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1. INTRCDUCTION

IN THIS PAPER we study first order linear hyperbolic systems

du+ Y At,x)du+ B(t,)u=F  in Qy, an
i=1 .

MulET = 0: U(O) =f9

and corresponding nonlinear hyperbolic systems

du+ Y A)du + By =F,  in Qy,
o 1.2)

Mu|>3,r = 0, H(O) =.f:

where u is an m-vector, A; ( = 1, ..., #) and B are m X m matrices, M is a given p X m matrix,
F(¢, x) and f(x) are given.

QOur aim is to prove that the nonlinear problem (1.2) is well-posed in Hadamard’s classical
sense and also to prove a sharp perturbation theorem for the linear problem (1.1). (We call
perturbation theorems those results that establish the continuous dependence, on the
coefficients of the operators, of the solution of linear partial differential equations.) We start
by proving the perturbation theorem 2.3 for the linear problem (1.1). Then we use this result
to establish the well-posedness of problem (1.2); see theorem 2.5. The lack of these basic (and
expected) results in the general theory of hyperbolic equations is certainly a main gap in the
theory.

In the following we assume that 4, has maximal rank on the boundary, since this is the
standard hypothesis for hyperbolic first order systems. However, the methods developed here
can be applied to many other interesting problems. See [1-3]. As a matter of fact, the method
followed here applies to higher order hyperbolic mixed equations and systems, under various
boundary conditions. However, instead of stating the theorems in a more general form we
prefer to give a detailed proof for a specific case. The interested reader can casily apply it to
other problems.

Typical linear problems (1.1) that satisfy the hypothesis made here are, for instance, the
symmetric hyperbolic systems studied by Friedrichs [4] and Lax and Phillips [5] and, more
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generally, the problems treated by Rauch and Massey [6], even for nonregular coefficients. We
also point out that our method, applied to the pure Cauchy problem, gives rise to proofs much
simpler than that for mixed problems. See [13].

Recently, Kato [7] has extended his abstract theory, in order ta cover a class of mixed
problems for which, roughly speaking, the stationary part of the differential operator verifies
an ellipticity hypothesis. This class does not include, in particular, first order hyperbolic
systems {(1.1).

Plan of the paper

Starting from hypotheses I and I, we begin by proving a differentiability result, see proposition
2.1. This result is related to other known theorems, as, for instance, those stated by Rauch and
Massey [6] and Schochet [8]. Here, as in [8], the coefficients 4 and B are not regular (this gives
rise to nontrivial difficulties). We point out that proposition 2.1 is (more or less) well known in
the literature. However, we have been compelled to give here a self-contained and very careful
proof. In fact, the proofs of theorems 2.3 and 2.5 {(and of proposition 2.4) are very unstable
with respect to small modifications (or inaccuracies) in proposition 2.1, Under this situation,
imprecise references or claims should not be accepted by the interested reader. On the other
hand, if we eliminate the proof of proposition 2.1 we have to enlarge the remaining proofs (in
those parts in which techniques similar to those used in the proof of proposition 2.1 are used).
Moreover, the proof of proposition 2.1 presenis some simplifications. In particular, we do not
use previous known results for equations with regular coefficients. On the other hand, our
proof does not require the very technical construction of regular auxiliary data satisfying
additional compatibility conditions. Such a construction will be used only for proving the
perturbation theorem 2.3. Moreover, for proving this last result, we use only auxiliary data that
verify, at most, compatibility conditions up to order & — 1, which is the same order necessary
for obtaining solutions in H*. This is a central point here, since our coefficients are not
sufficiently regular to admit compatibility conditions of order larger or equal to k. We point
out that approximation by regular coefficients would heavily complicate the proofs of the
perturbation and of the well-posedness theorems.

After the above differentiability theorem we prove our first main result, the perturbation
theorem 2.3. The perturbation of the coefficients A and B takes place in the space £5(H*), We
start by proving a perturbation result in C,(H"), 2 =/ <k — 1; see lemma 2.2, Then, we
extend this result to the case [ = k, see theorem 2.3, by applying lemma 2.2 to the first
derivatives of the solution itself. More precisely, we apply lemma 2.2 to a suitable first order
system of n{m + 1) equations whose solution is a vector field consisting of the tangential and
time derivatives of u, and of the normal derivatives multiplied by a suitable cut-off function
that vanishes near the boundary.

By using lemma 2.2 we prove an existence result to the nonlinear problem (1.2), see
proposition 2.4, The proof, that follows standard methods (see, for instance, the method
followed in [9]), is presented here mainly for the reader’s convenience.

Finally, by using theorem 2.3 and proposition 2.4, we prove our second main result; the
nonlinear problem (1.2) is well-posed in (BT(H" ), kK > (n/2) + 1, in the classical Hadamard’s
sense; see theorem 2.5.

In order to avoid supplementary difficulties that can be overcome by using well-known
(but nontrivial) devices, we consider here the half space case (i.e. Q = R, x,, is the normal
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direction) and we assume that M is constant. The general case, i.e. £2 an open set with a
compact boundary and M = M(f, x), can be reduced to the previous one by using a suitable
partition of unity and local change of co-ordinates, see Ikawa [10]. We also point cut that our
proofs adapt easily in order to treat the system (1.2) for coefficients .4 and B that depend on
(t, x, u).

We opt here for complete, self-contained proofs. Often, equations and formulas are written
in a very explicit form which, though somewhat tedious, gives the reader a complete control of
certain fundamental manipulations. We hope that the resulting additional length of the paper
will be well received by readers fully interested in the subject of the paper.

2. NOTATIONS ANBD RESULTS
Notations
We set W = {positive integers}, Ny = [0} U N,
R'={leR; >0 Q =R} ={xeR:x, >0, Or=1[0,T] xQ,
I'={xelR": x, =0], X, =00,T] xT,
We denote by H', /e Ny, the space H'(R7) endowed with the canonical norm | |,.

Moreover, we set

i !
CrH') = M CO,TLH'™),  S5HY = MW, T; H), pell, +o],
I i

g ji=0
!
Wall? = X N8fulli;,  llellf r = esssup flu)ll?,
Ji=0 O0=t=T
[ulf r = §5 ()i} dt. Hence, {||- {l; 7 and [, 7 are norms in C,(H*) and £2(H"), respectively.

Let us consider the system (1.1). We set A = (Ay,...,A,), Adu =YI_,A;d,u, Lu =
d,u + Adu + Bu. We assume that M has rank p, that

Ae £5(HY), Be LUHY, 2.1
and that there is a positive constant # such that
ldet A, | > u, on Z. 2.2)

The positive integer &, fixed once and for all, satisfies & > 1 + (#/2). Sometimes we will
assume that

B € S3(H"). 2.3)

In hypotheses (2.1) and (2.3) it would be sufficient to consider £7 instead of £, for some
p > 1 (we believe that p = 1 would be sufficient but we did not verify it in detail). A similar
remark holds for F.

We denote by f¢, j = 1, the function (defined on R}) that is formally obtained from
equation (1.1) by solving it for (3/u)}(0). By definition, /@ = f. The functions % depend
only on f, F, A and B. For instance, if B =0, one has f = F(0) — A(0)8f, /@ =
8,F(0) — A4 dFf D — (3,AX0) 3f, and so on. We set

H
lrUE = _}_Zollf("’lif-,f-
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Recall that the compatibility condition of order j = 0 for the system (1.1} is Mf = 0 on I'.
Compatibility conditions are relations on I between f, F, A, B and its derivatives, at time ¢ = 0.

In the sequel we often deal with positive constants A that, in fact, depend (increasingly) on
various characteristic constants of the problem. In order to be more precise, we use the
following notation. We denote by A generic functions on (R*)' to R* that are increasing as
functions of each single variable. These functions will be called ‘‘functions of type A”’. Since we
are not particularly interested in the explicit form of these functions, we will denote different
functions by the same symbol (even in the same formula). For instance, we are allowed to write
Ady = A if A = Az dand if A, = A4(g,, 22}, or A + A = A and so on. The symbols ¢, ¥, ¢, ',
é, ¥, and i denote functions of type A that depend only on the independent variables indicated
below (except if a different set of independent variables is explicitly mentioned).

