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Periodic Solutions
for a Class of Autonomous Hamiltonian Systems.

H. BERiI0 DA VEIGA (%)

1. — Introduction.

In this paper we _sh‘a.ll_ be concerned with the existence of 7-periodic

solutions. of Hamiltonian systems p — — H(p, q), ¢ = H,{p, g} when
H.is of the form

50 that the above equations of motion became

(2) ' p=—Vig, {=U(p).

Hamiltonians of the form (1) occupy a central posifion in the general
theory of Hamiltonian systems. Moreover, in applications to con-
crete problems, p and ¢ play substantially distinet roles. In fact, in
many classical problems, the term U(p) has the form (})|p|* or, more
in general, is a positive definite quadratic form. Hence U(p) is
strictly convex. On the contrary, a wide freedom in the choice of the
potential V(¢) is required. For Hamiltonians of the special form
lp|2/2 + V{(g), Hamilfon’s equation reduces to Newton’s equation
g + V'(g) = 0. Here, the higher order term is a linear operator. The
natural nonlinear generalization of the above elags (whieh shall be our

(*) Indirizzo dell’A.: Istituto di Matematiche Applicate « U. Dini», Pisa
University, 56100 Pisa, Ttaly.
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184 H. Beirdo da Veiga

main model) consists in Hamiltonians of the form (1/«)|p}* -+ V(g)
Throughout this paper, ¢, (¢ € N) denote positive constants. We
shall prove the following result.

TarorEM A. Let U,V e O{R R), U strictly convew, V everywhere
nonnegative. Assume that there are positive constants «e]l, + ool,
p > affe—1), and v such that the following conditions hold.

(Hy) alpl < Up) = elpl*, for all peR",
(H,) «U(p)< U'{p)p, for all peR~,
(H.,) 0<uVig) S Vigg—e, forallig=r.

Then, for each T >0, the problem (2) has infinitely many T-periodic
non trivial solutions.

By setting « = 2 and by considering the particular case U(p) =
= (})|p|*, we reobtain a result of Benci (theorem 3.7 [B]), which in
turn generalizes a result of Rabinowitz (theorem 2.61 [R1]). For
a5 2 theorem A is substantially different from all the results available
to us. Note that (in theorem A): (i) the potential V is superquadratic
at infinity when 1 <C o < 2; (ii) the potential V could be subguadratic,
quadratic or superquadratic at infinity, when o> 2; (iii) no growth
assumptions are made for small |g|; (iv) V is not necessarily convex.
Remarks (i), (ii) and (iii) show that our agsumptions are quite different
from those made by Rabinowitz in his well known theorems on
Hamiltonian systems (see [R3], [R4] for references).

Bach one of the remarks (i)-(iv) show also that our assumptions
are entirely different from bhose of Clarke’s theorems 1.1 and 1.2
in reference {C2]. Note, in particular, that Clarke requires that
p < af{e— 1), instead of g > of(i—1). Our assumptions are also
entirely different from those of Brezis and Coron theorem 2 [BOL
Hamiltonians of the particular form (1) satisfy the condition {6) of
reference [BC] if @ > 2 and > 2 (note that in fheorem A, if x> 2,
s can be smaller then 2); and under these assumptions theorem A
gives T-periodie solutions for small T and theorem 2 in [BC] gives
T-periodic solutions for large T. Note finally that, in references [BC)
and [(2], the Hamiltonians are assumed to be convex but minimality
of the period is proved. :

We limit ourselves to give only the strictly necessary references.
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Periodic solutions for a class ete. 186

For a complete bibliography and usefull comments we refer the
reader to [R3].

2. — Proofs.

Without loss of generality we will assume thatb V(0)=0. Let 7
be a fixed positive number and denote by [ and | |’ the norms in
LF(0, T3 R*) and in L*(0, T; R»), respectively. We set 8 = af(a— 1).
Moreover,

B— {uELﬁ(O, 15 RY): [u= 0} ,

iy
where f % stands for fu(t) di. This abbreviated notation will be sys-
0

tematically used in the sequel. We get
Bp={ueB: Jul=¢}, B,={uch: |u]=g.

Define
£

(3) Pu(t) = f w(r)dr, Vtelo,17.

0

Clearly, Pu(0) = Pu(T) = 0, for every w e ¥. The map P defines an
isomorphism between B and the Sobolev space WLH(0, T; R,
The Legendre transform in R» of U(p} is defined by

Glu) = Sup {u-p— U(p): p eR"
We recall that 6'(u) — P if and only if U'(p) = u, and that

Cajte]? = Gu) = oyfuff
(4) Glu)u= B(u) s
|6 ()] < olulp-1,

for all weR". On the other hand, it readily follows, from (H?), that

(5)
for all ge R~

{ Vig)gzpVig)--e,,
Vig)= eglglo— e,
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One hag the following result.

