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Main Notation

£ is an open; bounded, connected subset of R”, n = 2, locally situated on
one- side of its'boundary I, which is a differentiable manifold of class C=.
In the ‘sequel k ‘denotes ‘a fixed integer such that k >2% + 1. We denote by
v = (v, ..., ¥;) the unit outward normal to the boundary I; and by 4, dif-
ferentiation in the v direction. We set Qp = [0, T[xQ2, Zy= [0, T] x I

‘We denote by H' I a nonnegative integer, the Hilbert space H(£2) en-
dowed with the canonical norm |- ||, defined by ||u|? =Z|3%«||?, where the
summation is extended over the multi-indices o such that 0 <|«| =/, and
|- =1 llo denotes the L?norm in £. Moreover,

{

el = Y 18ul3 .

j=0

On I" we also use fractional Sobolev spaces H'™V2(I). A half-integer in-
dex always denotes a Sobolev space over the boundary I The norm in this
space is denoted by the symbol ( - Yi—ij2. We set

-1
IR <<<u>>>%——1[2 = E «a{u»lz—j—l’,‘z.
Lol j=0
. Inthe sequel we use the notation C4(X) = CV([0, T]; X, LX) = L7 (0, T: X),
and so on..We define

! : -
Fr(H") = .ﬂo CLH(H'™),
Jl=

Lo , -1 ‘
ZUHY = NWEPHIY),  FUHHITY = N W),
=0 j=0
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‘The norms for these functional spaces are

iulll 7r = oup w7,

I T
[ulfy = OI e fii? di,  <wdd_yp 7= oj L)Wy, dr,

where “‘sup’” denotes the essentia] supremum and p = 2. The above notation
will be used both for scalar and vector fields. This convention applies to all
notations used in the sequel. In particular, we write v, g€ X even if v is a vee-
tor, and g, a scalar.

Given an arbitrary function F(t, x), we denote by Sf(1), for cach fixed
the function f(z,-).

Intreduction

In reference [BVI] 1 applied, to a simple but significant example, a new
method for proving strong continuous dependence of solutions of differential
equations on the data (see also [BV2]). In the present paper I apply this
method to a class of nonlinear wave equations with a fully nonlinear boundary
condition of Neumann-type. Very general existence results for these problems
were proved by SuiBara and coworkers [ShN, ShK], by using, in particular,
an idea of SHIBATA (see ISh]}, namely, the reduction of the original problem
to a suitable elliptic-hyperbolic system on the variables » and 3,u. By using
SHIBATA’s device and his own abstract theory Kamo K] proved similar existence
results, In reference {K] the assumptions are less general than those in reference
[ShK]; however, Kato proves the strong continuous dependence of the soly-
tions on the initial data. One of the aims of this paper is to show that my
method is general enough for proving the strong continuous dependence of the
solution on the data (in a broad sense} under fully nonlinear (and nonhomo-
geneous) boundary conditions. See Theorem 1.1,

1t is worth noting that in proving the continnous dependence theorem, by
my method, there is no subsiantial distinction between the case in which the
coefficients of the nonlinear equations depend only on Vu (as below) and the
case in which they depend on (¢, x, u, Vu) and possibly on d;u. (This remark
does not apply to the existence theorem.) Avoiding formal generality, we
assume here the “‘simplified”’ situation. The case in which u is a vector instead
of a scalar can also be treated by my method without significant alterations
in the proofs. A more relevant generalization, from the mathematical and the
physical point of view, is to allow here structural changes in the nonlinear dif-
ferential operators and boundary conditions. See also [BV1, BV2).

A central point in the theory developed here is to provide a quite general
method for proving the sharp dependence of the solutions to linear equations
on the coefficients. In the specific case considered here the linear equation is
(1.7) (which is a linearization of (1.2)), and the sharp dependence result is
Theorem 1.2 below.
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Results

Let a = (ai, ..., 3,) € C*T/(R™; R") and b€ C*(R; R), where k>7 + 1
is a fixed integer. We define a; = da;/dp;, and we assume that a;(p) =
@i(p), i,j=1,..., n, and that
(4.0 ay(p) &z m(p)[¢]* Vp, LeR".