V = o, 1Al r~IBOM ),
w = w2 1Bller.0)s

{‘15’ =¢'(u7" A il o, 7, 1B O, (2.4)
w' =y (u S A e 1B My ) :

{6 = ¢(u ", [l4; A ey, 7. 1BOY; B ,_2),
o= 1A ANl 7 118 B' oy D
and

W= 9™ A5 AW s 0B B Wiy KIS Nl WF©Y; F/OMys [F; Fle D

Here A}, i =1, ..., n, and B’ denote a second set of matrices that will be used in Section 4. For
convenience, we use the notation |u; v| instead of |z, {|v|.

Hypotheses. As mentioned in the Introduction, our main hypotheses on the system (I.1) are
uniqueness in €,(H") and existence in C(H?). Such results are well known for a large class of
systems of type (1.1) or (1.2). Let us describe these two hypotheses. Note that we will not
consider dependence on the matrix M which we will take to be fixed once and for all. On the
contrary, A = (A4,,...,4,) belongs to any class of coefficients, provided that their elements
satisfy the hypotheses (2.1) and (2.2), for the same g, plus hypotheses I and II below.

Hypothesis 1. Assume in equation (1.1) that B = 0, f = 0, F € £3(H"), F(0) = 0. Then there
is a positive constant ¢ (that may depend on T, F, and A) such that if # € C(H") is a solution
of problem (1.1), then

lu@l} = c(FT: , + [wli),  vtel0, Tl

Consequences

Consider block square matrices &, = diag{4,, ..., A;), where the A; are repeated g times,
g eN. Let U= (u',...,u% be a g x m-vector field, each u’ being an m-vector field, and
similarly for § = (F!, ..., F). Consider the system

"
qU+ Y Q3 U=FinQp, MU=00nY%, U@ =0, (2.5)
i=1




Perturbation theory 1289

where MU = 0 means Mu’ =0, j =1, ...,q, moreover ¥ € £X(H"), F(0) = 0. Since the
system (2.5) consists of ¢ decoupled systems, each one satisfying hypothesis 1, (2.5} also
satisfics this hypothesis. In particular, if & is a square matrix of type (g X m) X (g X m) that
belongs to the class £3(H*™1), the system

U+ Y @0,U+ ®U=0in Oy, MU = 0on Z4, Uy =0, (2.59)

i=1
has only the zero solution, in the class @ (H"). This follows easily by setting ¥ = —® U on the
above inequality and by using Gronwall’s lemma.

Hypothesis 11, Consider the systém (1.1) for B = 0. There are functions (of type 1} o, =

o, |”A”|k—1,T)a By = ﬂz(ﬂml» A “lk,r), and y, = p(u~', flA %”k,T): such that if the pair
(f, F) € H* x £%(H?) satisfies the compatibibility conditions up to order 1 for the above
systern, there is a solution ¥ € @ (H?) of that system such that, for each ¢ € {0, T],

NN} = oSNz + HE@ID + BolF L. + palulls. (2.6)

The linear problem

Here, we consider the linear problem (1.1).

ProrositioN 2.1. Assume that the hypotheses (2.1}, (2.2}, I and II hold and let {f, F) e
H' x £2(H"), 2 = I < k, satisfy the compatibility conditions up to order / — 1. Then, there is
a (unique) solution u € Cr(H') of problem (1.1). Moreover, for each ¢ e [0, T],

)7 = ol FNF + WEOMZ Y + BIIFL, + viluli,. (2.7)
In particular
Hull7 = e™io) A7 + NFOINZ) + wIFE,I. (2.8)

Above, the functions of are of type ¢, 8/ and ¥/ of type y, see (2.4), with the following
exception. If / = k, the dependence on [[B(O)|l,_, and on [[Bll;_,, should be repltaced,
respectively, by dependence on [|B(0)||,_; and on [|Bjl, . The same modification must be
made for ¢ and y in equation (2.8).

Now, we state the perturbation theorems. We will distinguish between the cases [ <= & — 1
and ! =k, We note that, for / = k — 1, the method developed here works also if the
coefficients 4 and B belong to suitable functional spaces involving less than & (but more
regular) derivatives. In this case, the perturbation of the coefficients should be done in these
Tunctional spaces.

Consider a second system of type (1.1), namely

du' + ) Ait,x)du' + B(t,x)u' =F'  inQy,
=1 2.9)

Mu'ly, =0 w'(0)=f".

We prove the following perturbation results.
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Lemma 2.2, Assume that the coefficients A, B and A', B’ satisfy the hypotheses (2.1) and (2.2),
and that the hypothesesTand IThold for d and for A". Let2 = I <= &k — 1. If/ = k — 1, assume
that B satisfies (2.3). Let the pairs f, F and f*, F' belong to H; x £2(H") and satisfy the
compatibility conditions up to order I — 1 for the systems (1.1) and (2.9), respectively. Denote
by & and ' the solutions of these two systems, which belong to GT(H' ).

Given & € ]0, 1] there is a positive integer A(g) (that depends only on ¢ and 7T, on the
particular coefficients 4 and B, on y, and on the particular data f, F, but not on A', B, f', F'}
such that, for each ¢t € [0, T],

@ — woli?
= HS =71 + I6F = YOI + Aollea = 40O, + AIB ~ BYOE )
+ e + [F - F'le+ AolB — B'Ti_y, + A@IA — Ali_ .} (2.10)

In particular, consider a sequence of problems (2.9) cach one satisfying the above
assumptions. Assume, in addition, that [|4’|], ; and {| B[, rare uniformly bounded; that
A = A in L2(H* ) and B' — B in £4H*Y); that /' = f in H' and F' > F in £2 (Hf),
then ¥’ = u in C,(H").

The quantity A, satisfics
Ao = e [8(I£17 + IF@IED + wiFTE . (2.11)
Now, we state the perturbation theorem for / = k&
TaeorEM 2.3. Assume that the coefficients A, B and A’, B’ satisfy the conditions (2.1)-(2.3)
and the hypotheses I and II. Let R be a constant such that [|A']l, » < R. Moreover, assume
that the pairs f, F and f', F' belong to H* x £3(H*) and satisfy the compatibility conditions
up to order k¥ — 1 for the systems (1.1) and (2.9), respectively. Denote by v € € g_H %y and
u' € Cp(H*) the solutions of these systems. Then, given ¢ & ]0, 1], there is a positive Afe) (that

depends on the same quantities on which depends the A(g) in lemma 2.2 and also on R1), such
that for each ¢ € [0, T], one has

Nt = w)ONE < wexpw ePie + ILf - flk + NE - FHOIE + A — anli-,
+ 1B - BYOME-: + [F— FIE, + A - ATg, + [B~ Bk,
+ A4 - AL (2.12)
In particular, consider a sequence of problems {2.9) each of them satisfying the above
assumptions. Assume, in addition, that [|A4'{l, r and [|B’ ||I k. are umformly bounded; that
A" = A, B' > B, and F' — F in £2(H*); that f' = fin H*; then «' — u in C(H*).
The nonlinear problem
Now, we consider problem (1.2). The hypothesis are the following:

(N.1) A(+) and B(-) are defined and of class C* over the whole space R™;1
(N.2) A,(v) is nonsingular for each v € N; where N is the kernel in R™ of the matrix M;

1 Dependence on R can be dropped.
I See the remark at the end of this section.
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(N.3) for each fixed v € £F(H*) such that Mu|y_= 0 the system

dou+ Y Ai(Wdu=Fin Qp,  Muly =0, u(0) = f, (2.13)

i=1
satisfies the hypotheses I and II.

In assumption {N.3), the meaning of hypothesis I is clear. Let us clarify the meaning of
hypothesis II. For each v € $3(H*) such that M|y ;= 0, define
wv) = inf |det A, (v(z, )| (2.14)
tx)eklr
Clearly p(v) > 0, by assumption (N.2). Hypothesis II means that if (f,F) e H* x £3(H?)
satisfy the compatibility conditions up to order 1 for the system (2.13), then there is a solution
u € Cp(H? of this system satisfying

)iz = sUIAIZ + HFOID + wilFE, 7 + wyluli 7, (2.15)

where ¢ = ¢(u()™, A, ») and vy = y ()™, AW, 1), i = 1,2, are functions of
type A.

PROFPOSITION 2.4. Assume that (N.1)-(N.3) hold and let the pair (f, F) € H* x £3 (H*) satisfy
the compatibility conditions up to order & — 1 for problem (1.2).% Then, there is a positive T
such that this problem has a unique solution u € C(H*). A lower bound for T is given by
inequalities of the form

TLU e IFONe-d =1 and  [Fl rda(lf e, HFO@l_p < 1, (2.16)

where 1, and A, are suitable functions of type A. Moreover, ||ull;.» = A3(|Fllx, IFO 1),
for a suitable A;.

