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Abstract

The main result of this paper (which is completely new, apart from our previous and less
general result proved in reference {9]) states that the nonlinear system of equations (1.11) (or,
equivalently, (1.10}) that describes the motion of an inviscid, compressible {barotropic) fluid in
a bounded domain €2, gives rise (o a strongly well-posed problem (in the Hadamard classical
sense) in spaces H*(Q), k 2 3; see Theorem 1.4 below. Roughly speaking, if (an, ¢n) — (a,¢)
in H* x H* and if £, — f in Z°2(0, T; H¥), then (un, ) — (v, 2) in Z(0, T; H* x HE).
The method followed here (see also [8]) also appties to the non-barotropic case p = p( P2,5) (see
{10]) and to other nonlinear problems. These results are based upon an improvement of the
structural-stability theorem for linear hyperbolic equations. See Theorem 1.2 below. Added in
proof. The reader is referred to [29], Part I, for a concise explanation of some fundamental
points in the method followed here. © 1993 John Wiley & Sons, Inc.

1. Introduction

The core of this paper concerns the improvement of the structural-stability
theorem for linear hyperbolic equations and the proof of the continuous de-
pendence on the data, in strong norm, of the solutions of a large class of
initial-boundary value problems. The results are new even for initial-value
problems. Here, we are interested in applying the above general method to
the barotropic Euler equations of fluid dynamics. This leads to the (lincar)
structural-stability Theorem 1.2 and to the (nonlinear) strong continuous data
dependence Theorem 1.4.

Main Notation

Q is an open, bounded, connected subset of R”, 1 2 2, locally situated on
one side of its boundary I, a differentiable manifold of class C**2. In the
sequel k denotes a fixed integer such that k > n/2 + 1. We denote by v the
unit outward normal to the boundary I" and by 8, differentiation in the v
direction. We set Q7 =[0,T]x Q, Ty =0, T] x I'.

We denote by H¢, £ a non-negative integer, the space H(Q) endowed with
the canonical norm || - ||, defined by ||u}|7 = 3 ||8*u||?, where the summation

is extended over the multi-indices o such that 0 S o S€and |- | = - {lo
denotes the L2-norm in Q. Moreover
£, T DR
el = 32 orull,_, » i = 3= o]
=0 b= =0 t=i
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We also use, on I', fractional Sobolev spaces H!~1/2(I") denoted here by
#*~1/2, The norm in this space is denoted by the symbol {{ - )},_i/. We set

£—1
(((u»)?_x/z = Z((B{u))f_j_m -
J=0
In the sequel we use the notation

CHX) = CI((0, TL, X), LE(X)=LP(0,T: X),

and 50 on. We define

£ £—1
Er(H) = [ ChH* ), GH(H")y = [} Cha ),
j=0 =0
14 £—1 ]
ZEHE) = (VWi (H), L (H) = (YW (H),
=0 Jj=0
é—1

£—1
gT(%é’—-l/?.) — n C%(th-j—lﬂ) , %(%8—”2) - n Wy{.p(;gﬂ—j—lﬂ) .

The norms in these functional spaces are the following;

NalliZr = sup I, el ?er = sup |lu(o)2 ,
0SET 0SiET

r T
whr = fUondr, = [ a,
0 0

(((um%_:/z,r = Oi?spr(((“(f})))g_;/z ,

T

(W iz = [WONipdt

0

where “sup” denotes the essential supremum and p = 2,

The above notation will be used both for scalar and for vector fields. This
convention applies to all notation used in the sequel. Tn particular, we write
v,8 € X, even if v is a vector, and g a scalar.

Given an arbitrary function f(¢,x) we denote by f (t), for each fixed ¢,
the function f{z, - ). We denote by &% (X.Y) the B-space of bounded linear
operators from the B-space X into the B-space Y.

Obvious notation will be used without any definition.
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In the following, we often deal with positive “constants” that, in fact,
depend (increasingly) on vartous characteristic quantities such as the norms
of the cocfficients of the differential operators used in the sequel. Hence,
for convenience, we denote by A = A( -, ..., - ) generic real, non-negative
functions which are increasing functions of cach single (real, non-negative)
variable. They will be called A-functions. Since we are not particularly inter-
ested in their explicit form, we shall often denote distinct A-functions by the
same symbol A.

Some classes of A-functions, particularly important in the sequel, will be
denoted by specific symbols such as, for instance, the P’s, O’s, and R’s defined
in equations (1.4) and (1.8).

In the following, many equations will be considered in connection with
the problem (1.1) and also the problem (1.1°); see below. In order to save
space, we use the following convention.

Convention. Let (m - n) denote, as usual, the n-th equation in the m-th
section. We denote by{m - n') the equation obtained by replacing everywhere
in equation {(m - n) the elements v, h, F, ¢, v, and g by v', ¥, F', ¢/, v,
and g', respectively.

The paper is divided into two parts. In Part I we treat the second-order
linear, nonhomogeneous hyperbolic mixed problem

(L) F@+WVF44rwvm=F in 07,
' 8,8=G onZr, (20800 =4 ).

Here it is assumed that

(1.2) v, h € ZrHY),
and
(1.3) v-v=0 onZr, hZ2m>0 onQr,

where m is a positive constant. In Part I, 7" is an arbitrarily large real positive
number and the symbols P and Q denote generic A-functions of the following
types, respectively:

» P=p(m", ol s WAlleorr) -
0=0(m", el > ANl -

Before stating the results proved in Part I, we recall some definitions con-
cerning compatibility conditions. Let £ be an integer, 1 < ¢ < k, assume that
g € @ (H*") is a solution of (1.1), and denote by {3J; g{0)} the expression, in

Paal




224 H. BEIRAO DA VEIGA

terms of ¢, v, F, v, and h, formaily obtained by solving the equations (1.1)
for 8/ g(0). Then, the following equations must be satisfied.

(1.5) a, {a,fg(())} —8/G(0) onl,

for j = 0,1,...,2£ — 2. These are the compatibility conditions up to order
¢ — 2, for problem (1.1). Under suitable assumptions, they are also sufficient
in order to obtain a % (H?*) solution. Note that the compatibility conditions
involve data and coefficients, but not eventual solutions.

One has the following auxiliary result, more or less well known.

TuHeoReM 1.1. Let 1 £ ¢ £ k and assume that
(1.6) (pw)eHExH",  FeZH"Y), GeLw ),

and that the hypothesis (1.2), (1.3), and (1.5) are satisfied. Then, if £ < k,
there is a solution g € r(H?) of problem (1.1). Moreover (for suitable P and
Q, having the form (1.4)) one has

Mg @R + g1, < Pe (K17 +IlwiEs + IFONIE-2)
(17)
+ Qe (IFF_1,+ (i) -

for each t € [0, T). If £ = k, the solution g belongs to EL(HFY; moreover (1.7)
holds provided that we replace its left-hand side by g% + [g]%%k, Or
alternatively, u € Fr(H*) and (1.7) holds if v € r(H*™') and if we allow P
to depend on the full norm |||v||[x- 1,7

For regular coefficients, these types of estimates were proved by S. Miy-
atake {see [18], [19], [20]) for a large class of second-order equations. In
order to apply these estimates to significant nonlinear problems, however, it
is crucial to prove them in the presence of and in terms of nonregular coeffi-
cients v and h. In fact, the particular form of the “constants” P and Q (see
(1.4)) and the use of primed norms (see remark in Section 5) are essential for
proving the existence Theorem 1.3. For completeness we give (see Section
2) the proof of the estimate (1.7). For n = k = 3 see reference [5]. For
general results see reference [27). Readers mainly interested in the central
contributions and the general aspects of our paper should skip Section 2.

The main result in Part I is a sharp structural-stability theorem that estab-
lishes the strong-continuous dependence of the solution g of problem (1.1)
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in terms of the coefficients v and #; see Theorem 1.2 below. Here, together
with the problem (1.1), we shall consider the similar problem

(B +v' V)¢ -V (KVg)=F in Qr ,
(1.1) 8,8 =G on Iy,
(£',0:8")(0) = (&', ¢"),

where the couple (v/, #') satisfy the hypothesis (1.2'), (1.3') (recall the con-
vention about notation stated at the end of the previous section).
In the sequel, the symbol R, denotes a generic A-function of the form

Re =Ry (m Il b, ', Kill o 11l 1, 0o

(1.8)
EQ), F'Olle-2, [F, F'leerr, (G, Geipar)
where, for brevity, ||¢, ¢/|l, means ||¢{|, and ||¢'||,, and similarly for the other |
functions and norms. Note that constants of type P and  are particular
constants of type R. Sometimes we shall write R instead of R,, especially f
when £ = k.
One has the following result:

THEOREM 1.2. Let v, h and v/, k' satisfy, respectively, the assumptions
(1.2),(1.3), and (1.2'), (1.3'), assume that v,h,v',h' LA (H*), and let
¢ w.F,G and ¢', ', F',G' satisfy, respectively, (1.6) and (1.6'), for ¢ = k.
Assume that the compatibility conditions (1.5} and (1.5') are satisfied for the
system (1.1} and (1.1') up to the order k — 2. Let g, g' € Zr(H*) be the solu-
tions of these last systems. Then, given & > 0, there is a real positive A(g), that
depends only on €, on T, and on the particular functions v, h, ¢, w, F, and G,
such that (for suitable R = R, ) the Jollowing estimate holds for each t € [0, T7].

