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On the singular limit for slightly compressible fluids 
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Abstract. In this paper we study the motion of slightly compressible inviscid fluids. 
We prove that the solution of the corresponding system of nonlinear partial differential 
equations converges (uniformly) in the strong norm (that of the data space) to the 
solution of the incompressible equations, as the Mach number goes to zero (see 
Theorem 1.2). Actually,  our proof  applies to a large class of singular limit problems 
as shown in the Theorem 2.2. 
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1. Introduction 

This paper is strongly related to that of Klainerman and Majda [KMa2]. For a 
discussion on the physical  motivations and on the mathematical setting up the reader 
is referred to [Ebl,2; KMal ,2 ;  Ma], and references there in. 

Let us shortly introduce the problem studied below. We start by giving some 
notation, borrowed from [KMa2]. 

We denote by [lull z, l = o, 1, 2, . . . ,  the norm it the Hilbert  space H z = HZ(f2), 
by Ilullz,T the norm in L ~ ( H  z) =- L~(O,T;H1) ,  and by [ult, T the norm in 

L 2 ( H  z) = L2(0, T; HI) ,  T > 0. For convenience, we will study our equations in the 
space-periodic case. Hence X9 is the n-dimensional  toms. We set QT = f2 • [0, T].  
In the sequel k denotes a fixed integer such that k >_ k 0 + 1 where k 0 = [n /2]  + 1. 
Moreover,  u is the r -vector  (Ul, . . .  , % )  and A > A 0 > 0 is a parameter. I f  
u = u(t, x), we denote by u(0) the function u(0,-) .  

Let B~(u, A), i = 1, . . . ,  n be r x r matrices, of  class C k+l, defined for each 
A > A 0 and each u E ~ .  ~ is an open, regular, connected subset of ]R r. As in 
[KMa2], we assume that there are n + 1 symmetric matrices A~ A) and Ai(u, A), 
i = 1, . . . ,  n, such that A ~  i = A ~ and that 

(1.1) (A~ A){, ~) >_ ml{I 2 , m > 0 ,  
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for all u E O (shrink ~ ,  if necessary) and all ~ C R ~. Moreover, 

(1.2) IB(u, ,,k) I < cA, IA~ A) I < e, 

(1.3) AID~A~ A)[ 5 c,  

k+l  

(1.4) ~ IDJB(u,  A)I < c, 
j = l  

for all u E ~ ,  A > A 0. Here B = (B 1, . . . ,  B ~) and Bu~ ~ L BiUxi �9 Next, we 
consider the system of equations i=1 

u~t + B(u x, A)uz x = 0 in QT 
(1.5) / = , 

where Uo a c H k and {Uoa(X):X C f2} C O o for each A > A o. &~ is a compact subset 
of  ~ .  

We point out that we can assume, without loss of generality, that all the initial 

data that will be used in this paper (namely, u0, u0 ~, ~ ~ )"~ u 0' , u 0 ) take values in a 
compact subset ~ of  O such that ~0 ~ ~ .  It readily follows that the solutions of 
the corresponding evolution equations take values in a compact subset ~ satisfying 

�9 ~ �9 O,  at least until a finite time T > 0, which is independent of the 
parameters A, ~, ~. All that follows from the a priori estimates in [KMa2] and from 
the constructions done in the following Sects. 2 and 3. 

In the sequel the symbols C, CoC1, . . .  , denote positive constants that are 
independent of A. The same symbol may be used to denote distinct constants, even 
in the same formula. 

The following result is due to Klainerman and Majda [KMa2]: 

Theorem 1.1. Assume that [[UoX[[k _< C o, for all A > A o. Then, there is a positive 
real T, independent of A, and a unique solution u x E CT(H k) ~ C I ( H  k-l)  of (1.5). 
Moreover, 

(1.6) 

Furthermore, if 

(1.7) 

then 

(1.8) 

A Hy Hk,r + ,W'll0   llk-l,r -< c .  

Note that B(Uo ~, A)u0~,x = - 0tu;~(0). Hence (1.7) is also a necessary condition for 
having (1.8). 

Next we describe the application of  the above result to the Euler compressible and 
incompressible equations. 

Consider a fluid filling f? and obeying a law of state p -- p(~). Denote by ~ > 0 
the mean density of this fluid. By replacing p(Q) by p(~) - p(~) one has P(O) = 0 if 
and only if Q = 5. Here and in the sequel we assume that p C Ck+2(]R+; IR) and that 
p~(~) > 0 for each 0 > 0. Let ~(p) denote the inverse function of  P(O), defined on the 
open interval I - p(1R+). Set 

g(p)  =- d ( p ) / ~ ( p )  �9 
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Clearly, g(p) > 0 for each p E I .  The equations of  motion are 

g(p) (O~p + v .  v p )  + V .  v = o,  

(1.9) g(p)(Otv + (v .  V)v)  + Vp = 0 ,  

v(O) = Vo(X), p(O) = po(x). 