Finaily we state our result on Hadamard’s well-posedness for system {1.2). Consider a
sequence of problems

diu, + A;i(u,)d;u, + Bluu, = F, in Qr,
it L g @.17),

MuleT = 0! uv(O) =fv!
where, for each v € N, the pair (f,, F,) € H* x £%0(H k) satisfy the compatibility conditions
up to order & — 1 for system (2.17),. Let f, F be as in proposition 2.4 and let u € Cr(H *} be

a solution of problem (1.2) in Qy,, for some 7 > 0.1 One has the following well-posedness
resuft.

THEOREM 2.5. Assume that 4(-), B(-), and M satisfy hypotheses (N.1)-(N.3) and let f, F, u, f,,
and F, be as described above. Assume that

limf, =/ inH¥,  lim £, = F in S5,01%). (2.18)

pr o0

T Recalt that the compatibility conditions are independent of eventual solutions u of (1.2).
1 Ty is arbitrarily large, provided that the solution u exist on [0, T,].
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Then, for sufficienily large values of v, there is a solution u, € (E’TO(H") of (2.17),. Moreover,

limu, =u  in Cp(H"). (2.19)
The above result still holds if in equations (2.17), we replace A(x,) and B(xu,) by A*(1,) and
B*(u,), respectively, provided that A%(-} and B*(-) converge, respectively, to A{-) and B(-} with
respect to the C*-norm, on compact subsets of R™,

Remark. If A(-) and B(-) are defined on an open subet O of R™, the results and proofs remain
essentially unchanged, provided that in hypotheses (N.1)-(N.3) the range of v is contained in @
and that the set { f(x): x € R}, contained in @, has a positive distance to #0. Moreover, we can
also consider, without difficulty, the case in which 4 and B depend on (z, x, u).

3. PROOF OF PROPOSITION 2.1

The proof of proposition 2.1, completed by induction, follows from lemmas 3.1 and 3.2
below.

LemMa 3.1. Let A satisfy (2.1) and let / be an integer such that 2 </ < k. Assume that for
B = 0 and for every pair (f, F) € H' x £%(H}) that satisfies the compatibility conditions up to
order / — | the system (1.1) has a solution # € €(H") such that

luF < o (llAIF + NFOND + BIFE, + niluk.,  vtel0,T], 3.1

where oy = oo, lAlics, 1) Br = Bl ™" NAllg, 1), and 9y = y(p", ll4ll¢, #) are functions
of type A.

Then, for each B satisfying (2.1) (and also (2.3}, if /= k) and for cach pair (f,F) e
H' x £2(H') satisfying the compatibility conditions up to order / — I for system (1.1), there is
a solution u € €(H%) of this system. Moreover, (2.7) holds.

Remark. Since lemma 3.1 holds for each fixed positive integer #¢, it holds (in particular) if m
is replaced by (r + 1) x m, L.e. it holds for systems of (n + 1) X m eguations

aU+ Y @,0,U+ ®BU=G,
i=1 (3.2)

MU|s, =0, Uwy = ¢,

where @; = diag{A4,, ..., 4;}), with the A;s repeated = + 1 times, ® is a [(n + 1m] %
[(n 4+ 1)m] square matrix, and so on.

LemMa 3.2, Assume that A satisfies (2.1) and (2.2), and that hypothesis T holds. Let
2=<!l=k—1 and assume that for each ® satisfying (2.1} and for each pair (f,F) e
H' x £3(H"y satisfying the compatibility conditions up to order / — 1 for the system (3.2),
there is a solution U € C,(¥') of this system satisfying the inequality (2.7), in which u, f, F, B
and A4 should be replaced, respectively, by U, {, F, ® and GQ.

Then, if the pair (f, F) € H'"! x £%(H'"") satisfies the compatibility conditions up to order
! for the system (1.1) with B = 0, there is a solution u € Cp(H') to this last system which
satisfies the estimate (3.1) for the value / + 1.
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Proof of proposition 2.1 (by assuming lemmas 3.1 and 3.2). We start by proving the thesis
of the theorem when B =0. The proof is done by induction. If /=2, and if
(f, F) € H* x £3(H?) satisfy the c.c. up to order 1, the solution u & @, (H?) exists and satisfies
(3.1), by hypothesis II. Assume now that / € [2, £ — 1] and that the solution of system (f.1)
with B = 0 exists and satisfics (3.1) provided that (f, F) € H' x £4(H') satisfies the c.c. up to
order / — 1. Then this last result also holds for systems (3.2) with ® = 0, since these systems
consist of the union of » + 1 systems of type (1.1) with B = 0. Then, lemma 3.1 applies to
system (3.2) (see the remark after lemma 3.1) and shows that the hypotheses of lemma 3.2 hold.
Hence, if B = 0 and if (f, /) € H'™! x £3(H'"Y), satisfy the c.c. up to order /, the solution of
system (1.1) exists, belongs to G H'™Y), and satisfies (3.1) for the value / + 1. This proves
proposition 2.1 for B = 0. The result for B # 0 follows from the result for B = 0, together with
lemma 3.1,

Finally, (2.7) and equation (B.5) in Appendix B show that

Nl i? = ol s17 + HFOMED + wiFlE, + wj Nt I7 ds
An application of Gronwall’s lemma yields (2.8). B

Proof of lermma 3.1, In order to fix the ideas, assume that 2 =/ < k. Let Be £ (Hk H be
given and assume that the pair (f, F)} € H' x L3(H'") satisfy the compatibility conditions up to
order / — 1 for system (1.1). Consider the functions f¥, j =0, ...,7 — 1, defined in corre-
spondence to the system (1.1); for the definition of fY see Section 2. Lemma B.1 in Appendix
B shows that fY2 € H™/. Consider the equations

w0y =59, j=0,...,1-1, (3.3)
and define, for t € |0, T],
K = fwe L2H'): W], . = il fIl;, and (3.3) holds).

Since LL(H) = H'(Q,), the set K is nonempty, for a suitable choice of the constant Co
(independent of 7). For each w € IK consider the problem

Lu=F~Bwin[0,17, Mulg, =0, u0) = f. (3.4)

From (3.3) it follows that the pair (f, F — Bw) satisfy the c.c. up to order / — 1. Denote by
u = A(w) the solution of (3.4). Equation (3.1), with F replaced by F — Bw, together with
equations (A.4) and (A.4") in Appendix A, show that

lOI7 = o (AN + WFOE, + cllBOYIZ N £
+ B([F1; 7 + cliBlli_y 7w} ) + w[ulf .. (3.5)

It readily follows that {u],., = ¢y if 7 15 sufficiently small. Hence, A(K) C K. Finally, if
u=Aw and ' = A(w'),onehas L{u — ') = B(lw — w)inQ,, M(u — u') = 0on Z,, and
(4 ~ u'}0) = 0. Hence, by applying (3.5) to 4 — u’, one shows that [u — u’],z,T = cr[w — w'}}”,T.
it follows that A is a contraction, for v small enough. The fixed point # = A} € K is a solution
of problem (1.1) in [0, z]. This solution belongs to ©,(H"), since A(K) C ©,(H'). By setting
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w = u in equation (3.5) one shows that
W7 = o1 + cllBONE AN + NFONEL) + BIF),
+ (o + B IBIE_ ., DI ;. (3.6)

which proves (2.7) and also furnishes explicit expressions for oy, ff, y/in terms of oy, 8, 7.

By using (3.6) and Gronwall’s lemma one gets an a priori estimate for [u(?)||? on [0,T]. A
continuation argument shows that the solution u of (1.1) exists in [0, T']. Note that the above
value of 7 is bounded from below if [| 7], is bounded from above. H

Proof of lernma 3.2. By assumption, B = 0. Nevertheless, some formulas will be established
without assuming this condition since, later on (in Section 4), they will be used for B = 0.

Suppose that the pair (f, F) € H'*' x L3(H™) satisfies the compatibility conditions up to
order /, 2=</=<k — 1, for system (1.1). By assumption, this system admits a solution
u € Cr(H"). Since / = 2, we are allowed to take first derivatives of both sides of equation (1.1)
with respect to the variables X, Jj=1,...,n — 1, and ¢. This yields

n
L@y + ¥ 3A)%u = 3,F — @;Bu  in O,
=

T

(3.7);
M@z, =0, Bu)(0) = 3,f,

forj=1,....,n -1, and

L{d,u)y + j);] (0:4;)0;u = 3, F — (8,Byu in Qr, 3.8)

M@ Wz, =0, @m0 = fO.