TaEOREM 1. Let (u,y) be a eritical point of the jtmaﬁonwl

(6) e, 9) = [160) — V(Pu + )],

which is defined on the Boanach space @D R" T.hen, the pair {p, ¢) =
= (F'(uw), Pu | vy} is a T-periodic solution of problem (2).

This result is proved by applying the ¢dmal action prineiple»
(see Clarke [(1] and Clarke and Ekeland [CE]) ounly just to those
variables with respect to whiech the hamiltonian is convex. Before
proving the lemma, let us infroduce nome notations. The sym-
bol ¢,> denotes the duality pairing between the dual of a Banach
gpace and the Banach space itself. The scalar product in R~ is denoted
either by #-y or by {z,y). Furthermore, ' denotes the {Fréchet)
derivative of f, and f,, f, denote the partial derivatives with respeet
to-« and y, respectively.

PROOF OF THEOREM 1. By taking into account that Pv is a peri-
odic function, one easily proves that

M Loy y), 0> = |
— [0 — V'(Pu + ) Po ={[@ () + PV (Pu 4y
for every w,v e B, y € R Moreover,
®) Gy )y o> =—(|[V'iPu - 9)-w,  VaeRe.
In partieular,

Flu,y) = (6'w) -+ PV'Pu + ), = [V'(Pu + 9)) e L& R,

and
@ ), o) =[Ewo—[V(Put 9 Po o).

Note that fe O(E SR, R2),
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If (w, %) i a critical point, it follows from (8) that
(10) fo(Pu +y)=0.

Moreover, {7) shows that f [@(uw) + PV (Pu + y)]'v =10, Voe B,
or equivalently that there exists 2z R» such that
(11) @)+ PVPuty) =2, Ve[, T].
Define
= '{u) = e— PV'{Pu+
19) P (%) F
g=Pu-t+y.

Due to (10), p and ¢ are T-periodic.
Moreover, p — — V'(Pu - y) = — V'(g), and ¢ =u = U'(p). 1

Now, with the aid of Theorem 1, we will prove that the funetional f
hag non trivial critical points. Hence Theorem A holds. Before prov-
ing Theorem A, let us make the following remarks:

REMARK 1. The above results also apply if

Hip, g} = U(Pay ooy Pos Gty 9 €a) T Vidyy oory Qs Prts ooos Pud s

where U7 and V are as in theorem 2, and 0 = k = n. This is easily
shown by doing the change of variables ¢,-—>— P, P,->¢; j =
=kt 1,..,n

REMARE 2. It is worth noting that the funectional f(u,¥) is inva-
riant under the St-action of A = {4,: s€R} which is defined on
E®R" by

(13) Ay y) = (it 49, 9+ j u(v)dr) .

One easily verifies that A .(u,y) = 4,(u,y) and that A, 4 (v, y)=
= A,.,(4,¥) (we agsume that the elements we I are extended as
T-periodic functions over the entire real line). Moreover, straight-
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forward caleulations show that
(14) f(Aa(u’ y)) = f{u, ¥}, V(u, y)e BEPR» y VseR.

The fixed points under the action of A are precisely the elements (0, y),
for v & R,

Due to the above Si-invariance, it seems posgible to apply Fadell,
Husseini, Rabinowitz Theorem 3.14 [FOR] to show that § has an
unbounded sequence of critical values. However the corresponding
sequence of ZT-periodic solutions could coincide with some in the
(Z'{m)-periodic solutions furnished by theorem A(m e N).

In the sequel we will prove theorem A by applying Rabinowitz’s
Theorem 6.3 [R4] to the functional . Alternately, we could apply
the theorem 1.1 in reference [R2]. In order to apply Rabinowitz’s
theorem it is sufficient to prove that f satigfies the following hypothesis.

(15) flm=0,

{16) There are positive congtants 0,0 such that flu,0)=0 if
ful = ¢.

{(17) For each finite dimensional subspace & of B P R» there exists
a constant R = R(#) such that f(u,y) <0 wherever Juf +
+W=zE (w9 ek (.

{18) The funectional f verifies the Palais-Smale condition.

Condition (16) is trivially verified. Conditions (16}, (17), and
{(18) will be proved in the sequel,

Leyna 1. Under the hypothesis of theorem A the condition (16) is
fullfilled.

PROOF. We shall denote by ||, the usual norm on the spaece
I=(0, T; R%). To ghow that

f (6(w)~ V(Pu)]= 0 for all uedB,

() In particular the assumption (I5) of Theorem 5.3 [R4] holds. See also
Remark 6.5 (iii) there.
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it is sufficient to prove that, for every w e dB,, one has
ou [l — V(Pu] = 0.