llg®) — &' OI; +1g - g2,
SRM (et llp—dI +llv - IR, + IF© - FO)

(1:9) +1A0) = KONy + l1v(0) = v' (O, + {(G(0) — G (ONE_s2
HE =l o= + =R +(G~G )y, +18-2'R,
+A@) (Th - KBy, +[v - vio)}

In particular, if one has a family of problems (1.1') such that (¢', w', F', G')

= (6, W, F,G) in H* x H*"1 x FHHF1) x L2(5*-112) gnd (V' k') = (v, h)
in Z7(H*) x Z2(H*), then g' — g in Gr(H").
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A similar result holds for each ¢ such that 1 £ ¢ < k — 1. See Proposi-
tion 3.2. Theorem 1.2 will be proved in Section 3, by following a method in-
troduced in reference [8], where we proved similar results for initial-boundary
value problems for first-order hyperbolic systems,

Theorem 1.2 would allow us to prove strong well-posedness results for non-
linear counterparts of problem (1.1). We are, however, interested in studying
a more complex problem, namely the motion of compressible inviscid fluids
(see below, and Part TT). Theorem 1.2 is just the first step in solving this last
probiem. .

Part I ends (see Section 4) with a perturbation result for a transport equa-
tion, proved by following a simplification of our method.

In Part I we study the nonlinear system

pOu+ (v -V)uy+Vp(p)=f inQr,
{1.10) Gp+V.-(pv)=0 inQOr,
v-r=0 on Z‘T! (Usp)(o)z(a!p())a

where n = 3, since this is the significant physical case. Hence k¥ = 3. The
above system describes the barotropic motion of a compressible inviscid fluid
(see [24], [26]). We assume that p € C¥*1(R*;R) and that p/(s) > 0 for each
s € RT. Moreover, inf pp{x) > 0 in . By setting

g=logp and A(s)=p'(e’) foreach seR,

the above system is transformed into the system

Ov+{(v-Vv+h(g)Veg=f inQr,
(1.11) (h+v-Vig+V-v=0 inQr,
v-vr=0 onZr, {v,2)(0)=(a,¢).

Problems (1.10) and (1.11) are equivalent. We shall establish and prove
results for the solution (v, g) of (1.11), and leave to the reader the transpo-
sition of these results in terms of (v, p); see also [5], [7].

The four by four boundary matrix associated with the first-order hyper-
bolic system (1.11) has rank two on the boundary. This gives rise to serious
obstacles that can be overcome by a suitable device (introduced in references
[3] and [5]) for proving an existence theorem for the system (1.10). The first
step of this method consists in showing that the system (1.11) is equivalent!

I Assume that © is simply connected. If not, see Remark I, at the end of this section,
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10 the system
( (8,+'u—V)(Vx'u)—((va)-V)v+(V-v)(Vxv}:fo,
@ +v-V)g—V-(h(g)Ve)= 3 (9))(@w))— V- f,
Li

1.12
( ) =V =0 +v-V)g;

0, 0,g =G, onZXp,
\ (g’alg)(o) = ;W) [ ’U(O) =4a,

where, by definition, G = h(g)‘*(zi,}.(aivj)vivj +fen)and = —(a-V¢é+
V - a) (we extend v to a neighborhood of T, as a C**! vector field). The
equivalence of the systems (1.11) and (1.12) is easy to prove, provided that
the functions involved in the calculations are sufficiently regular (as occurs
in the sequel). For,set V = 3w+ (v-V)v —hVg - f. Equation {1.11)y, i.e.,
V =0, is equivalent (see, for instance, [2] or [13]) to the equations

vy =

(1.13) VxV =0 and V-V=0 inQ, V.-v=0 onT,

for each ¢ € [0, T']. By replacing ¥, in (1.13), by its explicit expression, and
by doing straightforward manipulations, we prove the above equivalence; see,
for instance, [9], Appendix.

Let us state the existence theorem for the system (1.1 1).

THEOREM L3, Let k 2 3, and let Q and h{ - ) be as above. Hence
h e CKRRY). Assume that (a,¢, [) belong to H* x H* x FE(H®) and
satisfy the compatibility conditions up to order k — 1 Sor the system (i.11).
Then, there is a positive constant T such that there exists a {unique) solution
(v,8) € Gr(H* x H*) of the problem (1.11) in Qr. Moreover

(1.14) Wl Zer + gl S4 .l z+ gk S As.
The result is valid for any T satisfying
(1.15) BTE1,  MblfLrS1.

where Ay and X3 are suitable A-functions. Here, A, Ao, and 23 have the form
Allalles 8l NS OMIl;.,), moreover A = A(lalle, dlxs 11F ONl—1 [fle.1).

The existence theorem for the mixed problem (for the Cauchy problem see
[17] and the references therein) was proved by Ebin (see [11]), in the space
Z7°(H?), by assuming that the initial velocitly is subsonic and the initial
density is close to constant. The existence of the solution for arbitrarily large
initial data (in the above space) was first proved by us (see [3] and [5]) and (in
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an independent paper) by Agemi (see [1]). The existence of the solution (in
spaces .2 (0, T; H3)) for the non-barotropic case, was proved by Schochet
(see [22] and also [23]) by using a different approach which has, however,
some ideas in common with our method. Recently, the existence theorem
has been extended by Secchi (see [25]) to the case of moving boundaries.
Theorem 1.3 is not substantially new. Our proof is the extension (to ar-
bitrarily large vatues of k) of that of Theorem 1.1 in reference [5]. Distinct
ways for proving this result can be found in references [1] or [22]. With
respect to 3], the proof given below follows a simpler and more direct ap-
proach even if the main point is still the reduction to the system (1.12). Some
points must be treated now more deeply due to the arbitrariness of k. For
completeness and for the reader’s convenience we insert (see Section 5) the
proof of Theorem 1.3 by our method. Readers who are mainly interested in
the fundamental aspects of the theory developed here should skip Section 5.
In Part II we prove our second main result, the well-posedness in
Hadamard’s classical sense of system (I.11) and, consequently, of system
(1.10). See Theorem 1.4 below (for k = 3 and Q = R this result was proved
in reference [9]). In this theorem we assume the existence of a solution
(v, g) on some arbitrarily large interval [0, 73], not necessarily that found in
the existence Theorem 1.3. We prove the following result:
the existence Theorem 1.3, We prove the following result:

TuEOREM 1.4. Let (a,¢, f) be as in Theorem 1.3, and let [ € 2 (H*)

for some Ty > 0. Assume that there is in Qr, a solution (v, g) € &r,(H* x H*)
of problem (1.1). Let (a’',¢', /') denote a family of data belonging to H* x
H¥ x Z2(H*) and satisfying the compatibility conditions up to order k — 1
Jor the system

O’ + (v" VW' + h(g") Ve = [,
(1.11") G +v Vg +V-v' =0  inQr
vy =0 onXr, @,g"0)=(d,¢).

Then, there exists a neighborhood of (a, ¢, f) such that for each (a',¢', ) in
this neighborhood the solution (v', g) of (1.11") exists and belongs to &r,( H* x
HFK). Moreover, if

(1.16) lim (a', ¢, ') = (a, ¢, f) in H* x H* x Z2(H*)
then
(1.17) lim (v, g') = (v,g) in &g (H" x H) .

In particular, if [0,7'[ is the maximal interval of existence of the solution
(v', &), and if [0, z[ is that of (v, g) one has liminf 7’ 2 1.
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As far as we know, there are no similar results in the literature for the sys-
tem (1.11), or for similar systems. Note, however, that the .Z°(H*) uniform
estimate for the solutions #’ of problem (1.11’) together with the uniqueness
of the solution # and a compactness argument yield the convergence of v
to u in Z°(H*) weak- *, and hence in @ (H* %), for each ¢ > 0. Alterna-
tively, we may use the above uniform estimate, the convergence with respect
to a weaker norm (say, $r(H")), and interpolation to obtain the latter result.
These arguments are well known in the literature.

Tt is worth noting that the C° dependence on the initial data, proved here,
is the most one can expect in Eulerian coordinates. A separate problem is that
of the dependence in Lagrangian coordinates. For this case one has at least
a C! dependence on the initial data, as asserted in the remark on page 483,
in [12]; the proof of this result exists in manuscript form.

Our method also allows the proof of the strong continuous dependence of
solutions of nonlinear equations with respect 10 variations of the functional
dependence of the coefficients on the solutions; see reference [8]. For the spe-
cific problem studied in this paper this means that the thesis of Theorem 1.4
still holds if we replace in the family of systems (1.11) the fixed equation of
state /(- ) by variables A’( - ), provided that #' — A in C*(R), uniformly on
compact intervals. Our method can also be applied to prove convergence in
the strong norm of the solutions of the compressible Euler equations to the
solution of the incompressible Euler equations as the Mach number goes to
zero; see [28]. This remark, together with a sketch of the proof, have been
suggested to us by the referee.