Let us consider the normal direction x,. We start by arguing as in [11]. Since A, € € (H*™Y
and H*™! » C%“ for some alk, n) > 0, one has

‘det An(ts x’, xn) “" det An(ts X’, 0)' = C()“An”?wl,Txr?.' (39)

We do not use the injection H* < €% since we want to have the #* ! norm (instead of the H*
norm} on the right-hand side of (3.9). See [11]. By using equation (2.2) it follows that

ldetA,| > w2 if0<x,<r (3.10)
where r = (u/2co))"*[ 41 ,7{%. In particular
rt= ‘f’(ﬂ_l; HAlfk—l,T)- (3.11)

Now, we fix a function ® € C*(R*; R*) such that ®(x,) = 0 if 0 < x, < 1/2, O(x,) = 1 if
x, > 1, and we set d(x,) = @(x,/r). From (3.11) it follows that

9P| = cr ¥ < (™, 1Al 2 (3.12)

for each je N,. Now, by differentiating with respect to x, both sides of (i.1), we get
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equation (3.7), for j = n. It readily follows that

L@00) + T (30, 4) — 8'A)0) — 0'A@,1) — 8'3,u

i=1
= 03,8 + (¢"A, — 4(0,B) + &'Bu. (3.13)

On the other hand, one has 8,4 = 3,(Ju) + (1 — )3, u — ¢'u. Moreover, equation (I.1);
shows that

=1
a-5,u=(01- za)A;*[F— du— Y A;du— Bu},
i=1

where, by definition, the right-hand side is equal to zero when 1 — & = 0, even if A, does not
exist. Hence,

n—1
Bout=08,0u) — (1 - Y, A'A;9u — (1 — 94, d,u
J=1
— (1 — DA, 'Bu + (1 — HA'F — 8'u. (3.14)

Finally, by replacing in equations (3.7), (3.8), and (3.13) the derivative d,u by the right-hand
side of equation (3.14), we obtain the system (3.15); below, j = 1, ..., n + 1, which is a system
of type (3.2) for the n X (m + 1)-dimensional vector field U = (0,4, ..., d,_,u, 3,(Fu), 8,u).
Let us describe this system in detail.

Forj=1,...,n — 1, one has

n n—1
3,8;u) + ¥ A;8;(0;1) + Y B,(d,u) + B, 8,(Su) + B; ,,,(0,u) F} in Qr,
i=1 r=1 (3.15);
M@u)iz, =0,  (3uX0) = 8,f,
where
B, =(9;4,) — (1 — :3)(BJA,,)A;1A, + &, B, forl=r=n-1,
Bjn = aj‘An: Bj,rH—l = _(1 - ﬂ)(a_;An)An_la
and
F=aF—(1- 19)(8JA,,)A;1F+ §'(3;A4,)u — (0, B + (1 — 15‘)(61A,,)A;’Bu.
Forj = nr + 1 one has
n n—1
8,@:) + 3 A;3;(0,1) + ¥ Byyy, (3,1) + B,y 8,(10)
i=1 r=1
(3.15)us1

+ B,y e 1(0:8) = Fypy in Qr,
M@wlz, = 0 (3,u)0) = f,
where

By, =84, — (1 = OO AIAT A, Buyrner =B — (1 - 0@, A4,
Bn+1,n = atAna
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and
Fooy = 8F — (1 -~ $)0,A)A,'F + (8, A,)u — (8B + (1 — 9)8,4,)A; " Bu.
Recall that f = F(0) — Y7_, 4,(0)3,f — B(0)f. Finally, for j = n, one has

n-1

at an(ﬁu) + Z Ai ai an(ﬁu) + Z Bnr(aru) + Brm an(ﬁu)

i=1 r=1
+ Bn,n+1(atu) = F;z in QT:
M3, (S|, = 0, 3,(3u)0) = 3,(51),

(3.15),

where
B, = 30,4, + 2(1 — $)H¥'4, — ¢(1 — §)(3,4)A4,'4, — ¥'A4,, forr=1,...,n -1,

Bnn = _20’1411 + ﬁanArn Bn,n-i-l = (1 - 219)19’ - 0(1 - 19)(3"/1" A;1:
and

E,=80,F+[2(1 — 9 — 91 — 93,404, "'1F
+ [-200 — HF'B + A1 ~ 9N, A DA 'B — 94, + 08'(3,A4,) + ¢'B — 83,Blu.

Equations (3.15);, / = 1, ..., n + 1 (abbreviate to (3.15)), form a system of type (3.2), where
® is the block matrix {B,], 7,5 = 1,...,n + I, and ¥ and { are the m x (n + 1)-vector fields
(Fyy s By and 30, ..., 8, fs 3,080, £, respectively,

Compatibility conditions for system (3.15) hoid up to the order / — 1 since they hold, for
original system (1.1), up to the order /. In fact, in order to get (3.5) from (1.1), we performed
only the following two operations. To take first derivatives of both sides of (1.1) and to use
equations (1.1); and (3.14), which involve u and its first derivatives. More precisely, the
compatibility conditions for equations (3.15);, 7 = I, ..., n — 1, follow by differentiation, with
respect to the tangential direction x;, of the compatibility conditions of the same order for
equation (1.1). The compatibility conditions for (3.15), hold trivially since, near the boundary,
¢ and its derivatives vanish identically. The compatibility conditions of orders up to / for
equation (1.1) yield compatibility conditions of orders up to { — 1 for equation (3.15),,.,,.

Finally, by taking into account the concrete expression of {, &, and ®, it readily follows that
feH,F e LH(H"), and ® € LH* ).

The above facts, together with the hypothesis in lemma 3.2, show that system (3.15) admits
a solution U € C(H') satisfying (2.7), i.e. satisfying

NTONF = g7 + NFONED + BIST + YU, (3.16)

where  of = ¢(u™", |All—y 7, HBOMe—2), B = wie™ BAlik, rs NBlle-r,7)s and /=
w(u™", l4llc, 7, 1Bl ..., 7) are functions of type A.

On the other hand, U = (3,4, ..., d,_1u, 3,(0u), d,1) is a solution of (3.15). Since this
solution belongs to the space €, (H'™") - @,(H"), hypothesis I guarantees that the two solu-
tions must coincide. Hence, u € € (H™M.

Finally, by taking into account the definitions of the functions §, ¥, ®, and U (note that
® appears in the expressions of the coefficients «f, f/, ¥/, in equation {3.16)), by proving
suitable estimates for the norms of these functions, and by using these estimates in equation
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(3.16), we get (3.1). Let us show it. By applying corollary A.2 (see Appendix A) and by taking
into account equation (3.12) it readily follows that (recall that B = ()

gl = ¢ MAlle-r, DS Mer + PO,
IFO; 1 = éta™, NAlleor, DAL + DFEOHD,
5@l = wie ' alle, DUu@; + 1ES ),
HBO ez = &e™, NAlle-1,2),
NBUe-1,7 =< wia™, llAll,2)-
The two last estimates show that,*in equation (3.16),
af = ¢ HAlleor, ), Bi= vl S Al = e Al o
Finally, from (3.14), we get
N3n 7 = (™ MAlles, AT + NEOHF + NaeteD.
From (3.16}, together with the above estimates and the definition of U, it readily follows that
N WEex =@ fIE + WE@ND + wFl e + Wiy, + SUFONF + ), (3.17)
where ¢ = ¢(u™", Al 1, 7) and w = w(u™", |4l ). Since
N7 = WaeCOMEF + [2alFs e

and analogously for [|F(¢)||?, the equation (3.1) holds with / replaced by 7 + 1. B

4. THE PERTURBATION THEOREM
We start by stating a technical result that wili be of help in this section.
ProposiTioN 4.1. Assume that (2.1) and (2.2) hold and let (f, F) € H' x £3(H") for some
integer /, 2 =</ = k -~ 1. Assume that the pair f, F satisfies the compatibility conditions up to

order / — 1 for the system {1.1). Then, given &£ > 0 there are functions f, € H'*! and F,
L2(H'™Y that satisfy the compatibility conditions up to order /. Moreover,

lf-rfli<e, WF-Elir=e |F-EOIi, =e.
The proof, a modification of that of lemma 3.3 in [6], will be given in Appendix B.
In the sequel, together with the system (1.1), namely,
Lu = Fin Qy, Mu = 0on Lr, u(0) = f, “@.10
we also consider system (2.9), namely
Lu' = F'in Qy, Mu' =0 on X, u(0) = f, {4.1)

where the meaning of L' is clear (sce (2.9)).
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Proof of lemma 2.2. The reader should recall the notations introduced in Section 2,
concerning the symbols ¢, ...,P. Let f, and F, be as in proposition 4.1, and consider the
problem

Lu, = F in QF, Mu, = 0 on Ly, u,(0) = f,. {4.2)
From (2.8), we get
luOF = Ag + we*e, w0l = A, (4.3)
where
Ale) = e L0711 + NEOMD + wiF -

I/ = k — 1, replace, in the expressions of ¢ and w, [|BO)|l,_, and [ Bll,_, 7 by, respectively,
1B, and [IB]l, 7. Note that, given e, T, A, B, f, and F, we can fix f, and F,. Hence,
A(g) has just the dependence claimed in lemma 2.2,

By taking the difference, side by side, between equations (4.1') and (4.2), we show that

D —u)=YA, - A)du, + (B — B, + F' — I in Q,
i (4.4)
M@ —w)y=0o0onXy; (W —u)0)=f —f.

