The proof of the following result is postponed to the end of this section.

Lemma 2.1. Let ®(£) be a function defined for £ > M, nonegative and decrensing
(not necessarily strictly decreasing) such that, fer h > k > M, the estimate {2.22) holds.
Then ®(2d) = 0 where

d= M+ 28Ty 4% B(M)M (2.24)
M and v are nonegative constants.

Application of the above lemma shows that [Az.(t)] = 0 for ¢t € [0, +oo[, hence
p?%) and n®¥ vanish on . This shows that (1.19) holds when s = +00. Note that
O(M) < I0/2. a

Next, we show that (1.19) holds if
f€eL®(0,+4o00; L"), (2.25)

for some s > 4. In fact, from {2.18) and from Hélder’s inequality one gets

2 (1 1 ¥ 14X
ys(t) < Ck (y + 117050 S |4, (2.26)
where ¢ > 1 and 1/9 + 1/#' = 1. Hence (2.22) holds, where now v is given by
C 1/2 pHH , :
(2] (14 s ) (227)
Note that the right hand side of {2.27) coincides with that of (2.23) provided that
¥ = toc,d = 1. 0

Finally, we prove the Lemma 2.1. We will prove a slightly more general result,
that can be useful in other situations, This kind of results turn back to ideas of De
Giorgl, and were developed by other authors in particular O. A. Ladyzhenskaya and
G. Stampacchia. See Stampacchia (1963) and Ladyzhenskaya, Solonnikov and and
UraP’ceva (1968).
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Lemma 2.2. Let ¢(€) be a function defined for € > M, nonegative and decreasing
(not necessarily strictly} such that for h > k > M the estimate
vk? 1+x
h) < ——— H(k) 2.2
6(0) < 75 e 918) (2.28)

holds. Here, v, a and X are positive constants. Moreoverd < a(l+X}. Then ¢(2d) =0,
where d > M is the root of the equation

P«
d= M+ M & (2.29)
and ho a .
AT = 27X T MR G(MYTE (2.30)
Proof: Set k; = d(2 - 277), 7 =0,1,2,.... We want to show that
da—:ﬁ‘ 1/x
pk;) < [W] (2.31)

Since lim k; = 2d, then (2.31) implies that ¢(2d) = 0. Equation (2.28) for h = kg

F+too
and k = M shows that )
Blko) < T M (232)
T (d—- M)
By replacing (d — M)* by the value obtained from equation (2.29) it readily follows
that the right hand side of (2.32) is equal to the right hand side of (2.31) for j = 0.

Next, by supposing that (2.31) holds for some j > 0 and by using (2.28), we prove that

2ﬂ+(;+1)a7 Jo-s 1+1/x
e

gﬁ(kj'f’l) S da_!? _.,";,14,1/)(}_1_19'T (2'33)

Straightforward calculations show that the right hand side of (2.33) is equal to the right
hand side of (2.31) if here we replace j by 7 + 1.

3. EXISTENCE

In the sequel we denote by p a real fixed number, larger than Mp. If w is a real

function we set
poitwzp,

Ww=< w if 0<wp, (3.1)

0 if w<g

We assume that ¢, and I/ are as in Section 1. We denote by T' a fixed, positive
(arbitrarily large) real number and we assume that f € L'(0,7; L?). Let

g,m € L*}0,T; L*) (3.2)
and consider the auxiliary problem (see Gajewski and Groger, 1986)
J . -
51; V- Dy(Vp + iVu) = R(g,m)
%’? Y Dy — V) = R(G, ) (3.3)

—V - (aVu) = f+§— 1,
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with boundary conditions

p=¢(z) ,n=d(x) on (0,TYxD ,
(3.4)
(D1Vp+ m§Vu) v = (D:Vn — perbVu} v =0 on (0,T)x N ,
u=U(z) on (0,7Yx D |
3.5)
du (
t—a—;mU on {0,Tyx B,
and initial conditions
p(0,2) = po(x) , n(0,z)=mne(z) in O . (3.6)

The first step is to show the existence of a fixed point (p,n) = (¢,m). Let ¢ and m be
given. By setting u = U + w, the problem (3.3)s, (3.5) is formulated in the foliowing
weak form. We look for w € V such that

/an-Vvdm:fa/VU-Vvd:c+/(f+ﬁwr"n)t)dm, YoeV .  (3.7)

The symmetric bilinear form on the left hand side of (3.7) is continuous and coercive
over the Hilbert space V', moreover the right hand side of (3.7) defines a bounded linear
functional on V. By Riesz-Fréchet representation theorem, the problem (3.7) admits a
unique solution w € V. One easily shows that the weak solution u = U 4 w of (3.3)s,
{3.5) satisfles

[Vull < 2V UL+ e L+ Nl -+ Il (3.5)

Next, we study the problems {3.3); and (3.3), with boundary and initial conditions
(3.4) - (3.6), in the following weak form. We set p = y + é, n = z + 1, and we look for
y and z in L*(0,7; V) with y' and 2" in L%(0,7; V") (see, for instance Dautray- Lions,
1992, chap. XVIII, §1, specially sections 1 and 2) such that y(0) = py—¢, 2(0) = ng—1
and

(&' (t),v) + Dy(Vy,Vv) = —Di(Vé + p11§Vu, Vo) + (R(§,7),0) , Ve e V |
{(Z'{t),v) + (D2(Vz, Vv) = —(Da Vi — pahVu, Vo) + (R(4,m),v), Yo e V.

(3.9)

Since DV + p1¢Vu and R{§, M) belong to L2(0,T; L?}, in (3.9); they acton V

as elements of L*(0,7;V'}. Tt follows (see, for instance Dautray- Lions, 1992, Chap.