The referee also suggests a distinct approach, by remaining in the frame-
work of first-order systems. We intend to profit from his suggestions in the
near future.

Remark 1. If Q is not simply connected, there are N linearly indepen-
dent solutions u(x), £ = 1,... , N, of system (1.13}, where N is the smallest
number of cuts needed to make Q simply connected (see, for instance, [137).
By adding to the system (1.13) the N orthogonality conditions (¥, ) =0,
we get a system that turns out to be equivalent to the single equation ¥ = (.
If Q is not simply connected these orthogonality conditions should be in-
serted in the system (1.12); see [5] and also [4]. These conditions do not
cause mathematical difficulties, nevertheless they complicate the exposition
and the notation. For that reason we assume, in Part 11, that Q is simply
connected.

PART 1

2. Proof of Theorem 1.1

Here, and in the next sections, we shall make continuous use of the fol-
lowing inequalities. Let 7 > n/2, 052 =, f €[, rl,anda+ f =L+
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Then
Ifelle S cliflaligls > lifglle = clllAlllellgllg »

(2.1) ¢
/gl S e (Z IB”fIIa—p) (Zlaé"gllﬂ p) -
p=0

For a proof, we refer the reader to [8)], Appendix A. In particular, [||fg]|le =
clllA NN if @ > £ and (|| fgllle < Il gl if o, 8 > £.

Suppose f € H®, G € #F12 Let # be a linear operator mapping
functions defined on I" into functions defined on £, such that y,.% = identity.
Here, yp denotes the trace operator. In the sequel we drop this symbol. If I
is of class C"*1, it is well known that .% can be constructed in such a way
that &% € . (##-1/2; H?) for each § = 1,...,r. Hence, by using (2.1);, one
has

(2.1-bis) { (G e-1y2 E el fNa UGN p-1s2 »

(G e-12 = clllF N (UG p-1s2

since ((fG)e 12 = ell fEGe £ ll flaliF Gy and since 8% = 2 .
In the sequel we use the following notation. Here, y is a positive real
number.

llglle, = e~ "lglle , lleller = e~ lligllle .
Hgllley =e™lllgllle » ({GNe—1/25 = €T UGN o112,

and so on, Moreover,

T
lelllesr = sup ls®lles > TeB,r = [ g, de
ETEY )

T
G125 / ({GOME- 172,41,
0

and so on. We leave to the reader the following exercise. If H is a real Hilbert
space endowed with a Hilbertian norm | - |, and if f € W;’I(H ), then

t

(2.2) e |f(0* + y/e‘mlf(S)!zds SO+ /e_z“lf’(é‘)lzds
0

1]

for each ¢ € [0, T]. here, f' denotes df/d!.
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Concerning the proof of Theorem 1.1, we shall show just the main point;
i.e., the a priori estimate (1.7). Our main concern will be to show that there
are A-functions P and Q (see (1.4)) such that, foreach £ (1=¢ <k 1) and
each ¢ € [0, T], one has (L is defined below)

g, + (gl S P (!Ig(O)II% +0g ()l + |||Lg(0)£||372)
(2.3) +Qy! ({Lglﬁ_a,y,f

+{g}’22,y,t + (81/8)%—1/2,);,1‘) »

provided that y 2 Q, for a suitable A-function Q. If £ = k, (2.3) holds either
by replacing, in the left-hand side of (2.3), ||| - |[l¢, and [ - ¢, bY ||| - lil; , and
[- Iz, respectively, or by assuming that P = P(m~1|||A|ll;_ 7, [Hvlllk—1,7)-

By convention, norms with a negative Sobolev index should be dropped
from the equations. For instance, if £ = 1, in equation (2.3) we drop the
term concerning Lg(0).

Proof of inequality (2.3): For ¢ = 1, it is well known that (see [18], [19],
[20], and [5], Theorem 6.1)

lg@IE, + gl S P (12O)IF +110:2(0)13)

(2.4)
+ Qy—l ({Lg]g,y,l + (BV g)%/z,y,t) ’

provided that ¥ = Q. In reference [5] this estimate is proved for the half-
space [F\Fi. The same proof, however, applies to the half-space R7. Moreover,
standard methods of localization and deformation allow us to extend the
estimate to open bounded regular subsets . We also refer the reader to the
estimate (a), Theorem 2.2 in reference [27].

Concerning the main assumptions in this theorem, we note that our co-
efficients v and & belong to C1#((Q,), for some real positive u(k, n), since
L' r(H*) is embedded in that space. Our operator L, however, does not
satisfy the assumption (A.4) in [27]. Nevertheless the proof can be adapted
to our case due to the particular form of the operator L in which, roughly
speaking, d, is replaced by B = 8, + v - V. In order to obtain a suitable
Green’s formula (which takes the place, here, of that in equation {5.2) of
Lemma 5.1, [27]) we expand (Lu, Bu), as in [5] equation (5.4), instead of
expanding {Lu, d,u),.

If £ = 1, equation (2.3) follows from (2.4). Now, we assume that (2.3)
holds for some ¢ € [1,k — 1] and we prove it for £ + 1.
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For convenience, we define
Bg=(@+v-V)g, Lg=Bg-V-(hVg).
By applying the operator B to both sides of equation (1.1),, one gets
(2.5) Lé=BLg+Dg

where, by definiton, § = Bg and D is the commutator [V - (hV"), B], i.e.,

Dg=) {h(8w))(8:8,8)
(2.6) ij
—v; (8:9;h) 8ig + 0; [ (0iv;)(9;8)]} = V - [(8h) V&l .
By using inequalities (2.1} it readily follows that (for each fixed f)
IDgllle-1 = Qlllglllesr > 1DgIle—2 = PllIgllsy 5
Moreover,

NBLgNe-1 = QlliLgllle,  [IIBLEe—2 = PIILEIHle—1 -

Hence, from (2.5), we get

(2.7) [LOTomty: S O ([L&leys +1&ov100) >
and also
(2.8) LSlle—2 = P (Il Lgllle—1 + [ligllers) -

Since 8%g = Lg+ V- (hVg)— (v -Vg) —v -V Bg, it readily follows that
(for each &)

(2.9) Hglllerr S PAAgllers + 10:glle + 1LENNe-1) -

In particular, (2.8) plus (2.9) yield

(2.10) LSOz = P (g (0)lle+1 + 10:g(O)le + ILEOile—1) -

Finally, by using the definition of §, one shows that

(2.11) 16(0)le +103(0)le—1 = P (1 (O)lle+t + [ g(O e + [[1L&(ON[le—1) -

Now, we want to prove that

(2.12) (OudVy 12y S Q ((aug)gu,fz,y,: + fg]’23+1,y,t) .
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By applying the operator 8, to § = 8,g + v - Vg, one shows that
(2.13) 0,0 = (0 +v-V)(B,g)+[(v - VIv—(v -VI]-Vg.

Note that the operators &/[(v - V) -] are tangential. Clearly,

(2.14) (B8 ) e—172 S (B g)Neai 2 -
Moreover, (2.1-bis) shows that,
(2.15) {{(v- V)(@-&’)B))E—UZ = clllvllle-1 {0 8 errya -

Finally, since I is of class C*t2, there is a C**2 function ® defined on a
neighborhood @ of I" such that » = V¢ on I". We extend v to w as a C*+!
vector field, by setting v = V¢. Set, for convenience, (v V)v — (v -V)v = w,
in @. One has

(((w - VEWMe-1y2 S elilw - Vellle < e lllwlili-i &,
= cllvllli 11glHess -

From this last equation, together with (2.14) and (2.15) and by taking into
account (2.13}, one proves (2.12).

By applying the estimate (2.3) to the solution & of (2.5} and by using (2.7),
(2.10), (2.11), (2.12), and (2.15), one gets

BOIIE, + 711, S P (18OMEs + 128 O)Z + L O, )
(2.16) +Qy! ([Lg}f,y,;
+[g]f2£+l,?,t + (augﬁ-i-l/l,y,t) '

Now, using the elliptic equation —V - (A Vg) = BS + Lg one shows that,
for each fixed ¢,

(2.17) lgllers = P (1B + Lgle1 + (0 8)e-112)

since /2 = m and k—1 > n/2; see Appendix B. On the other hand, |BS|l,_, <
P|||4}]|le. Hence

218)  Nlg®IF S P (OB + ILEWIF_ + (BN 1y2) -

By using the equation 8;g = —v - Vg + J in order 10 express derivatives
8/ g in terms of lower order derivatives (see Lemma 2.1 below), it readily
follows that

@19 llg®IIE £ P (ISENE + ILe @I + (@8N »
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ifé <k-1.If¢ =k - 1, this estimate holds if we replace ig@Nest
by [{[g@)Ilf;,, or, alternatively, if we allow P to depend on the full norm

[I1Wllk-1,7. Similar modifications must be done in equations (2.20) and (2.21)
below, if £ = k — 1. From (2.19) one gets, in particular,

Q200 18Ty S P (08,0 + (LB + (00D, )
Equations (2.16), (2.19), and (2.20) show that
MeOEs1, +v1gl 0,
<P (e )R, + (@I + IILgO)2.,)
(2.21) + 077 ([LgRy, + (8 01 + 00 8)241/27)
+P (ILg I3, + HLeTy
HOGONE -1y + 10,801 ,,) -
Now, the inequality (2.2) allows us to drop the last four terms in the right-
hand side of (2.21). This shows that (2.3) holds for the value £ + 1.
Finally, we obtain (1.7) from (2.3) by fixingy=1+Q+ 0 {or by setting

? = max{l, @} and by using Gronwall’s lemma),

The following lemma, when i = ¢ + 1 and also when i = ¢ =k - 1, can
be used in order to get (2. 19} from (2.18).