We are interested in considering a family of  laws of  state p~(g) = A2p(g) and in 
studying the behaviour of  the solutions as the parameter A goes to co. The parameter 
A plays here the part of inverse of  the Mach number; see [Ma]. 

Denoting by g~ the inverse of  the function p~, one has 0~(p A) = 8(p~/A2), hence 
g;~(P ~) -~ g~(Px)/gx(Px) = A-2g(pX/A2) �9 Consequently, the equations of  motion 
under the above A-law of  state and for initial data @(x),  p~o(X) are 

{ A-~g(px/A)(O~p " + v ~'. Vp ~) + V .  v ~' = 0,  
(1.10) g~) ' /A)  (O~v)~ + (v ;~. V ) v  A) + AV/5 A = 0 ,  

v~'(o) = v~(x) ,  p;'(o) = p~(x) =- A-~p0~(z), 

where the "true" pressure pX is replaced by/5 a ~ A - l p  x. Note that/Sa(x) = 0 if and 
only if O)'(x) = O. 

The system (1.10) can be written in the above form (1.5), as follows. Denote by b~j 
the "row k column j "  element of  the matrix B i _~ E i + d iag{v j  9, v i /  g , v i /  g , v i /  g }, 
i = 1,2,3.  The matrix E i is defined by setting e],i+~ = A/9; e~+~, 1 = A/g; and 

e~j = 0 otherwise. Moreover, if A ~ =- Nag{g, g, g, ~} one has A i = A ~  ~ where 

A ~ = F ~ +  diag{v~,v~,v~,v~}, i = 1,2,3.  Here f i  ~ i i+1,1 = f~,i+l = A; and f~j = 0 
otherwise. Above, g = 9(PX/A) and g = ~ ; ' / A ) .  

By using the above set up and by defining u x = ~ x ,  vX), u0 x -- (~0 ~, v0 x) it readily 
follows that the system (1.10) has the form (1.5). 

Now we assume (see [KMa2], Eq. (1.7)) that 

(1.11) 

where 

(1.12) 

{ vo~(x) = Vo(X) + A - l w 3 ( x ) ,  
/5oA(x) = A-lp~(x), 

v "~o ~ o and I1~o~11~ + tlPo~lfk ~ c .  

Obviously, lira [luo ~ - Uollk = 0 as A ~ oc, where u o = (0, Vo). Moreover (1.7) holds 
since 

(1.13) B(u~,A)u~,~=(@.Vp;~o + (A/g0:~) V �9 v o;', (v ox - V)vo ~ + (A/g0:~)Vi5o ;') 

where g:~o = g(p~/A), g~ = g(p;'o/A). Hence, by Theorem 1.1, one has the fundamental 
estimate 

l]p Ilk,T + 1~  k,~ + II~llk-~,r + llv~ Ilk-l,T <- C .  

In particular, subsequences converge 2 in L ~ ( H  k) or in L ~ ( H k - 1 ) ,  with respect to 
the weak-* topologies, as A --+ ~ .  It is not difficult to verify that the limit functions 

t In fact, lira A--~I[w0~[[k ----- 0 as A ~ oo plus [IV. w0~ltk_l < C would be sufficient here 
2 Here, and in the sequel, we use this short saying; the meaning is clear. Moreover we improperly 
will call {v;~}, as A --* ec, a "sequence" 
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satisfy the incompressible Euler equations 

V - v = 0 ,  

(1.14) ~(Otv + (v �9 V)v) + VTc = 0, 

v(0) = v0(x),  

for some 7r(t, x). By the uniqueness of the regular solution of (1.14) it follows 
that the whole sequence {v~}, ,k --, oc, converges to v in the L ~ ( H  k) weak-* 
topology. Similarly, vt ~ converges to v t and Vp ;~ = V(A/5~) converges to VT~, both in 
L ~ ( H  k- l )  weak-*. However, OtPA(O) may blow up in H k-1 since (as A --+ oc) 
it behaves like Aw 3. Clearly ~ ~ ~(fi;~/A) --+ ~. Note that ~oOtv;~(O) + Vp~ 
is convergent in H k- l ,  but the same does not (necessarily) hold to Otv;~(O) and 
Vp~o, separately. Hence, we can not expect that @ converges to v t and that Vp ~ 
converges to VTF in CT(H k- l )  (under the sole assumptions (1.11), (1.12)). However, 
we will prove that the trajectories (~x, v ~) converge to that of the Euler incompressible 
equation, i.e. to (~, v), in the strong norm H k, uniformly in time. More precisely, we 
prove here the following result: 

Theorem 1.2. Let -~ ;~ (rio, Co ), A > A o, be a family of initial data satisfying the assump- 
tions (1.11), (1.12), and let (fi;~, v ~ ) be the corresponding solution to the compressible 
Euler equations (1.10). Let p~ = ~ x / A )  denote the density of the fluid. Then 

(1.15) lim (ll  - + - = 0 ,  
A---* o o  

where v and 0 are those appearing in the Euler incompressible equations (1.14). 