Consider the following nonlinear hyperbolic mixed problem with a fully
nonlinear boundary condition of Neumann type:

#u—3/(a;(Vu)) =f in O,

(1.2) via;(Vu) + b(u) =g on Xy,
u(0) =uy, u(0) =u,.

Here and in the sequel the usual summation convention is employed. Assume
that o
(13) (upyw) € H* ' xHY,  (f, 8) € Z2(H*) x L2 (HH12)
(where, in general, #?(X) denotes .Z.(0, + ;X)) and that the data
satisfy the compatibility conditions up to order & — 1 (see, for instance, [BVZ]
or [ShK]). It is well known that problem (1.2) has a unique local solution
ue _%T(_H_’"“); see [Sh, ShN, ShK, K]; (in [K] g = 0). Above all, see [ShK]
since the proof of Theorem 1.1 below applies to the general case treated in
this reference. Actually (with suitable refinements; see [BV2]) the proof can
be extended to the more general case in which the operator d%u is replaced
by (8 +v-V)?u, and (in equation (1.2), below) the operator d2u, is re-
placed by (8, + v, V)%u,. Here v(s, x, z, p) is a vector field tangential to

the boundary for x ¢ I” (and similarly for v,).
Next, consider the problems

Fuy —9;(af(Vu,)) =f, in Qr,
(1.2)s viaf(Vu) + b, (u) =g, on Zp,
e 4a(0) = uf,  ,u,(0) = uf,
where o € N, and a, and b, are as @ and b above. In particular,
(1.1), ai(p) &z mo () [E]? Vp, EeRY;
moreover, the data
(1.3)e (a8, uf) e H 5 HY,  (f,, g2) € L2HY) x L1HF2)

satisfy the compatibility conditions up to order & — 1.
The main result of this paper is the following, Here Ty > 0 is arbitrarily
large, provided that the solution # of problem (1.2) exists on [0, Tj)].

Theorem 1.1. Let a, b, uy, uy, f, g, and a*, by, ug, uf, fy, 8 (o € N) satisfy
the above assumptions and let u € gTD(H"‘“) be a solution of (1.2} in Or,.
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Assume that
lim a%(p) = alp) in C**', uniformly on compact subsets of R",
>

1.4 °
.49 lim &,(z) =b(z) in C*, uniformly on compact subsets of R,

that

(1.5)

lim (ud, uf) = (ug, 4y)  in H**'x HY,

a—o

im (fo, 80 = (Frg)  in FHHYx L] HHT),

and that the assumptions (1.9), (1.10) hold (see Remark 1.3}, Then for sufficiently
large values of o the problem (1.2), admits a solution uy € €7 (H 1y on the
whole interval [0, Ty). Moreover,

(1.6) limu,=u in @ (H™).

oo

In particular, if {0, t,[ is the maximal interval of existence of the solution u, and
[0, Tl thar of u, then lim inf 7, = 1.

o+

One of the main tools in the proof of Theorem 1.1 is the following pertur-
bation result for linear equations. Let
Ry b€ ZF(HYY,  By=hg,  RBj=h,
for i,j =1, ..., n. Moreover, assume that
hy(t, x) E& = m|E R x) && 2 mlE|,
for each £ € R” and each (r, x) € Op, where m is a positive constant.

For convenience, set h={h;:i,j=1,...,n} |&|*=Zy;[|2y]|% and so
on. Let (wo, w;), (wh, wi) € H xH**' and (F, G), (F', G') € ZHH"")
¥ %(H"ﬁ“z). Finally consider the linear problems

afw - al(hqa}W) =F in QT!
(17) vihijajw =G on QT’

w(0) =wp, 9, w(0) =wy,

aFw — 0;(hfd;w')y =F in Or,

(.7 vihjd;w' =G on QOr,
wi(0) =wg, 3w (0) = wi,

and assume that the data satisfy the compatibility conditions up to order £ — 2
for these systems. In the sequel R denotes generic real, nonnegative func-
tions, which depend increasingly on each of the single arguments. These
arguments are, at most, m~, [I&llizs & llers [wolks Iwille—rs 196]e.
Wi k1> IO i=20 IF (Ol 2> [Fle—r,z, and [F}g_i,7- The same symbol
R may denote distinct “‘constants’’ of the above type, even in the same equa-
tion. We have the following result.




