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Main Notation

We start by infroducing the main notation. As usual, R* is the set of positive

reals and Ry = R* U {0}. We denote by |-|, and | - ||,, the canonical norms in the
space L? = LP(Q), 1 < p < ¢0, and in the L2-Sobolev space H™ = H™(Q}), respec-
tively. We set ||+ || = || - lo. The peoint x belongs to the n-dimensional torus, n = 2,

identified here with the set Q = [0, 1]~

We denote by ||+ ||, r and [ -], r the canonical norms in L*{0, T; H™) and
L*(0, T; H™), respectively. The function x — f(t, x), for a fixed f, is sometimes
denoted by f(z).

We denote by kg the smallest integer larger than n/2 and by k a fixed integer
satisfying k = ky + 1.

The parameters n, k, po, vo, and o are fixed. Positive constants that depend at
most on these quantities are denoted by c. Below we also introduce the positive
constants ¢;, that play here an important role (see (1.6)—(1.8)). Positive constants
that depend at most on ¢, are denoted by C,; positive constants that depend at
most on ¢; and ¢, by C;; and positive constants that depend at most on ¢4, €3, ¢3
by Cs. Distinct constants C; are denoted by the same symbol provided that they
depend on the same basic constants ;.

Introduction

We study the dependence of solutions to the equations of motion of compressible
fluids on the Mach number ™! and on the viscosity coefficients v and u. We assume
that A= 1 {we shall be interested in letting A tend to o) and that ve [0, v,],
e [0, o] for arbitrary, but fixed, constants v, and u,. Viscous and inviscid fluids
are studied together, since 0 is an admissible value for the viscosity coeflicients p and v,

We denote by v the velocity field, by p the density of the fluid, and by p(4, p) the
pressure p as a function of the density p and the Mach number. It is worth noting
that our results and proofs apply if p(4, p) enjoys the properties assumed in the
papers [BV1,2]. In order to avoid technicalities, we assume here that

(1.1) p(4, p) = A*plp)
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for a fixed function p(-). The main point is to assume that lim; . ,, p'(4, Po) = 0,
where g, is the “mean density” of the fluid. We assume that there are no external
forces since their introduction into the equations does not give rise to any addi-
tional difficulties.

We assume that pe C**2(R*; R) and that p/(s) > 0 for all se R”. The equa-
tions of motion under the equation of state (1.1} are

o +0-Vp+ pV-o=10,
(1.2) plo + (v Viol +_;12p'(p)Vp = vAv + puV(V - v),
p0) = po + polx),  v(0) = vy(x),

where g, is a fixed positive constant and gg + po(x) 2 ¢o > 0. We remark that if
[o0(x) dx = 0, then [, p(t, x) dx = po for all ¢ 2 0. This follows from the equation
(1.2),. However, this hypothesis is not necessary here. Without loss of generality we
assurne that the “mean density” go is 1.

We find it convenient to make the change of variables

(1.3) g = log(p/po).
Equations (1.2) are then equivalent to
g +v-Vg+V-v=0,
(1.4 v + A2 (g)Vg + (v-V)v = e ‘[vAv + uV(V-v)],

U(O) = UO(x)a g(O) = go(x);

where, by definition, ¢'(s) = p'(¢®) for all se R. Hence ¢’ ¢ C*"'(R;R™). Our
proofs and results will be given in terms of the unknown g. If the reader wants to get
the results in terms of p, the only rules to keep in mind are that |g|,, is bounded if
and only if {p|., and |1/p|, are bounded, and that g — 0 in H" is equivalent to
p — jo in H™. These facts follow easily from a lemma of MosER (see Appendix,
Lemma 4.5). More precisely, the results befow hold by replacing go(x) by po(x)/po
and g by (p — 7o)/Pe (hence, g, by p,/ o). The factor 1/p, can be dropped.