The main point in the proofs of Theorems 1.2 and 2.2 is the general Theorem 2.1, 
which guarantees an uniform approximation result (in the strong norm) for the 
solutions u ~ of (1.5) by regular solutions u a'5. 

The Theorem 2.2 applies to a large class of problems. In fact it shows that each 
problem that satisfies the hypothesis of Theorem 1.1 (for a couple of values k and 
k + 1) enjoys the following property. If (as A ~ oc) the solutions u x converge in 
the C(0, T; H ~ norm to some limit then necessarily the convergence holds in the 
strong norm C(0, T; Hk). This result holds under more general hypothesis. In fact, 
in the assumption (1.7) we can replace the H k-1 norm by the H ~ norm. This can 
be proved by arguing as in references [BV8]. Moreover, a combination of the proofs 
given in reference [BV8] with the proof of the Theorem 2.2 shows that convergence 
with respect to a variable viscosity can be introduced in this last theorem. 

Remarks. (i) As remarked in reference [KL] "the continuous dependence in 'strong' 
topology of the solution on the data is the most difficult part in a theory dealing 
with nonlinear equations of evolution". It is also well known that the main difficulties 
arise in dealing with "mixed problems" in the hyperbolic case, as pointed out in the 
introduction of [K] where (with reference to mixed initial-boundary value problems) 
the author remarks that "the existence of solutions of (0.1) is not difficult to prove, 
but the continuity in the initial datum requires considerable efforts to prove". These 
opinions are not in contradiction with the fact that experts were aware that the answer 
to this basic problem should be positive. The point was just the lack of sufficiently 
general proofs. An approach, that roughly speaking requires some ellipticity, is 
developed just in reference [K]. In reference [BV3] we present a very general and 
completely distinct approach, little technical and easily adaptable to a large class of 
problems. The very simple basic idea is illustrated in reference [BV7], part I. 
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Nevertheless, in our opinion, there are not sufficiently strong heuristic reasons to 
lead us to believe that convergence in the strong topology for singular limit problems 
occurs. The main tool in the proof is an idea introduced in reference [BV3]. However, 
a valuable hint was given to us by the referee of [BV5], to whom we are grateful. 

Finally, we remark that a simplified proof, which in general is not applicable in 
the presence of boundary conditions, is given in reference [BV8]. 
(ii) It seems advisable to recall that continuous dependence results in terms of Eulerian 
variables are not at all a consequence of (seemingly) similar results in terms of 
Lagrangian coordinates. 
(iii) The above results of Klainerman and Majda on the incompressible limit have 
been extended and developed by Schochet [Scl] for non barotropic fluids in bounded 
domains. It is worth noting that the presence of the boundary gives rise to serious 
obstacles (see also [Sc2,3]). It would be interesting to extend the method developed 
below to Schochet's approach. Or, alternatively, to get the same extension by using 
our approach to the compressible equations in bounded domains ([BV4, BV5, BV6], 
and references). 

Other interesting results on the incompressible limit were obtained by Agemi [Ag], 
Asano [As], Ebin [Ebl,2], and Ukai [U]. 
(iv) For the viscous, time dependent, problem the reader is referred to [KMal], [Ma], 
and references there in. 
(v) Convergence of compressible viscous solutions to the incompressible one, for the 
steady equations, was studied by us in references [BV1,2]. 

The remaining of this paper is as follows. In Sect. 2 (after the necessary prepara- 
tion) we state the Theorem 2.1, without proof. Then, by using this theorem, we give 
the complete proof of Theorem 1.2. Finally, in Sect. 3, we prove the Theorem 2.1. 

2. The general theorem 

Statement o f  Theorem 2.1. Here ~ can be the n-dimensional torus or the whole space 
R n. In the sequel we consider systems (1.5) enjoying the hypothesis (1.1) to (1.4). 
Moreover, we assume that 

(2.1) lim IlUo ~ - Uollk = 0 
)~ ---4 o o  

for some u o E H k. In the sequel we will consider an auxiliary family {Uo ~'e C 
H k+l : k > Ao, 6 C ]0, 6o] }, for some fixed 6 o > 0, such that, for each 6 E ]0, 6o], 

{ II *0 'allk _< Co, > 
(2.2) [Irt~~ -< C~ VA > A0, 

-Uo[l~ <- 6, VA > A(6), 

-%11k-1<-6 ,  VA>A o. 

Under the assumption (2.1) such a family {u0 ~'~} exists (proved below). 
In the sequel we also consider the following two additional hypotheses on the 

family {u~'6}: 

For eachfixed 6 E ]0, 6o] there is a function %6 E H ~+1 such that 

(2.3) lim []u~ '~ - %~ll~+l = O. 
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And 

(2.4) ~ ~ ~ ~ l iB(u0'  , ;~)u0,'~ Ilk < C(~) ,  V.X > ),(~). 

