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1. Introduction

The aim of this paper is to describe a method that allows us to prove
strong continuous dependence of solutions on the data for a large class of
nonlinear partial differential equations. This problem is closely connected with
that of the dependence of solutions of linear differential equations on the
coefficients of the operators, and our method also allows us to get sharp
results on that problem. It is worth noting that these problems can usually
be solved easily in the elliptic and parabolic cases but are still unsoived for
a large class of hyperbolic initial-boundary value problems.

We are particularly interested in giving a proof of the strong continuous
dependence of solutions on the data for the motion of compressible inviscid
fluids in domains with boundary. Since this problem is important in itself, we
shall study it in detail instead of stating more general theorems, easily obtained
by adapting the method followed here. In order to avoid further technicalities
we consider a fluid filling the half space R, and we study our problem in
the space H*(R%) for the particular value k =3 (see Theorem 3.2 below).
The proof can easily be adapted to the case k = 3, however, and also to open
regular sets. :

A main goal of the general theory of evolutionary partial differential equa-
tions is to extend to this field various results which are valid for ordinary dif-
ferential equations. The main result of this last theory, namely, the theorem
of existence, uniqueness, and continuous dependence on the data, gives rise
to the notion of a well-posed problem in Hadamard’s classical sense. On
studying partial differential equations, the finite-dimensional space is replaced
by a Hilbert space H and the ordinary differential equation by an equation
u' + A(u) =0, where 4 is an unbounded operator in H. After proving ex-
istence and uniqueness of the solution u(z) for arbitrary initial data uy € H,
it remains to show that

Lim fu, (1) — () =0 if limuf — | =0,
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where [ -] denotes the norm in the space H. Convergence of u,(r) to u(t)
with respect to weaker norms can usually be obtained easily but is unaccept-
able as an ultimate result. In particular, weak results have no geometrical
significance in terms of trajectories in the Hilbert space H.

The problem of continuous dependence of the solution on the initial data
is particularly significant for the fundamental equations of motion of com-
pressible inviscid fluids. Here it is necessary to distinguish between the Cauchy
problem and the mixed problem, and between the incompressible and the com-
pressible case.

Cauchy problem. The continuous dependence of the solution on the data
was proved by Karto [K], both for incompressible and compressible fluids.” For

the incompressible case, see also Kato & PoNce [KP] and references therein: - -
Mixed problem, incompressible case. For incompressible fluids the com- .

patibility conditions reduce simply to the initial velocity being tangent to the: .
boundary. In this respect the problem is close to the Cauchy problem and, in

fact, is still approachable by Kato’s perturbation theory, as shown in reference =

[BV3].

The continuous dependence of solutions on the data was first proved by
EBIN & MARSDEN [EM] by using techniques of Riemannian geometry on in-
finite-dimensional manifolds; see also [E2]. The corresponding result for non- -
homogeneous fluids was proved by MaRrspeN [M]. Completely analytical -
proofs were given by Kato & Lar [KL] and (with a completely different
method) in [BV3], for all p € (1, ). For non-homogeneous fluids an analytical
proof was given in [BV4]. ' ,

Mixed problem, compressible case. This is the most difficult situation to
handle since the equations and the boundary conditions are particularly
delicate. As far as I know, the result of this paper is the first one to appear
in the literature. For that reason, it seems appropriate to review the main
existence theorems®* The first such result was proved by Epinv [E1], assuming
that the initial velocity is subsonic and the initial density is close to constant.
Existence for arbitrarily large initial data was first proved in [BV1] and, in-
dependently, by Acemi [A]. In reference [BV1] a central role is played by the
operators curl and divergence. These also play a central role in SCHOCHET'S
paper [S1], where the author proves the existence of the solution in the general
case p = p(p, s) and also studies the incompressible limit. These results were
extended to a class of first-order hyperbolic systems in [S2]. Reference [BV1]
treats fluids in bounded domains. Reference {BVS5], by following similar ideas,
treats the case 2 = R3. While it is not necessary to assume that the velocity
field (s, -) is square-integrable over R (see [BVS]), this assumption will
nevertheless be made here for convenience and simplicity.

Finally, we call the reader’s attention to the references [BV7] and [BVS]
where the results proved below are extended to spaces H (), k = 3, and to
non-barotropic fluids. Recently, I also obtained similar results for fully
nonlinear hyperbolic mixed problems.

* Yor the existence theorem for the Cauchy problem see [K, KM1, KM2].
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where ||-|| denotes the norm in the space H. Convergence of u,(t) to u(t)
with respect to weaker norms can usually be obtained easily but is unaccept-
able as an ultimate result. In particular, weak results have no geometrical
significance in terms of trajectories in the Hilbert space H.

The problem of continuous dependence of the solution on the initial data
is particularly significant for the fundamental equations of motion of com-
pressible inviscid fluids. Here it is necessary to distinguish between the Cauchy
problem and the mixed problem, and between the incompressible and the com-
pressible case.

Cauchy problem. The continuous dependence of the solution on the data
was proved by Kato [K], both for incompressible and compressible fluids. For
the incompressible case, see also Kato & PoNcE [KP] and references therein.

Mixed problem, incompressible case. For incompressible fluids the com-
patibility conditions reduce simply to the initial velocity being tangent to the
boundary. In this respect the problem is close to the Cauchy problem and, in
fact, is still approachable by Kato’s perturbation theory, as shown in reference
[BV3].

The continuous dependence of solutions on the data was first proved by
Enin & MarspeN [EM] by using techniques of Riemannian geometry on in-
finite-dimensional manifolds; see also [E2}. The corresponding result for non-
homogeneous fluids was proved by MarspeN [M]. Completely analytical
proofs were given by Karo & Lai [KL] and (with a completely different
method) in [BV3], for all p € (1, o). For non-homogeneous fluids an analytical
proof was given in [BV4]. 7

Mixed problem, compressible case. This is the most difficult situation to
handle since the equations and the boundary conditions are particularly
delicate. As far as I know, the result of this paper is the first one to appear
in the literature. For that reason, it seems appropriate to review the main
existence theorems* The first such result was proved by EBmv [E1], assuming
that the initial velocity is subsonic and the initial density is close to constant.
Existence for arbitrarily large initial data was first proved in [BV1] and, in-
dependently, by AGemi [A]. In reference [BV1] a central role is played by the
operators curl and divergence. These also play a central role in SCHOCHET’S
paper [S1], where the author proves the existence of the solution in the general
case p = p(p, s) and also studies the incompressible limit. These results were
extended to a class of first-order hyperbolic systems in [S2]. Reference [BV1]
treats fluids in bounded domains. Reference [BV35], by following similar ideas,
treats the case 2 = R3. While it is not necessary to assume that the velocity
field v(¢, -) is square-integrable over R3 (see [BV5]), this assumption will
nevertheless be made here for convenience and simplicity.

Finally, we call the reader’s attention to the references [BV7] and [BV8]
where the results proved below are extended to spaces HY(2), k= 3, and to
non-barotropic fluids. Recently, I also obtained similar results for fully
nonlinear hyperbolic mixed problems.