XVIII §3, Theorem 2) that the above problems admit unique solutions y and z. Hence, )
the problems (3.3); and (3.3), with boundary and initial conditions (3.4) and (3.6) have

unigue solutions p and n in L*(0,T; H') with p' and n’ in L*{0,T; V7). )
Next we show the existence of a fixed point. By setting v = y(1) in equation (3.9),

it follows that
1d
2dt

By taking (3.8) into account, it readily follows that the right hand side of the above
inequality is bounded by O (1 + | V|| -+ ||VU| + [ £]|) || Vy||, hence is bounded also by

Igll* + DullVyll® < Dy (141 -+ ralldllooll Vel 1991+ coll B(G, D)1 9wl -
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i
5 Dy VY|l + (Clp) (1 + IV + INU| + E|ff|)2, where the constant ¢ may depend
on a, Dy, ¢+ and p. Hence

WAL pupwal < 2+ gvg+ivoi 07 . @0

It readily follows that

T T
sup JuOIF+0r [ Iyl de <201+ [7 @+ 10+ Vol + ) .
0gi<T 0 i1 Jo
" Hence, there is a constant By, independent of the pair (g,m) € L*0,T; L), such
that the norms of the solution y of (3.9); in the spaces C(0,7;1?), L%(0,T;V) and
L*(0,T; L?) are bounded by By. A similar result holds for z. From these bounds and
from the equations (3.9); and (3.9); it follows that the norms of y* and 2’ in L2 (0, T; V")
are uniformly bounded. Since p = y+ ¢ and n = z + %, a similar result holds for p and
n. Denote by By an uniform bound for these norms and set

Ky = {(q,m) tiglizegny < By lImlizegny < By, Idllz2vy € By, [|[m/{|reqrn < -Bl} )

where L*(X) = L*(0,T; X). #r is a closed, convex, compact set with respect to the
L*(L?) topology. The map S : (g,m} — (p,n) satisfies S(Hy) C Kr. Moreover, S is
continuous on £ with respect to the £?(L*) norm, as follows from standard arguments.
Hence, Schauder’s fixed point theorem guarantees the existence of a fixed point on £
for the map S, ie. (p,n) = (g,m). Clearly this fixed point is a weak solution of the
problem

B, \ L
('Tf ~ Y (D;Vp + mpVu) = R(p,H)

~V(aVu)y=f+p-n

{ p=d¢(z) , n=v(x) on (0,T)xD ,
(3.12)
(DyVp + 1 pVu) - v = (D:Vn — ppfiVu) - v = 0 on (0,7) x B |
v=U(z) on (0,7)x D,
(3.13)
g%:(] on (0,TYx B ,
p(0,2) = polz) , n(0,2) =nglz) in 0 (3.14)

Next, we show (by following Gajewski and Groger, 1986} that the solution (p,n)
satisfies p > 0, n > 0. Multiply the equation (3.11); by p~ = min {p,0} and integrate
on 2. By taking into account that (3Vu, Vp~) = 0 and that (R{p,7),p") < 0 (recall
(1.8)) one shows that d||p=(#)]|*/dt < 0. Since p~(0) = 0, it follows that p~ = 0. A
similar proof shows that n= = 0.

Finally, we prove that the solutions p and n of problem (3.11) - (3.14) are bounded
from above by the right hand side ¢ of equation (1.19). Since p > £, this shows that
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5 =pand & = n. Hence (p,n) solves (1.1)-{1.4) and satisfies (1.19), for arbitrarily
lazge T'. At this point the reader should recall the explanation about the proof of
the Theorem 1.1. given just after the statement of that theorem. According to that
explanation, we show here how to modify the proof of (1.19) given in Section 2 in order
to adapt it to the solution (p,n) of problem (3.11)-{3.14}.
Set & = min {v,x} where g is above, and set & = max {& — k,0}. In the sequel
k € [My, ). Next, instead of multiplying (1.1); by p (as done in Section 2} we multiply
(3.11); by p. Asin Section 2, we prove (2.1) where now (p, ) is replaced by (p,#). Hence
(2.2) and (2.2 '} hold by replacing (p,n) by (f,%). From now on, all the calculations -
done in Section 2 hold if we replace (p,n) by {$,#%) since they depend just on (2.2) and
(2.2 ). This shows that p < ¢ and i < {. By chosing p > £, one gets (P, 1) = (p,n).
0
The proof of the uniqueness of the solution foliows the standard argument. If
(p,n,u) and (g, m,v}.are two solutions of problem {1.1)-(1.4) one easily shows that

1 d
2 dt

i [ qV(u=) Vip - gda = [[Rlp.n) = Blam)l(p — q) do

Since p,n,q and m are bounded and R is locally Lipschitz continuous, one has

lo—alP 4+ D1 [ V(o= a)f do+ 52 [(5+p—n)p—q) dat

S Llp—al + 0 [V - de < C [lp— 0 de 4 C [1fl(p— )" dot
FCIV(e =) V(= @)l + Clln - m|i* .
Moreover, || V{u —v)|| < Cl(p — ¢) + (n — m)|| and

171 o= 0 de < Ul o — el I~ alir < 219G — 0l +C A o= ol -

(Here, and below, if N = 2 replace N and 2* by 4). By using sirmlar results for n —m
one shows that

% (o=l + I =) + € (V@ =l 490 =)
(1 + ”f”N) (HP —q|? + in — muz)

Since f € Li. (0, +o0; L) one has

C t 2 ds
()@ +In(@)—m(IF < (1p(0) — gO)I* + [n(0) = m(0)]*) Lo+

Hence, (,q) = (n,m).
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