We are interested in studying the behaviour of {p, v) as (simultaneously) the
Mach number A~ ! goes to zero, the viscosity v converges to a value v = 0, ji stays
bounded, and (vy, po) converges to (wg, o). The limit equations are the equations
of motion of an incompressible fluid with density g, = 1 and viscosity ¥ 2 0, ie.,

V-w=070,
(1.5) w, + (w-Viw + Vi = 7 Aw,
W(O) = w(}(x)>

where V - w, = 0. In reference [BV7] I studied the convergence of (v, p) to (w, 1), L.e,,
the convergence of (v, g) to (w,0) as (4,v) — (o0, 7) and p remains bounded. The
results in [ BV7] extend Theorem 2 in [ KM 1] by following similar ideas. However,
these results are not quite satisfactory, in particular, from the mathematical point of
view. In fact, the dynamical systems (1.4), (1.5) have solutions (s(t), g(t)) and (w(t), 1}
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which describe continuous trajectories in the Hilbert space H*, the data space.
Hence, the natural and optimal resuit is to prove that trajectories converge to the
limit trajectory in the H*-norm, uniformly with respect to time. This is a significant
accomplishment in the theory. We remark that convergence in C(0, T; H*¢) and
m L0, T; H*} weak-* are immediate consequences of the uniform a priori
estimates leading to the existence theoren. Convergence in C(0, T; H*) requires
deeper arguments.

In the next lemma we condense some of the results proved in [BV7]; see also
{KM17.

Lemma L1. Assume that -

(16) ” by Hko+l é Ci, A HgO ”ku+1 g €1,
(L.7) lvolix £ 2y Al golis < e,
(1.8) AV-voll Ses, 27 Vgollo < cs.

Then there is a positive constant T, depending only on ¢, {(decreasingly), such that
problem (1.4} has a unique solution in [0, T]. Moreover,

(19) gl +1vlir + v[VolZ o + ulV-v]2 4
SC2Ngoliz + e 2) £ €,
(1.10) P2l lie s + hwldr + 22HE g 2,
+v[Volg r + ulV-vld r £ C,.

The above constants T, Cy, €y, Cy also depend on k, n, Vg, o and on the
particular function ¢'(-). However, we assume that these data are fixed once and
for all. We note that related (but weaker) results have been proved in the literature
by assuming that k>k,+2 and that oo — wolle S e3fh, fgoll, < cafA?,
vlvo — woller1 S ¢, and |Venp iy < e4/2 (compare with (1.8),). Note that these
stronger hypotheses imply, in particular, that (00, Age) —» (wo, 0)in H, an assump-
tion made in theorem A below.

In order to state our main result in a clear form we introduce the following
notation. We fix a set of constants {k, vo, to, Cy1, €2, 3}, where k2> ko + 1,
Vos to € IRy, ¢; € R* and we define the corresponding set of admissible data (initjal

data and parameters)
#=1{X = (o, go, A v, e H x H*x [1, o0 [ %[0, vo1 %[0, 107:
(1.6)-(1.8) hold}

endowed with the canonical product norm, Finally, we define a map § on & by
setting S(X) = (v, g), where (v, g) is the solution of the problem (1.4) corresponding
to the particular data X e Z.
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Theorem A. Let % and S:%& — C(0, T; H¥) be defined as above. Then .

(1.11) lim (e, g) — (W, O 12 7 + A2 | Vglli-s. 7
e
(vo, Ago, A, \?;'% (w0, 0,00,¥)

+ lglii-1,r+ v —wlier,r =0,

where w is the solution of the problem (1.4). If, moreover, ¥ is replaced by
(Xe& I<p=po) where feR”Y, then lim [V v]ir =0 (Here, and in the
sequel, the convergence of (vg, Ago) to (wo, 0) is understood in the H* norm.)

Remarks. (i) The map S: & — y = C(0, T; H*} is continuous on %, ie, (1.11)
holds if A converges to a finite limit A (instead of to o). This result can also be
proved for boundary-value problems. See references [BV3, Theorem 2.5], [BV4],
[BV5]. However, we are interested here in the behaviour of the solution
S(X)=(v,g)as 1 - .

