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We consider the equations of motion to slightly compressible fluids and we prove that solutions converge,
in the strong rorm, to the solution of the equations of motion of incompressible fluids, as the Mach number
goes to zero. From a physical point of view this means the following. Assume that we are dealing with
a weli-specified fluid, so slightly compressible that we assume it to be incompressible. Our result means that
the distance between the {continuous) trajectories of the real and of the idealized solution is ‘small” with
respect to the natural metric, i.e. the metric that endows the data space,

1. Intreduction, notations, and results

in [2] we have proved the convergence in the strong norm of the solution to the
equations of inviscid, compressible fluids to the solution of the equations of inviscid,
incompressible fluids as the Mach number goes to zero. The method employed there
has the merit of being applicable to boundary value problems. However, in the space
periodic case (as well as in the whole space case) the proofs can be substantially
simplified. The aim of this paper is to illustrate this new approach in the simplest
framework to avoid supplementary technicaiities.

Before going on, let us introduce the main notation. Here Q denotes the n-
dimensional torus [0, 1[". Hence, functions defined in ) are periodic in each space
variable x;, with period equal to 1. We denote by |-|,and || - |, the canonical norms in
the space L7 = LF({)), 1 < p € o0, and in the L2-Soboley space H™ = H™(Q), respec-
tively. We set |-} = |- fi¢ = |*|z. BY |- |, + we denote the canonical norm in the
space Ly (H™) = L*(0, T'; H™). We set Cp(H™) = C([0, T'T; H™). Integrals Jof(x)dx
are denoted simply by [ f(x)dx.

We denote by ko the smallest integer larger than #/2 and by k a fixed integer,
satisfying k > ko + 1. Below, we introduce positive constants ¢;, ¢, ¢y. Positive
constants that depend only on ¢, are denoted by C,. Similarly, C, = C,(cy, ¢;) and
Cs = Csley, €3, €3). Universal constants are denoted by c. Distinct constants C; of the
same type (same j} are denoted by the same symbol Hence, ¢C, =C,,
C;+ C;=C,, and so on.

.
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Let us return to our problem. In order to exhibit the main lines in our proof it is
convenient to restrict the problem to the simplest case. In particular, we will assume
here that

p(4, p) = A%p,
where 7' is the Mach number, It is worth noting, however, that the result proved
here holds also if p(4, p) = A*p(p) where pe C**2(R*; R) and p’(s) > O for each seR™*.
We could aiso assume that the law of state p(p, 1) satisfies general assumptions,
similar to those in [1]; see also [4]. However, this is not a main point in the
mathematical treatment of the problem. In any case note that the significant assump-
tion is lim, . ,, p'(4, §y) = oo, where jq denotes the mean density of the fluid in Q and
p’ is the derivative of p with respect to p. Under the above law of state the equations of
motion are

pt 4+ v*Vp* + pPV .t =0,

Pt + W V'] + A2Vpt =0, (1.1)

PHO, x) = po + pi(x), v*(0, x) = v5 (x).

It is convenient to replace p by g = log{p/fo). By assuming that g, = 1 and by setting
g =logp,

equation (1.1) becomes

g+ vreVgt + V.t =0,

vt ++ A2V 4 (0t VI = 0, (1.2)

gl(o’ x) = gﬂ(x)= Ul(oi x) =1 (x)s
where gi(x) = log(l + pé(x)). Note that convergence of p* to 1 and p? to 0 is
equivalent to convergence of g* to 0 and g; to 0, respectively. We will prove
convergence of g{ to 0 (hence of p} to 1) in Cr(H*"'). Convergence of v/ to w, in this

last space holds only under supplementary conditions.
The limit equations to system (1.2) are

Vew =,
W+ (weViw + Va =0, (L.3)
w(0, x) = wg(x).