LeMMA 21, Let 12¢Sk-1;15i<s¢+1. Let 0%g = Lg + V.
(hVg)—8(v-vg)—v. V Bg. Then

iy S 2 (UG AED) (glens + Nargle + ILeilli=?) .

Here |)|g|)) = E‘;G 187 glle-:. The proof is easily done, by induction on
i, using the inequalities (A.6) in [8].

3. Proof of Theorem 1.2

The following result is of capital importance in the sequel.

PrOPOSITION 3.1.  Let 1 £ ¢ < k ~ | and assume tha (1.2),(1.3),(1.5),
and (1.6) are satisfied. Let ¢ c [0, 1] be given. There are elements (Pe, W) €
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H' s HY, F, € SP(HY), G, € LA(H2) that satisfy the compatibility
conditions (1.5) up to the order ¢ — 1, and such that

”¢_¢£“%—_<'3» é'W“Ws“%—lég>
(3.1) I(F—F)O)lle-2Se, [F-Fl;  rZ¢,
(G~ Ge)g_l}z,r Se.

Since the proof is quite involved we shall give it in Appendix A.

PrROPOSITION 3.2.  Suppose1 £ ¢ S k—1. Assume that v, h, ¢, w, F, G sat-
isfy the assumptions (1.2),(1.3),(1.5), and (1.6) and that v', I, ¢’ w', F', G’
satisfy the corresponding assumptions (1.2),(1.3"),(1.5), and (1.6'}. Let g
and g' be the solutions of problems (1.1) and (1.1’) respectively (whose ex-
istence is guaranteed by Theorem 1.1). Given ¢ > 0, there is a real positive
A{e), that depends only on ¢, on £, on T, and on the particular functions
v, h, ¢, w, F, G such that, for suitable constants R = R,, one has

(g — &Y + 12— &%
SR e+ g -l + v - vIE,
(3.2) +IF ~ FYOe_2 + 1R — 2Ok
+ [ = 0" YO)I"*4—t + [F — F'T; 4,
HG = Gy + A (- W, + v~ )}

Proof: Let ¢, ¥,, F;, G. be as in Proposition 3.1 (note that these func-
tions depend only on ¢ and on v, &, ¢, w, F, and G} and consider the problem

(33) { LgE=-F:S in QT:

8ugs = Ga on Xr » (g-.‘b 3:35) (0) = (¢3, We) .

From (1.7) it follows that

(3.4) lige(OII? + 1213, < Re

and that

(3.5) |||g8(z)“|%+1 + {ga]tarl,: é QE’QJA(S)

Frd
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for suitable R and s, where
Ae) = |Bellfss + hwall? + IICFONE, + AT TR (CAT PO

Note the following. In correspondence to each set of specific elements e, b, v,
F, G, v, h we fix one particular set of functions $e, Ve, Fy, G, satisfying (3.1).
This determines uniquely the solution & of (3.3). Next, recall the definitions
of the operators B and L given in Section 2, namely Bg = (8, + v - Vg
and Lg = B?g — V- (hVg), and define B'g' =8+ -V)g' and L'g' =
B'2g' — V. (h'Vg'). Take the difference of the respective sides of equations
(1.1") and (3.3). One gets

L(g' ~g)=F - F+8[(v-v') Vg]+(v-v). VBg,
+U-V[v-v) Vg]+v- (7 - Rm)Vg] ,
8,(8'-&)=G~G, onZXs,
(8"~ 8)0)=¢' ~ e, Bilg' —£)(0) =y — .

Next, applying the estimate (1.7) to the solution g’ — g, of problem (3.6),
using (2.1} in order to bound the norms of the products in the right-hand
side of (3.6); and taking into account (3.1), (3.4}, and (3.5), one proves that

(3.6)

B7) e - &) + ¢’ — gI?, S right-hand side of (3.2).

On doing the above manipulations, the [ {e—1, norms of the last four
terms in the right-hand side of (3.6) are estimated as follows (we exemplify
Just for the first one). Inequality (2.1) shows that

Nor [(v ~v") - Vg ] Hlle-1 S [1h(w - UM lx—21IV &:)lle
v = v e 18V &ellle—y |

for each ¢. Since the right-hand side of this inequality is bounded by

clllv =l lilgelller

one gets
2
[0 (v - ") V), S clligeliPor fv - v}, .

Note that this argument fails for ¢ = k. See Remark (ii) below.

On the other hand, by taking the difference of the respective sides of
equations (1.1) and (3.3), one gets L(g~g)=F—F, in Qy, 8,(g — 8:) =
G~ G, on X, (8 — &)(0) = ¢ — ¢y, B(g — £:)(0) = ¥ — ¢.. By applying
(1.7) to the solution g — g, of these last equations it readily follows that
g - )OI3E+1g - g 7. S eQe?. This estimate, together with (3.7),
proves (3.2).
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Remarks. (i) A crucial point in proving Proposition 3.2 is the use of the
extra smoothness of the solution g, of (3.3), obtained via Proposition 3.1.
In fact, if in equation (3.6) we replace g, by the solution g of (1.1), the
{modified) right-hand side of (3.6) does not belong (in general) to H¢~!,
Hence, we cannot get, directly, an /¢ energy estimate for the solution g’ — g.

(ii) Note that the proof of Proposition 3.2 fails if £ = k. In fact, in this
case, the solution g,(¢) of (3.3) does not belong to H*+! since the coefficients
(¢} and v(f) of L do not belong to that space. A natural attempt to overcome
this obstacle would be to replace, in (3.3), the coefficients 4(1), v(f) € H* by
coefficients 4,(t),v,(f) € H*! which are “near” A(f), v(f) in the H* norm.
After straightforward calculations, however, we would find in the right-hand
side of (3.2) the term

8l s (e = A1, + v - 01,) .

For Cauchy problems (and, possibly, for mixed problems if & is sufficiently
small) it seems to us that one can construct particular e-approximations that
are adequate to control the above term. In the general case, however, this way
is nonviable or, at least, is much harder than application of Proposition 3.2
(with £ = k — 1) to the first-order derivatives of the solution itself, as done in
the sequel (or, more generally, to suitable differential expressions depending
on the particular problem).

Proof of Theorem 1.2: By applying the operator B to both sides of equa-
tion (1.1) and by setting, as above, § = Bg, one gets (cf. (2.5), (2.13))

(3.8)

Ld = F in QT N
8,0 =G onXr; (5,80)(0)=(¢¥p),

where F = BF + Dg, D is as in (2.6) and G is the right-hand side of (2.13),
¢=y+v(0) Vo, ¥ = F(0)+V-(hV$) —v - V(¥ +v-V¢). The compatibility
conditions up to order k —2 for the system (1.1} yield those up to order k — 3
for the system (3.8). Alternatively, the compatibility conditions for this last

system follow from the fact that J is a solution, belonging to &5 (H*1).
By arguing in a similar way for the system (1.1") we show that

(3.8) {L&:F in Qr ,

6=G onZr; (,00)0)=(¢, ),

where F', G, ¢/, and i’ are defined by replacing the functions v, 4, g, F, ¢,
w by, i, g', F', ¢/, ¢ in the definitions of F, G, ¢, w. Now, we apply

Pl
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Proposition 3.2 to the difference 6 — &’ of the solutions of the systems (3.8)
and (3.8"). Equation (3.2) yields

1168 = SO, + 15— 5o,
< ReM (et 18- $1+ v - vl
39 I = X0+l — YOIt +1li(o — )OI
+ [FWF’]

2 S —
L, G-Tip,

+AG) (1= T+ - 0'o) |

where R = R;. Note that, in equation (3.9), the quantity A(g) depends, in
principle, on &, v, k and on the functions ¥, G, ¢, ¥. Taking into account the
definitions of these last functions, however, one concludes that A(e} depends
only on ¢, v, h, F, G, ¢, w. Similarly, in equation (3.9) the constants R
are A-functions that, in principle, are of type R;_; (see Definition 1.8) with
respect to the variables ¢, ¢', w, @', F, F', G, G. The definitions of these
last functions, however, show that the above R’s are, in fact, A-functions of
type R; with respect to the variables ¢, ¢, w, w', F, F', G, .

By taking into account the definitions of ¢, ¢, v, w', F, F, G, G, and
-by using the inequalities (2.1), it readily follows that

(3.10) (6 = 8YNIE_, + 16 — 5’]),2&1‘, < right-hand side of (1.9) .
On the other hand
V- [AV(g -g)l=V - [(h-h)Vgl+B(d -+ F - F
or, equivalently,

~ANg—g)=h"'{Vh V(g -2)+V [(K -h)-Vg]
+ (B, 40 -V —+F - F'} .