(ii) Let }, 0 £ <k — 1, be fixed. If we replace assumption (1.8) by

(1.12) Vvl £ s 22| Vgol £ ¢,

then estimate (1.10) holds if we replace the norms ||+ {[o,rand [ - Jo,7 by | - {;, r and
[+, r, respectively. In this case v, w, e C{0, T; H ). However, it is {in general) false
that lim || o, — w,||;, ¢ = O. Similarly, if limv = v > 0, then v, w, € L*(0, T; H*™').
However, it is false (in general) that lim [v, — w, ],— (.7 = 0. Convergence of v, in the
strong norm can be proved if one introduces additional conditions on the initial
data. However, these conditions look quite artificial.

(iii) In the particular case in which vy, o = 0 (hence v = y = 0 everywhere)
Theorem A was proved in [BV8]. This result implies Theorem 1.2 of [BV6].
It is interesting to note that in {BV6] we used approximations of the solutions
of (1.4) by two distinct systems (the ¢- and the d-approximation). Here, we show
that the s-approximation is superfluous. However, if we want to treat bound-
ary-value problems (see, for instance, [BV3]), the s-approximation is a very
useful tool. ‘

{iv) The main points in the proof of Theorem A can be easily extended in order
to cover the general class of problems considered in reference [ KMI1] (in this
direction, see Theorem 2.2 in [BV6]). An interesting application of the method
followed here to the equations of magneto-fluid dynamics will be given in the
forthcoming paper [R].

Finally, we give some references to previous papers treating the incompres-
sible limit for compressible fluids. In [Ag], [As], [BV6], [Eb 1,2], [KM 1,2],
[M], [Sc 1,2,3], [U] the authors consider inviscid fluids. Viscous stationary
fluids were studied in [BV1, 2]. Viscous nonstationary fluids were studied in
[KM1] and, for the boundary-value problem, in a very recent work [Be]. There
are also other directions of research in this same field. For instance, see [KLN]
and [Sc4].
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Preliminaries

The following result, a corollary of Theorem 1.5 and of the equation {1.18) in
[BV7], is stated here just in the form needed in the sequel.

Proposition 2.1. Under the assumptions of Theorem A,

2.1) lim lo—wli-vr+ lgli-1r
Xe
(vo, 2go, 4, v} —+ (wa, 0, a0, ¥}

+ 22| Vgl ar + 7o — wlie =0.
If, moreover, e [, o] for some > 0, then im [V cw—wlior=0
The following system in which & & 10, 1] is a parameter plays a very important
role in the sequel:
gl +(° Vg + V-0’ =0,
2.2) vl + 224 (g*)Vg° + (0 - V)o* = &( — g")[vAW® + pV(V -0},
v(0) = vd(x), ¢°(0) = gd(x).

For convenience, we use the notation &(y) = ¢”. The parameters k, v, to, C15 €2,
¢, are fixed once and for all. The element X = (vo, go, 4 ¥ i) ranges over the set &,
which corresponds to the above values of parameters. We consider the Fourier
series

uo(x) = Y, fio (&) ¥
4
where the Fourier coefficients are given by
ip(f) = j e 2™ Ty (x) dx
QO

and where & = (&4, . . ., &,). The &s are nonnegative integers. We denote by | ] the
Euclidean norm of & For each se Ry, we have

luoll? =Y. (1 + 117 14O

3
Next, given d € ]0,1] we define the operator
(2.3) (Tlu)(x}= Y, #@olf)e®™*
HESR:
and we set

(24) v =T, g5= T
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The operator T? is a linear operator on H°® for each se Rg. Moreover,
HT2%ls.s < 1, where |- |ll,,. denotes the canonical norm on bounded operators
from H* to H™. On the other hand, T ? commutes with the divergence operator. It
readily follows that (2, g3) satisfies conditions (1.6), (1.7), (1.8) for the same
constants. In other words, if (vy, g, 4, v, #} € &, then (v3, g3, 4, v, u) € &. Hence, by
Lemma 1.1, it follows that

Ahglir + 1N E e+ v[Velir + u[V-vlir =Cy

(2.5)
AUhgils e+ 10215, + v[Ved ¢ + p[V-vld.7 = Cs.