Let ¢, be a positive constant such that [Pv|e= enjv| for all ve K.
By assuming that ¢ < ¢, one gets, for every tel0, T,

[V (Pu@))| = [Pu(t)]lo(Pu®)| = [Pu®)|7 lo(Pu))]

where lim w{g) = w{0) = 0. It readily follows that

|a}-»0

U.V(Pu)

= oq mox o (Pul®)] [u]f
ost=

In particular,

eu[Thuls— V(Pw)] = (o= o max o(Pu)|ef) -

Since |Pule= ¢,oe we conclude that

6, — oy, max |w(Pu(®)| > 0
ost=T

if p = ||u| is small enough. [/

LEMMA 2. Under the assumptions of theorem A, condition (17) s
fulfilled.

Proor. One eagily verifies that

{19) [(u, )] = | Pu + g,

ig a norm in B@R*, where | |, stands for the nsual norm in the space
I#0, T; R*). TLeb w4, ..,uw. be linearly independent vectors in H,
and denote by FE, the subspace generated by these vectors. Set
E = BE,®R», Since f is finite dimensional, there exists a positive
constant K = K(&) such that

(20) E(lu) + W) = 1Pu+yl,, Vwuyeh.
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By using (5),, (4); and (20) one proves that

Ky 0) = os|u]?— o Pu + yf#— 0,7 <

= os(f] + ly)}o- o, Eu(fuf + fy))*,

&,

for every (u,y)eE. The thesis follows, since u>f. /|

Finally we prove the Palais-Smale condition,

LEMMA 3. Lot (U, Yu) E EDR" be a sequence such that
fmsym) =M, VmelN,

and (U, Yu) >0 a8 m — + co. Then (Un,¥,) 8 a bounded se-
quence in BPRr. Moreover, there exists o convergent subsequence in

ED R

Proor. In the sequel we denote by B’ = {weL*(0, T; R"): f w= 0}
the dual space of &, and by |P| the norm of the linear operator
P: H — Lf0, T; R%). For convenience, we get &, — Foltms Y)y O =
= fy(%n, Yu). By assumption one has |e,.|, =0, [6,] >0, a8 m — + oo,

By using formulae (9) with (u, ¥} = (9, ) = (4, ¥»), and by tak-
ing into account (4), and (5),, it readily foliows

Cems ) + (s Y 5= B[ Glun) = [ VPu+ 92) + 6, .
The above estimate, the assumption
f G (th) — f V(P4 y) < M,

the boundedness of the sequences |e,|y and |6,], and the condition
>, imply that

fV(P’u’m + ym) é 012 + Gls(”“m" + |y|m) ;]
(21)
J600a) < 3 4 0+ e (] + lga)
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From (4), and (21), it follows that
(22) ] = st 0l + Iyal) -
On the other hand,
Jlumle < 202[(1  [Pu £ 3ul) + 20| Ppoanfe
This inequality, together with (5),, (21), and (22) yields
(23) Wl = €16 + 6 ([ttue]] + [yl -

The estimates (22}, (23) show that |u,,| and |y,,| are uniformly bounded.
Now we prove the second part of the lemma. Wrom (7) one gets

Cemy 0 = [[6"(wn) + PV (P + )10,
for every » ¢ E. Hence

(24) |16 ) + PV (Pus+ g1 o] < Jenl ol

On the other hand, from (8) it follows that | f V{Pthm + Yu)| = |0l
and from (4) it follows

6 wall S aiofu, .

Consequently, the mean value of G'(u,) 4+ V(P | Y) 18 umi-
formly bounded with respect to m. Hence, along a suitable sub-
sequence, one has

(25) lim L f [ (16,) + V'(Pttyy + y)] — EoE RP .

M-s+ 0o T
Hquations (24) and (25) imply that

(28) Lm (6 (u,) + PV (Pt -+ ) — &= 0.

M= - 0o

Therefore, by setting 2, = @(#.), & — PV/(Pu,~+ 4.} =2, one
hag 2, -2 in Ls. Moreover, w,, — U'(z,), a.e. in 10, T[. A well known
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Krasnoselgkii’s theorem ghows that U’ is a eontinuous map from L=
into L# (note that assumption (H1) implies that |U'(p}| < e¢[p|*,
Vp e R#; argue as in [E], lemma 1). Hence, #,— U'(z) in L6, The
convergence of y, along some subsequence is obvious. /f

The existence of infinitely many T-periodic solutions follows by
a well known argument, since each (T/m)-periodic solution (m e N)
is T-periodic. We don’t lknow if our solution has T as the minimal
period,
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