We remark that in the fluidynamics case the assumptions (1.11), (1.12) are sufficient 

to guarantee the existence of a family {u0 ~'6 } satisfying (besides (2.2)) (2.3) and (2.4). 
r k , 6 1  The construction of the f a m i l y / u 0  I,  as well as proofs of  related properties, will 

be done after the statements of  Theorems 2.1 and 2.2. In order to state these results, we 
consider a family of  initial data u0 ~'6 satisfying (2.2) and the corresponding solutions 
u x,~ to the problems 

,k,6 A 6 ,X 6 u t + B ( u  ' , ; 9 % '  = 0 ,  
(2.5) uX,6(0 ) = u0~,~. 

These solutions satisfy the estimates 

I1~'  I Ik- , ,T -< C ,  (2.6) 11~"611k':r +'x-~ ~' '~ 
Ilu)','~lik+l, T < c(~), 

for each A > A 0 and each (5 E ]0, ~0]. This follows from Theorem 1.1. One has the 
following results. 

T he o rem 2.1. Let X? be the n-dimensional torus or the whole ~ .  Assume that the 
hypothesis (1.1)-(1.4) hold and let Uo, u~ satisfy (2.1). Let u~o '~ be a family of functions 
such that (2.2) holds (such functions exist, as proved below). Denote by u ~ and by u ;~'~ 
the solutions of  problems (1.5) and (2.5) respectively. Let e C ]0, 1] be given. Then, 
there are positive reals C(e), A(e), and AI(~) such that for each ~ > 0 one has 

(2.7) I1~ )''~ - ~'II,~,T --< Oo(~ + C(~),5), V,X > A(e, ~) ~ max{A(e), . .~1(~) } .  

In Theorem 2. ] the assumptions on the data are much weaker then (1.11), (1.12). 
In fact, in the particular case of  the system (1.10), the assumptions in Theorem 2.l 
hold provided that v0 ~ and ;6o ~ converge in H k, as .~ ---+ oc. As explained below, this 

-A.6  .-~,6 sole assumption guarantees the existence of a family u0 ~'e ~ (~0 ~ , v 0 ) satisfying 
(2.2). 

The proof of Theorem 2.1 is postponed to Sect. 3. 

T he o rem 2.2. Assume that the hypotheses of Theorem 2.1 are satisfied and that, for 
each fixed ~, the limit: lira u ~,~ exists in CT(H~ Then, the sequence {u a} must ..~---+ cc 
converge in CT(Hk),  as A ~ e~. 

Proof. Let o- > 0 be given. Fix e = o-Co 1 and ~ = o - C ( E )  - I .  Since 

(2.8) 11 ux - ~ l l k , r  -< I1~ x - ~X'ell~,r + Ilu x'~ - u" '~ l tk , r  + Ilu~'e - ~"11~,~, 

it follows from (2.7) that 

I]u )' - u/~ll/~,r < 4o-+  ]lu )''8 - U f ' 6 l l k , r ,  

for each pair ~, ff > A(o-) = /~(G 6). The thesis follows by using the C T ( H  ~ 
convergence assumption, (2.6) 2 and interpolation II I1~ +~ -< ell II0 tl I1~+1. Note the 
following corollary to Klainerman and Majda 's  Theorem 1.1. 
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L e m m a  2.3. Assume (2.1), (1.7), (2.2) and (2.4). Then, to eachfixed 5 E ]0, 6 o] their 
correspond C(5) and A(5) such that 

(2.9) IluX'61lk+l,r + Ilut Ilk,T <- C(5) 
if A > A(5). 

Construction of the family u'~ ''5 

Assume that Y2 = [0, a] ~ is the n-dimensional torus, and set a = 1 just for 
convenience. Note that the construction done below applies as well to the case in 
wh ich /2  = ]R n, by replacing the Fourier series by Fourier transforms. 

In the following we assume that (2.1) holds. Consider Fourier series 

Uo(X) = E ~20(~)e2~ri(" x 

where 

Then 

~20(s c) = f e-2~ri(" XUo(X)dx. 

s 

I1~o11~ = ~ ( 1  + 1~12) k %(012 

where ~ = (~1, . . . ,  ~,), the ~i's are nonnegative integers and [~1 is the Euclidean 
norm. Analogous formulae hold for each u~, A > A 0. In this last case the Fourier 
coefficients of Uo ~ are denoted by g0 ~. Given 5 > 0 let R(5) be such that 

E (1 + [~12) k [~20(~)12 < 52/4 

and that 1 + R(5) 2 > Co 5-1, where c o satisfies x 2 IlUo Iqk < Co for each a > ao. 
Next, for each f ix) = ~ f(~) exp(2rcix - ~) we set 

(TJ)(x)  = E f(sC)e2'~iex" 

Define 

~"~ (T~u~) (z) .  (2.10) u o ( x ) - -  

Note that II@~llk <_ II~o~llk. Hence (2.2)1 holds. Clearly, I1% )` --~ <-- (62/2) + 
211% ;~ 2 - Uo Ilk" In particular (2.2)3 holds. On the other hand 

i1@~ ~ 2 - Uo Ilk-1 <- Co~R(5) 2. 