Also note that

(2.6) NT 2 Wsm < 27" NT? — Tlllm,s < 6™ °

if 0 =<5 =m, where s,me R . In particular,

Mgt e Dbl Sen,
ey Hgbllers S 26af6, Loblies < 20fs,

MV-dlse,  RIVebl <e,
23 Mgbhes 37 150l

We also define w), = T?w,. Note that
5 8 2
(2.9) oo — wollx+s églivo—wo”k-

In particular, since (v, Ago) — (wg, 0) in H¥, it follows that (v, Ag%) — (w3, 0} in
H*"1 for each fixed 4.

Equations (2.7) show that (for each fixed 8} the solution (v°, g°) of problem (2.2)
satisfies all the results proved in [BV7] if one replaces k by k + 1 and ¢; by 2c,/d.
Note that T depends only on ¢,. Hence T is independent of the particular initial
data (vy, go) or (v3,gd) and of the particular values taken by the parameters
k, A, v, u, and 4. In particular, applying Proposition 2.1 (with k replaced by k + 1}to
the solutions (v?, g?) of the system (2.2) we get

Proposition 2.2. Let X € & and in (2.2) let the initial data be given by (2.4). Then, for
each fixed 8,

(2.10) lim 19° —wlllir + 1g’ler + A IVe i 1r

{vo, Aga, X, v) > {wn, O, w0, V)
+ 7[V{® —wh]ir=0.

If weli, ol £ > 0, then im [V-0°]{ + = 0.
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We denote by w? the solution of the problem

Vew? =0,
(2.11) W + (W V)w? + Vb = 7AW,
wi(0) = wi.

The following estimates will be useful:

v —voll 52||W0~Uollk +2 3 (L+IEPH W&,
1ei>1/8

(2.12)
”9‘0 *90”% = Hgo“k-

Their proof is left to the reader.

Proof of Theorem A
Our next step is to prove

Theorem 3.1. Let 0 <m < k. For each X € & and each & > 0,

1d

1
(3.1) EE(lzgfqu’(g)lmém |D*3|* dx + fIEIIi) +a(V!IV5|Ii +ulV-5)2)

= GG + 1500) + 0F CalA2 Vg (15w I Gl + 1L 1511k
F 10 ks 1181w [9116] + C2@ NV e + )V -2 J) 18 G
+ SN Cov VOl iZ + pl V-0 )G s
where, by definition, 8} is the Kronecker symbol and
g=¢'—g, 1=0v"~y,
¢=0'(g°)—¢'(9) e=é(—g")—&(—9)
Proof. Taking the termwise difference of the equations (2.2) and (1.4) we find that
gtv-Vig+V-i= —5-Vg,
3.2) _
0+ A2 (gIVG + (v- V)i = — A2¢Vg® — (5 V)o® + vé( — g)AT + véAr®
+ pé( — g)V(V b} + pevV(v.-v).

In the calculations that follow it is worth noting that the estimates (1.9), and (2.5

show that the quantities |v][,, 1, illgllk [ (D r, AV (@ k-1, 25 10,
A’ s v[v° T+ 1,1, and pf V.o 7, r are bounded by a constant C,. The norms

of ¢'(g) and V¢'(g) are estimated here by using well-known inequalities of MOSER
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(see the Appendix). Moser’s lemma also shows that
1Flee £ Cilgle> N Plim = Crllgln,
1elo £ Cilgles N€ln S Ciligln
for suitable constants C;. As in [BV7] we use the notation
p{f g} = D(f 9) — S (D%9)-

In order to carry out the calculations which follow, we need some useful inequali-
ties. For the reader’s convenience these inequalities are presented in the Appendix.
We note that, for 0 < |a| = m,

(3.4) 1DCF )l < el Sl g lim s + €8 1S Lo 19 e

In fact, if m <k — 1, this inequality is obvious. If m=k, we have D*(f ¢) =
b*{f g} + fD%g, and the result follows from (4.3).
Let us now consider (3.2). Applying the operator D* to (3.2), we obtain

DG, + (v-V)D*G + D*{v-Vg} + V-D'v = — Do+ Vg’).
Next, we multiply both sides of this equation by A2¢'(g) D*g and integrate the

result over Q (this leads to the symmetrization of system (3.2)). Using, in particular,
(4.2), (4.3), and (3.4), and doing standard manipulations (see [BV7]), we prove that