Finaily, the assumptions on the initial data are the following:

|£03”k0+1-<~_01, lligﬁilkon £ ¢y, (14)
1ol < cas Allgdlle < ca, (1.5)
AV vallo <ecs, A{Vgdllo < ca. (1.6}

For convenience 1 > 1. Under the hypotheses (1.4), (1.5) there exist in [0, 7] solutions
(v*,g*) of problem (1.2), where T =cjc,. These solutions belong to
Cr(Hy) n CH(H*1). Our main result is the following.
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Theorem A. Assume that (1.4)—(1.6) hold and that
lim (Jjwg —wolli + 4196 1) = 0. (1.7)

A—+oo
Then the solutions (v*, g*) of problem (1.2) converge in the strong norm to the solution
(w, 0} of problem (1.3). More precisely,

lim ([0* —wli ¢ + lg* 12 r + A1 Ve liot,r + I gl i1, 1) = 0. (1.8)
A= a0

Other convergence results follow from the above theorem, from compacity argu-
ments connected to the a priori estimates, and from the equations. In particular,
v; converges to w, and A2Vg converges to Vr both in L¥(H,) weak-* (note that
of + A2Vg > w, + Vi in Cp(H* 1)),

In a forthcoming paper we will deal with inviscid and viscous fluids with variable
viscosity coefficients ve[0, vo], ue[0, po]. The limit will be taken simultaneously as
A — 0, v— ¥, u stays bounded, and the initial data converge to initial data in H*. In
particular, we will show that under assumptions (1.4)-(1.7) the solution of the
compressible equations converges strongly in C(0, T; H*} to the solution of the
incompressible equations. Moreover, if ¥ > 0, convergence holds also in the strong
L?(0, T; H** ') norm. A related weak convergence theorem, under stronger assump-
tions, was proved in [4].

2. The weak convergence theorem

In this section we prove Theorem 1.1 below. The proofs given in this section follow
the proof of the weak convergence theorem in [5], to which we refer the reader.
However, our result is proved under weaker assumptions. For that reason, and also
for completeness, we give self-contained proofs of the estimates (we note that the
existence of the solution of problem (1.2), for each fixed 4, follows from the a priori
estimates by using standard methods). The first estimate is

Ifall <cllfl-slighs if 0<s<r andr>n/2 (2.1)

In fact, if ¥ — s > n/2 then H"* o L® and (2.1) loliows. If ¥ — 5 = n/2 then s > 0.
Hence H g L* for some p>2 Moreover H"™*qg L**"7~2)  Consequently,
Kl < fl2pp-2lighy I 52 n/2 we argue as above by replacing s by r —s.
Finally, if r — 5 < n/2 and s > n/2 set 1/p = 1/2 — (r — s)/n, 1/g = 1/2 — s/n. Since
p.qe[2, of and 1/p+ 1/g < 1/2 there are reals pg, goe{2, o[ such that
lipo+ 1/go=1/2, H g L, HS g L%,

Next, we recall the Gagliardo—Nirenberg inequalities (see [ 3, 6]):

|DIRgy; < clbll P | DRI, HO<j<r (2.2)
For convenience, in the sequel, we drop the As from the notations g* and v?, except in

some main equations. We start by proving that

1d
3 B0 < By (0ER) 23)
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where m = k; + 1 and
Enlt) = 2lgla + ol
Let |&| =m and apply D* =285 --- 9", o) =0y + -+ + +a,, to equation (1.2);.
Then, multiply both sides by 12D*g and integrate on Q. Taking into account that
J‘(U-VD"‘g)D"‘g dx = — éJ(V-U)ID“gIde

and that H* o L=, it readily follows that

2

d
S Dl 2 [0V ax

m—1

< el ol illglin + cA?ligln Y 1D DHD T g}, (2.4)
£=0
where simplified but clear notation is used. Next, Gagliardo—Nirenberg’s inequalities
(2.2) show that
1D/ (D) zm— 111 < €| Dgily 7" V| D2g [lim D
< C|9Ek ff(m 1)|glmm 1)
and that

1 —£—1 — —f£—-1 —
(D= ‘- I(Dv}lﬁmfl)/[m - = Cllvlik0+(';l o “Ilvllfi.“ = 1)

Hence, by using Hélder's inequality we verify that (D" =)D’ * 'g)|| is bounded by
the product of the right-hand sides in the two last inequalities. It readily follows that