* Yior the existence theorem for the Cauchy problem see [K, KM1, KM2].
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2. Notation

Here N denotes the set of positive integers and R* the set of positive
reals. We set R} = RZxR* and I" = R?*X{0}, and let v = (0, 0, 1) be the unit
normal vector to /. We denote by z a generic point in R It is convenient
to use distinct notations for the tangential directions z,, z, and for the nor-
mal direction z;. For that reason we write z = (y, x} where y = (yy, y;) =
(zy, 7o) and x = z3.

Functions will be defined for the most part on R3. For that reason the
symbol RY will be dropped from the usual notation. For instance, L? denotes
L*(R3), and so on. We define Hj as the closure of C5° in H' and we set
% = H* ~ H} for ke N. Note that Hf is not the closure of C° in H*. We
also use the abbreviated notation { F to denote integrals over R3.

We set 9, = 8/{dt and @, = 8/dz;, i =1, 2, 3. The symbol 3, denotes either
of the derivatives @, or d,. As usual, 3% = d{"05205* where a = («ay, oy, a3)
is a multi-index. We also set (v-V)w = XZ7_; v;(3;w).

The norm in L?, p€[l, +], is denoted by |-|,. The norm in L? is

however denoted in general by |f-|. Furthermore,
D% = D Hocul? lulli= D Houl? |Du|i= R
<k+1

jo|=k |a|=k I<|e|

For T > 0, we define Qr = [0, T} xR3 and 37 = [0, T xTI. For brevity we
set

Cr(H*y = C([0, T1; HY),  LE(H*) = L*(]0, T[; HY),

and so on. The canonical norms in the above two spaces are denoted respec-
tively by |- ||, 7 and |||- |||x,7- The norm in Cr(Q) is denoted by |- |, ;. These
notations and others in the sequel will be used both for scalar and for vector
fields.

Given an arbitrary function f(¢, z) we denote by f(¢), for each fixed ¢, the
function f(z, -).

If X and Y are Banach spaces, -#(X, Y) denotes the Banach space of
bounded linear operators from X into Y. Moreover, . (X) = Z(X, X).

Finally, for estimating norms of products of functions we shall use the
well-known embedding theorems of Sobolev without explicit mention. In par-
ticular, we recall that

H*o L® and H'- L°n~IL? < L4,

3. Main Results

The initial-boundary problem for barotropic motion of a compressible in-
viscid fluid obeys the following equations (see for instance [Se, Sections C.I




112 H. BrIRA0 DA VEIGA

and E.I, I1] and [Sd, IV, Section 1]),
plow+ (v-V)vl+Vp(p) =0 in Qr,

d,p+V-{(pv) =0 in Qr,
3.1
G- v-v=0 on X,
v(0) = v, p(0) = py,

where v is the velocity field, p the density and p the pressure. The function
p:RT > R is given and assumed to be of class C* with p’(s) > 0 for all
s€RY. We denote by o a fixed positive constant, the value of the density at
infinity. We set H, ={p:p — o € H*} and we define for each fe H2,
m(f) = inf £(2).
ZG[R+

In equation (3.1) we assume that the initial data satisfy the following assump-
tions: '

(3.2) weH?, w-v=0 onl, p€eH: m(py) >0,
together with the compatibility conditions
(3.3) . po=0, [V (p)l =0 onl[.

For the following result see [BVS5, Theorem 1.1] and also [BV1].

Theorem 3.1. Under the above hypotheses, there are two positive constants T and ¢
(which depend only on the quantities || vy |3, | Po — o3, and m(pg)), such that
there exists a unique solution (v, p) of problem (3.1) in the class of (v, p) satisfy-
ing v, p— o€ Cr(H?). Moreover,

3
(3.4) E G ofvls—jr+ 18/ (p — )sp) = c.
=0

The constants ¢ and 7 also depend on the value of the constant ¢ and
on the particular function p(-), but this dependence is not taken into account
since ¢ and p(-) are fixed once and for all. It is worth noting that an upper
bound for ¢ and a lower bound for T depend only on upper bounds for the
norms ||v; and |po — oz and on a lower bound for m(py). Finally the
estimate (3.4) is equivalent to the estimate for j = 0, since the estimates for
j=1,2,3 then follow from the equations.

Now we state the main result of the paper.

Theorem 3.2. Let vy and pg satisfy the assumptions (3.2) and (3.3) and let (v, p)
be a solution in Qr of problem (3.1) for some Ty > 0. Let (vg, pg)s n€N, be
a sequence of initial data satisfying the hypotheses (3.2) and (3.3). Denote by
(v,, py) the solution of problem (3.1) with initial data (vg, po) and assume that

(3.5) ,}Hg (lvg —volls + 1|26 — polls) = 0.
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and E.IL II] and [Sd, IV, Section 1]),
pldw + (v-V) ol + Vp(p) =0 in Qr,

3p+V-(pv) =0 in QOr,

3.1) v-v=0 on 27,

v(0) = v, p(0) =po,

where v is the velocity field, p the density and p the pressure. The function
p:Rt = R is given and assumed to be of class C* with p’(s) >0 for all
s € Rt. We denote by ¢ a fixed positive constant, the value of the density at
infinity. We set H, ={p:p — o€ H’} and we define for each fe Hj,

m(f) = inf f(z).

Z€ [R+

In equation (3.1) we assume that the initial data satisfy the following assump-
tions:
(3.2) weH?, w-v=0 onl, py€H;, m(po) >0,

together with the compatibility conditions
(3.3) 0,.00=0, 8I[V: (pw)l =0 on .
For the following result see [BVS, Theorem 1.1] and also [BV1].

Theorem 3.1. Under the above hypotheses, there are two positive constants T and ¢
(which depend only on the quantities ||vo fls, || 0o — allz, and m(pg)), such that
there exists a unique solution (v, p) of problem (3.1) in the class of (v, p) satisfy-
ing v, p— g€ CT(HB). Moreover,

3
3.4 Y7 ofvlls—yr+ 1197 — o}s-;1) S c.
i=0

The constants ¢ and 7 also depend on the value of the constant o and
on the particular function p (-}, but this dependence is not taken into account
since ¢ and p(-) are fixed once and for all. It is worth noting that an upper
bound for ¢ and a lower bound for T depend only on upper bounds for the
norms |v s and || po — ol and on a lower bound for m(p). Finally the
estimate (3.4) is equivalent to the estimate for j = 0, since the estimates for
j=1,2,3 then follow from the equations.

Now we state the main result of the paper.