Since |2y S A(m=L, ||A']|k—1), it readily follows that, for each fixed ¢,

lg — &'l <2 (g - &I + 18 = 3'IF_, + 1010 =9I,
(3.11)

HIF = FE_3) +e(G = Gz »
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where 4 = A(m~, 17 ||, v k> || gllx) is of type Ry. Since (g —g') =d6—-9"+
v-V(g —g)+ (v' —v) Vg, it follows that

(g — YR
< R(lltg — &Y, + 1116 = YN
+ICF = EYOIE 2 + Nl = o YOI -y
H{(G ~ GHMNEr2) -

(3.12)

Equations {3.10) and (3.12) vield (1.9). Note that we have used Gronwall’s
lemma to eliminate a term Re®[g—g ]2 in equation (3.12). This term could
be dropped also by working with the y-norms For the reader’s convenience
we choose, here and in the sequel, to use Gronwall's lemma instead of »-
norms.

Finally, the last assertion in Theorem 1.1 follows from (1.9).

4. Remarks on Transport Equations

Consider the transport equation
@ {BC—(C-V)U+(V-U)C=H in Qr,
' {0y =a,

where B = 8, + v - V, v satisfies (1.2), (1.3), a € H*1, and H € SZ(H* ).
Here, {, o, and H can be N-vectors, N = 1. We assume, however, that N = n.
Regarding the existence of the solution, we just establish the fundamental
a priori estimate. The construction of the solution can be done by well-
known methods. See, for instance, [6].

By applying the operator 8/9* to both sides of equation (4.1}, by taking
the inner product in L? with Btf 8¢, by doing standard calculations, and by
adding the respective sides of the inequalities obtained for all (/, o) such that
0S j+|a)Sk~1, wepget

L1eRs < e (1+ Mo@IE) NEWIE- +NIHOIE-

Hence

IEONR_y S eI (WEO)IIE, + IR ) -
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Finally, by using equation (4.1), in order to estimate {1EC0)|[k-1, one gets

MEWIE-1 = 2 (HiwO)]l; ) e+

(Il + NH OB, + 1712 ,) .

As claimed above, a solution ¢ € Fr(H*1) satisfying (4.2} can be con-
structed.
Now, we establish the main result of this section. Consider the two systems

(4.3) B{=H inQr, {0 =a,
and
(4.3) B''=H inQy, {'"0) =o' .

One has the following result.

THEOREM 4.1. Let v and v’ satisfy (1.2) and (1.3); assume that a, o' €
H*"1; and that H, H' € SF}(H*~1). Let { and {" be the solutions in @ (H 1)
of (4.3) and (4.3'), respectively. Then to each e > there corresponds a positive

real C(g), that depends only on ¢ and on the particular functions o, H such
that

&= EYOME - S Re® {o+ lla— oI, + 1K - B,
(4.4) +H = HE_y + Ce) (v )OIV,
o - vT%) )

Jor suitable A-functions R = R(|||v; v'|{l;. -

Proof: Consider the equation
(4.5) Bl,=H, inQr, {(0)=a,,
where o, € H*, H, € SZ2(H*), and

lee—eclfy Se. I(H—H)OUE,Se, (H-H]E_,, Se.
By arguing as done above in proving (4.2), one easily shows that

el S Re® Cle)
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where R and C(g) are as above. Here we use all the indexes (/,a) such
that 0 < j+la| £ k, j # k. By taking the difference of the respective
sides of (4.3') and (4.5), and by applying the solution ' — £, of the equation
B'(' =) = H' — Hy +[(v —v") - V){, the estimate (4.2), one easily proves
that |||(¢’ — £)()}l[Z_, is bounded by the right-hand side of (4.4). On the
other hand, by taking the difference between (4.3) and (4.4}, and by applying
the estimate (4.2) to { - {,, one proves that ||{{({ - Cg)(t)nh,ch1 is bounded by
the left-hand side of (4.4). Hence, (4.4) holds.

PART 11

5. Proof of Theorem 1.3

The proof will be done by solving the system (1.12), which is equivalent
1o the system (1.11). As noted in the Introduction, we assume for conve-
nience that Q is simply connected, the general case being easily treated by
introducing standard devices (see [4] and [5]). Denote by Io. Ty,..., T the
connected components of I, such that the I';’s, for j = 1,...,m, are inside
of Ty and outside of one another. Recall that a regular vector field é{(x) is a
curl in Q if and only if V-& = 0 in Q and the surface integrals of £ over each
T,,i=1,...,m, vanish.

Outline of Proof: Consider the following systems, where 9, &, and g are
defined in Q7 and where 8(0) =V - a.

(5.1) V=09, Vxv=¢ inQr; v-v=0 onZr.

((8,+v-V)g -V (h{g)Vg)
=5 @) @) -V - S in Qr ,
Lf
(5:2) ] ag=h@ (Z(aﬂ/j)’”i‘ﬂj +f ”) onZIr,
i.j
g0) =29,
. 6,g(0)=—(a-V¢+V-a}.

(5.3) 6,C+('u-V)C—(C-V)v+(V-u)C=fo in Or ,
' {0)y=Vxa,

(5.4) b=—(8+v-V)g.?
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Note that we reobtain the system (1.12) by replacing (9, ¢, q) by (6.(,8)
in the above equations. Hence, our aim will be to prove the existence of
a solution of the above equations such that (6,{,g) = (8,£,¢q). We shall
argue as follows. Given (9,¢,4) in a suitable set K, we get v = »[0,{] by
solving the problem (5.1). Then, we get g = g[v,q] and ¢ = {[v] by solving
respectively (5.2) and (5.3). Finally 6 = &[v, g] is defined by equation (5.4).
This procedure defines a map S on K by setting S(8,&,q) = (4, ¢, g). A fixed
point for the map S is the desired solution.

The Set K

This set will depend on two positive parameters 7" and A to be fixed later
on. Consider the following constraints.

(5.5) -1 S A, k-1 A4, lglllir S 4.

(5.6) {3379(0) =V {arj”(o)} L A =vx{ v},

8/a(0) = {0/ 2(0)} for j=0,...,k-2.7
ft‘}(t,x)dxzo;
Q

(5.7)
V-ElLx)=0: /é(z,x)a’l":o, i=1,....m,
Iy

for each £ € [0, T']. it is worth noting that the functions on the right-hand side
of (5.6) are the formal values obtained (in terms of a and ¢) from equations
(1.11). We set

K (4, 7) = {(8,&,q) € L= H") x F=(H) x L/ p (H):
(5.5, (5.6), (5.7) hold.} .

(5.8)

The convex set K is closed in the Banach space y = Cr(H® x H® x H').
This follows easily by taking into account that strongly closed balls in Banach
spaces L3°(X) are compact with respect to the weak-* topology, if X is a
Hilbert space.

ZNote the change of sign with respect to the & in Part L
3We could also consider the vakue J =% — 1, but it is not necessary here,
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Remarks on the Printed Norms

The “curl-divergence method” requires the use of the printed norms in
order to prove the existence of the above fixed point in K. In fact, the
solutions v of (5.1) belong to Zteor(H ) but not to Z°(H*). But the v
corresponding to the fixed point does belong to £ (H k.

Remarks on P and Q

In the system (5.2), the function h(t,x) is given by a composite function,
namely #{g(t, x)), where A( - ) was defined in Qection 1. On applying below
the estimate (1.7) to the solution g of (5.2) it will be useful to express m and
the norms of A in terms of norms of g as follows. Since A( - ) is positive and
increasing and since the norm of ¢ in L>=(Q7) is bounded by a constant ¢
times ||gl|x -1,7, the condition (1.3), holds by setting m = min A(s), for |s| <
cligllg—1,r- In particular m—" is a A-function that depends only on lgilk—1,7-
On the other hand, since A( - ) is of class C¥, it readily follows that the
norms in the space L°(Qr) of the functions hO(gq(t,x)), £ =0,1,... Lk, are
bounded by A(||gllx—1.7), for suitable A-functions. Here A . ) denotes the
derivative of order £ of A( - ). In the end, one finds that there are suitable A-
funotions such that [IIA@)I_, 7 < Al 7 IN(A@Ny £ Adllalll, ),
and |J\A{g) "Wl r = AQglll} r). Hence, the A-functions P and @, defined by

equation (1.4), are now of the following types:

(5.9) P=P(|lvall_ ), €=@Qllvallr)-

In the sequel, the symbol & denotes a generic A-function of the form

d=d (lal . 1ol NSOIll-1) -

K Is Not Empty

Here, we show that if 4 = d, for a suitable d, then K(4,T) is not empty.
Since {8/v(0)} € H*~/ and {8/} v=00nT(j=0,... ,k—2),thereis a
w € @r(H*) such that 3/w(0) = {8/v(0)} for j =0,... .k -2; aF1w(0) =
8,"11)(0) =0;and w v =0 on Xr. This correspondence can be chosen to be
linear and continuous. Since

k—

3%

[{erv@}], =4

for some d, it follows that |||w|||x.r < d for some d. Weset & =V - W,
& = V x w. Similarly, we construct g € % (H*) such that 3{ g(0) = {Btj 20},
for j=0,... k-2, 8F1q(0) = 8fq(0) = 0, and [ligllli.r < d. The element
(8,&,q) belongs to K (4, T).