Hence (2.2)4 holds. Finally, 

A 6 2  Iluo' It~+l <- (1 + R(5)  2) IIuo~l[ 2 _< c(5) 

since the u0 ~ are uniformly bounded in H k. Hence, (2.2) 2 holds. We have shown that a 
family no ~'5 satisfying (2.2) exists if (2.1) holds. Moreover, this family satisfies (2.3). 
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In fact, define Uo 6 by dropping the A's in Eq. (2.12). Since tlUao'~-u~ 12 < Ilu~ -Uoll 2, 
it follows that Uo ~'e -4 uo ~ in H k as A --~ o0, uniformly with respect to & Moreover, 

- **01P +l -< (1 + fR(e ) l  2) Jf 0 x - 

Hence (2.3) holds, for each fixed 5 C ]0, 5o]. 
Finally we consider the fluidynamics case. We assume that (1.11), (1.12) hold and 

we prove (2.2)-(2.4). 
Set u 0 = (0, v0), u~ - (~o ~, @). Clearly (2.1) holds. We left to the reader the proof 

of  (1.7) that can be easily done by taking into account (1.13). Next, define 

5 - - ~ - - 1  A6 
(2.11) v2 'e = % - t - a  w o'  , 

/7~0 '5 x--l-,  A'5 
"' 2PO 

)~,6 .-A.5 A 6. 
and set u o ~ tPo' , Vo' ). Here, 

~,6 
v0 --- r v0, Wo p0 --- 

Moreover, R(5) is defined in such a way that 

E (1 + t~t2) ~ 1�9 2 < (5214 

and that lira R(5) = oo. Note that u0 ~'e satisfy (2.4), for each fixed 5. For, the data in 
5-+0 

Eq. (2.11) satisfy (1.11), (1.12) when k is replaced by k + 1. Moreover, V .  Vo(X) - 0 
yields ~.  �9 = 0, for each {. Hence V .  v~ ==- O. 

Proof of Theorem 1.2. By Theorem 1.1 the solutions u a -- (/5 a, v a) of  problem (1.10) 
satisfy 

(2.12) 11(~ a, vA)ltt~,m + HOt(2a )', va)Hk_l , r  _< C .  

By L~ l) weak-* compactness results, for l = k - l, k, it follows that (for suitable 
subsequences) 

f (~.x v ~) ___+ ~ ,  v) in L~(H k) weak-* ,  
(2.13) 

t -A ), QTe , % )  --+ (Pt ,%) in L ~ ( H  k - I )  weak-* ,  

for some (/5, v). It readily follows that (as ~ ~ oc)/7) ' /A + 0, hence Q@;~/A) -+ 
Q(0) -= ~ in CT(Hk). Moreover, V -  v a --, 0 in UT(H~-I), hence V .  v -~ 0. Finally, 
~V/7 ~ -4 -- ~(Ot+v.V)v in L~(H ~--I) weak-*. In particular, V/5 ~ --+ 0 in CT(Hk-1), 
hence/7 = ~5(t) is independent of  x. Furthermore, v(0) = %,/7(0) = 0. Clearly, there 
is a function re E L~(H k) such that Vrr = -~(@t + v.  V)v.  We may assume that 
f rift, x)dx = 0, for each t. The above properties allow us to pass to the limit in 
Eq. (1.10) and to show that (v, Vre) is a solution of  Eq. (1.14). By the uniqueness 
of  this solution it follows that the whole "sequence" (v ~, Otv ~, AV/7 ;~, V/7 a, Q(~a/A)) 
converges to (v, Otv, Vrr, 0, ~) in L.~(H k) x L~(H ~-~) x L~(H ~-~) x CT(H ~-1) x 
@ ( H  e) as A -4 oo, where the convergence in the first three functional spaces is in 
the weak-* norms. By the way, note that ~ = o(/5~/A) and pa = A/7 ~ are the density 
and the "true" pressure of  the A-fluid. 
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~'6 satisfy (2.3) and the hypotheses of the Theorem2.1 Next, note that the u 0 
and of the Lemma 2.3. By Eq. (2.9) it follows that for each fixed ~ the solutions 
uX,6 _= ( ~ , 6  va,~) of  problems (2.5) satisfy the estimate 

(2.14) ~,6 x,~ -~ 6 Ilv IIk§ + IIP~'~llk+~,r + IIv~ Ilk-l,T + []Pt' IIk-~,T --< C(6 ) ,  

for A > A(6). Note that this is just (2.12) if in this last equation k is replaced by 
k + 1. Hence, the above weak-* convergence results hold if k is replaced by k § 1. 
Since s is a bounded set, it follows in particular that 

(2.15) (v ;~'~, ViO x'6) is a Cauchy sequence in C T ( H  k) x C T ( H  k - l )  

as A -+ ec (this in the sole point in which boundedness of  s is used). 
On the other hand, Theorem 2.1 shows that 