Theorem 3.2. Let vy and pg satisfy the assumptions (3.2) and (3.3) and let (v, p)
be a solution in Qr, of problem (3.1) for some Ty > 0. Let (vg, p3)s nEN, be
a sequence of initial data satisfying the hypotheses (3.2) and (3.3). Denote by
(v,, p,) the solution of problem (3.1) with initial data (vf, p3) and assume that

(3.5) 332 (| v6 —wolls + |26 — Poll3) = O.
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Then for sufficiently large values of n, the solutions (uv,, p,) exist in Qp and
. 3 '
(3.6) ,}Lrg Z (” o (v, — U)”s—j,TD + “ 3 (p, _p)”2—j,To) = 0.
j=0 a

It is convenient to make the change of variables g = log(p/s) and to in-

troduce the function A(s) =p’(ge’), for s€ R. Clearly k€ C*(R; R*). The
equations (3.1) are then equivalent to

v+ {v-V)v+h(g)Vg=0 in Qr,
dg+v-Vg+V-uv=0 in Qr,
(3.7)
v-v=0 on 2,
1.)(0) = g, 3(0) = £o»

where, by definition, go(z) = log(py(z)/a). Th?"assumptions (3.2) and (3.3)
become

(3.8) w€H>, wv-v=0 onl, gyeH?,
and
(3.9) d80=0, Ofv- Vgo+V-5l=0 on I.

It is easy to verify that Theorem 3.1 is equivalent to the following result (see
[BVS, Theorem 1.2 and corollary]).

Tht’:().rem 3.3. Let vy and gg satisfy the assumptions (3.8) and (3.9). There exist
positive constants ¢ and T, universal with respect to bounded sets of initial data,
such that there is a unique solution (v, g) of problem (3.7) in Qr with

3

(3.10) E (I arjv”3—j,T+ [ dg ls_jr) = c.
j=0

Remark. We say that T and a positive constant are universal with respect to
bounded sets of initial data if a positive Jower bound for 7 and an upper
bound for ¢ depend only on upper bounds for the norms |5 and || go -

Now let (v, g5) be a sequence of initial data satisfying the conditions
(3.8)" vEeH?, Wi-v=0 ronl, gheH?,
(3.9)" 3.£6=0, 0.Jvy-Vgig+V-v5l=0 on I.

The next result, which is equivalent to Theorem 3.2, will be proved in the
following sections.

Theorem 3.4. Let (vy, g8o) and (vg, go), n€WN, satisfy the assumptions (3.8
(3.9), and (3.8)", (3.9)", and let prions G5

(3.11) lim (2§ — volls + 185 — golls) = 0.
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Moreover, let (v, g) € Cr, (H?) be a solution of (3.7) in Or, for some Ty > 0.
Then for sufficiently large values of n the solutions (v,, &,) of the problems

a;'U,? + (vn' v) Uy + h(gn) vgi’i =0 1n QT:
3.7)" 9,8, + v, Vg, +V-u,=0 in Qr,
v, -v=0, on 2,

1.(0) =05,  8:(0) = &0
exist for T = T,. Moreover
3

(3.12) lim Y3 (18/(0, = 0)lls—jr + 1818 = )y, 1) =0
j=0
Note that by Theorem 3.3 there are positive universal constants ¢ and 7

such that the solutions (v, p) and (v,, p,) of problems (3.7) and (3.7)" exist
on Qr and respectively satisfy (3.10) and

(3.10)" E (Il 8va 13— + | g, l3—;,1) = c.

j=0
Theorem 3.4 will be proved for the above choice of T (more precisely, for some
universal value of T). Then a bootstrap argument easily shows that the result
holds on [0, T,], since by a continuation argument the solution (w, p) exists
in [0, Ty + 6] for some ¢ > 0.

Generic positive universal constants (see the definition above) are denoted
by the symbol c¢. Thus the value of ¢ or of ¢, ¢;, etc., may change from
relation to relation. Note that || 8/v,|;;r and | 3/gnll3-j,r can be replaced in
the “‘right-hand sides’” of various estimates by constants c.

We denote by A, the positive constant ky = h(0) and for convenience, we
set

(3.13) ) l_(I, x) :h[g(t: JC)], ln(r: x) :h[gn(t’ X)],

| .l(r, x) = I(t, x) = hy, L(t,x)= i,,(r, x) —

Since |ga(t, z)} = ¢ for all (7, z) € @r and for all €N, and since A(-) is a
positive C* function, it readily follows that

(3.14) e lsl(t,z)sc foral (4 z)e0r
and that 3
(3.15) E 0/L,l5-jr=c.

j=0

4. Weak Continuous Dependence on the Data
Lemma 4.1. Let the hypothesis of Theorem 3.4 hold. Then
2
(4.1) ,}Eﬁ E 18/ (v — vu)llajr + [187(8 = 82—, 1) =0,
j=0

(4.2) hm E |8/t —1 )“2—]7'—
j=0
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Moreover, let (v, g) € Cr (H 3y be a solution of (3.7) in Qr, for some Ty > Q.
Then for sufficiently large values of n the solutions (v,, g,) of the problems

atvn + (vn' v) vy, -+ h(gn) vgn =0 in QT:
(37)n argn + Uy vgn + V- Up = 0 in QT:
v, -v=0, on2r

v,(0) = ’I)g, g,(0) = gg
exist for T = Ty. Moreover

3 r
(3.12) m Y7 (197 (o = 0)la—yr + 18180 = 8)la—ir) = 0.
j=0

Note that by Theorem 3.3 there are positive universal constants ¢ and T
such that the solutions (v, p) and (w,, p,) of problems (3.7) and (3.7)" exist
on QO and respectively satisfy (3.10) and

3

(3.10)" E (| 87, ll3-j + 1 378alls—s,1) = c-

j=0
Theorem 3.4 will be proved for the above choice of T (more precisely, for some
universal value of 7). Then a bootstrap argument easily shows that the result
holds on [0, Ty], since by a continuation argument the solution (v, p) exists
in [0, T, + 6] for some J > 0.

Generic positive universal constants (see the definition above) are denoted
by the symbol ¢. Thus the value of ¢ or of ¢y, ¢, etc., may change from
relation to relation. Note that §|d/v,|3—;7 and ||6/g,|s—;r can be replaced in
the ‘‘right-hand sides’> of various estimates by constants c.

We denote by kg the positive constant hy = £(0) and for convenience, we

sct

(3-13) 7__l_(rs x) =h[g(t, X)], in(t, -x) zh[gn(f, X)],

(2, x) = 1(t, x) —hg, (8, x) = 1,(t, x) — ho.

Since | g, (% z)| = ¢ for all (4, z) €0Qr and for all ne N, and since A(-) is a
positive C> function, it readily follows that

(3.14) clsl(t,y=sc foral (2)€0r
and that 3
(3.15) E 8¢ 1,37 = c.

j=0

4. Weak Continuous Dependence on the Data

Lemma 4.1. Let the hypothesis of Theorem 3.4 hold. Then
2

(41) 111'2 E (H atj(v - vn)“Z—j,T + ” ai](g - gn)ul—j,T) = 0;
j=0 )
(4.2) lim Y7 6/ = b)la—jr = 0.
j=0
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Proof. We start by showing that

(43) F}Ln; (”’U = Uy HO,T + ”g ~ 8n ||0,T) = 0.