By applying (2.8) to the above solution ¥’ — u,, and by taking (4.3) into account, we show
that

fG' — wXONF = ¢ e s = LU + liE ~ Byl

+ (Ag + weVa)(ll(a’ — DOz, + B - B,

+ W (F' = FR, + A@IA — Al + (A + we"®)[B' - B2, ). (4.5
By using the estimate in proposition 4.1 one easily gets

Il — uXH|7 = right-hand side of (2.10). (4.6)
Note that [B' — B]iq,: =< i exp(t}. A similar, but much simpler argument shows that
i — wdOIF = e (el — L7 + IEF — BYONE) + wiF - EE.).

Hence, [[(x — u}0)|}7 = w e"e. This inequality together with (4.6) shows that (2.10) holds. ®
Remark. Let { = k — 1 and assume that f € H* and F e £%(H*) satisfy the compatibility

conditions up to order £ — 1 for the system (4.1). Then, by arguing for u’ — u as above for
#' — u,;, one shows that (compare to (4.5)

W — Oz, = o el f ~ Fli_ + IF - PHOIZ_,
+ Agllta’ — OE_, + HB' ~ BYOZ-»)
+ W (IF = Flioy, + ulli 4" — AL_, + AolB' — B2 ). (4.7)

Proof of theorem 2.3. By arguing for (4.1') as in Section 3 for (4.1), we get systems
(3.15");, j = 1,...,n + 1, which can be obtained by the reader by replacing everywheret in

T Also ins the expressions of the B,,, of the F;, and of S,




Perturbation theory 1299

(3.15); the clements A4, B, f, F, and u by, respectively, A', B', f', F’, and u'. We denote by
(3.15) [resp. (3.15")] the union of the systems (3.15), [resp. (3.15');], forj =1, ..., r» + 1. For
convenience, we write these systems in the abbreviate form

o, U + ®,,U=%—-@®U inQy,
‘ igl Or (4.8)
MU =0on Zy, um = ¢,

and

"
a,U" + QU =3 - ®U in Qr,
f ,_"§1 g (4.8")

MU' =0onx, U0 =

Hence, @; is the matrix (A, ..., 4;) (4, repeated n + 1 times), & is the block matrix [B,],
rns=1,...,n+ 1, U is the m x (n + 1) vector field (8,4, ..., 3,_; 4, 3,(Bu), d,u), F is the
m X (n + 1) vector field (7, ..., F,,), and § = (8. f, ..., 8,_.f, 3,(&f), 9,f); see Section 3.
Similar definitions hold for @}, / =1, ...,n, &', ¥ and {'.

Systemn (4.8), a system of m X (7 + 1) equations, satisfies hypothesis I (see ‘“‘consequences’’,
after the statement of hypothesis 1). It also satisfies hypothesis II since the system

JU+ ¥ Qo U=FinQy, MU=0o0nZy U =14, (4.9)
i=1

(where the pair {, F satisfy the regularity and the compatibility conditions required in
hypothesis 11} is the union of # + 1 systems which satisfy that same hypothesis. Note that the
constants o, , 5,, ¥, do not change “‘type’” since [[@fl,, 7 = [|All¢, rand [det @,] = |det 4,{"**.
The same arguments show that (4.8") satisfies hypotheses I and II. By applying to the couple
of systems (4.8), (4.8"), the equation (2.10} in theorem 2.2 (for the value / = k& — 1) we get

U - U xolE, = ey - glz, + IE - 3’;)(0)E||i72 + [[®U - ®'U)Oi%-2
+ Adll@ - anolii-) Ay
+Pe¥e + [F - F,, +/éU - U Ty, + ABIR — @71
where f\o, givenl by
Ao = e®1o(gli-: + UFOZ-2 + IBUONZ-» + PIFE.1.r + YIBULi 1,7
satisfies A, < ¥ e" and A(e) depends only on the particular &, T, @, ®, {, and ¥. Hence,
U~ UXONE-, < Pe) + Te™U - UTE,,

where the term {---} is the term inside double brackets in equation (4.10) below. By using
Gronwall’s lemma it readily follows that

N~ YO, = PexpPe™e + g — g1, + g~ 12, + B - & )0llE_,
+ @ - @XOi_; + [F — Fhicr, + [B — Bl
+ AR - @'y ). .10)
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The results stated in Appendix A and standard calculations easily show that the quantities

WeaOMM s g l—ss NE sy MF@Me—zs T O o2, HBOYlli—2, and JIB (O)]l,.—, are bounded
by a constant of type ; that [Fl,_, rand [§'],_, r are bounded by @ e™; and that ||®l,_, 7
and [|®{l,_, r are bounded by . Note that ® = %, ¥ = 5, A, < we'™.

Moreover, by taking into account the definitions of §, {, F, ', &, and ®’, straightforward
(but tedious) calculations show that

1§ = 'leey + Ng ~ g Mz + MIF = FIOMe—z = vl f = F Nl + A = AN -,
+ 18 = BYOM - + litF — FH Ol
+ [l — YO0,
s — FH@ME- = 7™l — FyliE + B - BHYGIlE
+ A — A iE + e = wHolz-o,
i@ — &)z = BB — BYOME-2 + le4 — ANOF_ ).
and
(& — &YME-1 = FllB - BYE-, ~ Ha — AP

By using these estimates we get from equation (4,10),
n—1
2 e — wOMeoy + 0,96 — u YOl + lid. e — u)D;-,
J=1

= gexp(pe®¥e + |/ = FI7 + IF - FHOlF_; + ll4 — ANO0ll;_,
+ 1B - BHYO; -, + Nl — u XMz, + [F— F'l;, + [B~ Bz,
F A - A - o+ AEIA — ATy ) (4.11)

On the other hand, by using equation (3.14) in order to express &,u as a function of the
components of I/ and by using a corresponding equation to express ,#’ in terms of the compo-
nents of U, we get

8,0 ~ X = 8,19 — uxOIIE
# (T o= w0l + et - a0l
+ e — uyOliz—, + NF ~ FYOI-,
I - B0+l - w00lE).

since [|(F — FYOIZ_y < |F = FYONZ_, + [F = 13, it follows that [|,0¢ — ' XO)lI3_, is
bounded by the right-hand side of (4.11) (the quantities i and ¥ are, if necessary, increased).
Hence, the left-hand side of equation (2.12) is bounded by the right-hand side of equation
(4.11). The terms (& — u'}0))|3_, and [(u — w’'W¢)]%_, ; can be dropped from the right-hand
side of (4.11), due to equation (4.7). Hence, (2.12) holds.

Finally, according to lemma 2.2, A(g) depends only on &, u, T, and on the particular
functions @, &, {, and F, hence, on ¢, y, T, 4, B, f, F, ¥, and u. However, the solution u of
(1.1) depends onlvy on T, A, B, f, F;, and # depends onlyon i, 4, and R. H
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Remark 1. The use of the systems (3.15), (3.15") is not necessary for proving theorem 2.3. In
fact, it is sufficient to apply lemma 2.2 separately to each single pair of equations (3.7);, (3.7');,
J=1,...,n—1,(3.8), (3.8), and (3.13), (3.13’), and then use (3.14), (3.14') to get estimates
for a,(u — u').