(2.16) IIv ~'~ - v~llk,T + IlVP ~'~ -- VP~IIk_X,T <_ Co(~ + C(~)6), 

for each A > A(e, ~5). Now, given cr > 0, we fix e = e(a)  --- cr/C o and then fix 
(5 = g(cr) -- crC(e) -1. It readily follows from (2.16) that 

(2.17) IIv ~ - <tl~,z + IIVP ~ - VP"II~-a,T 

_< 4~ + Ilv x'6 - v" '6ll~,r  + IlVp a,6 - vp.,el l~_l ,r ,  
if A, # > A(a) - A(e(cr), (5(or)). Since g = ~5(a) is already fixed, it follows by (2.15) 
that there is a Aa(a) _> A(cr) such that the left-hand side of  (2.17) is bounded by 5~ 
if A, # > A2(cr). This ends the proof of  Theorem 1.2. 

3, Proof of  Theorem 2.1 

In the sequel, together to the parameter A and the auxiliary parameter ~5, we will use a 
second auxiliary parameter c. A similar device was used in our previous papers [BV3-  
6]. Constants denoted by capital C (or Co, C1, . . . )  never depend on A. Moreover, 
whenever such a constant is not uniform with respect to 6 or e, this fact will be 
displayed by writing C((5), C(e), or C(e, 6), 

For convenience we set 0 i = 0 x .  Denote by v ~ =_ (01 u~', . . . ,  O~u ~) the r n  vector 
whose components are the first order derivatives of the components of the solution 
u ~ of Eq. (1.5). By differentiation of this last equation with respect to each single x i, 
we get 

J" vt ~ + / ) (u  ~, ),)v~ + t)~(u ~, ;~) (v ~, v ~) = 0, 
(3.1) X __ A - -  X A 

V ( 0 ) - -  V 0 = (01UO, . . . ,  O,~UO). 

Here, ~v~ ~ -~ ~ = B v~i, where each /)i,  i = 1 , . . . ,  n, is the block matrix 
i=1 

diag{B i, . . . .  Bi},  r times. We point out that by setting •0 = diag{A 0, . . - ,  A0}, 
where A ~ = ~4~ A, A), one has ~0/ ) i  = i l i ,  i = 1 . . . . ,  n, where • 0 / ) i ,  •i satisfy 
the properties (1.1) to (1.4). In Eq. (3.1) the symbol B~ is formal, and has the following 
meaning. In each of the single nr scalar equations that make up the system (3.1)1 there 
is a bilinear form over the vector v ~. The coefficients of these bilinear forms are linear 
combinations with constant coefficients of the first order derivatives (with respect to 
the v a r i a b l e s  uj,j = 1, . . . ,  r )  of the coefficients of  the Bi ' s .  This fact follows 

immediately from the construction of system (3.1). The symbol /)~(u ~', A)(v x, v ~) 
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denotes the above bilinear forms (the index u stands for D~). The particular form of 
each single coefficient is not important in the sequel. The point is that these coefficients 
satisfy (1.4). 

Next, note that Vo -x ~ v 0 -- (0iUo, . . .  , Onuo) in H k-1. In particular, IIv0Xtlk_l _< 
C o . Clearly, 

(3.2) IIv~llk_~,~ <_ c .  

Let now e E ]0, 1] and fix v0 ~'~ ~ H k+l in such a way that 

),e < 
(3.3) IIv0' rlk - C0(e),  V:~ > a0,  

for a suitable A(z). The existence of the family v0 ~'z is proved just as that of  the family 
A 5  

% '  , by replacing 5 by z and k by k - 1. 
Next, we consider the system 

{ v~ '~ + [~(u ~', A)v~ '~ + B~(u ~', ~) (v :',~ , v ~',~) = O, 
(3.1)~ vA'~(0) = v0~,~. 

Note that this system is linear in the higher order derivatives since u x is fixed. The 
existence of the solution v a,~ in the space C T ( H  k) N C~,(H k - I )  is easily shown by 
proving (by standard methods) the existence of a fixed point for the map w --~ v, 
where v is the solution of the problem v t + B ( u  ~, A)v~ + D~(u ~, A)(w, w) = O, 

v(0) ~ ~ = v o ' . The main point is to prove an a priori estimate for the norm IlvX'~llk,T of 
the solution of (3.1)~. The independence of this estimate with respect to A is crucial 
in the sequel. In fact, one has 

(3.4) IIv~'~ll~,:~ < C(e) ,  W, > ;~0- 

Proof  o f  (3.4). By Theorem 1.1, 

--1 A 
(3.5) t l~ l lk ,T + ~ Ilu~ llk-~,T <-- c .  

In order to prove (3.4) we argue as done by Klainerman and Majda in reference 
[KMa2] in order to prove their equation (2.11). Now, the r61e of the function 9 in 
[KMa2] 's  Eq. (2.11) is played by the quadratic term in Eq. (3.1)~. In this way we 
prove that (see below, for notation) 

(3.6) 

provided that 

(3.7) 

~ 2 d va,~(t ~ 2 < Clrv,(t)llE,k d~ J ~,t - 

]]D~(~ ~, ;~) (v ~'~, v~'~) (t)llk _< CIJv~'~(t)lJ~, 
for each A > A 0 and each c E ]0, 1]. Then, from (3.3)1 and (3.5), the estimate (3.4) 
follows. 

