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Boundary-Value Problems
for a Class of First Order Partial Differential Equations
in Sobolev Spaces and Applications to the Euler Flow.

H. Bemio DA VEmGA (%)

1. Notations.

Tet £ be an open bounded subset of R», » > 2, that lies {locally)
on one side of its boundary I', & ¢* manifold. We denote hy » the unit
outward normal to I

For hiz) = (h.{z)), where h,, are real funetions defined on 2,

wo define
&
(1.1) D) =Y 3 3 Dbl
{af=lr=1 =1
where 1 ig 2 nonegative integer, & = (o, ...y &) is a multi-index, and

loe| = oty + oo 2. We seb |k| = |D°h|, |Dh] = |D*Al. TH for each
couple of indices r, s one has h., € X, where X is a function space,
we simply write hc X.

FOr % = (U very ), W= {1y, Wn), 0= (Vyy ooey Va)y we define

N »
{1.2) o = D UWy ,  JW[P= U, (v-Viw = 2 v.Du.
“ .

¥ i=1

(*} Indirizzo dell’A.: Istituto di Matematiche Applicate ¢ U. Dini», Via
Bonanne 25, 56100 Pisa, Italy.
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We will use the abbreviate notations

Dl == g;b ) J‘L :fh(w) die, (1, w) :fu-w.
! o9

In general, if X and Y are Banach spaces, £(X, ¥) denotes the
Banach space of all ‘bounded linear maps from X inte Y. We set
£X) = L(X, X).

We denote by C% k> 0, the Banach space congsisting of functions
defined in £, and which are restrictions to £ of C*(Rr) functions.
The canonical norm in the above space is denoted by [ .. €} denotes
the subspace of C* congisting of functions vanishing on /". We denote by
I” the Banach space L7(0), and by | |, its canonical norm (see below).

The real number p €1, + cof, and the domain £ are fixed once
for all. For counvenience these symbols will be dropped even from
some standard notations. According to thiz convention, W* denotes
the Sobolev space Wor(0) and | |, denotes the canonical norm | [,
(sec below). However, in sections 3 and 4 some functional spaces are
defined with respect to an open set B == {2, and in section b some
functional spaces and operators are defined with respect to a value
g7 p. In these cases, either the symbols B or ¢ will be inserted in
the notation, or a different notation will be used.

We define ’ﬂ%, k> 1, as the closure of O7(£2) in W*, and W= as
the dual space of W+, where ¢ = p/(p— 1). Finally

W = Wen W= Wha(Q2) 0 W (Q),

where 0 < 1<% For convenience, we set W, = W, (learly,
W% == W*, and W: = W* Note that W%, 1> 1, is the subspace of W*
consisting of functions vanishing on I” together with their derivatives
of order less than or equal to I — 1.

The above notation will also be used to denote funebion spaces
whose elements are vector fields or matrices. For instance, both L7
and Irx..x I* (N times) will be denoted by the same symbol I~
and the corresponding norms by the same symbol | |,. Finally, for
h={(h,)c Wk k>0, we define

%

o= ([ipaeyeas) ", pit= 310,

=0
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In the sequel, 7 is a fixed positive real number, and T — [— T, T].
We use standard notations for funetional spaces consisting of functions
defined on I with values in a Banach space. In partienlar, the canonical
norm in the Banach space L”(I; %), k > 0, is denoted by [ 1z, that
in L°(I; W*) by | [re, and that in LMZ; W9 by || (5.

In the sequel the symbol ¢ may denote different positive constants.
The symbol ¢(&2, n, N, p, k) means that ¢ depends af most on the
variables ingide brackets.

2. Results.

Let @ = {a;;) be a N XN matrix, N =1, and v = (v, ..., »,) be
a vector field, both defined on I x£2. Mostly we will assume here that

(2.1) vy=10, V{,z)elxl.
Let us consider the initial-boundary value problem

Do + (v{t, 2) V)u + alt, )u = f, in ITxQ,
(2.%) U—=.. =1y =10, on I'xrI,

Ujp—g == in £2,

where ! iy a fixed nonegative integer (if I = 0, the equation (2.2),
is dropped), f= (fi,..., v} is a given vector field in ¥ x2, u, is 2
given vector field in £2 and (v-V)u = (v-Vuy, ..., v+ Vuy).

In particular, we will show that the Cauchy-Dirichlet problem (2.2)
admits a solution « if and only if f verifies the condition f— ... =
= D" 'f = 0. Problem (2.2) will be studied in Sobolev spaces W’“”(Q)
for arbitrary peil, 4+ cof. Moreover, in ease that I — 0, the pa-
rameter % is also allowed o be negative,

Our approach to the evolution problem looks interesting by itself:
Following the author’s paper [8], we will prove that the operator
A(?), defined by equation (2.3), is the generator of a strongly continuous
group of operators in suitable Sobolev spaces W%(£). This enables
us fo apply the well known general theory developed by T. Kafo [14},
[15], [16]. Main points here are the study of the stationary pro-
blem {2.4), which has direct applications to interesting physical
problems, and the proof that the abstract theory of Kato applies to
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the initial-boundary value problem (2.2). Other approaches to pro-
blems {2.2) and (2.4) are possible, and we believe that the resulis
obtained here are partially known.

Let us consider the differential operator

(2.3) A u = (v-Vu -+ au, tel,

defined on vector fields 4 = (%, ...y uy) in 2, and acting in the distri-
butional sense. We set

Dty = {ue Wi: (v-V)jue Wi,
for each fixed te I, and for each couple of integers I, % such that
0<1<k 1<k We denote by A¥(t) the restriction of the operator
A(f) to the domain Dj(i), i.e., We define

Ax(tyu = Aty , Y e DY .

The lower index [ means that there are 1— 1 boundary conditions.
The definitions in case that & <0 will be postponed to section 5. On
treabing the time independent case We drop the symbol ¢ from the
above symbols and definitions.

One has the following result.