On the contrary, in Section 2, we need system (3.15) in order to prove existence in C,(H 'y as
a corollary of existence in @, (H'"!). However, the recourse to (3.15) is superfluous if we want
to establish (2.7) merely as an a priori estimate. In this case we can argue as explained above.

Remark 2. It is worth noting that the proof of lemma 2.2 does not work for / = £. In fact, the
solution u,(?) of equation (4.2) does not belong to H**?, since the coefficients A(¢, -} do not.
A natural device could be to replace, in equation (4.2), the coefficients 4; by coefficients
At e £5(H*™Y), and such that 4% — A;[f = 0(), for a suitable norm ||-||. By following this
way, we get terms (4 — A!) 8,4, in the right-hand side of (4.4). These terms give rise to terms
el 704 = Ai%ir 7 and flullF.s,7l4; — 4213, 7, in the right-hand side of equation
(4.5). In general we are not able to show that

li_l:ftl} Mleteillerr, rbA4; — Al 7 = 0. (4.12)

In fact, if we assume that [A; — A7l ris small for small £, then [4].,, ris large. Hence,
2,51, 7 is large. This adverse behaviour is reinforced, as well, by that of the data (f,, F),
whose behaviour is connected to that of the coefficients 4% in particular through the
additional compatibility condition of order k.

For nonlinear Cauchy problems it could be possible to prove (4.12), where now
Aj = A;(u,), by using particular couples (f,, F,). However, this device is not useful for general
mixed problems (especially for large values of &) due to the constraints imposed by the compati-
bility conditions. Moreover, it requires functions A;(+) of class C*"! instead of C*.

5. THE NONLINEAR PROBLEM

In this section we prove proposition 2.4 and theorem 2.5 that concern the nonlinear system
(1.2), namely

du+ ¥ Adu+ Buwu=F  in Qp,
i=1 5.1

Mu=0o0on Zp; u(®) = f.

Proof of proposition 2.4. Set \
K(T, R) = {v e SHH Y. [vllx,r= R, M|z, = 0,8/0(0) = fP,j =0, ..., k—1}. (5.2)

The positive constants 7, R will be fixed later on. The functions ¢ (see Section 2 and [6])
depend only on the data f and F. They also depend on A(*), B(-), M, but these elements are
fixed. Actually, the condition 8 'v(0) = f*~V, in definition (5.2), is superfluous.

In order to prove that for suitable values of R and T the set K(T, R) is not empty we will
argue as in [8, lemma A.3], with minor modifications. Consider the system

d,w+ iA,-(f)a,-w+B(f)w:F+G in Qr,
i=1 (5.3}

Mw = 0 on X w(0) = f,
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and denote by f©, j = 0,1,...,k — 1, the value of 3/w(0) formally obtained from (5.3).
The compatibility conditions up to order k — 1 for this system are MFf“ = 0 on I', for
J=01,.. k-1 o

Now, we look for a function G € £5(H*) such that fY = U, for j=0,...,k — L. Then,
the compatibility conditions for system (5.3) are satisfied, since MFfY = MfY. The above
equations hold if

, (5.4
t=0

HGW) = { Y 8/, Aj() d,u + [9, B(u)}u]

forj=0,...,k — 1;} here, by = 0. The right-hand sides of (5.4) are expressions in terms of f
and F, through the functions f F” .

Since the functions A(+) and B(-) are fixed and of class C* one shows, by taking into account
equation (B.4) in Appendix B and corollary A.2 in Appendix A, that

1, ll—; = AU S, WFOMI-p,  forO0=j=<k -1 (5.5)
Hence, there is a function ¢ € C(H*) such that (5.4) holds, moreover,
NG e,z = AL e s NFOe-o)- (5.6)

One can assume that a‘,"G(O) = (. Note that the function A, in equation (5.6), does not depend
on 7. In particular, [G + FI; r = [F1; + + TA(l /e, IFOlc_). Consequently, by using
(2.8), we get

il 7 < €™ 7l NEOM -0 + T) + Al FIDIFI;, 7). (5.7)
From now on impose on R the condition _
R = “right-hand side of equation (5.7)"". {5.8)

Let v € K(T, R) and consider the solution # € C,(H*) of problem

du+ Y A(w)du + Bwu=F  inQr,
i=1 (5.9)
My =0o0n Xp; u( = f.

Note that the compatibility conditions up to order k — 1 are satisfied, since 8/v(0) = fY. Set
u = Su, for each v € K. Clearly, v € C(Qy), moreover,

lolzen = clvllior,r < el fliz: + TR?). (5.10)
Hence, from hypothesis (N.2), one gets
pwy = Al G, + TR, vve®(T,R). (5.11)

Since the range, in R™, of the functions ¢{¢, ¥} is contained in a sphere of radius equal to the
right-hand side of equation (5.11) and centre in the origin, it follows that the norm of A(v) in
L(H*) and the norm of B(v) in L3(H* 1) are bounded by A(R) and by A(| fl2_, + TR,
respectively. By using these estimates, {(5.10), and (5.11), one gets from (2.8) the estimate

Mlullk,r = e™®QAell FE-1 + TROASE + HFOUE-1 + 2BFL 7. (5.12)

1The value j = & — 1 is superfluous.
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Fix

R = e{As(|.f e, WFOMe_) + 20 + LIz AR + BFOIE-» + 33
and, after that, fix 7" > 0 in such a way that, in equations (5.7) and (5.12), all terms that have
T or [Fl: %7 as a factor became less or equal to 1. For these values of R and T, the set K(7, R)
is not empty, moreover, {lull; r = R. Hence, S(K) C K. Note that R = A(| i, 1FO) -0,
and that the hypotheses on T are of type (2.16).

The set K = [K(T, R) is closed and convex in @p(H?), since bounded sets in £7(H*) are
weak-* relatively compact in this space. In order to show that S has a fixed point in K (which
is the solution of problem (5.1)) it remains to prove that S is a strict contraction. Let u = S(v)
and u#' = S(v"), for v, v’ € K. Then, L{vi{u — u') = ¥ ;(A4;(v") — A;(@) 0,4’ + (B(v") — Blvpu'
in Qp, M(u — u') = 0 on £, (. — u')(0) = 0. Equation (2.8), applied for / = 2, shows that

e — a )O3 = 216(R) e ®T (v — ).

Note that [A(v") — A(W)],,r < AR)[V' — v],, 7. By imposing on 7 the additional conditions
eTAo(R) = 1/2 and TA;(R) < 1, one gets the desired property for the map S. @

Proof of theorem 2.5. Owing to (2.18), the norms [Fl. 1, IEllc-1 7, and [ £, are
vniformly bounded. Hence, we can assume in theorem 2.4 that 1;, A,, 1; have the same
(constant) value for all problems (2.17),, v € N, and for problem (1.2). Moreover, they do not
depend on the intial time (i.e. we can replace the initial time 0 by any #, € [0, T]). Fix T'> 0
such that T4, < 1, [Flz rA, = 1, and [Fli 74, =< 1. Recall that [|u,[|, 7 = A;.

We start by showing that

flee — 2 ”lk LTS = o(lf = S lli-y + NGF — EXOMiz_s + [F — F]k LT) (5.13)

By taking the difference side by side, between equations (1.2) and (2.17),, we get L(z)(u — u,) =
[A(,) — A@)] du, + [B(w,) — By, + F — F, in Qr; M(u — u,) = 0 on Lr; (4 — u,)0) =
f — f..Byapplying (2.8) for I = k — 1, and by doing straightforward calculations, we show that

e — u)ONE- = cllf = £l + NE — EYONE 5 + F — Elici,r + [ — w]io,0)-

By using Gronwall’s lemma, we prove (5.13).
Now, we apply (2.12) to the couple of systems (1.2), (2.17),, i.e. u' is repiaced by u, and so
on in (2.9). It readily follows that, given a positive &, one has the estimate

N — wOlE < ce + cths = £ + NF - EYONE-: + @ — u)OlE-, + (F - Eli 7}
+ cA@W — wlii,r+ el - wl
for each v € N. By taking into account equation (5.13) and by using Gronwall’s lemma, we get
@ — w)ONE = cle + ILF = A1 + NF = EYONZ-. + IF — Fl )
+ eAES — Ll + E = EYONE-2 + F - Eli-i,d. - (.14

Hence, u, = uin @,(H*). Now, we extend the result to [0, T]. By the remarks at the beginning
of the proof, the above argument applies to any interval [£,, ¢, + T] contained in [0, 7}]. Since
1,(0) = u(0) in H* it follows that u, ~ uin Cp(H %Y. In particular, u,(T) = w(T)in H ¥ More-
over, the compatibility conditions up to order &k — 1 are satisfied, at time T, as follows from the
equations. By applying the convergence result to the interval [T, 271, we show that , = # in
Cyr.2r(H*). And so on, up to Ty.
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The last assertion in theorem 2.5 follows by adapting the above proof to the more general
case under consideration here. In the sequel we show the main points and leave the details to
the reader. For brevity, we refer below to the As. Similar devices are also effective for the Bs.
Now, additional terms A°(x,) — A{u) are present in the above estimates. These terms should be
decomposed as follows: A"(u,) — A(u) = {A v,y — A(u,)] + [A(u,) — Aw)]. The last term on
the right-hand side is not new, The first one should be estimated by taking into account that

47y — Al = AlwlidlA” — Allcrs,ys (5.15)

for each / = k, where A, is any subset of R™ that contains the range »,{Qr) of u,.