I

Il
<
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The Map S

Let (9,¢,¢) € K and define v = ¥[8, £] as the solution of the system ( 5.1).
Clearly,

(5.10) oller Scd,  (olllyz Sd+caAT 2,

Note that ||[v(0)|jl,_, < d since 8/v(0) = {8/v(0)}, for j = 0,... .k — 2, as
follows from (5.1), (5.6)4, and (5.6),. ¢ Next, we consider the system (5.2),
where v = v[8,¢]. Since 8/v(0) = {8/v(0)} and 8/¢(0) = {8/ g(0)}, for
J=10,...,k -2, it follows that the compatibility conditions for the system
(5.2) are verified up to order k —2; we postpone the proof of this main point
to the end of this section. Hence, a solution g = g[v, g] exists, belongs to

@r(H*), and satisfies the estimate (1.7) for £ = k. This last estimate shows
that

(5.11) el 2kr EdPe? + Qe ([ﬂ'zk,r + AT + A?'T) .

Consider now the solution { = {[v] of problem (5.3). By applying the
estimate (4.2) we prove that

(5.12) NCHR -1z S de (1+ /1 %r)

for suitable A-functions d and Q. Next, we prove that

(5.13)  V-lt,x)=0 and fC{t,x)dF=0, i=1,...,m,
r;

for each 1 € [0, T]. In fact, from the identity
(- VI{-({-V)o=(V-Qv—(V-0){ -V x (v x{)
it follows that
(5.14) O+ (V- Ouv=Vxwx{+[f).
By applying the operator divergence to both sides of this last equation, by

using the identity V- [(V - {Jv] = v - V(V - {) + (V- v)(V - {), and by taking
into account that {(0) = V x a, one gets

{8,(V-C)+U-V(V-C)+l9(V'C)=0 in Qr,
(V-0)}0)=0.

4Note that the functions Brj 2(0) concern the solution v = v[#,&] of problem (5.1). In contrast,
the functions {8]v(0)} are obtained from (1.11), by formal manipulations.
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This transport equation has a unique solution, V-{ = 0. On the other hand,
(5.14) together with Stokes’ theorem shows that

o d _
a[C-ydI‘_O.
T;

Hence

(5.15) {.vdl= [(Vxa) vdl[ =0,
[ever]

foreachi=1,...,m, and each t € [0, T].
Finally, let § = §[v, g] be the solution of (5.4). Clearly,

(5.16) N181l—1,r £ € (1 +12lllkerr) gl r -

Actually, this estimate holds if all occurrences of ||| - [i|" are replaced by
||| - }|- Since we wani an estimate independent of 8F " v|lo,r, however, we
shall argue as follows. Equations {5.2); and (5.4) give an explicit expression
for 8,6 which, by differentiation, gives an expression for 6,"_15 . To this last
expression we apply inequalities (2.1) to prove that

165781l = clllolle—y 1S 1Hz—s + elllA(@ -1 & 11

(5.17) f o
+ 1AMy + clloF(8v)"lo

for each . For convenience, we denote by (8v)? the first term on the right-
hand side of (5.2);. Fix a real y €]0, 1[ such that k > p+1+ n/2. Inter-
polation theorems, [16], Theorem 9.6, show that || - |lx—1-p—; = || * g oj

I - 4=, for each j = 0,...,k—2. On the other hand, since k—1—p>n/2,
one has

k—2 _
518)  19E2002 e £ 5 (7 2) ek 00l 107 @0 kmioes -
J
j:O -

Consequently, the left-hand side of the above inequality is bounded by
(N (ol

Finally, (5.16), (5.17), and (5.18) show that

(5.19) 811E_, - < P (llgler + vl ) -
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Existence of the Fixed Point

Since |(lg(0)||},_, < d, one has |||g||l,_, 7 < d +c A T2 This estimate,
together with (5.5)3 and (5.10), shows that in all the above estimates the
A-functions P and Q have the form P = P(d + c AT'/?) and Q = Q(4),
respectively. Now it is an elementary exercise to prove that we can choose
A—functlons A1(d), A2(d, A}, and 23(d, A) such that if 4 = A, and if 1,T S |,
Asf f]k = < 1, then the right-hand sides of equations (5. 11) (5.12), and (5.19)
are less than or equal to 42. Hence (6,, g) = S(9,¢, q) satisfies (5.5).

It is easily proved (by choosing, if necessary, a smaller value for T, still
defined by a condition of the form A{d, A}T = 1) that the map S is a con-
traction of IK with respect to the y-norm. For a similar proof, see that of
Lemma 2.3 in reference [7]. Hence, in order 1o prove the existence of a fixed
point in K for the map .S, it remains to prove that § satisfies (5.7);, which is
the missing condition in order to show that S(K) C K. In general, however,
d does not satisfy (5.7);. We shall avoid this obstacle as follows.

LemMMaA 5.1. Let (4,(,8) = S(9,&,q). Then,

%/6dx=/t9(§—ﬁ)dx in{0, 7], and /J(O,x)dx=0.
Q Q

Proof: The divergence theorem together with equation (5.2), shows that

(5.20) fV-(h(q)Vg) dx :/ !:Z(B,-Vj)v,-vj+f-u} dar.
Q

r La
Moreover,®
V-[(w-Viv—f1=>_ @) (@) +v-VO-V-f inQ,
hi

[('U'V)'U“"“f]‘V:—Z(ajVj)Uj'Uj—f‘U onT,
LJ

3Since v- = 0 on T, the vector fields v and V(v-v) defined on I, are orthogonal. Consequently,

0= Z‘U,:Bf (’U_',‘Uj) = [(’U . V)’U] -4 Z: (31'11_',') ‘U,“Uj .
ij Li
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hence, by the divergence theorem,

- [ S 6w @) dx+n/V~fdx—/’v-Vl9dx

Q bf Q
(5.21)
=/[ (5ij)Ui'Uj+f'V} dr.
r L&

By integrating both sides of equation {5.2); over Q, by taking into account
the equation (5.4), and by using the equations (5.20) and (5.21), one proves
the first assertion in the lemma. The second assertion is immediate, since
6(0)=V-aanda-v=0onT.

Now, we define the linear operator

ru=u— Q" [ uly)dy .
/

For each £ 2 0 the operator 7 has norm equal to 1 in H?, and hence in
Le(H*). Since 7 8, = d;m, it follows, in particular, that 7 has norm equal to
Lin Z=(H*~"). On the other hand, 7 8/9(0) = 8/9(0),for j=0,... k—1.
Tt readily follows that the map § = (n x id x id)o S (i.c., S(8,¢,q9) = (n6,¢, g)
if (3,{,g) = $(8,&,¢)) has a fixed point in K. Let (8,¢,9) = (nd, {,g) be
this fixed point. In order to show that it is also a fixed point for the map §,
it suffices to show that 76 = &. This is easily proved, as follows. Set

vy = Q7" [ 6(t,x)dx .
/

Since & = #d, one has d{(t,x) — O{t,x) = y(t). By using the above lemma, it
follows that

V() = — (]Ql‘l fﬂ(z‘, x) a’x) y(t)=0 foreachze[0,T],
Q

and that y(0} = 0. Hence y(f) vanishes identically on [0, T).

We note that the i-functions A, (d,4) and A3(d, A) depend only on d if
we set 4 = A,(d). This shows (1.14); and (1.15) in Theorem 1.3 (the A, in
Theorem 1.3 is a constant times the above 41). By using the equations (1.1 15T
and (1.11);, we estimate the norms ||6%v||o and 6% gllo. This yields (1.14),.
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The Compatibility Conditions

Here we prove that if the compatibility conditions (from now on, c.c.) up
to order k — 1 hold for the system (1.11), then the c.c. up to order & — 2 for
the system (5.2} are satisfied.

The c.c. for {1.11) are

(5.22;41) @)} v=0, j=-10,...,k-2,
r

where, by definition, {(0)} = a, {g{(0)} = ¢, and the {8/v(0}} are defined
as follows. Differentiate the equation (1.11); (with respect to ¢) up to order
k — 2, the equation (1.11); up to order k — 3, set 7 = 0 in these equations,
and formally solve the system obtained in the above way for the unknowns
/v{0) (j = 1,...,k—1) and 8/g(0) (f = 1,...,k — 2). Note that these
sqlutions, that are obtained by recurrence on j, depend only on a, ¢, and
o/ f(0), j =0,...,k—2. These solutions are, by definition, the functions
{8/v(0)} and {5/ g(0)}. For brevity, from now on, we set {F(0)} = {¥}.
By using equation (1.11); one shows that

(523)) {/"vr = {8/ (f - (v- VI - h(&)V &)} ,
for 0 £ j < k — 2. Hence, the c.c. for (1.11) are {v}.- v =0o0nT, plus

=0, j=0,...,k-2.