Fully Nonlinear Hyperbolic Mixed Problems 55

Theorem 1.2. Assume that the above conditions on h, wy, Wi, F, G and on
', wi, wi, F', G' hold. Let w and w' be Zp(H*) solutions on [0, T} of prob-
lems (1.7) and (1.7)" respectively. Then, given € > 0, there exists a real positive
A(g) that depends only on €, on T, and on the particular functions h, wo, Wi, E
and G, such that, for each t€[0, T],

1.8) [llw() —w O HlIZ
< Re®{e + || wo — Wi || 3 +]lwi — wili-1 + [HF(O) = F (0)lli-2
+ (G O) — GOz + 1(0) — B (O)][|Fo + [F = F'lin,e
F G~ Gy + Th—hNE 4 v =Wl + A T = s,

This theorem was proved in reference [BV2, Theorem 1.2], where the situation
is more general since 4, is replaced by 9, + v- V or by 8, +v'- V. The fact
that v = v* = 0 simplifies the proofs substantially. On the other hand, in [BV2]
the coefficients h; have the particular form hy(t, x) = 6;;h (1, x), where
h{t, x) = m > 0, and similarly for hi;. However, the new situation in the pre-
sent paper does not require any important change in the proof of the above
result.

Remark 1.3. The starting point of the proof of Theorem 1.1 is the existence
theoremn for the solution of problem (1.2). To this end we refer to Theorem 1.1
of [ShK]. In order to apply this theorem literally we make the following
assumptions:

(1.9) (F &), (for 8a) € LEHY X ZEH?)
and the corresponding norms are uniformly bounded as o — o]
(1.10) a, a*€ CRH (R RY), b, by € CR(R; R)

and the corresponding norms are uniformly bounded (on compact subsets) as
o —» oo, Here, ky = k is an integer such that the Existence Theorem 1.1 of
[ShK] applies to (1.2) under the assumption (1.10) for a and b. Note that in
reference [ShK] the authors assume, for convenience, that a, b € C®. Obvious-
ly, there is a finite &y = ko(k) for which the theorem already holds. We
presume that ko =k, ie., that (1.10) is superfluous. Here (1.9) also seems
superfluous, since .Z2 (instead of .#°”) should be sufficient in order to
prove the existence theorem.

2. Proof of Theorem 1.1

Preliminaries. Note that the data and the solution u€ & (H**') of problem
(1.2) are fixed once and for all. Let us, once and for all, fix a positive constant
Ap such that the norms ”u”C(Q_Ih” | Ve ||C(QT0)’ and |||#||,41,7, are bounded
by Ap. Let us also fix K > 0 such that [fl,r, =K and {gh1j2,7, = K. Note
that ||uglig41 = Ao, fotr [le = Ao
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From assumptions (1.4) and (1.5) it follows that the porms | les1s
laf e |8 llcy, and || Vwg ficeg) are bounded by 24y, and the norms
[folkz, and <8udies1j2,7, 8r€ bounded by 2K (for sufficiently large values of
« € IN). Without loss of generality we assume that all the above properties hold
for any o€ N. .

Our first step is to show that it is sufficient to prove the conclusion of
Theorem 1.1 for a suitable value T€]0, Tyl (defined in the sequel) which is
independent of «. In problems (1.2), let us replace the functions a*(p) by
functions @*(p) and the functions b,(z) by functions b,(z) such that
a*(p) =a*(p) and by(2) =b () if |p| =34, a%(p) =alp), and
b,(z) =b(z) if |p|z4Ag. Since ajj— afj uniformly on B(0; 44y) =
{p:lp| =440} as a = o0, we assume, without loss of generality, that for each
a€N

2.1 ag(p) && zim(p) &> Y& peRT,

where m(p) is as in (1.1). - -

Let 4, denote the solution of problem (i2), where (1.2), denotes the
equation (1.2), with the coefficients a® and & replaced by 4% and b°, respec-
tively. The initial data and the ‘‘external forces”’ remain unchanged; note that
these data satisfy the compatibility conditions for the system (1.~2)a since the
value of the coefficients does not change for |p| = 34,. By construction, the
following quantities are uniformly bounded with respect to a€N: The ck+l
norms of the functions &* and the C* norms of the functions b,, on compact
subsets of IR”; the ellipticity constant in equation (2.1); the H k+1y H* norms
of (ug, u?); and the Z% (H") XECZ%D(H“W) norms of the external forces
(f%, g%). These quantities determine a positive lower bound for the time of
existence of solutions and an upper bound for their ||| - [lli+s,7 norms. Hence
there are positive reals T and K, (independent of @) and there are solutions
g€ Er(H*') of problems ({2, in [0, T} that satisfy [||2%[|lz+r,7 = Ko
Since [[v[iccap =120} e + coT|ll#|llz, 7, it follows that