TemorEM 2.1. Let & be o fived integer, let I'c Olvi2, gssume that

v,ac O af k=0,
v,acCt if k=10,

(Hx)
and that (2.1) holds. If 0 <1 <k, the equation

(2.4) du 4 (v(@) V)u + ale)u = fle) in 2

has o unique solution U & W, for each f& W, provided |2 > B, where

(2.5) B, = 6($2, m, N, Py k)([’”]]k[‘i‘ [a']m) , i k20,

and 6, = 0, if k = 0. Here, ¢ denotes a switable positive constant depend-
ing only on the variables ingide brackets. Moreover, the solution u verifies
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the estimate

1
H“likém il -

If 1 = 0 the above result holds for any integer k. Finolly, sf 0 =1 <k,
and without assuming that (2.1) holds, there ewists a linear continuous
map G e L{(W*) such that v = Gf is a solution of (2.4}, for each fe W=
Moreover (3.18) holds. Here, we assume that I'e O [resp. (1, if k = 0],

In particular theorem 2.1 shows that if ¢ and ¢ are time inde-
pendent, then the operators A% for any integer % [resp. 4%, for
0 < i<k 1<k] generate strongly continuouns groups of operators in
the Banach gpaces W* [resp. W¥).

It is worth noting that (if k = 0) the above estimates are trivially
obtained (and well known), if the coefficients and the solution are
gufficiently smooth. Here, we give a simple and rigorous prove of the
existence result. ©f. the remark 2.4.

By combining the above rosnlt with Kato’s results, we obtain the
following theorem.

THEOREM 2.2. Let k be a fiwed integer (not necessarily nonnegative).
Assume that I'e Q¥+ that (2.1) holds, and that

() v, ae L2(I; Oy N O(I; OW-1), if k0.

If & = 0 assuyme that condition (H,) holds. Then, the family operalors
{A*(t)},er, B8 (1, Op)-stable in W%, where by definition

6. = o(£2,n, N, p, k)(['v]f,}k[ + [a‘]f,|k|) , #fk#0,

and Oy= 0, if 5 = 0. The map 1 — A(t) is norm coniinuous on I with
values in LW, W), for k>1. In case that k> 1 all the above results
hold for the family {A%(2)} in the space W3, for each fized 1 = 0, ..., k.

If woeWr and fe IV(I; W), &k not necessorily nonegative, then the
Oauchy problem (2.2);, (2.2), has & unique strong solution uwe C(I; W=).
Furthermore, if 0 <1<k 1<%k, and if w,cW?, feII; W}), the
Cauehy- Dirichlet problem (2.2) has a unique strong solution u ¢ C(I; W?).
Moreover,

(2.6) eea,r < ([l 4 NFilra) exp [6.77 .

One also proves the following result.
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OOROLLARY 2.3. Let 0 =1k, let (Hy) holds, and asswme that
e O [resp, €1, if k = 0]. Condition (2.1) is not required here. Then,
there exists @ linear continuous map G e L{W*x LY(IL; W) O(I; WH))
such that w == G{u,, ) is & solution of problem (2.2), for each pair
(g, f). Moreover,

(2.7) n“”h',l < (82, n, N?;p’ k)( ﬁ%D]Ek + illfllim) exp [0, 7] .

Convention. Whenever it is claimed that a property holds for
|A| > 0, it is nnderstand that in the definition of 0, a suitable choiee
of ¢ is to be made.

It is worth noting that the theorems 2.1 and 2.2 are gtated in a
form which is not convenient for applications to non-linear problems,
In fact, in many of the applications the coefficient v and the solu-
tion « belong to the same Sobolev space. A main point here is that
the proofs work again if the coefficients v (and @) belong to suitable
Sobolev spaces, rather than to (% One hag to use just Sobolev’s
embedding theorems (and Holder’s inequality) in order to deal with
terms of the form D*v-DFw. The choice of the particular Sobolev
spaces depends on the applieations we have in mind. Since there are
only slight modifieations to be made on the proofs, it seems preferable
to us to give the proofs for a specific case. 'We made the choice
v, a € CF, in order to avoid a continuous and trivial recall to Sobolev’s
embedding theorems. We state (below) the ecorresponding results
also for a specific case in which the coefficients belong to Sobolev spaces,
ginee we are interested on it for applications to the Euler {and similar)
equations. For convenience, we state this last results only in ease
that & > 0 (since k> 2 in the above applications).

TugorEM 2.1%*. Let k be a non-negative infeger, ond let I'e grts,

Assume that (2.1) holds and that

W it k
(%) { v, e WE, if k>1 - (nfp),

ve Wue, ae W', if <<l and p> 5.

Let 0 <1<k Then, equation (2.4) has o unique solution wc W7 for
cach fe W*, provided |A]|>0;. Here,

6: =o(82,n, N, p, k)(ﬁ'ﬂlla + 1!“‘%) 3 if k=2,
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and
08 =67 = o@, 0, N, p)([0lse+ lalu), #f b1,
Moreover,
1
Huﬂk“‘t ,"{, - gzc “f"k .

Furthermore, equation (2.4) has (unique) solution weW*™, for cach
feW™. Moreover, .

o) < Wl:"ahi. [l

Finally, the last assertion of theorem 2.1 holds again by replacing 0,
by 05 in equation (3.18).
THEOREM 2.2%. Lot k be a non-negative integer, and let I'e Qr+e,
Assume that (2.1) holds, and that
v a € LI WH N O Wy o g B> (nfp),

() vELNL; Wh*) N 013 1),  ae LI WY O(I; Iy,
ifhk<1, p>n.

Then, the family of operators {Ai0}ers s (1, 67)-stable in W, where
by definition

by = o0, 7y N, 2, B) (0] 10+ leln), 4 Ek=2,
and

fs =6} = ¢ |»| e+ J@]n) otherwhise .