(3.3)

A d
(3.5) 73;] & (g)D*gY dx —~ 22 | ¢'(g)(D°0)- VD g dx
€ Q

< C 22| GH2+ CoAll Bl Glm + OFCA? Vg Ik 1910 1l

Next, we apply D* 10 (3.2);, multiply the result by D*0 and integrate the product
over Q. Using inequalities in the Appendix and devices similar to those in [BV7] we
show that

(3.6) Do) + A* [ ¢'(g)V DG D odx + 22| D*{¢'(g)Va}- D odx
O Q
— C, i D*o|* .+ jﬁ“{(ﬂ-V)ﬁ}-D“ﬁdx
Q
< CoA i Flim 15l + ORIV N | Dl [T + C2 A
48 |0 w11l 180 — v J 8= )|V D> dx
Q
+ Cov |V D*5Y | D3]]
+y | D*{e(— g)As}- D odx +v [ D*(Av®)- D*idx
Q Q
— u [E(— gy \V-D0| dx + Cop | V-D*5| [ D0
Q

+pfD*{e(— QV(V-5)}-D*odx + ujD“(éV(V-ua)yD“ﬁdx.
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Next, we note that
(3.7 v | D*(eAv®)-D*idx
o
< Cov VOl Gl 15 + 0% Cov [V} 1112
+ 1 3y j E(— 9)|VD*5|*dx.

If0 =m = k — 1, this is obvious. If I = k, we split the integral on the left-hand side
of (3.7} into 5

[ B*{eAv®} - D*3dx — [ VE-VD*® - D*5dx — | &-(VD%’)- VD G dx
Q Q

Q

and apply our standard devices. An inequality similar to (3.7) holds for the
corresponding y-term. Now, we estimate some terms in equation (3.6) by using, in
particular, (3.4}, (3.3} and (3.7). We obtain

I
(38 S ID"|* + lzj(ﬁ (gVD*G-D*Fdx +-—(VIi Vil + 1l V5] 5)

= CUgluloln + Calloln + 07 C2A Vg il dle 191
+ eI N0 hes 110l [ 54 + Colv + ) B2
+ Co IVl + g AV -2 L G o 1
+ORC [ VIR + V[ ) G
Finally, we add termwise (3.5) and (3.8) for all « such that 0 < |«| < m. This yields,

in particular, equation (3.1). [J

Next, fix a real number f, satisfying 0 < §, < ko — (1/2). Clearly, 0 < f, < 1.
Since ko — o > n/2, we have || = ¢+ ko so- Well-known interpolation results
for L2-Sobolev spaces show that

(3.9) 0 PR Y N Y Fd

Theorem 3.2. For each X € & and each § > 0,

(3.10) 21312 5 + 15|12 ¢ < €y 520 kotBo),

Proof. Set

(11) Galt) =2 [¢'(9) Y ID*glPdx + |52,
Q fa|Zm

and let m satisfy 0 < m < k — 1. Clearly 1/C; £ ¢/(g) < C, for a suitable constant
of type C,. Moreover, v[Vu“j]k ¢+ #lV-0’1% ¢ £ C,, by (2.5), . Hence, from (3.1) it
follows, by straightforward calculations, that

G?Jl(r) g CZGm(O) Vt € [0) T]
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Consequently,
(3.12) Alighar+ 1812+ < C(A% g3 — ollm+ g — vl 2).