1' va® “C(Q_T) =24, + coIKy,

and similarly for ||@%c(g,- By choosing T as the minimum of the previous
T and (cpKy) ™! Ag, we have

2% |cigpy <3405 | VA" leigp = 340-

Since @%(p) = a®(p) and b,(z) = b,(2) for |p| 5 34, it follows that 2° is,
in fact, a solution of (1.2), in [0, T]. Hence from now on we denote #% by
the symbol u®*.

Let us show that it is sufficient to prove the conclusion of Theorem 1.1
for the above value of T (instead of for Tp). In fact, assume that the conclu-
sion holds for [0, T]. Then, u®—u in Er(H k+1ly, Hence, for sufficiently
large «,

Nu il r = 2Kos 6 legn =240, [ VE lleigp = 2403

Fid
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moreover, (u*(T), d,u*(T)) converges to (u(T), d,u(T)) in H*''xH¥, as
a = . Hence Theorem 1.1 in the restricted form (i.e., with T, replaced by
T} can be applied to the interval [T, 2T]. It follows that the above results hold
on this last interval (hence on [0, 277) for sufficiently large values of «. Next,
we apply the restricted conclusion to [27, 37], and so on.

Proof of the restricted conclasion. According to the above argument, we
assume that ¢€ [0, T]. We have shown that #® and Vu® can be assumed to
be uniformly bounded in the C(Q7) norm by the constant 34,. Hence we
assume, without loss of generality, that the convergence in (1.3) is uniform
in R" instead of on compact subsets only. Moreover (recall (2.1)),

m(p)

2.2) @) &Gz = TIE1T Ve peRT,

uniformly with respect to o € N. Finally, as shown above,

(2.3) w1, 7 = Ko

Set w = d,u and differentiate the equations (1.2) with respect to ¢ to get

: Btzw - ai(a,-j(Vu) ajW) =F in QT!

(2‘4) v,-a,-j(Vu) ij =G on ET’
w(0) =wy,  8w(0) = wy,
where F=4,f, G=20,g —b'(u) uy, wy =uy, w; = F(0) — 3;a,(Vu), and the
compatibility conditions are satisfied up to order & - 2. On the other hand,
when we set w, = d,u,, a similar argument for the system (1.2), vields
atzwa - ai(aij(vuoz) ajwtx) = ch in QT:

2.4), v;ai;(Vu,) dw, = G, on Xy,

wcz(o) == w€9 atwa(o) = wclx',

where Fa = atfnu Ga = atgnz - br;(ua) utlri w% = u?» W? =fa'(0) - aia?(vua):
and the compatibility conditions are satisfied up to order £ — 2. The pair of
systems (2.4) and (2.4), satisfies the hypothesis of Theorem 1.2. Note that
functions of type R in equation (1.8) are uniformly bounded here. Note, in
particular, that

ai (Ve (t, X)) §& 2y m | €%,

where m = inf {m(p) :|p| = 34). Furthermore A (&) depends only on & since
in equation (2.4) the real T, the coefficients a;;(Vu(t, x)) and b(u(t, x)), the
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data, and the solution w = 9,4 are fixed. From (1.8) we easily get

(2.5)
lIw(@) —wo O I[E = Cle +llup — u§ |Frs + uy — ug )3+ 1 £(0) - £(0) ||
+4(8(0) — g (OINF_1
+ (b () w) (0) — (Bo(un)wy) (0)9% 372
+ Il e; (Va(0)y) — @i { Vo (0} |17, + [f ~ fulk.s
48 = 8adkripe + (Blu) w— b(u) Wodk—1/2.s
+ lay (V) — afi (Vi) IR + [w — wylZ,
+ Ae) [ay{Vu) — afi(Vul)li_1 ),

for each z¢€ [0, T]. Here and in the sequel we use some well-known inequalities
for Hnorms of products of functions; see, for instance, Appendix A in
[BV1]. We easily verify that, for each ¢ [0, 11,