(5240) {0/ =@V -hVO}|

Let us now consider the c.c. for the system {5.2). It is worth noting that
here 8/v(0) and 8;¢(0) are not defined via a formal calculation from the
equation (5.2) but, on the contrary, are the values of the functions 8/ (t)
and c‘),j g(#), at t = 0. Since the function v(¢), the solution of (5.1), satisfies
the condition v - v = 0 on Iy, one has Z(d;¥;)viv; = —[(v - V)u] v on Zr.
Hence, the boundary condition {5.2); can be written in the equivalent form

(5.25) (h(g)Veg+ (v -Viv—-f)-v=0 on Xr,

where we use the symbol £ to indicate the g appearing in (5.2}, in order to
distinguish it from the g that appears in (1.11}. The c.c. up to order k — 2
for the system (5.2) are

-v=0, forj=0,...,k-2.

(526,) {o/ h@)ve+ - 9w =N}

Note that the highest order derivatives, with respect to ¢, that appear in
(5.26); are those of order & — 2. Since

(5.27)) 8jv(0) = {8/v}y, 8/q(0)=1{d/g},
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for j = 0,...,k—2, it is superfluous to distinguish between the couple (g,v)
in equations (5.24,,) and the couple (¢,v) in equations (5.26;). If we are
able to prove that

(5.28,) {o/a} ={o/g} . forj=0,....k-2,

then, the c.c. (5.26;) are satisfied since they coincide with the c.c. (5.24;,4)},
which hold by assumption..

Proof of (5.28;): For j =0 one has {g} = ¢ = {£}. For j = 1, equation
(1.11}, shows that {&,g} = w, hence (5.28) holds. Assume now, for some
Jo € [1, k — 3], that the hypothesis (5.28;) holds for each j € [0, jy]. We want
to show that (5.28);,, holds.

The function {8/°*' g} is defined by formally solving the equation

(5.29) BB +v-V)g+V-v]=0,
for the unknown 8/°*! g(0). Equations (1.11) show that

(V-v)=-V-[(v - V)u+h(g)Vg — f]

=(v- V)@ +v V)g— Y (8v)@w) = V- [h(g)VE1+ V- f .

Hence, equation (5.29) can be written in the form
(530) 8/ [(Br+v - V)2 g — V- (h(g)Vg) = 3 (Bw)) (Bu) + V- f] = 0.

On the other hand, the function {8/°*'} is defined by solving the equa-
tion
(531) 8 [ +v V)2V - (h(@VE) - 3 (@) (@) +V - f] =0
for the unknown 8{"“ £(0). Since (5.28); holds (by assumption) for each j s
Jo and since (5.27); holds, the equation (5.30) for the unknown 87" g(0) co-

incides with the equation (5.31) for the unknown 8,""“‘9(0). Hence (5.28) ;,1
holds.

Remark. The c.c. up to order k£ — 1 for the system (1.11) coincide
with the c.c. up to order £ — 2 for the system (1.12). These last c.c. are

8,{8/g}=8,G(0), j=0,... k-2, plus {v} v =0.

6. Proof of Theorem 1.4

Fix a constant cp such that the norms ||v|lk 7, [1€llx, 7> [IIF1lik—1,2;, and
[flk,T, are bounded by ¢y — | and let A3, A3, and A4 (see the statement of
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Theorem 1.3) denote the particular values of these A-functions when all their
arguments are equal to ¢p. Fix T > 0 satisfying 1,7 < 1 and A;] T fip gy =
1/2 for every tp € [0, Ty[. If to + T > Ty, replace tg+ T by 7. In the sequel
we take into consideration only those f for which |[|f" — f lllk—17, = 1 and
Lf" = fler, < 1/2. Hence, | f'l|le—1.7, < ¢ and AL Tk gio e = 1, for every
fy as above. Consequently, Theorem 1.3 applies to the solution (v',g") on
intervals [y, ty+T), provided that the “initial data” (v'(f0), &'(ty)) satisfies the
conditions ||v'(fy)lx = co, Jlg'(o)llx S co. It readily follows that, in order to
prove Theorem 1.4, it suffices to prove the thesis for the particular intervals
[mT,(m+ 1)T], m=0,1,... ,[Ty/T1, hence just for the interval 10, 17].

As in Section 35, instead of studying the systems (1.1 1) and (1.11") directly,
we shall study the equivalent systems (1.12) and (1.12"). We start by applying
Theorem 1.2 to the pair of equations (1.12), and (1.12/ )2. This yields the
estimate (1.9) in which, according to (1.12), one has 4 = h{g(t,x)), F =
E(a;ﬂj)(ajvj) ~V-f, W= —(a -Vop+V -a), G = h(g)*‘(z(c’?,-uj)v,-vj +f n),
and similarly for #', F', y', G'. By taking into account these expressions
and the above setup, one shows that R = Ry (sec (1.8)} and T are here fixed
constants. In the end, one gets

lllg-g')lF = ¢ {E-I-|!ﬂ—a'||i+||¢’—¢'|fﬁ+|||f(0)—f'(0)||li_1
(6.1) +[f - f’].%,: +[v - U’]i,r +[g - g’l%,t
+A@) ([v - vy, +Ie— 8% ) } -

In order to prove (6.1) we have to take into account the definitions of F , W,
and G in terms of a, ¢, f, v, and g, and the expressions of the derivatives
8/v(0) and &/ g(0) in terms of 4, ¢, and &/ f(0). These expressions can be
obtained directly from the equations (1.11};, (1.11)3, or from (1.12). We also
take into account that }i{#(g) ~ A(g")lile < clijg — £'|||, for each t, and we
use inequalities (2.1). Similar devices should be used in order to prove the
estimates below. We deem it unnecessary to call these devices to the reader’s
attention again.
By applying Theorem 4.1, one proves that

W = Ol < c{a+lla—a'IF + 1/0) - O,
(6.2) +Uf =+ v -0,
+C(@) ([l ~ v O, + v —v,,) } .
Elliptic regularization shows that

(6.3) llv()=v' I §C(H|C(f)—C’(1)l|fi_1+§|!V v()-V- U'(f)Illifl) ;
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since (v —v') - v = 0 on T, for each 1. Moreover, by using equations (1.11),
and {1.11'},, one shows that

64 V- 0(0) = V- OlIE-, S e (lle(e) - g1
4
+ () v O, + v - v'R,) -

From equations (6.3), (6.1), (6.2), and (6.4) it readily follows that

lIlv() — o' ()1}
Scfetlla—alf + 1o - &1
(6.5) IO = SOz + L =l + [0 -0,
+le—gRo+ Ci®) (la—alf_, + o - #'17,
HILSO) = S ONF+ v~ v B, + 18— &Ty) )
where C)(¢) = max {C(e), A(¢)}. Note that
o ~o'lll £ ¢ (v =o'l + lllg = &1l + 17 = Fllle-)
by equations (1.11); and (1.11);.
From (6.1) and (6.5) one shows that the left-hand side of equation (6.6)

below is bounded by the right-hand side of equation (6.5). Hence, by Gron-
wall’s lemma,

lle(e) = v' I + llg() - £ W
Scletlla—alf+1é -1}
+ILS©) = £ ONE +1f - /')
+eCi(e) (Jla—a'li_, + o - &I,
+ 150 = £ O}

+v - ’U’];zc—l,: +[g - g’}iml,t) ,

(6.6)

for each 1 € [0, T
Assume now that (1.16) holds. It is a simple exercise (see, for instance,
the proof of Lemma 4.1 in reference [9]) to show that

@) =~ v OIF + @) - g O S ¢ (la- 1B+ lig - #13 +17 - £ B) -
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Since k—11/k 11k
[Je-r7 S el 1G4 0 1%

and since the norms [v')e,r and [g']; r are uniformly bounded, it follows that

() =o' Ol +11le(@) - g’ @)1
Scfe+lla=a'l} + 1o~ gl
671 HIO - O+~ 18, )
+eCie) (la-alB+lg - w13+ 17 - )"
+eCi(@) (la - @l + = IR, + 170 - 7O, -
Given a real positive o, fix e = ¢ /(2¢). One has
Mo =l + g - &lIRy S 0
provided that
la =@l +1l¢ ~ 12 + 150~ FONR, +1/ - fBr S5,
where & > 0 satisfies the equation ¢d + ¢ Cy(a/(2¢))(8Y% + 8) < a /2.
Appendix A

Proof of Proposition 3.1:  For convenience, we shall assume that € — RZ.
The general case can be reduced to the previous one by standard methods,
On the other hand, the lack of regularity of the coefficients v and 4 made nec-
essary some additional control on the calculations done below. This control,
left to the reader, is done by using the inequalities (2.1) and (2.1-bis).