AD™oUD * g) || < cEyg 1 (t) Ent).
Consequently, from (2.4) we obtain

'122 4 1P i — lzlf(D“v)- V(D%g) dx < cEy+1(t) Enft). (2.5}

Obviously, this last estimate also holds if 0 < jo| <m.
Next, we apply D* to equation (1.2),, multiply by D*v and integrate on Q. Calcu-
lations similar to those done above show that

d
g 1P+ 2 (VD)%) dx < el by ol

By adding, side by side, these inequalities and the inequalities (2.5), for all « such that
0 < |af < m, (2.3) follows. c

Next, we show that under assumptions (1.4) there is a 7> 0 (more precisely,
T = ¢/c,) such that a solution (g, )eC(0, T; H* ') of problem (1.2) exists and
satisfies the uniform estimate

izElgilkuH T+ ”UIERQH r < 8¢t (2.6)
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Proof. From (2.3), by setting m = ko + 1, it follows that
Eiys1(t) < [Exgi1(0) —ct] L
Hence (2.6) holds provided that

1 __ 1 -
T< o Egs1(0) = — (AP go i + iEU(J”foH) 12
2c 2c

Note that the right-hand side of the last equation is bounded by (2\/ 2y Ye,. O

Now, we return to equation (2.3), Let m = k > ko + 1 and t€[0, T']. Since E,_ (1)
is bounded in [0, T] the following result readily follows.

Lemma 2.1. If (1.4), (L.5) hold; then
Alglér+ vlir < Cll A2 N golli + Nvolli) < Ca. 2.7)

Note that from (2.7) and (1.2) it follows that reCp(H*™!) and that
o llx-1, 7 = Ca 4. However, we aim at a uniform estimate for ¥ in order to be able to
pass to the limit in (1.2) as A goes to co. In this direction, the estimate (2.8) below
shows that (1.6) is just the natural additional assumption.

Lemma 2.2. Assume that hypotheses (1.4) and (1.5) hold. Then

Alg o r + lols,r < C2(A% 1 Vgo 2 + 221V -vo |? + [lvo [12). (2.8)
If, moreover, (1.6) holds then

Allg gz + o081 < Cs. (2.9)
Progf. From equations (1.2) it follows that

gutv- Vg +Vev, +0,-Vg=0,
vy + szgr + (@ V)v, + v,- Vg = 0.

By multiplying the first of the above equations by i%g,, the second by v,, by integrating
on £, and by adding side by side the two equations obtained it readily follows that

d
a("tzlig.il2 + 1o?) < Co@? Mg * + o),

B -

for each t&[0, T ]. Hence,
2lgld s+ o g r < CA g7 + 12O

By using equations (1.2) in order to express g,(0) and #,(0) in terms of the initial data
go and ©o, the thesis follows. O

The above lemmas together with well-known compact embedding theorems show
the following result. The symbol ‘— denotes convergence in weak-* topologies.
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Theorem 2.1. Assume that hypotheses (1.4)-(1.6) hold and that lim,_, [ vd — woll, = 0.
Then

v*—w in LY(H*) and in Co(H*"®), &> 0,
g =0 in C(HY),
vi—w, in L¥(H®),
gt=0 inCp(H 175, &0, (2.16)
Vo0 in Cp(HA 177,
A2Vg*t-=>Vn in LY (H®).
Proof. The proof is an eﬁlsy exercise. From (2.7} and (2.9) one gets
lim A (g e r + 1 9Rfo,r) =O. @.11)

A0
In particular (2.10), holds and g; — 0 in Cr(H®). Next (for subsequences . . . ) ot
converges to some w in L7 (H*) with respect to the weak-* topology, since v’ is
bounded in L7 (H*) which is just the strong dual of LL(H*). Moreover, v* is bounded
in W1 *(H®). Since H* is compactly embedded in H°, Ascoli-Arzeld’s theorem shows
comlpactness in Cr(H®). Compactness in Cr(H**) follows, since || - [l—,. 7 < ||« | gy
el 7™

Similarly, v} (subsequences . . . ) converges in LT (H) with respect to the weak-*
topology. Clearly, if v*—~w then the above limit must be w,.