If, in addition, w, EW*, and fe LNI; W*), then the Cauchy problem
(2.2}, (2.2), has a wnigue strong solution uc C(I; W*). Moreover, if
0<I<k and if Uy e W5, fe L I; W¥), the above solution w belongs
to C(I; W), Finally,

{ Vol << (Nl -+ WA 1) exp [0 T,

(2.8) [l rems < ([t fics 4 Il ) exp [05 T

One also proves the following result.
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COROLLARY 2.3%, Let 0 =1 <k, let (HY) holds, and assume that
I'eQ® [resp. %, if k= 0]. Condition (2.1) is not required here. There
exists @ linear operator G from WX LNI; W*) inte C(I; W*) such that
% == Gy, f) is a solution of problem (2.2) for each pair (u,, f). Moreover
the estimates (2.8) hold provided the vight hand sides are multiplied by
a suitable constant (£, n, N, p, k).

The following result will be usefull on dealing with nonlinear partial
differential equations. Similar results hold in connection with theo-
rem 2.2, and for the stationary problem,

COROLLARY 2.4% Assume that w, b, 2,, g is another set of functions
verifying the hypothesis required in corollary 2.3%. Let w and 2 be the
solution of problem (2.2) for data v, a, 4y, f and w, b, z,, g, respectively.
Then

(2.9) e —wf<e {"zo_ 1+ g~ Fllrp-+
+ (ﬁ”’ﬂﬂk + Iiifillm)( ﬁ’w — ’U” fE—1 T "b - alff,k*l) 8xp [Gﬂ;fi’j}exl) [c,u;“ T]}

where iy — o |whii+ 1blne)s 6F = o([v]e + la]ss), and o denotes dif-
ferent positive constants depending only on 2, n, N, p, k.

ReEMARE. In all of the previous statements in which we do not
aggume (2.1) (hence, the uniqueness may fail) it is understood that
the solution considered is that constructed in the corresponding proofs.

APPLICATIONS. In reference [6] we prove existence and regularity
for the solution of the stationary, compressible, Navier-Stokes equa-
tions, and its convergence to the corresponding solution of the incom-
pressible equations, as the Mach number goes to zero. A main tool
in the proof is the theorem 2.1 in reference [8], which is a variant of
the theorem 2.1 above. :

An application of the last statement of theorem 2.1 is given by
Kohn and Lowe in his interesting paper [18].

Finally, as an application of theorem 2.2%, we provide in sec-
tion 6 a simple proof of the persistenee property in Sobolev spaces
for the solution of the Euler equations (6.1) in a bounded domain
LcRy nz=2.

REMARK 2.4. The proof of the existence of a solution of equa-
tion. (2.4) in spaces W* is not an immediate consequence of the a
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priori estimabe (3.13) together with an existence theorem in stronger
spaces. Let us show the main obstacle. We consider, for contvenience,
the case in which ve €* and a =0, and {(just to fix the ideas) we
roeall the classical existence results of reference [18]. Let feW=
The soiution « of problem (2.4) (provided by [19] or by any other
existence result) is not sufficiently regular to justify the calculations
leading to (3.13). This obstacle is not overcome by approximating f
(in the W* norm) with a sequence f, e Wm2, for a fixed m such that
Wm2 e Wotl ginge ¢ prevénts the regularify of the solutions u,.
However, if one also approximates » €C* (in the (* norm) by a se-
quence v, € Cm, then one gets solutions u, € Wm2 cs W#ti, of problem
Mty -+ (0, V)u, = f,, provided 4> e[v,]n. Moreover, the cstimate
leenlle = [1/(2 — e[2,1) fulix> Vi, holds. However one can not pass to
the imit as » — &+ oo, 8inee [#,],— 4+ co.

We point ouf that one can overcome the above obstacle (if
0=101=Fk) by arguing as done for proving the point (iv) in theo-
rem 3.9 below (the existence of the solution of the equation Aw L
+ {0 V)u + au = f -+ (A— M)u is shown here by arguing as done
after equation (3.17), in the proof of theorem 3.8. This argument
is wsed also in reference [8]).

In the evolution case, there is & weaker counterpart of the above
obstacle. Again, the coefficient 2(t, ®) is not sufficient regular for
providing a solution u({,s) to which the ealenlations leading to the
& priori estimate in Sobolev spaces applies rigorously. Nevertheless,
in the evolution case, if one approximates the coefficient o by regular
coefficients v,, one gets an estimate in the C(I; W*) norm, which ig
independent of #. A compactness argument shows the existence of
& solution «e L™(I; W*). However, we lose the strong continuity
on I with values in W* We note that, in order to prove this last
property by using the characteristics, quite hard arguments seems to
be necessary. See Bourguignon and Breszis [10}. Tt could appear
that all this question is artificial, sinee one should overcome it by
assuming that v is more regular, However, this last case is not guf-
ficient to deal with many interesting nonlinear problems.

Bemarx 2.5, 1% is worth noting that the results and proofs given
here apply, with slight modifications, to the more general equation

Do+ Y a.Dyu+ auw = f,
=1
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if the N x N symmetric matrices a,(t, ) verify the eondition

v =0 on ',

b=

=1

y

provided p = 2,

REMARE. First order hyperbolic systems in domains with boundary
have been studied by several authors. Since the main references are
well known, it seems unecessary to provide them here. Let us just
recall the references [11, [2], [6], [8], [12], [19], [20], [21], [22], [23],
which are more or less connected to our paper.