Above, II IIE,k is defined by (see [KMa2]) 

--- ~ IID%II 2, IIvJJ  = f(A~ Ilvll~,k 
r~l_<k 

J 
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The norms 11 ]lE,k and 11 Ilk are uniformly equivalent since the functions u X ( t ,  x )  that 

appear in the matrices A~ ~, A) take values in the set O ,  for all ( t , x )  C Q T  and all 
A > A 0 (recall (1.1)). 

In order to prove (3.7) we start by remarking that (for each t) 

IIB~(~ ~, ~)(v ~'~, ~'~)llk <- cllD~(u ~, ~)LIk I1~'~ I1~ �9 

Next, as in [KMa2] Lemma 3, we use (3.5) and (1.4) to show that [[/)u(u A, A)llk < C. 
Finally, Ilv~,~lh ~ <_ Cllv~,~llk, since IIv~,~llk_ 1 _< C. This last estimate is proved by 
arguing as done below (in a more complicated context) in order to prove (3.9) [] 

Next, we consider the system 

{@ 6 + / ) ( u ~ , ~  A)v~,~ +/)u(u~,~,  A) (v ~,6, v ~,~) = O, 
(3.1') v~ ,6 (O)  = v ~ , e  ,~, ~x,6 ~ ),,6, (Ol~ 0 ~ . . . ~ Uni t  0 ) 

obtained by differentiation, with respect to the x variables, of system (2.5). By 
definition v )',~ =_ (01 u:~,e, . . . ,  OnuX ,6 ) .  From (2.6) one shows (for each 6 C ]0, fi0]) 
that ~ ~ I] v ' I]k-l,T < C for each A > A 0 and that I1~ ~ ~ < C ( 6 )  for each A > A(di). 

- ~ k , T  - -  

Next, we take the difference between the Eqs. (3.V) and (3.1)~. We get 

f W t -]- [ 3 ( u X , 6 ) W x  = g ,  
(3.8) ~ . . 4,6 ~,~ 

I. w t ~  = v o - v o , 

where w _= v x,6 - v x,~ and, by definition, 

g = [/)(u ~) - / ) (u~ '~)]  v~ '~ - / ) J u  x'~ ) (v ~'e , w) - B~(u ~'e ) (v ~'~ , w) 
+ ( / ) J u  x) - / ) j u : ' , ~ ) )  (v~',L v~,~). 

Here, all the terms B( . ,  A) are estimated at the same value A, hence we drop this 
symbol. Next, by arguing as done in [KMa2] in order to prove the equation that 
appears in the fourth row p. 638 in that reference (for s = k - 1), we show that 

d 
(3.9) d-~ Ilw(0llE,k-1 < C(llw(t)llE,k_l + IIg(t)l]k-1), 

where C is independent of  (e, (5, A). We point out that a modification in the above 
[KMa2] 's  argument is needed here. In fact, by following exactly their proof one finds 
on the right-hand side of  (3.9) the additional term II~,~(t)llk_l IIw(t)ll~,k. However,  
Eq. (3.9) is valid without this term. In fact this undesired term comes from the second 
term in the summation in the right-hand side of  [KMa2] 's  Eq. (2.14); here [a] = k -  1. 
Instead of estimating this term by using the point (ii) in [KMa2] 's  Lemma 2 we use 
the estimate 

(3.10) I l O ~ ( f  g )  - f O ~ g l l o  <_ cl]0~flIk_l  IlglI~-z ; 

see, for instance, [BV3], Appendix A, Corollary A.3. Hence 

] [0x~( /~Wx ) - -  BC~axWx[lO ~ cllOx]Bllk_ 1 [ I w l l k _ l  �9 

On the other hand, by (2.6)1 and (1.4), 

110~/)1[~_ 1 <_ cl[(DuB)('a'x '6,a)llk_ 1 IlC~xUA'~Sl[k_ 1 ~ C .  
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Hence the H k-1 norm of the undesired term is bounded by Hw(t)Hk 1. Hence it is 
bounded by the first term on the right-hand side of  (3.9). [] 

The next step is to estimate conveniently the norm Hg(t)llk_ 1. We want to show 
that (for each t) 

(3.11) ]lgllk-i -< C(llwllk-, + II~ ~ - ~'611k-1 + II~'~/Ik II~ ~ - ~ Y l l k - , ) .  

From (1.4), (2.6), and Ilva,ellk_l, T < C, it follows that the second term in the right- 
hand side of  the definition of  g is bounded by CIIw(t)J[k_ I. Next, by arguing for the 

system (3.1)~ as done above for the system (3.8) we show that y(t)  =_ Ilva,~(011~_i 
satisfies the differential inequality yt(t)  <_ C(y( t )  + y2(O), moreover y(0) < C. 
Hence Ilva'*(t)llk_~ _< C. 3 It follows that the third term in the right-hand side of  
the definition of  g is bounded by cIIw(t)llk_~. 