Using this inequality for m = k, and m = ko — 1, and taking into account (3.9), we
prove that

(3.13) G150, + 1815,
= ColA% 1190 — gollZo-1 + 108 — vo 21— )%
XA o —=golldy + 0] — wo )17,
Next, by applying (2.6), for m =k and s = ko — 1, we get
G14) g8 = golldumy + 10§ —vollZ- 1 < 82& % D (25012 4 o |2).
Again by (2.6),, we have
(B13)  2%Mlg8 — goll&, + w3 — vllZ, < 82* %) (A2 go 2 4 oo ll£).
The estimates (3.13), (3.14) and (3.15) show that (3.10) holds. []

Corollary 3.3. For each X ¢ & and each § > 0,

B16)  (Uglo.r + 151w, 1) AN G i 1,7 + 107 s 1. 7) < Co 8% T2 40,

Proof. From (2.6), form =k + 1 and s = k and from estimate (1.9) with k replaced
by k + 1, it readily follows that

(3.17) NG Newrr + 1021 s 1,0 £ Cof82,

This estimate together with {3.10) shows that (3.16) holds, [J

Theorem 3.4. For ecach X e & and § > 0,
_ T

(3.18) PNGler + TR e + [ 0IVoIZ + uf V. 5)2)
0

= C2(4% 195 — gollE + llvg — vo ) + 2.

Proof. Define G(z) by (3.11). Equation (3.1) and the estimates already proved
show that

1d
(.19 23 GEO + 2 O IVaIE 4 1V -5
< C2GHO) + CAITE L+ 100],0)
% lgl + 101)Gi0) + C2h0)GE),

where A(t) = v(1 + [ Vo? | ) + p(1 + | V-0?|| ) satisfies {ah(tydt < C,. Hence, by
(3.16), it readily follows that

(3.20) Gilt) = C2(Gi(0) + 6%).
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By taking into account the explicit expression of G,{0), by integrating (3.19) on
[0, T'], and by using (3.20), we show (3.18). ]

Proof of Theorem A. From (3.18) and (2.12) it follows that
ANl r + {017 e +vIVElRr + u[V 5121
= G\ gollk + llwo —vollZ + |¢|§m(1 + [EPF IR + 677,
In particular,
(3.21) PNGIer + 160k + IIVIlE 7 + ALV -513 1
= Co(A? 1 golli + I wo — vollZ + A(8) + v — V),

where h(3) depends only on & (wq and k are fixed) and satisfies lim;_, i(5) = 0, For
convenience, we set 7 =0 if ge [0, u,]. Given £ > 0, we fix § = d(¢} such that
C,h(8) < ¢/2. Next, {321} shows that there is a neighbourhood U = U(g) of
(wo, 0, oo, ¥) such that if X = (v, go, 4, v, ) € Z and {(vg, Aga, 4, v} € U, then

(3.22) %1g* —glliir + 110° ~vlZr + VO —0)1ir + ALV-0° — 0)1r <=
On the other hand, Proposition 2.2 shows that (here § = §(g))
(3.23) Mo® — wlli? + g2 r + NAg° 3 <e

if X & 2 and if (vg, Ago, 4, v} € V = V (g), where V{z) is a suitable neighbourhood of
{wo, 0, co, 7). For convenience we set

Mol = tolir + 50l2e s r + ALV-01E 0, Hglld = lIVglIZ- 1.2

Let X = (vo, go, 4, v, ) and X = (B, §o, £, ¥, fi) be arbitrary data in % such that
(vo, Ago, 4, v} and (5y, Ady, 4, ¥) belong to UnV. Morecover, set (v, g = S(X ),
(ﬁ’ g) = S(X) Let Xﬁ'z (Ug, gg: ’1! v, nu}’ fé = (5((3): gg: ’Ta ‘79 ﬁ): and set (Uﬁ, gé):
S(X?), (7%, §°y = S(X?). Clearly

(24 o=+ l2g — TG NIe
< e(life — o7 + fl0° — wolii? + JIlw® — 52012 + )18 — &2
+ll2g = Ag° s + NAGPUIZ + NAG1Z + 11757 — TG 1i3).