3. The stationary problem (case & =0).

We start this seetion by proving the following auxiliary result:

Lemua 3.1. Let k> 1, and assume that v € OF satisfies the condi-
tion (2.1). Then, (v-V)ueWk if we Wit

Proor. By induetion on k. If k= 1, the vectors Vu, and » (for
eachj =1, ..., n) have the same direction, since #,= 0 on I'. Hence,
»Vu, = 0. Assume now that the thesis holds for the value %, and
let w € W¥2, By the induction hypothesis, one has (v-V)uwe We On
the other hand, DJ[(v-V)u]=[(Dw) V]u -+ (v-V}Du, i =1,..,N.
The first term on the right hand side of this identity belongs to W=
The same holds for the second one, by the induction hypothesis, since
Doue Wi, B

LEMMA 3.2. Lel te I be fived. Under the hypothesis of lemma 3.1,
and for each fized 1 = 0, ..., k, the linear subspace D;(1) is dense in wE,
and A%t) is a closed operator in WY,

Proor. ﬁ"(t) is dense in ﬁfm‘, gince (lemma 3.1) Witic ﬁ"(t)-
Moreover D) is dense in W* Let now we Witt, for a fixed { = 1.
Since Witl— Witin Wit one has (v-ViweWrN W= W&, This
shows that Wittc D¥t). Consequently, this last subspace is dense
in W The closedness of the operators is quite immediate. &

The following two lemmas underlay our proofs.
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Lemma 3.3. Let pell,+ cof, w={w,..,wy)eCl and set
A= (3 + w]*}}, 6> 0. Then, for each xec 2, one has

(3.1) 2 (Dew)-D(d7-510) = A D - L2 Ao,

and
(32) S (Duaw)- Difdr-2w) =
— 47+ {[p~ Dlwl+ 8]1Dwl + (2 — p) lt| Do - é:l(w-{l),-w))z]} .

In porticular, for each p €11, + oof, one has
(3.3) —jﬂw-m—m =0, VweW:.

Proor. We loft to the reader the proofs of (3.1) and (3.2) (2.
If we (L) vanishes on I', equation (3.3) follows upon integration
by parts. Sinee the set {we 0%: w|,= 0} is dense in W}, (3.3) holds
also for we Wi. Note that A2 2w, — A» 2w strongly in I#te-u, if
wy,->w in I (by a well known Krasnoselskii’s theorem). m

Levya 3.4, Let w= (wy, ..., wy) € €. Then

(3.4) A2 D) = % D.A», i=1,...,n.
In particular, if v € () verifies (2.1), one has

{(3.5) f[(@-V)w]-/}.f'sz = w% J.(éliv eyAr,  Ywe Wt
Proor. Left to the reader. @

(Y} Recall the definitions (1.1) and (1.2).
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LEMMA 3.5, Assume that ve C verifies (2.1), that o O° and that
feLr. Let we W* be a solution of

{3.6) - (0 Viu +ou=17F.
Then, for |A| > 8 =c(p, N)([v) -+ [al) one has
(3.7) (12] — B)lelo < Il -

In particular, the solution u of (3.6), if it exists, is unique.

Proor. The proof is done by multiplying both sides of (3.6) by
(8 4+ |u|t)r-224, by integrating in £2, and by passing to the Hmit
ag 6 >0, =&

THEOREM 3.6. Let the hypothesis (H,) and (2.1) be satisfied. Then,
for |2 > 8,, equation (3.6) has & unique solution u € W? for each fe Wi.
HMoreover,

(3.8) (12— Ba)Juls < 1112

where, by definition, |ul, = |ul,+ |Aul,. In partioular (in the time
dependent case) the family {Al(D)}, tel, is (1, 0,)-stable in W2, with
respect to the (equivalent) norm | s

ProoF, Tet s> 0if 1> 0, s < 0 if 1 < 0, and consider the elliptic
Diirichlet problem

(3.9) { —edu,+ Mg+ (0 Vyu, - eu.=f in 2,

{us)f’ =

In order to fix the ideas, assume that 4 > 0. For a sufficiently large 4,
the above problem has a unique solution #, € W, Moreover (a crueial
point!)

(3.10) (Au)|y=0.

Hence Au,e W2, Set A= (6 + |dw,|*)}, where § > 0. Iiquations (3.3)
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and (3.5) imply

qu(Aue)-APQAus =0,
(3.11) .
f[(@-V)Aus]-Aﬂ’*"‘Auz = 2 ~l\{div ) A,

for each ¢ > 0. Fquation (3.11), together with the identity Af{(v-V)u] =
= {v-V)Au -} 2Vw: V2u -} (Av-V)u, yields

(3.12) fd[(v-V)uE]-/I”—zﬁus — —n% f(diva)/lﬁ+

+ QJ‘(V'U:VZ%E)-AT‘—WJ'ME +J‘[(A@-V)1os}'/l”*zdue ,

”n
where Vo: Viy = 3 (Dyo;)(D;Dyu). By applying the operator A4 to
Li=1
both sides of equations (3.9),, by taking the scalar product in Rr
with A2 Aw,, by integrating in £2, by taking in aceount (3.11);, and
(3.12}, it follows that

ﬁﬁﬂusﬁflf’”?‘ #% f(div v) AP
<[ (oIo: Tl + 1oVl + Ao+ 141D Auj15.

Since 0 < [Au.|d?2 < A7, the Lebesgue’s dominated convergence
theorem applies, as & — 0+. Hence, the last inequality holds if A is
replaced by |Au.]. In particular (1— 0,) |du|, < |Af],. Consequently,
there exists a subsequence w. weakly convergent in W? to a Hmit «.
Bince & Au; — 0, in L7, as & — 0, it follows that « is a solution of (3.6),
and verifies (3.7). Clearly, (A— G){{dul, -+ |u|,) < ({4fl.-+ ifl,) (use
algo (3.7)). m

Lemma 3.7, Let k>0, let feW¥, let assume that (H,) and (2.1)
hold. If we WH 4s a solution of (3.6) then

(3.13) (1Al = G Hlwle < IfHe -
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ProOO¥. Let o = («f, ..., «,) be a multi-index, la| = k. By using
an abbreviate notation, the applieation of the operator D* to both
sides of equation (3.6) yields

(3.14) AD*w + (v-V) Dy + 3 [(D*0)(Du) + ... +- (Do} (DFu)] +
+ P (DFa)yu 4 ... + a(Dy)] = Do f |

Bet A4 = (6 + |D*ul*)i, where & is a positive parameter, and
[DFul* == 3 |D*u,|*; this summation is extended to all such that
|of = k, and to all 4, 1 <7< N. By multiplying both sides of equa-
tion (3.14) by A—2D*y by adding side by side for all & such that
o} = %, and by integrating in £2, it follows that