We fqrm the difference between the equation (3.7)] and equation (3.7),
multiply each side of the equation obtained by v, — v and then integrate the
result over RY. The same operations can be carried out for equations (3.7)5
and (3.7),, with the multiplier now being I(g — g,). After this process we
add the two equations thus obtained. Straightforward calculations then yield
the estimate

2seflo—ul’ ?

d .
v —wl+ iz - + g — &

for each t€[0, T]. Since [ = ¢ > 0 on @ and since
|2

Jlo =%+ I]g — g]* = clvo — v5]1 + g0 ~ 851I*)

for t = 0, it readily follows that
lv — w57+ 18 — gallor = ce(lvo — v§]* + [ g0 — &6

This gives (4.3). Since ||- [y = ¢ |- I3 |- 147, it next follows that v — v,||3 7 +
lg — g3, tends to zero as n tends to infinity. By using the equations (.7)
and (3.7), to express the derivatives with respect to ¢, we then obtain con-
dition (4.1). Straightforward calculations finally yield (4.2); note that
1nW(g) —h M (g)| = clg — gl for k=0, 1,2.

5. An Equivalent Formulation of the Main Equations

Here we introduce the system of equations
W+ (v- V)~ (- VIv+ (Vo) (=0,
(3, +v-V)2g = V- (h(g) Vg) = Z(3) (9v1),
5.1) —V.-v=20,g +v-Vg,
Vxv={ in Qp;
vov=0, d,8=0 on 2

£(0) =0o,  8(0) =g, 3:8(0) =g, V-v(0)=V-yg
where vy and gy satisfy (3.8) and (3.9), and where, moreover,
(5.2) fo=VXuvy, gr=—(vp Vgo+ V-1p).
From equation (3.9) it follows that

(53) ' axgo = axg1 =0 on [,
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which are just the compatibility conditions for the system (5.1). One easily
checks (see Appendix) that a pair (v, g) is a solution of problem (3.7) if and
only if (¢, v, g) is a solution of (5.1). Hence the two systems are equiva-

lent. Clearly, a pair (v,, g.) 1s a solution of problem (3.7)" if and only if
(&, vny £,) 1s @ solution of

3,0+ (0, V)G — (G- V) o+ (Ve,) §, =0,
(8 + v, V)P gn — V- (h(8,) V&) = 23wy, )) (950,,0),
—V- v, = 8,8, + vy Ve,
VxXv, =¢, in Qp;
v,-v=0, 0d,g,=0 on 2p;

((0) =5, 8.(0) =g4,  8,8,(0) = g1, V-1,(0) =V,

where

(5.2)" {o=VXwvy, g1=—(vg Vgo+ V-0p).
Clearly,

(5.3)" d,20=0.21=0 or I.

Note that by (3.11)

(5.4 lim (|8 — Loll3 + 188 — soll + [l8T — &1]|) = 0.

Remark. By working directly on the system (3.7) one obtains L? and H'!
energy estimates for the solution (v, g); see [BV2]. Higher-order interior
estimates can be obtained as well, since derivatives satisfy equations similar
to that satisfied by (v, g). Tangential higher-order estimates hold up to the
boundary since the condition »; =0 on 27 yields corresponding boundary
conditions for tangential derivatives. This last argument fails for normal
derivatives. A classical alternative device is to express, near the boundary, the
normal derivatives d,v;, 8,1, 0,03, d,g in terms of the other first-order
derivatives. For system (3.7) this device fails since the 4 X4 matrix that should
allow us to solve {algebraically) this system for the above four normal
derivatives has rank 2 on 2. These obstacles can be overcome by using the
system (5.1). In fact, (i) The second-order equation (5.1), can be solved
algebraically (near the boundary) for 8% g, since the corresponding coefficient
in that equation does not vanish near Z7. (ii) For equation (5.1); there is no
substantia! distinction between boundary and interior estimates, since neither
boundary nor compatibility conditions are prescribed for this equation.
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which are just the compatibility conditions for the system (5.1). One easily
checks (sce Appendix) that a pair (», g) is a solution of problem (3.7) if and
only if (¢, v, g) is a solution of (5.1). Hence the two systems are equiva-
lent. Clearly, a pair (v, g,) is a solution of problem (3.7)" if and only if
(L, Vs 8n) is a solution of
atCn + (Un' V) Z:n - (é’n v) vy + (v rUn) Z:n = 0,
(at + Uy v)zgn - V- (h(gn) vgn) = ‘Z"(aivn,j) (ajvn,i)s
—V- Uy :91‘&1 + Uy vgu:
V X Uy = Cn in QT;

v, v=0, 0,8,=0 on 2r;

£,(0) =8, 8,(0) =gg, 9,8,(0)=g1, V-v,(0) =V,

where

(5.2)" (§=Vxog, gi= —(vg- Vgg+ V-up).
Clearly,

(5.3)" 0,86=0.81=0 or[I.

Note that by (3.11)

(5-4) lim (|28 = ollZ + 185 — goll3 + 181 — &1]12) = 0.

Remark. By working directly on the system (3.7) one obtains L? and H'
energy estimates for the solution (v, g); see [BV2]. Higher-order interior
estimates can be obtained as well, since derivatives satisfy equations similar
to that satisfied by (v, g). Tangential higher-order estimates hold up to the
boundary since the condition »3 =0 on 27 yields corresponding boundary
conditions for tangential derivatives. This last argument fails for normal
derivatives. A classical alternative device is to express, near the boundary, the
normal derivatives 0,v;, 8,72, 9,v3, ;¢ in terms of the other first-order
derivatives. For system (3.7) this device fails since the 4 x4 matrix that should
allow us to solve (algebraically) this system for the above four normal
derivatives has rank 2 on Zy. These obstacles can be overcome by using the
system (5.1). In fact, (i) The second-order equation (5.1), can be solved
algebraically (near the boundary) for d%g, since the corresponding coefficient
in that equation does not vanish near 2r. (i) For equation (5.1) there is no
substantial distinction between boundary and interior estimates, since neither
boundary nor compatibility conditions are prescribed for this equation.
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6. Some Auxiliary Results

The aim of this section is to prove Theorem 6.3. We start by recalling some
results for the mixed problem

(3, +v-V)2¥W-V-(IV¥)=F in Qr,
,¥=0 on 2r,
Y(0) =%, 94¥(0)=Y¥,

(6.1) |

where |0/l]s_;r= ¢ | djvls_jr=<ecfor j=0,1,2; v-v=0 on y; and
c =l x)y=1(t;x) + hy.

Note that the pairs (v, I) and (v,, /,), n € N, defined in the previous section
satisfy these estimates uniformly with respect to n.
We assume that

(6.2) P, eH?, W, ¢H', 4% =0onT,
(6.3) FelLi(HY).

The following results were proved in [BV5, Theorems 3.1 and 3.2].