Next, from ~V-v* = gf + v*. Vg* it follows that V-v* — 0 in C(H°). In particu-
lar, it must be V.w = 0. From (2,10}, (2.10);5 follows. The above equation together
with (2.10); and (2.10}, yields (2.10),.

On the other hand, the left-hand side of the equation v} + (v*- V)u* = — 12Vg* is
a gradient and converges in the L (H®) weak-* topology {(always for subsequences).
Hence the limit must be a gradient. This shows (2.10),. It is understood that the above
argument has been developed for suitable subsequences. However, by passing to the
limit in equations (1.2), as 4 — co, we verify that limits are solutions of {L.3). Since the
regular solution of (1.3} is unique, it foliows the convergence of the whole ‘sequence’ to
the same limit,

Finally, we remark that

AT Vg 2 < Cs. @12)
In fact, equations (1.2),, (2.7) and (2.9) show that A2 IVale, r < Cs. Since
A Vg llk-1,7 < C,, the result follows by interpolation. O

3. Proof of Theorem A

We start by remarking that, under the hypotheses of Theorem 1.1, equations (2.10)
and (2.12) show that

im (0" — wliE—y, 7 + 1g* 18- 1,7 + 221 Vg* 1=, 7) = 0. (3.1)

A=0

In the sequel this result will be applied with k replaced by k + 1.
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Next, we consider the Fourier series

o(x) = ) (€)™,
&
where the Fourier coefficients are given by

(@) = [o gt d,

and & = ({4, ..., &,) The &s are nonnegative integers and | €] denotes the Euclidean
norm of £. For each seR one has

luolld = 3. (1 + 1€12) 140 (2)]%
& .

Let €19, 1], define operators T¢ by
(Tluohx) = ¥ dgl&)ex,

18] < t/s

and set

v =T, g3°=T7gs, wh=Tw,. (3.2)
Note that 7% is a linear operator on H* for each seR; ; moreover

TN < L,
where [{| +|l|s, m denotes the canonical norm of bounded linear operators from H* to
H™, Furthermore, T'° commutes with the divergence operator. kt follows that, for each
4, the initial data v{’, ¢§'° satisfy hypotheses (1.4)~(1.6) exactly with the same con-
stants c, ¢z, ¢;. Hence, the solution (v*%, g*?) of the problem

g;l.é + (Ul,ﬁ_v)gl,é + V.Ui,é . 0,

v? 4+ A2Vgh 4 (bR Y)pht = 0, (3.3)

0"2(0, %) = vg°(x), g*°(0,x) = g5’ (x)
satisfies (uniformly with respect to 4 and to &) the estimates

Ag™? s + 1o*22 7 < C,

gttt e + o3 r < Cs. (3.4)

Next, we study the problem (3.3} in the space H** !, for fixed 8. First of all one easily
shows, by using the definition, that

T2 Mo, my < (2/8)"75,
T — Il < 6™75, (3.5)
where 0 < 5 < m. In particular, it follows that
Ag6 lhorr Sers 105 Nigrr < ey,
ANge e s < 202/8, {108 lesr < 2¢,/8, (3.6)
<

M;V'Ué'ﬂ"o e, A% Vgé"’llo = C3,
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and that

Alge i <2/8)A 1 go k- (3.7)
Moreover,

N65° = wollsr1 < (2/8)l0d — wolls. (3.8)

Since (vh, Ag3) — (w0, 0) in H* it follows, in particular, that (v5%, Ag¢®) -» (w(, 0) in
H**', for each fixed 6.

The above results show that the hypotheses of Theorem 1.1 are fulfilled by the data
of problem (3.3) (not uniformly with respect to 8) if we replace k by k + 1 and ¢ by
2¢, /6. Hence, by (3.1}, one has

tim ([[o*? — w?|Z r + g™l + A2 Vg™ i) = 0, (3.9

A= a0

for each fixed 8, where w® denotes the solution of the incompressible equations

V.w? =0,
3w’ + (W -V)w® + Va® =0, {(3.10)

w2(0,x) = wi(x).