A f A2 Dl < % [V ol Al7 - el + [alo) Ju AR + |[Brfl, A7

Note that

f[{ > (v-V)D“u]-AP—zD“u == %f(@-V)A”.

al=k
By passing to the limit on the above inequality, as § — 0+, one gets
(315) A!Dk{‘u’lp = 6([‘?]]7‘: ""I" [a’JL)HuH?» + kaﬂp v

Clearly, (3.15) holds for every integer k, such that 0 <k, < k.
By adding side by side all these estimates one gets (3.13). m

THEOREM 3.8, Let the hypothesis (Hy) and (2.1) be satisfied. Then,
for |A] > 0., the equation (3.6) has ¢ unique solution we Wi, for cach
feW;. Moreover,

(3.16) (il 6:) July < ] -

PrOOF. Without loss of generality, we assume here that 1> 0.
For the time being we assume that (H,) holds, and that 1> 6,. TLet
fw € Wi be a sequence such that fw—>f in W3, and let u, € W? be the
solution of the equation Au,, |- (© V)t + ot = f. Equation (3.13)
shows that #, 18 a Cauchy sequence in Wr. Hence, its limit » is the
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solution of the equation Au - (v-V)u 4 au = f. Moreover,
(3.17) (Z— Ol < §fls-

Let now A€ 16, 6,] and fix a real 1 such that 1> 6,. Denote by
% = Tw the solution of the equation lu + (2 V)u + aw = f -} (1 — A)w,
where weWi. It follows from (3.17) that 7' is a contraction in WF.
The fixed point # = T'w is a solution of (3.6), and (3.16) holds.

Finally, if v and a do not wverify (#,), we approximate them (in
the (' norm) by two sequences v, and a,, verifying (H,;) and {2.1).
The solnfion , of the corresponding equations verifies the esti-
mate (3.16). Henece, there exists a subsequence, which is weakly con-
vergent to an element % € Wi. Clearly, u is a solution of {3.6), and
{(3.16) holds. m

TEHEOREM 3.9, Let k=1, and let 1€{0,...,k}. Assume that the
conditions (I,) and (2.1) hold. Then, if |A] > 0,, equation (3.6) has
a unigque solution w e W7y, for each feW:. Moreover,

(3.18) (14] — B}l < e{£2, n, N, 2, B){f] .

It Te Qs+, the above solution w verifies the estimate (3.13),

Linally, without assuming (2.1), one has the following resull, Assume
that I'e O% [resp, OV if k= 0). Let § = 0 and assume that the condition
(H,) is verified. Then, there eaisis a linear continuous map G c L(W*)
such that u = Gf is a solution of equation (3.6), for cach fe W, More-
over, the estimate (3.18) holds.

Proow. Step (i). Here we prove the first statement (including (3.18))
of the above theorem, for 7 = k. The proof is done by induction on k.
For & =1 the result was proved in theorem 3.8. Lef us establish
it for kK = 2. Asgume that feW:, and that e, ve 02 Theorem 3.6
shows that equation (3.6) has a unique solution e W32, which
verifies (3.18). Let us show that weW,. By differentiating (3.6)
with respeet to x;, {=1,...,n, We get

{319y ADyu + (¢o-V)Dyu + ol - [(D0) V] = Df— (Dia)uw .

This is again a system of type (3.6) in the nN variables D,u,, whose
solution D,u belongs to W On the other hand, D,f— (D,a)u € W;.
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Hence, theorem 3.8 guarantees the existence of a (unique) solution
in the space W3, if |3] = ¢(2, n, nN, p) ([vl,+ []). By lemma 3.5,
the above two solutions coineide. This shows that e W?.

Asgsume now that the thesiz holds for values less than or equal
to k, k=2, Let fe Wi, a,ve 0% Since W*LcW?, the induction
hypothesis shows the existence of a unique solution wcW*, verify-
ing (3.18). Moreover, D, f — (D;a)u € Wi, and the induction hypo-
thesis, applied to equation (3.19), shows that D, e W?, for |i| =6 =
= o(L, n, nN, p, &)([v]ern + [a].). Furthermore,

(1Al = 0) | D2]s,n << 682, 2, 0N, p, )| Df 1+ [theralle]) -

Hence, ueWit! and « verifies (3.18) for a suitable constant
(L, n, N, p, k).

Step (ii). Here, we prove the first statement of the theorem
for I==10, and also the statement in which (2.1) is not assumed.
Let B be an open ball such that 2c B, and let Sef(C% 0¥ BY),
TeL{Wk WiB)), be lincar continuous maps sueh that (8o} = 2,
(Sa)|p = a, (Tf)|o=F(?). Hence, 8 v is a continuation of v from Q
to B, and so on. Set &= Sv, & = Sa, f = Tf. The part (i) of our
proof shows the existence of a solution 4 e WHRB) of problem Ad -
+(9-V)i 4 d@d = f. Clearly, w—= 4], is a solution of (3.6). The
reader can easily verify that (3.18) holds, since |u[, < [#[,, and
since the norms of the maps 7 and S are bounded by constants
depending only on 2,0, N, p, k.

Note that the existence of the solution » in £ was established
without using condition (2.1). Furthermore, the maps 8 and 7' exist
if I"is assumed to be only a Lipschitz manifold, since the continuation
of functions in Sobolev spaces, from 2 to B, can be done under this
hypothesis, by a Calderon’s result. Hence, the last assertion in
theorem 3.9 ig proved.

Step (iii). The first statement of the theorem holds in W* (by
step (ii)) and in W} (by step (i)). Henoce, it holds in W* = W*n L
for each 1e{0, .., &}

(*) Note that, for convenience, the same symbol & denotes two different
maps, since ¢ is a vector and & is a matrix.
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Step (iv). We prove now that (3.13) holds if I'e Cl*H2, Obviously,
it suffices to take in accont the case I == 0. In order fo fix the ideas
we agesume that 1> 0. Let fe Wk, and assume that e, ve 0%, and
that (2.1) holds. Let f,eW*, f —f in W& If A> 0., the pro-
blem Au,, 4 (v-V)u, + e, = fn, has a unique solution wu, e W,
Moreover, lemma 3.7 shows that the estimate (3.13) holds for the
couple ., fn. This estimate proves that u, is a Canchy sequence
in W* It easily follows that the limit « is the solution of {3.6), and
that » verifies (3.13).