Theorem 6.1. Under the hypotheses (6.2) and (6.3), there exists a sufficiently small
“universal’’ constant T such that
1

(6.4) Y 13213 sr= cll lli +EA 0T+ HIFIITD
j=0

Theorem 6.2. If (6.2) and (6.3) are replaced by the stronger hypotheses

(6.5) Y, eH?, W eH?;, 3% =0% =0 onT,
(6.6) FelL%(H*), 98FeLi(H",
then

2
67 Y N6/ 3-sr= e Poli +IEE +IFOUT +IIFNZ + l16.F 10
j=0

For convenience we assume from now on that 7 < 1. Consider the systems
(3 +v-V)?¢— V- (IV¢) =f in Qr,
(6.8) d,9=0 on 2y,

¢ (0) =¢9, (3,¢0)(0) = ¢y,
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and
(ar + vy v)2¢n - V- (Zn VQSH) :fn in QT:
(6.8)" ¢, =0 on Xy,
6:(0) = 8,  3,6,(0) = ¢!

(fOI' ne "\J), where 9503 qngHz’ qsls ¢TEH1’ axd)() = ax(bg =0 on f', and
f, f,€L3(H"). Suppose that, moreover, |¢5l, s ¢, |¢1i=c I fillir=o
l8:fulllo.r = ¢, uniformly with respect to n. Here, I =h(g), I, = h(g,), and
the couples (v, g), (v,, g,) are the solutions of (3.7) and (3.7)", respectively.
Actually, we shall use only the properties (4.1), (3.10) and (3.10)" (for
j=0,1,2), and the tangency of the vectors v and v, to the boundary. The
existence of the solutions ¢ and ¢, of problems (6.8) and (6.8)" is guaranteed
by Theorem 6.1. Finally, we assume that

6.9 lim (65— oz + [ ¢1 — é1D) = 0.

The remainder of this section is devote_d to proving Theorem 6.3, a result
which establishes the strong continuous dependence of the solution of the
hyperbolic equation (6.8) on the coefficients,

Theorem 6.3. Under the above hypotheses, to each & > 0 there corresponds a
positive constant C{g) such that

(6.10)
!
Y 10/(bn— N3 jrsce+ciob — ¢ol3 + |7 — d1lID)
j=0
+ell f = FllEr

1
e ( 3 11240 = 013 yr + s — tm%,,-) .
j=0

Corollary 6.4. Under the above hypotheses, to each &€ >0 there corresponds an
integer N = N{¢&) such that

I
Y 19 (bn — OM3-jr=ce+cllfu—fllir for nzN(e).
j=0

Proof. Let ¢ >0 be given and fix ¢§€ H>, ¢Se€ H?, f,eL%(H?) such that
3, f. € LA(H"Y, 0,65 = 3.¢5=0 on I, and also

|68 — ol + 165 — eullT + Il £ = 11
Consider the solution ¢, of the problem
(0, +v-V)2¢, — V- (IVd,) =f, in O,
a0, =0 on Zp, ¢.(0)=¢g 9,6.(0) = .

%,T< E.

(6.11)
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and
(ar + Uy v)qun - V- (in v¢n) zfn in QT:

(6.8)” axqbn =0 o1 )-_“Ta
$,(0) =5, 9,9,(0) = 7

(fOI' ne€ n\l), where ¢03 ¢SEH2, qbl, (b?EHI, axd){}z thbE:O on F, and
f, f,€L%(H"). Suppose that, moreover, 95l = ¢ |dili=c | fullirsc
118, fulllo,r = ¢, uniformly with respect to n. Here, I =h(g), I, =h(g,), and
the couples (v, g), (v,, &) are the solutions of (3.7) and (3.7)", respectively.
Actually, we shall use only the properties (4.1), (3.10) and (3.10)" (for
j=0,1,2), and the tangency of the vectors v and v, to the boundary. The
existence of the solutions ¢ and ¢, of problems (6.8) and (6.8)" is guaranteed
by Theorem 6.1. Finally, we assume that

6.9) lim (5= ¢oll3 + [ 61 — 11D = 0.

The remainder of this section is devoted to proving Theorem 6.3, a result
which establishes the strong continuous dependence of the solution of the
hyperbolic equation (6.8) on the coefficients.

Theorem 6.3. Under the above hypotheses, to each & >0 there corresponds a
positive constant C(&) such that

(6.10)
1
Y 18/ (b — SM3-sr=ce + el 66 - doll2 + 6% — ¢4
j=0
+e|ll fo = Fllir

+ C2e) ( Y 118/ = ol -5+ e = zm%,T) .

Corollary 6.4. Under the above hypotheses, to each & >0 there corresponds an
integer N = N(g) such that

1
Y 10/ (bn ~ $M3-jrsce+ell fu = fllir for nzN(e).
j=0

Proof. Let £ >0 be given and fix ¢5€H°, ¢5€ H?, f,€L¥(H?) such that
3,f, € LA(H"), 9,6§ = 3,97 =0 on I, and also

68— doll3 + 16T — allT + e = fllITr<e.
Consider the solution ¢, of the problem
(9 +v-V)2¢, = V- (IVe;) =f; in Or,

(6.11)
9., =0 on Zpr, ¢.(0) =¢§, 9¢.(0) = ¢f.
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By applying Theorem 6.2 to this system we get

2
(6.12) 2 1060550 = C*(e),
where =

C2e)y=c(| o553 + [ 6515 + | L ONF Hl £ 157+ 8. 512 0.

Next we estimate ¢, — ¢.. By taking the difference between equations (6.8)"
and (6.11), we get

(6.13), (8, + v,- V)? (b — &) — V- [V (9, — ¢:)] = F,
where |
Fp= —(0, + v, V) [(v,, —v) - Vo] — (v, — v)- V(0,0 + v - Vg,)
+ V- [(ln "" l) v¢s] +fn _fa-
Moreover,
0 (Pp— ) =0 on 27, (d,— ) (0) =d5—§, 9,(d,— ;) (0) =T — 5.

Now we apply Theorem 6.1 to the solution ¥ = ¢, — ¢, of problem (6.13),.
Let us estimate F,. For each r€[0, T] one has !

IF = 11€8 + 00 V) (0 = 0|y [ Vel +1lvn — vlla (8 + v, V) Ve ||,
o= 0|3 8. + v Vel + 10— U N bells + 11 fo = Fellr.
By using (6.2) we readily see that

‘ 1
AT ( 13/ oy — Dz + 1, —1||2) Ty
j=0

(Here we denote products of ¢ and C(g) by the same symbol C(¢).) Hence,
(6.14)

T, 1 . T
IR = €@ [ (L 1970 = 0l + 11, = 1) ar+ §1L £, =115 ar
j=0 0

Consequently, by applying (6.4) to ¥ = ¢, — ¢,, we get
(6.15)%

1 |
Y 16/ (b~ @37 = clll o6 — 515+t — ¢T1T + Il fu = £ )13 D)
Jj=0

1

+ @) ( 3 107 = )3y + 1k — 1 |) .
j=0

Instead of estimating. ¢, — ¢, by taking the difference between equations
(6.8), and (6.11), we estimate ¢ — ¢, by taking the difference between equa-
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tions (6.8) and (6.11). This yields

1
615° Y 18/(d — b3 srs clldo— 8113 + 61 — ST+ 1S~ Llllin)-

i=0
From (6.15)¢ and (6.15)° we get
(6.16)

1
E 18/ (¢, — N5 r=c¢o— o813 + || ¢ — o 12+ =705
=0

+c(od— doli + 17— i+ fu = FlIED

1
NIt ( 3 1800 = D3sr+ ke = z|||%,T) .

j=0

This proves Theorem 6.3. Corollary 6.4 follows immediately from (6.10), in
view of (6.9) and Lemma 4.1. [

Theorem 6.6. Let n€ N. Assume that v and v, satisfy (3.10) and (3.10)" respec-
tively, that v-v =v,-v =0 on Zr, that f, f, are uniformly bounded in L3(H?),
and that {y and (3 are defined as in (5.2) and (5.2)". Let { and {, be the solu-
tions of the systems

- (6.17) L+ (- VY{=Ff in Qr, {(0) =1,
(6.17)" 8,0+ (0, V= fy in @, £u(0) = (o,

respectively. Then, to each ¢ >0 there corresponds a positive constant C(g) such
that .