The following estimates will be useful in the sequel:
Jo8° — vsllZ < 2llvg — wollk + 2|c|§1f5 (1 + P Imo (O,
lgs® —golli < lgsli. (3.11)
We prove the first estimate. One has
log® —wsld = 3 (4P 56
HESY:

Hence the left-hand side is bounded by

2 Y (14 [EPFI85E) — wolOPF +2 3 (L+[EPY W),

1€l = 1/8 HEN

whence the result follows.
From convenience, sometimes we will write g, v, g%, v? instead of g%, v*, g* %, v*°. Set

A8 A

g=g"°—g*, o=0v""—v"

In the sequel the hypotheses in Theorem A are assumed without further mention. We
start by proving the following result (57’ denotes the Kronecker’s symbol).

Theorem 3.1. Let 0 < m < k. One has

1d _ _ . _
5 g CP1G 1A+ 1515 < G2 1615 + 1912)

+ 87 CoA Vg e+ 1972 s 1) Ad o + 181} AU e + M0 (B:12)

Proof. In the following, recall that [[ofez, Algler. | v |i.r and 4| g°|. r are
bounded by a constant of type C,.
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By taking the difference between equations (3.3) and (1.2) we show that
Gt+v-Vg+ V-5 =-5.Vg°
D+ A*VG + (0-V)o = — (7- V)oo (3.13)
Next, we apply the operator D° for |«| = m, to equation (3.13),. This yields, with

a simplified notation,

m—1

DE§;+U'VDag+ Z (Dm—fv)(qutlg—)_}_V.me:_Dm(ﬁ_vgé)_
£=10

Then, by multiplying both sides of this equation by A2D?g, by integrating on Q and by
employing suitable techniques, we prove that

A2 d
7 1271~ 2 [00.vneg

2 dt
S Co Gl + Colllo il + 30 C2 A2 Vg |51 11 G 1. (3.14)

In fact,

J(U'VD“ﬁ)D“édx i%U(V-v)ID“élzdx < Callglm.
Moreover, from (2.1) it readily follows that

D™ =)D ) ) <UD Ol D Gl g S Co N e (3.15)
Finaily,

1D™(@-Vg'} < )5l Dg® iy + 87|5]w | Va? . (3.16)

If m < k —1, (3.16) follows from (2.1). If m = £, {2.1) shows that the L*-norm of each
term of the expansion of D*(5- Vg*) is bounded by the first term on the right-hand side
of (3.16) except for the term #- D*Vg?, the L2-norm of which is bounded by the second
term on the right-hand side of (3.15).

Next apply D* to equation (2.13),, multiply by D*0 and integrate on Q. As above, we
show here that

1 d a2 2 - 3= o
EdtﬂD TH JVD g-D*udx
S C2 A Gl olln + C2 U008 + 67 CA% 1 Vg% 1l 91w 115 1ls
+ e 0% fler 110)0 [ 5114 (3.17)

Clearly, (3.17) also holds when |«| < m. By adding side by side (for all « such that
0 < [«] < m) equations (3.14) and (3.17), (3.12) follows. [

Next, fix foe]0,If such that f, <k, - nf2. Since ko — fo > n/2 one has
Ilw < ¢+ llxo-go- By interpolation in L2-Sobolev spaces one gets

Il el lEe o 0+ 0,7 (3.18)

We prove the following result.
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Proposition 3.1, For each §¢70, 1] and each A the following estimate holds.
(A Glw, v + 19w, 7)(A Hg™lesr,r + le*2 s, )
£ Cyo ko 1tpo (3.19)
Proof. Set
Gult) = Yl + 152, ' (3.20)

Assume that 0 <m <k —1. From (3.12) it readily follows that Gt < C, GL(0),
Vte[0, T], ie. :