Now, we want o replace the above eondition A > 0y, by the weaker
assuraption 4> 6,. Let », ¢ be ag above, assume that 6., 1> 0,
and let % e W* be the solution of equation (3.6), whose existence is
guaranteed by the first part of theorem 3.8. Fix A>0,,,. Sinece
Au+ (v-Viu + aw = f 4+ (I — A)u, the result proved above shows
that

(X 0wl < Ifle + (A— Dl

Hence, % verifies (3.13).

Finally, let », @ (%, and assumed that o verifies (2.1). Let
Uy @ € O, be guch that ¢, verifies (2.1), and that v, — v, 6, —a
in O% ag m — -+ oo, Standard technigues show that sueh a sequence
v,, exists. Let A > 6,. We may assume that 1 > 6 = o{[v,]i + [@n]s)-
Let u,, be the selution of Aw, -+ (v, V)#, + a,u,— f. By the above
result, (21— 0% )ju, |, < |f]s. It easily follows that w, —u weakly
in W¥ that w is a solution of (3.6), and that (3.13) holds. m

CoRrOLLARY 3.10. Under the assumption of theovem 3.9 the family
of operators {A}(t)}; 1s (1, 6,)-stable in W.

Let us now consider the case k= 0. We start by defining the
operator 4°,

DEPINITION 3,11, We define A® as the closure in L¥ of the operator
A} DY — Wi,

One easily verifies that 4! is preclosed in L*. In fact, if u, e W,
(v-V)u,e Wi, 4,—0 in L» and (»-V)u, -} aw,—fin L?, then ff-rp =
= limf[(fn-V)uﬂ+ au,] g =0, as n—> 4 oo, for every @ € D).
Hence f = 0, which shows that A} is preclosed. Let us now solve
the equation Au-} A% = f, for A>0, and fe I*. Let f,eW; be
a sequence convergent to f in L?. By Lemma 3.5 it follows that
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(A— O o — syly < |fa— fulp. Henee u,—u in L. It readily folows
that » e DY, that iw + 4% = f, and that (A -- 0p)iu],<lf],. More-
over, one easily verifies that the solution % € .D* is unigue. The reader
should note that D°c {ue L»: 4w e L7}

REMARK. As above, ope verifies that the operator 41': D'— W*
is preclosed in L?. Since A} c A and A + A° maps D onto L7, for a
suitable 4, it follows that A° is also the elosure of A* in I~

The following result is now cbvious.

Lenvwa 3.12. The statements in theorem 3.9 and in Corollary 3.10
holds for k = 0.

4. The evolution problem (ecase k=0).

Proor oF THEOREM 2.2 (case & = 0). The first part of the theorem
{(stability) was proved above. Wow we prove the seecond part of the
theorem 2.2 by showing that the evolution operator U(Z, s) associated
with {45(#)} is strongly continuous in W%, for each fixed pair i, & such
that 0 <1<k We prove this result by using the thecrem 5.2 of
Kato [14]. For convenience, the symbol K after the reference number
to an equation, an agsumption, or a result, means that we refoer to the
reference numbers on [14]. We set, in theorem 4.1-K, X =W,
Y — W* where k>1. From corollary 3.10 it follows that A} is
(1, 8,)-stable in X, and that A% is (1, 8,)-stable in ¥. Note that A}
is the part of 47" in ¥. In particular, assumptions (i)}-K and (ii)-K
hold. The condition (iii)-K is easily verified; the inclusion ¥ ¢ Dy™(#)
was proved in lemma 3.2. Moreover, the assumption (iv)-A in theo-
rem 5.1-K, and the agsumption (v)-K in theorem 5.2-K hold (without
resort to an equivalent norm in Y). Hence, theorem B5.2-K ghows
that the evolution operator U(Z, s) is strongly continuous in Y, jointly
in ¢, 5. Here, there are no exceptional values of ¢, as follows from
remarks 5.3-K and 5.4-K. In faet, our families of operators are re-
versible (for that reason, we have been considering the time interval
[— 7, T} instead of [0, 1']).

The strong continuity of U(#, s) in I» follows together with that
in W3, since the assumptions done are the same in both cases.

The estimate (2.6) follows from the formulae «(t) = U(%, 0)wu, +

i3
+JU($, s)f(s)ds, together with (¢} in theorem 5.1-K. ®
0
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A REMARK ON THE PROOF OF THEOREM 2.2% TLet &> 1 be fixed.
Under the hypothesis (H;) assumed in theorem 2.2, the theorem 2.1
furnishes the {1,8,)-stability in ¥ = W* and in X = W*, since (H,)
implies (H, ;). On the contrary, in theorem 2.2% the hypothesis (HH
does not imply (H7 ), if 2 + (#/p) = % > 1 + (n/p). For ihat reason,

we establish in theorem 2.1* an independent estimate for |u[,—, under
the hypothesis (H; ).

PROOF OF COROLLARY 2.3. The proof is similar to that done for
the stationary ease, in part (ii) of the proof of theorem 3.9. Now, we
extend the coefficients ¢, « € L=(T; %) N C{I; C*) to coefficients ¥, G €
e I°(I; C%(B)) N O(I; 0:7%(B)), and we extend the data fe L*(I; W*)
and u, € W* to data fe L(I; Wi(B)) and %, € Wi(B). The extension
maps are linear and continuous between the eorresponding funetion
spaces. Now, the existence of the solution #e C(I; Wi(B)) of the
evolution problem D,d - (#:- V)4 + @4 =7, dj,_o— i, is guaranted
by theorem 2.2, The solution referred to, in corollary 2.3, is just the
restriction of 4 to I x L.