(6.18)
”C - Cn”%,T = ce + C[” {o — an% + |||f"fn“|%,T+C2(8)mv - vn”'%,T}-
Corollary 6.7. Assume that the hypotheses of Theorem 6.6 hold, that v — v,

satisfies (4.1), and that |[{o — {5l = @ as n— oo Then, to each & > 0 there
corresponds an integer N (&) such that

(6.19) 10— Clirsce+clif—fullir for nzN(e).

Proof of Theorem 6.6. From [BV5, Lemma (5.1)], if ¢ is the solution of the
problem

(6.20) 3+ (w-VYé=Fin O, <&(0)= &,

where we Cp(H?), w-v =0 on 2y, FeLHY, Eye HY (for k=0, 1, 2, or 3),
then-

T
€7 = (” Eollx + é | F () df) exp(clwls,r T).
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tions (6.8) and (6.11). This yields
(6.15)° )i‘; 18§(¢ — $2)l3-sr s cldo — 9813 + 1101 — #5IT + Il £~ Lelllin)-
j=0
From (6.15)% and (6.15)° we get
(6.16)
i 187 (b — D)3—jr = clli o — #6153 + ldy — oi 11T + I F = FelliiD

i=0

+c(lof— doll3 + 67— eI+ WS —FliILD

1
+ @ (L ol = 9+l - 1l3r)
j=0

This proves Theorem 6.3. Corollary 6.4 follows immediately from (6.10), in
view of (6.9) and Lemma 4.1. [

Theorem 6.6. Let n € N. Assume that v and v, satisfy (3.10) and (3.10)" respec-
tively, that v-v =v,-v =10 on X7, that f, f, are uniformly bounded in L3(H?),
and that ¢y and 3 are defined as in (5.2) and (5.2)". Let { and {, be the solu-

tions of the systems

(6.17) 3L+ (w-VY{=f in Qr, {(0) =1,
(6.17)" 3,0+ (0 V) =fn in Qr, §(0) =0,
respectively. Then, to each £ >0 there corresponds a positive constant C(g) such
that ‘
(6.18)

1¢ = Cl2rsce + clllto— GBI+ f = Full3r + @ lllv — valliZo-

Corollary 6.7. Assume that the hypotheses of Theorem 6.6 hold, that v — v,
satisfies (4.1), and that | {o — (8|l > o as n-—>co. Then, to each &¢ >0 there

corresponds an integer N (&) such that
(6.19) ¢ = Gl3r=ce+cllf—fullar for nzN().

Proof of Theorem 6.6. From [BVS5, Lemma (5.1)], if £ is the solution of the
problem

(6,20) 3¢+ (w-VYE=F in Qr, £&(0) =4,
where we Cp(H?), w-v =0 on Ep, FeL}(H"), e H  (for k=0, 1,2, or 3),
then-

T
1 ler = (u ol + 17O dz) exp(clwisr )
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Hence, if T= 1 and ||w|3,7= ¢, one has

(6.21) 1ElIE 7= cW@eale + NFNIZD-
Consider the problem
(6.17), 8L+ (v VY =f 1in O, ((0)=1C5,

where (§€H?, feLF(H?), |6 — Glli <&l fi —flll5r< & The estimate
(6.21) applied to the solution {, of problem (6.17), shows that

(6.22) [ lia,r = C(e),

where C(&) = c(||{5lls + (Il fellls, ) -
By forming the difference between the equations (6.17)" and (6.17), we
obtain

at(Cn - é‘g) + (vn' v) (Cn - CE) = _[(vn - ’U)' v] C{;‘ +fn —fe'

Then by applying the estimate (6.21) for k =2 to {, — £, and by using (6.22)
one gets

623)° &~ Glbrs - GI3+ £ — felldr+ CH@) v — vll)3,1.
Hence,

624) 12, = Leldr= cll&o = G5+ = Fflllhr+ CHE) (v — v, l3.7)

| +ellgé = Glz + e = FlED-

Moreover,

16— Clgr=clldo— L8153+ Il F—fell3 1
Hence || — ¢,|3 7 is bounded by the right-hand side of (6.18). O
Remark. Alternatively, Theorem 6.6 can also be proved by using the method

of reference [KL] or by using the representation formulae (5.8), (5.8)"
together with Theorem 6.4 in [BV3].

7. Proof of Theorem 3.4
By applying Corollary 6.7 to the solutions ¢ and {, of equations (5.1}

and (5.1)7 we see that

”é’ - i:n”%,Té cE + ”I(C v) v — (Cn V) vy — (v 'U) 5 + (v Un) gn”I%,T
for n = N(g). Hence |

| 1{ = Gal3r = ce + clllv = v ll3,7-
On the other hand,

”’U — Uy ”%,Té C(”z: - Cn ”%,T'{' ”v (1) - vn)”%,T) v

Consequerntly,

lv=vllir=ce+c|V- (wv—v)|3r+ clllv— vlidr
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Assume from now on that T < (2¢;)~'. By taking into account equations
(3.7), and (3.7)5, we readily obtain

1
lv—vallfr=ce+c ), 1870~ g)liosr+ cllve — v]3,7-
j=0

Since ||v, — v]2,r— 0 as rn > o, we get the following result.

Theorem 7.1. To each & > O there corresponds an integer N{(&) such that
1
1) v—wnlirsce+c ), 18/(g—g)l3-r for nzN(e).
Jj=0
Now we return to equations (5.1) and (5.1)", namely

(3, +v-V)rg — V. (IVg) =2(8v) (9;v;) in Qr,

(7.2
) 8,2=0on 3y, g(0)=gy 83g(0) =g,
and
(3 + v V)2 g, — V- (1,Vg,) = Z(8;v,) (3v,;)  in O,
(7.2)"

axgn =0 on ZT: gn(o) - gga atgn(o) = grl!s

where the initial data satisfy equation (5.4). For each tangential variable y, we
apply the differentiation ‘operator d, to the above equations. Putting d,¢ = g,,
we obtain from (7.2) that

(8 +v-V)g —V-(Vg)=f i Qr,

O hg)=0o0n 2 g0 =dg, 050 =da,
where
(7.4) f=—38,(d,v- Vg) — (3yv) - V(3g +v-Vg) —v-V(dv  Vg)
+22.(3,8,v)) (3;v;) + V- [h'(g) (d,8) Vgl.
From equation (7.2)" we get

(at + Y- v)zgn,y - V- (Invgn,y) zfn on QT:

7.3)" "

T gy =0 00 31, 21,(0) =088, 8,,(0) = By81,

where :

(7.4)" f, is obtained by replacing v and g in the right-hand side of (7.4)
by v, and g,.