In the sequel, x, is the normal direction to the boundary of R". For
convenience, we set x’ = (xy,... s Xn—1), ¥ = Xn. We start by writing the
compatibility conditions (1.5) in a more explicit form. Equation (1.1) is a
particular case of an equation of the form

0'g = ﬁafg + anx,ayg + Zc@x-&g + anxg

(7.1)
+anfg+cg-f~F ,

where ¢ = c(¢, x) denotes distinct functions. The boundary and initial condi-

tions are those in (1.1). Above, and in the sequel, we use some abbreviated

but clear notation. In equation (7.1) Bz, x) satisfies & 2 m > 0 on the

boundary Zr. In the particular case of equation (1.1}, one has 8 = A — vi.
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By differentiating both sides of (7.1) j — 2 times with respect to £ (J 22),
and by setting ¢ = 0, we get the formal expression

{6/80)} =08 {6/ 722} + Y com {0/~ 20}
(1.2) +Y " cox8, {3348'(0)}
+ S co{org(0)} +0]PF(0).

0Sr455j—1

From these expressions and‘ from the initial conditions {g(0)} = ¢, {0:2(0)}
= w, we define (by recurrence) the functions {9/ g(0)}, which are, in fact,
linear differential expressions in the vector (¢, v, F).

LemMa 1. One has {g(0)} = ¢, {8,8(0)} = w. Moreover, for j Z 2,

i
{6/2(0)} =0/ 8jg+ 3" ool 0)¢

|#]+s=0

j-2
+ Z B,(”c’};,(’);y/+ Zy§’)6'F

|r|4s=0 1i[=0

(7.3)

if j is even, and

{o/g(@)} =002 af 1y + Z o) oL, 339

|r|H+s=0
(7.4) .
+ Z ﬁ(!}ar B;I}I-F Z yﬁ”a‘F ,
{Fl+s=0 |i]=0
if j is odd.
Above, i = (ig,...,in) and r = (r1,...,Fs—1) arc multi-indices, ol =
8l ...} denotes a , derivative of order t:l = Qg+t in, 0L =4 ... 00T

denotes a denvauve of order |r|=r + -+ -1, and the symbol 3" means
that the derivative of highest order w1th respect to the normal variable y is
not present in the summation.

The proof of the lemma is easily done by induction on j, starting from
the value j = 2.

By using the equations (7.3) and (7.4), one easily shows that the compat-
ibility conditions {(1.5) have the following form:

(7.5) 9,6=G(0), By =08G(O), onT;
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.l

dil29i g+ 3 6 ol (5¢)

|r|4+s=0

(7.6) + Z B 885 w)

|#rl+s=0

+Y 3V aiF(0)=8/G(0), onT,

=0
if j is even, and
_ _ j+l _
oU-D2gly  + 3 &Yl oL (859)
jr|+s=0
i )
(1.7) + >t B on (v
|r|+s=0

+ 3.9 8'F(0)=6/G(0), onT,
[i=0

if jisodd. Since & 2 > m > 0 on the boundary, we can substitute, one at a time,
the functions 8,¢, Byw, 5‘2¢, 6‘2 w, and so on, in the subsequent equations.
Hence the normal derivatives 8"@5 and 8]y can be written in terms of the
tangential derivatives of ¢ and , and of F and G. In fact one casily proves
by induction that

j+t
61+E¢ Zarj)a,?aqﬁ—i-zbnarw-!-zcj)af'
(7.8) |"|—0j =0 [il=0
+ Z 91G(0) = PV (b, ¥, F,G) ,
lqi=0
if j 2 2 is even, and
¥l 5] ) =1
dlw="Y a oL+ b+ o
[r[=0 Ir]=0 [{[=0

(7.9)

i
+Y 89G(0) = Py, F. G)
lg|=0

if j = 2 is odd, where g = (qo, d1,- .- »dn—1), and 89 =87 33 ... -1
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Now let 1 £ £ £ k — 1, and assume that (¢, ,F,G) € H x H ! x
LFHETY) x (A2 satisfy the compatibility conditions up to order
£ — 2 for the problem (7.1). This means that (7.5), (7.8}, and (7.9) hold for
P <
jSe-2.

We want to prove that there is a2 sequence

(7.10) (G Wois Fy G) € HUYY 5 HE x FRH) x LHAH
such that

(Gn> Wn» Fry Gn) = (6, 9, F, G)

7.11
(7.11) in HE x HP=1 x SR x FHA 1)

and that the compatibility conditions (7.5}, (7.8), and (7.9) are satisfied, up
to order £ — 1, by each set of data (¢,, W,, Fn, G»). The method followed
here in order to prove the existence of the above sequence was suggested by
reference [21]. We fix sequences Fy,, G, &, ¥y, 7 € N, satisfying (7.10) and
(7.11) and we look for ¢, and y, of the form ¢, = ¢, + An, Wn = W + Hn.
Hence our problem becomes: to find A, and y, such that

(712) (j-m}un)eHEH XHE ’ (Amﬂn)_’o in foHf—l E
and such that

(7.13)  OyAn = Gu(0) = Oypn = a3 Byttn = ,Ga(0) — By 05 = 0l

(7.14) 8 hy = PY) (b, W, By Ga) = 8 fu = aif’
if j is even, and
(7.15) 8} tn = P by, W, Fu, Gn) — 0f n = alf’

if j is odd. Above, 2S5 jS¢ 1.

Since the PU)s are linear differential operators of order j+ 1 with respect
to ¢, of order j with respect to y and to G, and of order j — 1 with respect
to F, it follows from (7.10) and (7.11) that

al) e -2 for0Sj<¢—1,
(7.16)

a’ >0 in#tIYV for0Sj<e-2.
Now, we prove the existence of the above A,. The existence of u, is proved

in a similar way. We set &f,j) = a$? if j is even, a) = 0if jis odd (a;! =0).
Let R be a linear continuous map, R: F4H1/2) s =112 » ... 5 FHT
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H®*! such that I R(ug, 1, ... ,u¢) = u for s = 0,1,...,4, and that the
map (o, #y,...,4p—1) — R(ug, uy,...,us_y,0) is continuous on F€—(1/2) x
-+ x #1/2 with values in H*. Such a map exists (see [14], Theorem 2.5.7).
Fix, in correspondence to each # ¢ N, a function a,(f“” € C§°(I') such that
e ™ = i S nl set &, = RG@SY,a,...,aD,0) and A1 =
R0,...,0,af ™" —a! ). Clearly, 12,47 € H**', % — 0 in H’, and A 0
in H**'. Moreover, 8)"' (A, +44) =&Y, j = —1,0,... .42, and B (AL +A1) =
afv_ al . Set An = A, + A5+ A, For our purpose, it is sufficient to prove
that there exists A/ € H!+!, for each n € N, such that A" — 0in H? and
such that

(7.17) YA =0 onT forj=0,... -2 ;LA gl

Let 6 € C§°([0, 00)] be a function such that 8(t) = 1 for each ¢ in a neighbor-
hood of the origin, and such that 6(1) = 0if ¢ 2 1. Set 0,(y) = N1yt 8(ny),
and define A'(x) = 8,(y) c‘z,(f_i)(x’ ). Clearly 4, € Cg°(R"). Morcover,
0700) = 0,if j = 0,... £ — 1, and 69(0) = 1. Hence, the equations
(7.17) are satisfied. Let us show that A — 0 in FI, as 1 — oo.

We assume, without loss of generality (elements in the sequence can be

repeated if necessary), that ((ai "))2 < const. n!/2, Then, if |r| +s < ¢
(where r is the multi-index r = {ry, ..., Fn-1)) one has

1/n
i _(f—
o023 < | [ 100500 ay | ccalt 7.
0

Since the right-hand side is bounded by const. n~!/2, it tends to zero as n
tends to infinity,

Appendix B

For the reader’s convenience, we give here a proof of the estimate (2.17).
The point here is that we do not allow dependence of P on 2|l 7 (but only
on (|f|—y ). By writing equation (2.17) in the form

(8.1) ~Ag=h"Y(Vh-Vg+ B+ Lg)
we find that

Igller1 = A0m™" liklle1) (VA - Vglle—y + I1BS + Lgls_1)

8.2) +c{(0u8))e—1/2
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where (here and in the sequel) ¢ denotes a generic positive constant. Fix real
numbers r > /2 and a €]0, 1] such that k — 1 = r+ 2. We want to show that

(8.3) MVA-Vgle—t = (cAllhlle—1)* e~ D4 Vgllo + ellgllest

for arbitrary, positive ¢. Then, by fixing ¢ = 1/2, estimating fIVgllo (using
(8.4)), and by using (8.2), one proves (2.17). Let us prove (8.3). From (2.1)
it readily follows that [VA - Vglle—1 = ¢[|VA|;—14alllix—,. Hence, by using
interpolation in FI* spaces, s € R, one shows that

IVA-Vglle—r < el [Vl VgV .

Consequently,
a4 —(l—a)la aft —a
MVh - Vgl £ [(chllbll-1)” &= e vglo] ™ (2 liglei)® e

and {8.3) follows.

The reader should note that one could give a more elegant proof of (2.17)
by dealing directly with the equations

(8.4) -V . (hVg)=Bd+Lg inQ; hé,g=hG inl.

In practice, this proof consists in checking that the manipulations done using
standard methods of proof of (2.17) for solutions g of (8.4) are still valid
when the coefficient 4 belongs to H*—1.
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