Gl + 1500 < C2A%0105 — go 12 + 108 - v, [F9]
By using this inequality with m = ko and with m = ky — 1, and also by taking into
account (3.18), we prove that
AGlor + 1813, 7
< C2(A*) g5 — g0 k-1 + 0§ — vo oy =1 )%

x(A* g0 — golli, + 0§ — vglI2,) e (3.21)
On the other hand, by using (3.5); form =k and s = ky —1 one gets
lge = galldy-i + 103 — vollZ—y < Cp o2 kol (3.22)

since 22 go 17 + |lvo |2 < C,. Once again from (3.5),

A2 g - galld, + 08 — o, iy < €620 ko), (3.23)
From (3.21)-(3.23) it follows that

PGl r + 185, 1 < €y 820 koto) (3.24}

Furthermore, as already remarked, the estimates {3.6) show that Lemma 2.1 applies
in H*" to the solution (1%, g%) of problem (3.3), for each fixed 6. Hence ]

22)g° ||§+1,T + ”Uﬁﬂfe—l.:r < Cl(ﬂvzlfggllfn + g "fﬂ)
By taking into account (3.5), withm =k + 1 and s = k it follows that

AN lierr + 101817 < Cy/82
This inequality, together with (3.24), yields (3.19). 0
Proof of Theorem A. Equations (3.12) and (3.19) show that

d
a Gi(t) < C, G (1) + Cyo* ho=1tbog (1).

Hence Gk(t) = Cz(Gk{O) -+ 5'60), i.e.
PNGIR T+ 1002 ¢ < C2 (2198 — goll2 + |08 — volli + &%),
By taking into account the estimates {3.11) one gets

PNGNEr + 1512 r < C2A2 g0 lZ + 106 — wo 2 + (),
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where
AB) = Y (1 + PV Wo(E) + 520

€1z /8

satisfies lim /i{d) = 0 as § — 0.

Next, let & > 0 be (arbitrarily) fixed. In correspondence with this ¢ let us fix a d(e)
such that h{d) < &if 6 < &(e). Everywhere in the sequel o denotes this particular value
4(g). One has, for each A,

Plgh? =g i + 1o — v |2 1 < CLU2 | g2 12 + wo — o5 lli) + e.
Since lim;, .. (A1l g§ s + wo — v} [l,) = O there is a Ao(e) such that
Plgh? — g il + o™ — 0} 2 <2 i 4 > Ao(e). {3.25)

On the other hand, (3.9) shows that there is a 41, which depends only on & (since
& = d{¢)), such that

1042 — w2l g™ P12 + 22N Vg o3, 7 <o (3.26)
if A > A,(e). Next, since
ot = 0"l + 19" — 9"l r + IV(Ag* ~ g™ ls_ s
<ot = o™ 7 + g% — g* ¥ 7 + | V(Ig? — v M | P
105 =Wl + g% r + IVAGY ) [y o
10" =Wl r + 19" e + 1 Vg% 1.7
+ 00" ? — 0% r + %% — g* I r + | Vipg™?® — ) k-1, 15
one has
o® = o™i r + 1lg* ~ g" 12 1 + | V(3g* — pg e 7 < ce (3.28)

if 4, 4t > max {49(e), 4, (¢)}. This shows that, as A — co, v*,g* and 2 Vg* are Cauchy
‘sequences’ with respect to the above strong norms. Hence, convergence takes place
with respect to these norms. Finally, the convergence of ¢} to 0 in Cy(H* 1) follows
directly from equation (1.2),. O

Remark. Instead of using the concept of Cauchy sequence and the inequality (3.28) we
may simply use the estimate

lo* —wiler + Tg*le.r + A2 Vo'l 17
< ot - Ul’aﬂk.r + llg* — Ql'éﬁk,’r + Vgt - ig*'é)llkﬂ,r
ot = wiler + 1g% i r + AVAG* P iy p + [w? — Wi, 7.
This way is more natural and clegant. However it requires to show that

lim | w? —w|Z ;=0

&0
in order to know that || w® — w 1Fr <eifd < do(e), for a suitable 8. This result can be
proved by a simplification of the above method (since the parameter A is not present;
moreover the problems are incompressible). Recall that w and w® are the solutions of
(1.3) and (3.10), respectively, and note that lim;.. | wd — w, I = 0.
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