We start by proving our thesis by assuming that 47(-)} converges to A(-} with respect to the
C*(®™} norm. In this case, the functions Ays A5 and A; (in proposition 2.4) can be chosen
independently of v, since they depend only on a uniform upper bound for the C*(R™) norms
of the A"(-)s. Hence, T is uniformly bounded from below (with respect to v) and the norms
{2, Il 4, 7 are uniformly bounded from above. In particular, the right-hand side of (5.15) tends
to zero as v tends to infinity.

Now let A”(+) be as in theorem 2.5. Since u is bounded, there is a compact subset A of R™
that contains the range u((;) of u. Let A’ and A’ be compact subsets such that
A CC AN CC A'. We fix elements A"(+) which coincide with 4*(-) on A’ and with A(-) outside
A, By the previous result, the solutions #, (obvious notation) converge in C(H %) to u. Hence,

¥

for sufficiently large v, the ranges of the &% are contained in A'. Hence, #* = u".
_ Note that the data f,, F, satisfy the compatibility conditions with respect to the coefficients
A”, since (for large v} the range of the f,5 is contained in A, &

REFERENCES

1. BrirRAOC DA VEIGA H., Data dependence in the mathematical theory of compressible inviscid fluids, Archs ration,
Mech. Analysis 119, 109-127 (1992).

2. BEIRAC DA VEIGA H., Perturbation theorems for linear hyperbolic mixed problems and applications to the
compressible Buler equations, Communs. pure appl. Math. 46, 221-259 (1993).

3. BEIRAC DA VEIGA H., A sharp structural-stabikity and data dependence theorem for fully nonlinear hyperbolic
mixed problems, Archs ration. Mech. Analysis 120, 51-60 {1992).

4, Friepricas K. O., Symmetric positive linear differential equations, Communs. pure appl. Math. 11, 333-418
{1958).

5. Lax P. D. & Panwrs R. S., Local boundary conditions for dissipative symmetric linear differential operators.
Communs. pure appl. Marth. 13, 427-455 (1960).

6. RaucH J. & Massey F., Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Am.
math. Soc. 189, 303-318 (1974).

7. Karo T., Abstract differential equations and nonlinear mixed problems, in Lezioni Fermiane 1985, Scu. norm.
sup. Pisa. Pantograf, Genova (1988).

8., ScuocHET 8., The compressible Euler equations in a bounded domain: existence of solations and the
incempressible limit, Communs, math. Phys. 104, 49-75 (1986).

9. BEIRAO DA VEIGA H., On a Euler type equation in hydrodynamics, Annali Mat. pura appl. 125, 279-294 (1980).

10. Tkawa M., Mixed problem for a hyperbolic system of the first order, Public. Res. Inst. Math. Sci. Kyoto Univ.
7, 427-454 (1971/72).

1. BEIRAO DA VEIGA H., On the existence theorem for the barotropic motion of a compressible inviscid fluid in the
half-space, Annali Mat, pura appl. 163, 265-289 (1993),

12. HdérmANDER L., Linear Partial Differential Operators. Springer, Berlin (1963},

13. Bemrio DA Viica H., Well-posedness and singular limits in the theory of compressible inviscid fluids, in
Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics. RIMS Kokyuroku 824, Kyoto.

APPENDIX A

In the sequel © denotes an open, bounded subset of R”, R" itself, R, or more generalfly, an open set for which the
Sobolev embedding theorems used below hold. We denote by » an integer such that r > 5n/2. The symbols I, s, «, 8
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denote nonnegative integers. Below, the symbol ¢ denotes positive constants that depend only on Q and on r. Here A’
denotes (€3, and so on.

Lemma A l. LetO0=<s=r, fe H ', g c H" Then
I7gl = ch sl lell,. (A1)
Proof 1fr — s > n/2then H™° = I®, and (1) foliows. If r — 5 = n/2, thens > 0, Hence, ¥ = I7, for some p > 2.
Mareover, H™™* = L/@=B_ Consequently, | fel = |/ fapip—nlgl,. If & = n/2, we argue as above by replacing s by
r—s. Finally,ifr — s < n/2ands < n/2,set 1/p = (1/2) — {r — 8)/n, V/g = (1/2) — (s/n). Since p, g € [2, + [ and
(1/p) + (1/g) < 1/2, there are reals p,, g, € (2, +oo[ such that (1/pg) + (1/gy) = 1/2, H™* = [Pe, H® » [, This
yields (A.1). B
ProprostrioN A l. Let 0 =i =<r, and 0 =5 < r — {. Then
72l = el Al—allgfiese (A.2)
Progf. Bach derivative D'(fg) of fg, of order I, is a linear combination of terms (D' ) (D), for 0 < ¢ < /. For

fixed q, apply the lemma Al for§=s+/—~ g Onehas0<s<s5+/—g=5=s+ = r. Hence, the lemma can
be used. One gets

o=@ = clD™ U ur 1P Hcia = 1N Ll

A similar estimate for derivatives of fg of order less than / is immediate. Alternatively, one can use the estimates

[fell =l U lells = el rl,_ bellis, and |l fel; = DU + cll fell. @

CororLArRY Al letO0=/sea,f<r,ando + =1+ r. Then

/gl = ckrhiadeds. (A.3)

CoroLrLary A.2, Under the hypothesis of corollary A.1, one has
Mgl = clisfialezls. (A4)

Proof. By the Leibnitz formula,

! I ) [ )
Nrell; =e Eloil,sc ¥ X IGENGH "l =c X X 1887 1o p00! el s-giom

i=0 ji=0p=0 J=0 =0

which is bounded by ¢l £l flell;- In fact

! i
s, = C( X lorr HLM,)( X ilaf’gli,g-p)- L (A.5)
=0 p=0

]

The estimate {A.4} can be generalized as follows. Define

Wk = ¥ 127,

p=0
Then, equation (A.5) easily shows the following result.
CoRoLEARY A3. Let 0 = g </ < r, where r = n/2, and let oo;, ..., o, B e I, 7] satisfy 8 + L% |« = mr + 1. Then
50 fuelll = el T 07N (A.6)
i=1

Conroriary A4, Letk > 1 + (n/2) and la| = /, where 1 < [ < k. Assumethat Vo € H* "' and that k ¢ ™. Then
fa*tah) — a(@h)|| = c|Vall,_ Al . (A7

The preof follows from lemma A1, B
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APPENDIX B

In this appendix we prove lemma B.1 below (used in Section 3) and proposition 4.1. The feliowing notations and

definitions are those used in [6].
Set G =}}.,4;d; + B, Gy = G(0), and G, = [9,, G,_|1(0), for I =i < k, Hence, for 1 =i <&,

"

G; = ¥ (84,(00)8; + 8,B). (B.1)
j=1
Define £ = f and
2l ip—1 .
[P =3 ( ; )fo(pﬂm + 3P 'F(O), B.2)
=0

if 1 = p = k. Recall that the compatibility condition of order p is given by Mf® = 0 on T,

LemMa B.1. Let 0 = / < k and assume ‘Ehatf € H' and F e £2(H"). Then f ¢ H"F, moreover
1590, = e + JAO -, + B2 - ALAE + HFON- D, (B.3)

for each p such that 0 < p = /.
If 0 = I < k and if (2.3) holds, then f? € H'™?, moreover

1592 = el + HAOc—y + HBOM- ) - A + NWEOI- ), (B.4)
for each p such that 0 < p < /. In particular
Al = A, BBOM-) - AL B + NEONEL ), (B.5)

where & — 2 should be replaced by k — [, if / = &.