Next, we consider the first term on the right-hand side of  the definition of  9. In 
order to bound its H k-I  norm by the last term on the right-hand side of  (3.11) it is 
sufficient to show that 

(3.12) II/}(u x) - -  B(?~A'(5)II/r  1 ~ C l l u  A - u A ' ~ l l k _  1 . 

Setting for convenience u = u a and u '  = u a,e, and dropping the symbol A, one has 

O)-~[~(u) : ( D [ -  ' /)) (u) ( 0 x U )  k - 1  -}- , . .  -}- (D~flg) (%t)Cgzk- l~ .  

Hence 

(3.13) Oqz k - 1  [ ] ~ ( U )  - -  . /~(U;)]  = [(Duk-1/))(u) -- (Duk-lB) (u')] (OxU) k-I 
( k--1 ~ / . . . .  + D~, B) (u )  [(0xu) k-1 - (0xU') k < ]  + 

By using the mean value theorem in the phase space ~ C R r together to (1.4) it 
readily follows that the H ~ norm of the first term on the right-hand side of (3.13) 
is bounded by Cllu - u'll ~ Hoq~ull~ -2 IlOxUllo, hence by CI]u - u'l lk_ 1. Here, II [Ioo 
denotes the norm in L~ The H ~ norm of the second term on the right-hand 
side of  (3.13) is bounded by C]l(Oxu - O~u')((Ozu) ~-2 + . . .  + (0~u')k-2)t[ 0, hence 
by CllOzu - Oxutllk_ 2 H(0zu) k-2 + . . .  + ( 0 x ? z / ) k - 2 ] l  I which, in turn, is bounded by 
Cll~ - u ' l lk_l .  In a similar way, each term that is part of  the right-hand side of  

(3.13) is bounded by ]lu ~ - u~'61lk_ 1. We left details to the reader. The estimates 
for H l norms of products of  functions proved in [KMal] LemmaA.1 or in [BV3] 
Appendix A, are useful here. Similar manipulations show that the H k-1 norm of the 
last term in the right-hand side of the definition of 9 is bounded by ][u ~ - ~ '~ l l k -1 ,  
s i n c e  ]]VA'EHk_I, r ~ C. hence (3.11) holds. [] 

Next, by (3.9), (3.11), and Gronwall 's lemma it follows that 

(3.14) ]]va'6(t)-v~X'~(t)llk_l <_ C{e+llu~-U~o'~llk+(l+llvx'~llk,r)[u~-ux'6]~_l,t} 
for each A > A(e), where C is independent of  (e, 6, A). Here, the assumption (3.3) 2 
leads to the condition A > A(e). 

On the other hand, by taking the difference between the Eqs. (3.1) and (3.1)~ (in- 
stead of (3.1 t) and (3.1)~, as above) we get (3.8) and g both without the 6's. In 

3 We point out that there is a positive lower bound T for the times of existence of all the solutions of 
the equations considered in this paper; in fact the norms of all the initial data are uniformly bounded 
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particular, the first and the third terms in the right-hand side of  the definition of  9 do 
not appear. A quite simplified version of  the above manipulations shows that 

(3.15) II~,X(t) - vX,~(t)llk_l <_ C(e + [u x - uAdS]h_l,t) , 

for each A > A(e). From (3.14), (3.15), and the definitions of  v ~ and v ~,6, it follows 
that 

(3.16) HuX(O-uX'e(t)[lk < C{e+II~XO--@~Ilk+(I+Ifv~'~IIk,T)[~ ~-  k-~ , , ,  

for A > A(e). Use also the estimate (3.17), proved below. [] 

Next we show that 

(3.17) Ilu a - uX'ellk_l, T < C~, VA > A 0 . 

By taking the difference between the Eqs. (2.5) and (1.5) and by setting w = u a,6 - u  x, 
we get 

[ w t + B(u x,~, A ) %  = [B(u )', A) - B(u ~''6, Z)]u~,  
(3.18) 

l ~ ( 0 )  = ~o ~'6 - ~o ~ 

This system is similar to (3.8) if now, in the definition of  g, we take into account only 
the first term. This leads to Eqs. (3.9) and (3.11) for w(t), where now (3.11) becames 
lt9(t)ltk_l _< Cllw(t)ll~._~ (since the term IlvX,~(t)llk is replaced by tl~x(t)llk). By 
taking into account (2.3) 4 we prove (3.17). D 

From (3.16), with the help of  (3.17), we prove that 

(3.19) ]lu ~' ;~ ~ - ,~ ' il,~,~ -< c ( ~  + It,~o ~ - ,~o)"~ itk + ~ + i t , ? ' , ~ l I ,u~ ) ,  

for each A > A(e), where C is independent of  (e, 8, A). By taking into account (3.4) 
and (2.2)3, we prove (2.7). []  
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