Straightforward calculations show that | f,{l;,7 = ¢ and {|4,f,|lo,r = c.
Moreover,

(7.5) 1 _ '
£y =T = ¢ Y 18/ (1) — v (D3, +]18/ (e (1) — g N3

j=0
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Assume from ﬁow on that T < (2¢;)~}. By taking into account equations
(3.7), and (3.7)5, we readily obtain
1

”'U — Un ”%,Té ce+ ¢ E “ atj(g - gn)“%——j,T+ c”'”n - 1)“%,]-.
j=0

Since f{v, — vl 7= 0 as n— oo, we get the following result.

Theorem 7.1. To each & > 0 there corresponds an integer N{(g) such that
1
7.1 Jv—ulirsce+c ) 9/~ gMiyr for nzN(e).
j=0
Now we return to equations (5.1) and (5.1)", namely

(8, +v-V)2g — V. (IVg) = 2(3v) (8v) in Qr,

7.2
72 3,g=0on 27, g(0)=g, 3g(0)=g,
and
(8, + v,- V)zgn -V (vagn) = Z(aivn,j) (ajvn,,‘) in Qr,
(7.2)"

axgn =0 on ZT: gn(o) = gg: argn(o) - 8?,

where the initial data satisfy equation (5.4). For each tangential variable y, we
apply the differentiation ‘operator d, to the above equations. Putting d,g = g,,
we obtain from (7.2) that

(3, +v- Vg, —V-(IVg) =f in Qr,
(73) ax(gy) =0 on ZT! gy(o) = ang: atgy(o) = aygl,

where
(7.4)  f= -0, Vg) — () V(d,g +v-Vg) —v-V(3v-Vg)
+23(3,;0,v) (8;0) + V- [h'(g) (3y8) Vgl.
From equation (7.2)" we get .

(8; + vy v)zgn,y - V- (vagn,y) =f, on Qr,

(7.3) Bx(gn,y) =0 on 27, gn,y(o) = 3yg8, argn,y(o) = aygl,n’
where |
(7.4)" f, is obtained by replacing » and g in the right-hand side of (7.4)
by v, and g,.
Straightforward calculations show that || f,[|,r = ¢ and ||3,f, ]lor = .
Moreover,
(7.5)

1
LA — £ e Y (18 (0(0) = mE; +]19/ (e (1) = g.(DIF-).-
j=0
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Finally, by applying Corollary 6.4 to the solutions ¢ =g, and qb,, &ny Of
equations (7.3) and (7.3)", we obtain

2
(7.6) g —gllir+ Y I18:g = sll5r

i=1

1
sce+c Y, (197w =v)ll5r+ 10/ — glll5-7) -
j=0 |

Here the first term on the left-hand side of (7.6) comes from an application
of Corollary 6.4 to the solutions ¢ = g and ¢, =g, of equations (7.2) and
(7.2)", respectively.

Next, by using differentiation with respect to t instead of with respect to
y, we get equations similar to (7.3), (7.3)", (7.4) and (7.4)", with y of course
replaced everywhere by ¢ Here, the initial conditions for g, =4d,g are
g:(0) = g; and 8,8,(0) = g,. An explicit expression for g, in terms of vy, gg, &
is obtained from equations (3.7); and (3.7),. Similarly, one gets initial condi-
tions g,,(0) = g and 9,g,,(0) = g3, and an explicit expression for gj. Note
that ||g» — g5||; » 0 as n — c. As above, we show that

(7.7) lg — g 3.7 +10:.(e — g)lar+ |02 (e — &) |37

is bounded by the right-hand side of (7.6) plus an additional term
c[8*(v» — v,)||37. By adding this last estimate to (7.6), we obtain, for
nz N(eg),

2 2
(7.8) g —galir+ Y laite ~glir+ ) 116/(s — gl5-s7

i=1 j=l1

2 1
scet+c E |67 (v — vn)|||%—j,T+ ¢ E l|6/(g — 8;1)“|%—j,T°

j=a j=0

Finally, we want to estimate || 82(g — gn)llo T (see [BVS] for similar calcula-
tions). We start by deriving expressions for d2g and d%g, near the bound-
ary 1.

Consider the coefficient of d2g, in equation (7.2)%, namely —(I, - v3 n)-
Since fjv,|sr<c, it follows that v, is Lipschitz continuous on R2, uni-
formly with respect to n and ¢ Moreover, v;, =0 on 27. Consequently
|v3.,(t, ¥, X)| = c;x on Q7. On the other hand 1,(t,z) = ¢g' on Qr. Hence
there are constants ¢ = 2cqc, and ¢ = 2¢, such that

L —vi,zclon E=(0,T)xS for neN,

where S is the strip §={(y, x) :0 < x < ¢5'!}. Consequently, equation (7.2)"
yvields an expression for d2g, on E. By taking the derivative of this expression
with respect to x, we then obtain a relation for dg, on E. Similarly, (7.2),
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yields on the set E the relation
dig=(I—v})"" {a%g +0,(v-Vg) + v (V d8)

2

2
-+ E v,-al-(v ’ Vg) + v3ax ( E v,-a,-g) + 1)3(311)3) (axg)

i=1 i=]
— I(d%g + 038) — VI- Vg — Z(3;v) (ajv,-)} .

By differentation with respect to x we get an expression for dlg on E. Clear-
ly, this exression is the same as that obtained for d2g, if one simply replaces
v,, 8, and I, = h(g,) by v, g and = h(g) respectively. Next we form the dif-
ference between 43g and d2g, and estimate its L2norm over S (for each ¢) by
comparing the difference between each single pair of homologous terms; here
estimates of the form |A”(g,) —7"(g)|» = ¢|g — g.|» are used at each place.
Trivial calculations now show that

1
1638 — 83gnllc sy = © ( Yo N8/ (w = v)llayr
j=0

P 2
£ Y100 = glir+ Y 10z - g,,>||z,r) .

Jj=1 i=1

Since ||v — v, |2, and [ 8,(v — v,)}j;,r tend to zero as n — oo, it follows that
there is an integer N(g) such that

(7.9)

2 2
1028 — 83galic,zsy = ce + Y, 13/ (g ~gwlls—jr + ¢ Y 101(g = gy

for n = N(g). ,
Finally, we estimate the L?-norm of d2g — dg, on R3\S. Fix a function
d€C®(R"), 0= d(x) =1, such that 3(x) =0if 0 s x = cy!/2 and d(x) = 1
if x = ¢3!, By applying the operator (3, +v-V)?— V- (IV) to the function
dg¢ and by taking equation (7.2) into account, we obtain
(8, +v-V)2(9g) — V- [IV(dg)] = HI[I, [, v, g] in Oy,
3,(9g) =0 on Zr, (dg)(0) =49gy, 9,(Ig)(0) = dg,
where H = 82(9;v;) (0;v;) + Hy and Hy[d, I, v, g] is the ‘“‘commutator”’
Hy= (3, +v-V)2(Jg) — 33, +v-V)?g — V- [IV(Ig)] + 8V - (IVg).