Proaf. Let [ be fixed, 0 = / < k. We will prove the result by induction on p. If p = 0, then /i = f, and (4.4} holds.
We assume that the thesis holds for each p e [0, g — 1], for some g satisfying 1 < g = [/, and we prove the thesis for
the function 9, By using the corolfary A.l for r = k — 1, we prove that

q*l . . -
1@y = ¢ E A4, esm 8 f O Pl gus + 18BO kil £ Pliguind + IFONs. B.6)
i=0

Hence,
g-1
L = cAO Ny + HBOMe—2) L 17 Mi_guins + IFO,,
i=0
By using the induction hypothesis it foilows (with simplified notations) that the left-hand side of the last inequality is
bounded by

c{d + B{I + A4 +BY "+ -+ {1+ A+ B+ WFON_) + {FOM,,.
The thesis follows.

If 7 = k the above calculation fails for the B term, in the right-hand side of (B.6); here, we now use the decomposition
k—i-1l,l—g+iinsteadof k-7 -2, /—-g+i+1. B

Now we prove proposition 4.1. As remarked in Section 4, the proof is inspired by that of lemma 3.3 of Rauch and
Massey [6]. Here, we have to argue more carefully, due to the lack of regularity of the coefficients 4 and B. Note, for
instance, that proposition 4.1 loses sense if / = & {compare with lemma 3.3 in [6]). This new situation compels us to
investigate carefully, and to develop, some points treated in {6]. We start by proving some auxiliary lemmas.

By using corollary A.1 in Appendix A, we casily prove the following result (we denote by L£[X; Y] the set of all
bounded linear operators on X to Y).

LeEMMA B.2. Assume that 2.1) holdsandlet 1 = i</ = k,and /= k — 1. Then
G, e £[H'; H'. {B.7)

If {2.3) holds, the value i = k can be attained. Moreover, G, € £[H'; H"' for 1 = I < k. If (2.3) holds, the value
{ =k + 1 can be attained,
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Now we exploit the decomposition (B.8) betow.

Lemma B.3. Let 1 <= p < k. Then
S® = B,f t E,F, (B.8)

where the operators B, and E, have the following structure

B,f = Gif + LG{G, - Gy f, (B.9)
where ““¥°" means “sum of terms of the form”, ¢ + i, + -+ + p=p—landi; =z 0fors=1,...,q9.

EF =Y GG, - G, 8K (), (B.10)

where A +j, + - +j, +to=<p-—1l,andj #0fars=1,...,r.

Proof. By induction on p. For p = 1 the thesis holds since /7 = Gof + F(0). Let 1 = p < k and assume that the
thesis holds for every index p' such that 1 = p’ = p. We want to prove the thesis for the value p + 1. From {4.3)
one gets

p-1
SO G 4 Y (‘?)G,-(Bp_,-er E,_,F) + G,F + 0PF(0). B.11)
i=0

iz
It is not difficult to verify that each of the terms on the right-hand side of (B.11) has a particular form which is

admissible to our purposes. Let us show it for the terms G;B,_.f, where i is fixed and satisfies 0 = /< p — 1. By
the induction hypothesis one has

B, if =Gy f+EGJG, G,/
where & + £y + -+ + 7, = p — i — 1. Hence,
G B,_if = G:G{™'f + EGL?G:'G:. Gi,,f-

Sincei+(p-—N=pandi=8+i + -+ iy = p — I, the thesis follows. B
Lemma B.4. Let 1 = p </ <k Then B, € LH'; H™?), B, — Gf e £@H'; H'""*"), and E, € £(C(H"); H™7*Y).
The proof of lemma B.4 follows from lemmas B.2 and B.3.

Proof of proposition 4.1, In order to fix the ideas, we assume that / = &k — 1. We point out that this is the more
difficuit case, due to the loss of regularity of the coefficients.

Let f and F be as in proposition 4.1. In order to prove this proposition it is sufficient to show that there are sequences
of functions F, € £3(H*) and f, € H* such that £, — F in £2(H* ") and £, > f in H*™", as v — . Moreover,
M =0onT for 0=xp =k~ 1. Let F, be as above, and let g, € H* converge to £ in H*"! as v — w0, We set
S, =8 — h, and we look for h, € H* such that k, - 0 in H*~! and Mf® = 0, i.e. MB,h, = M(B,g, + E,F,) for
0 = p <k — 1 (for convenience, By = I, E, = 0). As in [6], we denote by T the inverse of M when it is restricted to
the orthogonal complement of the kernel of M, and we set a,,=1TM(B,g, + E,F,). The above equations are then
written in the form

B,h,=a,, onl, for p=0,...,k— 1. (B.12)

Note that 4, , € H*"P~'XT). Since g, — f in H* ' and F, = F in S2(H*™"Y « @ (H* 1), it readily follows, from
lemma B.4, that a,, - TM{(B,/ + E,f} in H*7'7?7VXT}, for each p such that 0 = p < k — 2. Since the pair f, F
satisfies the compatibility conditions up to order & — 2, it follows then that

@y, = 0in HF 7PV, p = 0,0,k ~ 2. (B.13)

On the other hand, (B.9) shows that the operator B, has the form

-1
B, = AFaf + by CIE{JI o, p=1,...,k—-1, (B.14)
i=0
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where Cﬁ"’,’i is a linear differential operator of order p — i that contains only tangential derivatives. Hence, for each

ie {0, p - 1], one has C; € £H*'; H*). On the boundary, one has,

CP e QEFCVADR HPTAD),  i=0,.,0 - 1, (B.15)
moreover,

C¥he ROV, HEPYHY,  i=0,.,0 -], (B.16)
for 0 < p = k — 2. By setting by, = TMyg,, by defining

p-1
b,,= A;P(ap,v -5 C‘;’j’,-b,-m), T=p=sk-1,
i=0

and by taking into account {B.13), equation (B.12} can be written in the form
afh, =b, onT, for0=p=hk-L (B.17)
Now, we want to prove that
by, = 0 in HFP- V4D, forp=20,...,k— 2. (B.18)

The proof is dore by induction. For p = 0, the thesis is obvious since g, = fin #*' and TMf = 0 on T'. Assume now
that (B.[8) holds for each / € [0, p — 1]. Then it readily follows from (B.13), from the definition of b, ,, and from
(3.12) that (B.18) holds for the value p. By using (B.15) instead of (B.16) and by using @, , € Hk_"'”z(F) instead of
(B.13), one shows that b, , € H*#~"*T} for p e [0, k — 1].

At this point, we are able to solve equation (B.17). Let R e R([[5.,H7"VXT); H*) be such that
FR(By, ..., by_) = b, on T for p e [0,k — 1] and that the map (&, ..., by_s) = R{by, ..., by_,, 0} is continuous
from [1%2% H*777¥T') into H*~'. Such a map exists, see {12, theorem 2.5.7]. Now, for each v, fix a function
bh_y € CP(0) such that B, , — b, I,z v = 1/v, where the norm is that in &**I). Set

b= b0+ B2 4w,
where 4" = R(by ,, ..., by_5,,0) and &® = R(0, ..., 0, by_, , ~ bi_, ,). Both functions belong to #*. One has
Bf,’[hf,l) + h,(,Z)] = by ,, forO0=p=k-2,
A A + BP = by, — by, € HYAD).

Moreover, (B.18) shows that £ — 0 in H*~*, Furthermore, k% — 0 in H*. Hence, BV + &% — 0in H* ",

In order to accomplish the proof, it suffices to show that there exist functions w, & EF* such that w, = Oin H*3 as
v—ooo, 3w, =C0onT forpel0, &k — 2], and & 'w, = b,_, ,onT.

Assume, without loss of generality (repeat, if necessary, some clements) that ||b;_; ;- r = const. v, where the
norm is that of H*YI). Let ¢ C({0, o)) be a function such that ®(f) = 1 if ¢ belongs to some neighbourhood
of the origin. Set w,(x,) = (I/kDx’d(vx,) and define w(x) = Wbk xy, L x, ) Cleatly w, € CF(RY).
Moreover,

ﬂ“’vu?(—] = il wv(xn)”é""“b;(—l.vlf%{k"'

Since fw,(x, ) cx-1 = const. v77, one has ||w,[2_, = const. v™'. Finally, p(0) = 0if0 < p < k — 2, p&V(0) = L.
Consequently, 8w, =0for 0 < p<k—2and d 'w, =5, ,onl. A