Finally, the estimate (2.7) follows from (2.8), since [ufsr< [@]x.:
and since the norms of d,, f, @&, and &, are bounded by positive con-
stants ¢(2, n, N, p, k) times the norms of w,, f, a, and o, respectively.
Obviously, the norms of functions labeled by ~ or by A always
concern the domain B (and not £2).

The same device is used on proving the estimates stated in corol-
lary 2.3*% @&

PROOF OF OOROLLARY 2.4% The construction of the solubtions u
and z shows that u(t) = 4(t)|g, #(f) = £(t)|,, where 4 and £ are the
golutions of the problems D, + (B V)i + @d = f, #|mg= T, and
D2+ (- V)2 + b2 =g, £,.,—= %. Hence,

Dyt — ) + (@ V)(E— 4) + bz — 4) =
(4.1) = (f— - UB—)-V]d— (b—-ad, inIxQ2,

(8— B)|)jmg=Fo— B on IXI.
By applying (2.8), to the solution £ — 4 of problem {4.1) we show thab

b=, < (13— ol -+ 17 — Al +
+ (@ — B) VI8l rms + W (B — @)l 1} exp [ T,




266 H. Beirio da Veiga

where u)f = e(|®]|,,+ |B):.) < euf. Recall that the symbol ¢ may
denote different constants. Now, we estimate the right hand side
of the above inequality by taking in account that |2, ), <
< efay— tglls— (since Z,— &, = 2, —u,), and that a similar argument
applies to the terms g — f, &% — 3, and b — 4. Morecover,

N — ) VIl et < olw — Ol re—s || llae

and (by (2.8),) |} < e exp (o6 T){ | %[5 + Wfilrs). The term (h— @)4
is troated in a similar way. Finally, [2— )iy, < [Z— dfir,. B

5. The case k< 0 (stationary and evelution preblem).

In this seetion, we consider the case & << 0. The proofs are done
by using the corresponding results for k= 0, together with duality
arguments. Since the method is the same for the stationary and for
the evolution case, we fix our attention on this last one, by proving
the theorem 2.2 for k< 0. For convenience, we will denote the ne-
gative integers by — k, where % > 0. Let a* be the transpose of the
matrix e, and consider the formal adjoint B(4) of #£(?), i.e. the operator

Bt)g == — (v Vip— (dive)p | a*p,

acting in the distributional sense.
DErINTTION. For each ¢ € I, we denote by BX(t), k > 1, the operator
B{t) with domain
Dt = {pe Wi (0-Vigpe Wi},

where ¢ = pf(p - 1).

Since B() belongs to the class of operators defined by equation (2.3},
and ginee g € 11, -+ oof, all the results proved in the preceeding sections
apply to the operators Bj(¢). In particular, if |} > 8,, one has

where the resolvent operator acts now on the Banach space WP,
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Note that the congtant ¢, appearing on the definition of 6., depends
now on ¢ instead of p, However, since ¢ — pl{p— 1}, we may msge
again the symbol 6, .

Recalling that Bi(t) is cloged and densely defined, we introduce
the following definition -

DEvINTTION. Let k> 1 For each tel, we denote by A_.(%), the
adjoint of the operator Bi(#): DEp) Wi, In symbols

(5.1) A1) = (Byr(a)),

By the way, note that A.(t) is the restriction of A(t) to the set
{ue Wor: gty e W2},

If |A|>8,, one has (A+B’,;’(t))*:/1+A_,,(t). On the other
hand, a well known result on Punctional Analysis shows that
(44 Bty 1= f(a+ Bi(#))1]*. Hence

B4, 4-0) = (R(4, Bi(o))*,

moreover
(5.2)  [B(2, A leor= = | B3, Bit) fearzn < 1/(12) — B:) -

This shows that the tamily {A_.(#)} is 0,-stable in W+,
Let now £ >1. For each fixed ¢e 7, one hag

(5.3) Bit) ¢ BEY) € L(Whe; st

On the other hand, as shown in the previous sections, the domain of
B(#) is dense in Wee. Hence BY(t) can be defined (by density) as an
element of L(Whe, Wi, By duality, one gets from (5.3)

(5.4) A-u(8) 2 Apaft) € (Wt Ty

Sinee this last operator is the adjoint of BI() € L{Whe, Wiy,
which is a continuous map on I, it follows from (5.4) that the restrie-
tion of A .(f) to W-r+ defines a continuous map from I into
E(W-s+1; -y, By sefting ¥ — Wk, ¥ = W-rn (8> 0) in theo-
réem 4.1 {14], one shows that the evolution operator Uz, 5) 18 strongly
continuons in W%, jeintly in !y 8. This proves theorem 2.2, in the
¢negative eagey. g
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6. Persistence property and Eunler equations.

Persistence property means that the solution (1) at time ¢ belongs
to the same function space X as does the initial state, and describes
a continuous trajectory in X. A rigorous proof of this property could
be in many cases a difficult task. Here, we study the persistence
property under the effect of guite general external forces f, namely
fe IA(I; X). However, the method applies to many other equations,
as for instance to the generalized Buler equations studied by H. Beirdo
da Veiga [3], or to the Euler equations for nonhomogeneous fuids,
see H. Beirdio da Veiga and A. Valli[4]. For the reader’s convenience
we illustrate this method by considering the Tuler equations

Do+ (wViu+Va=f in IxQ,

(6.1) divey = 0 in Ix{82,
wey == 0 on IxI,
Uipg = o) in £,

in a bounded domain £2c R, »n > 2. Without loss of generality, we
agsume in the following statement that I == ]— oo, 4+ oof.

TaROREM 6.1, Let k> 1 - (n/p), where p € 11, -+ oo, and n = 2.
Assume that I'e C%, u,e Wt wyrr =0 on I, diva,— 0 in 0, fe
e LA(T; W*), Then, there evists a local solution w € Cld; W*) of pro-
blem (6.1), where J = [— 7, 7] and © = e(2, n, p, B)( oz -+ WAl )t
Moreover, Y|, < o' (2, 2, p, B Jteole + Wflle)-

The exigistence of a loeal solution w e O(I*, W) for problem {6.1)
is well known, if the external forces are regular. See Ebin and
Marsden [11] where =0, and Bourguignon and Brezis[10] where
X = Wer and fe C(I; We+t»). However the proofs given by these
authors are harder then the one suggested here (speciaily that in
reference [11]). A simple proof of the existence of a local solution
we L2(I*; W), under the assumptions of theorem 6.1, is given by
Temam [24].