By taking derivatives with respect to x, we then get

: (3, +v-N2(g), — V- [IV(Ig),] =Gl I, v, g] in Qr,
(7.10) ‘

0,(9g)x =0 on Zr, (7). (0) = 0,(Jgo), 8,(Ig), (0) = 3:(Fg1),
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yields on the set E the relation
32g = (I— 3! {a?g + 3,(v-Vg) +v-(Vd,g)

2

2
+ Y ndi(v - Vg) + v38; ( ) viafg) + 03(3,v3) (9,8)

i=1 i=1
—[(d7g + 85g) — VI- Vg — Z(3;v)) (ajvi)} .

By differentation with respect to x we get an expresswn for 32g on E. Clear-
ly, this exression is the same as that obtained for d3g, if one simply replaces
v,, g, and I, = h(g,) by v, g and /= h(g) respectively. Next we form the dif-
ference between 32g and d3g, and estimate its L?-norm over S (for each ) by
comparing the difference between each single pair of homologous terms; here
estimates of the form |h”(g,) —h"(8)|w = c|lg — g.|» are used at each place.
Trivial calculations now show that

1
|63 — 03gnlic,resy = € ( Yo 187w — vl r

j=0

2 2
*‘E”@@"gMH¢r+ZHM@—€Mha-

Since ||v — v, |l 7 and ||8,(v — v,)|l,7 tend to zero as n — oo, it follows that
there is an integer N(&) such that
(7.9)

2 2
|82 — 33gullc,azesny = ce + Y, 18/(8 —gadls—jr + ¢ ) 01(g — &)z
J:l i=1

for n = N{¢g).
Fmally, we estimate the L2-norm of dlg — dlg, on [R+\S Fix a function

g€ C¥(RY), 0 < d(x) =1, such that 3(x) =0if 0 =x = ¢3'/2 and d{x) = 1
if x = ¢;'. By applying the operator (8, + v-V)? — V- (IV) to the function
dg and by taking equation (7.2) into account, we obtain

(8 +v-V)*(9g) — V- [IV(Ig)] = HIS, I, v, ] in O,
0,(9g) =0 on 2y, (Jg) (0) =dg, 9,(dg) (0) =dg,
where H = 82'(d;v;) (8;v;) + Hyp and Hy[?d, [, v, g] is the “‘commutator’
Hy= (8, +v-V)2(¥9g) — &8, +v V) g — V- [IV(Ig)] + 9V (IVg).
By taking derivatives with respect to x, we then get

(G4 v-V)2 (9~ V- 1Y) = GI9, L v, g in Op,
(7.10) '
ax(ﬁg)x:{) on ET’ (ﬁg)t (0) =6x(19g9), at(ﬂg)x(g) :ax(ﬂgl):
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where G = d,H + Gy, and Gy[d, I, v, g] is the “‘commutator’’
Go= (9, +v - V)?8,(9g) = 8:(8,+v - V)*(9g) =V IV 8,(Ig)] +3,V - [IV(I2)].
Analogously, (dg,), satisfies

the equation obtained from (7.10) by replacing

7.10)" 7 n on
( ) g U, l’ 8o, 81 by 8ns Vns ln! 80> 81-

Next we apply Corollary 6.4 to the solutions ¢ = (dg), and ¢, = (J9g,), of
equations (7.10) and (7.10)". Note that 8,(d¢g) — 9,(dg,) in H? and that
3. (9gh) — 3,(dg;) in H'. It readily follows that

(7.11) 18:(8 — gl G rensy = ce + ]| G = G, ||| ¢

for n = N(&). Note that the left-hand side of the equation in Corollary 6.4
has been restricted to R3\S.
Now by taking into account the particular form of G, we easily show that

(7.12)  ||GI9, I, v, g] — GI, L, v, &) |1
1
=c E (” af(’” - Un)”3—j + Hag(g - gﬂ)”3-j): te [Oa T]'
j=0
From (7.9), (7.11) and (7.12) it follows that

2 2
(713) |oz(g — glbr=ce+c Y 18/(s ~ gMiir+ ¢ Y 110:(s — g)3r

1
+eT Y3 (100 = w3y + 10048 — 1B, ).
j=0

Furthermore, (7.13) and (7.8) yield

(7.14)
2 _ 2 . 1
E I atj(g_gn)H%—-j,Té ce +CTE [ ag(”"_'un)”%“j,T']'CTE 197 (¢ “‘3&”%—},7-
=0 j=0 j=0
On the other hand, from equations (3.7) and (3.7)" we get el

2
(715) E ”atj(ﬂ - v.l"t)||3—jT'— C”’U = Up ”3 rt+ec E ”aj(g gn)“?:—-jT
- i=0

By imposing the additional restriction that T < ¢, for a suitable constant
¢y, we deduce from equations (7.1), (7.14) and (7.15) that to each ¢ > 0 there
corresponds an integer N(e) such that

2
(7.16) Y 16/(g — g)l3_jr=ce for nzN(e).
j=0
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Finally, equations (7.1), (7.15), and (7.16) show that

. 2 .
(7.17) Yo 18 (v = v)lipr = ce
j=0

In order to express the third derivatives with respect to time in terms of the
other derivatives, we apply equations (3.7) and (3.7)". This shows that (3.12)
holds. The proof of Theorem 3.4 is completed.

Appendix

Here we prove the equivalence of (3.7) and (5.1). Assume that (v, g, {) is
a solution of (5.1). For each fixed ¢, define the vector field

V=0ap+ (v-V)v+h(g) Vg.

Since ¢ = Vxv and since h(g) Vg is a gradient field on R3, it follows from
(5.1), that Vx V=0 on R}. On the other hand,

V.V =86+ (0:7) 3+ Z(8) (3) + V- (h(8) Vg),

where 6=V .v. Since 6 = —(d,g+ v-Vg), it follows from (5.1), that
V.V = 0. The orthogonality of the vector fields v and V(v -v) on I" shows
that
0= E [ Bi(vjvj = [(’U . V) 'U] -V -+ E (a,vj) viV; .
Lf ij
Hence [(v-V)#»]-v=0 on I. On the other hand, d,(v-v) =0 and
h(g)d,g =0 on I Consequently, V-v=0 on I.

Since VXV =0 and V- V=0 on R3 and since V- v =0 on I, it follows
that ¥V =0 on R3. Hence (3.7) holds. Moreover v(0) = vy, since both these
vector fields have in R the same divergence and the same curl, and both are
tangential to 7. .

Conversely, if (v, g) is a solution of (3.7), set { =V xv and apply the
operators curl, divergence, and v-, to the equation (3.7); and the identity
»(0) = vo. This yields (5.1).
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