Hence, from (3.22) and (3.23) it follows that l|v — & ]| + || Ag — Agllv < ce. In other
words, given ¢ > 0, there is a neighbourhood U ¥ of (wy, 0, oo, 7) such that this
last estimate holds whenever the data X, X e & satisfy the assumption that
(vo, 490, 4, v}, (B0, 1o, A, ) e UnV. Since the spaces C(0,T;H*) and
L*(0, T; H** 1) are complete and since a basis of fundamental neighbourhoods of
{wq, 0, oo, ¥} is countable (not essential), the convergence of v in the norm |- || and
the convergence of AVg in the norm | -, ¢ follow. Sirong convergence of g, is
now a consequence of (1.4),. Theorem A is proved. [] )
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Remark. The last step of this proof can be carried out in a more direct and elegant
way by using
Ho—wit? + llg1lv
< e(flo— oI + o — w2 I + lw® — il + 1dg — A¢°lIS + 1 2g°11%)

instead of (3.24). In this case, however, we must prove that

(3.25) tim [ w® = wilEr 4 7Lw* = Wik =0,
-0

Since || wg — wolli = Z|§|>1,'6 (I + | EPY [Wo(£)I?, we have

(3.26) lim [wd — woll,=0.
d0

The proof of (3.25) is as follows. Taking the termwise difference of equations (2.11)
and (1.5) and by setting z = w® — w we obtain

Vez=0,
(3.27) dz+w-V)z+Va = —(z-VIw’ + Az,
2(0) = wh — wq.

Next, we apply the operator D® to both sides of (3.27), multiply the result by D%z,
integrate the product over €, and sum the result with respect to « for ja| = k.
Calculations similar to some of the calculations above show that

1d v
37 Izl + 7 IVz2 Scllwlelzii + e llw’lisalzlo [z
Note that this equation is a simplification of (3.8). Next (compare with (3.16)} we
prove that

(3.28)

(3.29} 2], 2 IW s 17 = CEF =10 g — wo || ¢
From (3.28) and (3.29} it readily follows that
(3.30) ”Wﬂ'"”wuk,ré C“Wgww()”k-

We use (3.29) and (3.30) in order to estimate the right-hand side of (3.28). Next, we
integrate the equation obtained over [0, T']. This shows that

1w — wllZ s + [V’ — Wi s < Cllwe — wolli
which, together with (3.26), yields (3.25). []

We point out the following by-product of our arguments. Set H =
{woe H*:V-w, = 0}. We have

Theorem 3.5. The map (wg, V) = w, where w is the solution of problem (1.5), is
norm-continuous on HE x [0, vy] with values in C(0, T; H ). Moreover, this map is
norm-continuous on H x [, vol with values in L2(0, T; Hy ') if v, > 0.
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We note that, if ¥ > 0 is fixed, then the continuity of the map w, — w from
Hg to C(0, T; HY) L0, T; H ' 1) is trivial.

We remark that the counterpart of Theorem 3.5 for the equations for compres-
sible fluids is also a by-product of our proof. It is sufficient to argue as in the proof
of Theorem 1.1, but with a fixed A instead of 1 — oo. We may also leave
P4, p) = p{do, p),ie., A > Ay < oo. This corresponds to structural stability in the
strong norm.

Appendix
For the reader’s convenighce we state here some useful results. For references
and proofs see [BV7, Appendix].

Here Q is the n-dimensional torus, an open bounded regular subset of R”, or IR”
itself, or R% = {x:x, > 0}.

Lemma 4.1. Let v > n/2. If 0 < s < r, then

(4.1) WS gl = el fle-sligls.

fO0sland 0 <5 <r—1 then

(4.2) WS gl el flli-c lghiss.

Lemma 4.2. Letr>n/2,0=<1<r 1</, Srfori=1...,mandl, + ... + 1,
=1+ (m — Dr. Then

(43) ”fl'-'ﬁn”lgcﬁfluh- "”f;nlifm-

Lemma 4.3. Let k> 1+t n2and 1 <l <k If |a| £ 1, then

(4.4) WD S gt = cliDf le-1llg 1.

Lemma 44, Let [a] <1 Then

(4.5) ID*{f g}l € (DS 1wl glli-1 + 9] I DS 1= 1),

Lemma 4.5. Let y € C"(R; R), ¥ = 1. Then there are increasing functions f, e C*
(Rg;R") and f,e C*(R xR ; R ™) such that

(4.6) 1D (D ]* < Bilgle) g2,
(4.7) ED*¥ (g} — DY (SIN* < B2llglues | 1) g — £ 112

Jor each o, 1 < |a) < 1.
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