2.6)  flay(Vu) — af(Vu) |} = Clllu e [li721 + Cllay — agli,

where I <k, Cl= C!(By; R), and By =[peR":|p| = 34,]. Below, on apply-
ing this estimate for I=k— 1 and r=0 (in order to bound the seventh term
on the right-hand side of {2.5)), we should take into account that the first
term on the right-hand side of (2.6) is bounded by a constant  times
Neo — w7 + luy — w2y + Il £(0) — [ (0) ||iZ-2.

On the other hand, since {-)_, 2,¢ = ¢l-1i,,, easy manipulations show that
the tenth term on the right-hand side of {2.5) is bounded by a constant C times
[ — uoli; + b — by |2k + [w— «Ji.: and, similarly, the sixth term is bound-
ed by C times [lup— ug{? | + |[b — b, [Z4-1 + | wy — we i 1. By using the
above bounds together with (2.5), we casily prove that

2.7)
Mw(@) = wo (I = Cle + [|uo — g |Fy + flug — |2+ 11 £(0) ~ £2(0) |12,

+ g0} ~ g, (N _1p0

+lla —a®zus + b — bo |2 + [f - f)7,
+48 = 8udbayjne + [ —ud? g,

+A(e) (u — wli, + la — a®{|2)),

for each re[0, T]. Here, the C' norms always concern the sets where
7] =34, and |z] < 34,.

Next, we make similar computations, replacing differentiation with respect
to ¢ by differentiation with respect to each single tangential direction. This is
done locally, on ‘“‘small’’ neighbourhoods of points of the boundary, by using
a partition of unity and also a change of local coordinates to rectify the
boundary. (These well-known devices are left to the reader.) In view of this,




Fully Nonlinear Hyperbolic Mixed Problems 59

let us denote by y a generical tangential direction. By setting w = d,u and
W = Oythy, and by differentiating (1.2) and (1.2), with respect to y, we prove
(2.7) just as we did above for #. By addition of the n — 1 estimates concerning
the tangential variables y together with that concerning the variable ¢ we get,
with obvicus notation,

2.8) [ 3,u() — B, (D)7 + || Vyu(t) — Vyua (1) || = right-hand side of (2.7).
Finally, equation (1.2}, yields
82u = a;; (Vu) {afu —):* a;(Vu) 8;0,u —f]
i
where, for convenience, we assume x, to be the normal direction. Here, £*
means that the pair of indices (n, n) does not appear in the summation. An

expression similar to the above one holds for d2u,. By taking the difference
8%u — 8%u, and by doing straightforward manipulations, we get

@9 I82u(ey — Sua(D]lli-s
= Cllll#@) = w1 + £ @ = L lF-1 +]a - a2
for each £, where (|||- |¥+1)? =l |+ — 185+ - | From (2.8) it follows that

the left-hand side of (2.9) is bounded by the right-hand side of (2.7). It readily
follows that

2.10) [ — uallFerr = Cole +uo — ufliin
+w — wfllf + O = L0 l1F1
+ (g (0) — g, (0IMWE_1pp + @ — a™||Ern
b= bolb+ [F—flir+ <8 — Eadbr1/a,T
+A(e) ([u = ulfr + la — a2},

where Gronwall’s lemma was previously used for dropping the term
[ — uu]iﬂ’, from the right-hand side of the above equation.
Next, we show that

(2.11) lim [t —uJi;=0.

Since Fp(H**") « C*#((Qy) for some B = f{n, k) >0, it follows that there
are subsequences u, convergent in C2(Q7), in FF(H*') weak-* and, in
particular, in #H(H*). Since these limits are the solution of (1.2), equation
(2.11) follows. Actually, u, — u in Fp(H**'"%) for arbitrarily small ¢ >0, a
trivial consequence of the ZZ (H**!) uniform estimate furnished by the ex-
istence theorem.

Finally, let 6 > 0 be given and fix & = £(J) > 0 such that Cye < J/2. Now
A(g) is fixed. Then by (1.4), (1.5), and (2.11} there is an integer M € N such
that the right-hand side of (2.10) is less than ¢ if « > M. U
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