‘We notiee that in referenee [9] we establish also the well-posedness
of system (6.1) in Sobolev spaces Wo7, by using Kato’s perturbation
theory. See [9], theorems 5.2 and 5.3. In reference [25] this result
is extended to non-homogeneous inviseid fluids.
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PROOF OF THEOREM 6.1. In the sequel we assume that the vector
field », defined on T, is extended to a neighbourhood of [ as & O+
vector field. The results do not depend on the particular extension of ».

Tor convenience, we work here in the interval I = [0, | ool Set
J == [0, 7], >0, and define the convex set

K= {we IP(J; Wi C(J; We): Wyg = U, Aivawe(t) =0 in O,
i)y — 0 on Ty Vied, [wloe= 44, ], = B} .

The values of the positive constanis 7, 4, B will be fixed later on.
K is a closed, convex, bounded subset of the Banach space O(J; W),
In fact, if w,e K, w, —~w a8 n > + oo, it follows, by the wealk®-
compactness of the bounded subsets of I=(J; WF) and by the lower
semi-continuity of the norm respect to the weak®-convergence, that
we L2(J; W) and that [ew],,. < 44.

Now we define a map S on K as follows. Let ve K and let = be
the solution of the problem

— An = 2 (Do) (Do) —divf in 2,
3

R S (o fom Y- fov on I,
L

for each teJ. Note that div[(e-V)e] = Z(Dw)}(D;v;) + v V(dive)
in ©, and that [{v-V)v]-y = v-V(v-9) — 2(0;fem)v;0; on I'. Since
dive — 0 in Q and »-V(r-») = 0 on I', the compatibility condition
for the Neumann boundary value problem (6.2) is verified, and the
gsolution 7 exigts and is determined up to an additive constant. How-
ever, we are interested only on V.

Theorem 2.2% guarantees the existence and the uniqueness of a
golution # of the evolution problem

(6.3) {Dm—k{v-\_f’)u—fQVn in J %82,

W)g=0 = o in £.

We set Sv — u, Voc K. By applying well known regularity re-
sults to the elliptic boundary value problem (6.2), one gets

[Vl exd® -+ ellfilse -
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We reeall that the symbol ¢ may denote different positive constants,
even in the same equation. From (2.8;) it follows that

(6.4) Bl < ¢ (Tawo]w + Iflne+ 7d%) exp [ed].

On the other hand, from (6.3,) and from the above estimates, it
follows in particalar that [[Duflse-1= et A |l -+ cllfllre + orA®
Henee

(6.5) loe] g 51 = G( ”“ouk + Illﬂllz,k) + ord2+ er Al U] -

Now we will use the Helmholtz decomposition of L7 namely
Ir— X,® &,. We refer to [13], for definition and regults. A similar
argument {in L? spaces) is used in reference [17], in order to study the
system (6.1). We denote by P and by (Q = I — P the projections
associated with the above decomposition of L. It is well known that
the restrictions of P and @ to W' are continuous from W' into W,
1= 0. In particular, the norm of the linear map P is bounded in W*
and in W*! by a constant ‘e = e({2, n, p, k). Henee, from (6.4), it
follows that

1Pulse < o (%0l + Illoe+ 7A?) exp [e, A7] ,

where, by definition, (Pu)() = P{u(t)), VieJ. We fix 4 = e o]+
-+ lifll,), and we assnme that v verify the conditions

(6.6) AT <log2, edr=1.

1t readily follows that |Pul,,=< 44, Voe K. On the other hand,
gince 74 < 1je,, since |ufs,.=< cd, and sinee |Pul s ellufsr—,
one easily verifies (by using (6.5)) that | Puf,.-1 = ¢, A, for a suitable
constant ¢,. By defining B = e, 4, one has T(K) c K where, by de-
finition,, T = P8§.

Teet us show that T is & strict contraction, respect to the C{J; We1)
norm. Set # = 8(v), ' = 8(v'), and denote by (6.2} and (6.3') the
equations {6.2) and. (6.3) with v, 7, % replaced by v/, &', ', respectively.
Trom the equations (6.3) and (6.3"), and from (2.9), we deduce that
' — )y = ¢ 0xp A7) (V{7 — 7) s -+ exp [0AT]A 0" — @fl5-1)-
On the other hand, by subtracting the respective gides of equations
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{6.2) and (6.2'), one easily verifies that

|V{m" — m)|pmr = eA o' — ¥|sa, Vied.
Hence,

[ Pw’ — Pufsm = o]t — vl = 6 0xp Lo Azl A0’ — 0]

Consequently, if

{6.7) e, Ar=<1log2, dedr=1,

one has |To'— Tol, < &, Vo, 0" e K.

Let v = Pu — PS8v be the fixed point of 7. If we prove that
Pu — u, then » — u, and equation (6.3) shows that » is a solution of
the Euler equations (6.1). Let us show that Qu(t) = w(f), Vie J. Since
Qw = 0 means that divw = 0 in £, and that w-y = 0 on I, equation
(6.2) shows that @((v-V)v + Va— f} = 0, Vi€ J. Hence, by applying
the operator { to both sides of equation (6.3,), and by reealling that
w=2v-} Qu, itreadily follows that D,(Qu} + Q[(v-V)Qu]= 0, VicJ. By
multiplying both sides sealarly in Z2 by Qu, one gets(§).D; [Quit)) 2 =0,
a.e, in J. Since Qu(0) = Qu,= 0, it follows that Qu(t) =0, Vied.
Hence Pu == u.

Finally, we remark that the conditions imposed on v in the above
proof, namely (6.6) and (6.7), follow from the assumption on the
value of T made in theorem 61. M
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