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Abstract. In this paper we study the system (1.1), (1.3), which describes the
stationary motion of a given amount of a compressible heat conducting, viscous
fluid in a bounded domain Ω of Rn, n^2. Here u(x) is the velocity field, p(x) is the
density of the fluid, ζ(x) is the absolute temperature,/(x) and h(x) are the assigned
external force field and heat sources per unit mass, and p(pt ζ) is the pressure. In
the physically significant case one has g = 0. We prove that for small data (/, g, h)
there exists a unique solution (u, p, ζ) of problem (1.1), (1.3)1? in a neighborhood of
(0,m, ζ0); for arbitrarily large data the stationary solution does not exist in
general (see Sect. 5). Moreover, we prove that (for barotropic flows) the
stationary solution of the Navier-Stokes equations (1.8) is the incompressible
limit of the stationary solutions of the compressible Navier-Stokes equations
(1.7), as the Mach number becomes small. Finally, in Sect. 5 we will study the
equilibrium solutions for system (4.1). For a more detailed explanation see the
introduction.

1. Introduction

In this paper we study the system

' - μΔ u - vV div u + Vp(p, ζ) = p[f- (u V)w],

div (pu) = g,

- χΔζ + cvpwVζ + ζp'ζ(ρ,ζ) div u = ph + ψ{u,u), in Ω,

fcM|Γ = <U | Γ =Co, (1.1)

in a bounded open domain Ω'm Rn, for arbitrarily large n ^ 2. It is assumed that Ω
lies (locally) on one side of its boundary Γ, a C 2 manifold. Here,

φ(u,u) = χ0 Σ (Pi + P-)2+Xi(divu)2, (1.2)
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n

and (vV)u= ^v^du/dxi). System (1.1) describes the stationary motion of a

compressible, heat-conductive, viscous fluid (see Serrin [10]). In Eq. (1.1), u(x) =
{ux{x\ u2{x),... ,wπ(x)) is the velocity field, p(x) is the density of the fluid, CM is the
absolute temperature, f(x) and h(x) are the assigned external force field and heat
sources per unit mass, and p(p, ζ) is the pressure. In the physically significant case one
has g — 0; however, it is not without interest, from a mathematical point of view, to
study the general case.

In order to avoid technicalities, we will assume that the coefficients μ > 0, v >
- μ , χ > 0, cv, χ0, χl9 are constant. A dependence of those coefficients on w, p, ζ9 as
well as the introduction in Eq. (1.1) of other kinds of non-linearities, does not give
rise to substantial difficulties. For the same reason, we assume that ζo>0 is
constant.

Since the total mass of fluid is given, we impose the condition

—— \p{x)dx = m, or equivalently —— J σ(x)dx = 0, (1.3)
\Ω I Ω \Ω I Ω

where m > 0 is given, and σ(x) is defined by setting p(x) = m 4- σ(x).
The function p(p, ζ) is defined, and has Lipschitz continuous first order partial

derivatives p'p and p\ in a neighborhood [m — /, m -b /] x [Co — h, Co + Ί ] °f (m> Co)?

where 0 < I ̂  m/2, 0 < ^ g ζo/2. Consequently, we can write

p'p(m 4- σ, Co + α) = k -f ω x (σ, α),

p£(m 4- σ, Co + α) = ω2(σ, α),

where k = Pp(m, ζ0), ωί (0,0) = 0, and ω1, ω 2 are Lipschitz continuous in /(/, lx) =
[ — /,/] x [ — / 1 ? /i] . We assume that fc>0 (in fact, /c^O would be sufficient here).

By setting

p = m + σ, C = Co + α,

we write system (1.1) in the equivalent form

' — μΔu — vV div u 4- Wσ = F ( / , ι/, σ, α),

mdivw 4- w Vσ 4- σdiv u = g,

— χΔθί = H(h,u,σ,a), in Ω,

u | Γ = 0 , α | Γ = 0, (1.5)

where, by definition,

f, M, σ, α) = (σ 4- m)[/ — (M V)M] — ωx(σ, α)Vσ — ω2(σ, α)Vα,

!, M, σ, α) = (σ 4- m)/ϊ — cυ(m + σ)w Vα 4- MM, M) 4- — ω2(σ, α)(M Vσ — a).
m + σ

(1.6)

Note that Eq. (1.5)2 is used in deducing the expression H.
Let p>n be fixed. We prove that problem (1.1), (1.3) has a unique solution

(u,ρ,ζ)eW2'p x WltP x W2'p in a neighborhood of (0,m,Co) provided the data
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(fg, h)eΠ x WQ'P X U belong to a suitable neighborhood of the origin. See
Theorem 3.1. This results can be generalized as follows:

Theorem 1.1. Let pe] l , + oo[ and j ^ — 1, verify j + 2 > n/p. Assume that ΓeC3+j

and p(p,ζ)eC3+j(I{lJ1)). If(fg,h)eWj+Up x Wj

0

+2>p x Wj+1>p verify the condition

N j + l . p T \\y\\j+2,p~ \\n\\j+ί,p = ^θ9

then there exists a unique solution (u,p,ζ)eWj

0

+3fP x Wj+2'p x WJ+3tP of problem
(1.1), (1.3) in the ball

In the above statement c'θ9 c\ are suitable positive constants depending only
o n Ω, n9pj9μ9v9k9m9ζθ9cυ9 χ9χθ9l9ll9Ti9Si(i= 192)9 w h e r e Tt = s u p | ω ^ σ , α ) | for

(σ,α)e/(/,/J, and ̂  is the norm of ω{(σ,α) in the space C2+J(I(lJi)).
We recall that for the incompressible Navier-Stokes equations a corresponding

result is well known. In fact, for the linear Stokes problem (which is an elliptic
system) the result is classical (see [1,4]). For the nonlinear problem the result follows
immediately by using the estimates for the linear Stokes problem together with the
Schauder fixed point theorem.

The Lp-theory enables us to treat the n-dimensional case by handling only
derivatives of order less than or equal to two (case j = — 1). Nevertheless, our proof
applies as well to the case j> — 1 , without further difficulties or technical
calculations, as shown in the last part of Sect. 3; the details will be given in a
forthcoming note, by A. Defranceschi [14]. To be more specific, here we will concen-
trate our attention on the casej = — 1, since our proof turns out to be (slightly) more
complicated just for this case.

Section 4 is concerned with barotropic motions, described by system (4.1). The
main goal of this section is the study of the incompressible limit of a family of
compressible barotropic flows. We assume that pλ(p) is a family of state functions
depending on a parameter λ, such that p'λ(m) -• + oo (i.e., the Mach number becomes
small) as λ -• -f oo. We refer to [5,6] for the physical justification of the assumptions
done in Sect. 4. We will prove that the solution (w^, m) of the incompressible Navier-
Stokes equations (1.8) is the limit of the solutions (uλ9pλ) of the compressible
Navier-Stokes systems of Eq. (1.7), as Λ-> + oo. Moreover, pλ(pλ(x))-+π(x), as Λ->
+ oo.

More precisely, we prove in Sect. 4 the following result:

Theorem 1.2. Let p> n be fixed, and let the assumptions (done in Sect. 4) on the family
of state functions pλ(p) hold. Then, there exist positive constants c'89c

f

99 depending at
most on Ω9n,p9μ9v,m9l9φ,kθ9 such that if feLp,\f\p^c8i then the following
statements hold:

(i) for each λ ̂  λ0, the problem

— μΛuλ — vV di\uλ + Vpλ(pλ) = pλ\_f~ {uλ'V)uλ~\,

di\ (pλuλ) = 0, in Ω,

x = m, (1.7)
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has a unique solution (uλ,pλ)eWl'p x WUp in the ball \\uλ\\2,pSc'9, \\px — m\\1>pt^
c'9/kλ.

(ii) // lim kλ = -h oo as λ -» + oo, then uλ -> u^ weakly in W\p, div uλ -> 0 weakly in
Wo'P> Pχ-^mstrongly in Wx'p, Vpλ(pλ)-> Vπ weakly in LP, where (w^, Vπ) is ί/ze unique
solution of the incompressible Navier-Stokes equations

-μΔua, + Vπ(x) = m[/ - (MM V K J ,

div 1/^=0, m /2,

A similar result was proved for n ^ 3, j = l,p = 2, in ref. 2. The proof given here
applies as well to the case WhP, if j + 2 > w/p, ΓeC3+j, p(ρ)eC3+j. The details will be
given in the forthcoming note, referred to above.

Finally, in Sect. 5 we will study the existence of equilibrium solutions (solutions
such that u(x) = 0, VxeΩ), for arbitrarily large external forces / = VF. In particular,
we will show that if p{ρ) = Rp\ R > 0, γ > 0, y φ 1, the equilibrium solution does not
exists in general (even for a constant external force / ) . If y = 1, then the equilibrium
solution exists for every bounded potential F(x).

For small external forces, it was prove in [11] that the stationary solutions are
stable (for the equilibrium solutions this was proved in [7]). It would be interesting
to study the stability of the equilibrium solutions for large external forces, even if
n = l .

Some Considerations. It is worth noting that the core of this paper is the study of the
linear system (2.1); see Theorems 2.1 and 3.3. In this system the unknowns are u
and σ, the vector field v being fixed. Due to the term υ Vσ, system (2.1) is not an
elliptic system in the sense of Agmon, Douglis, and Nirenberg [1; part II], except
if v(x) vanishes identically in Ω. In fact (assume, for simplicity, that μ=k=m= 1,
and v = 0), consider in Ω the system — Δu + Vσ = F,divw-bι; Vσ + φc)σ = 0. By
using the notations of [1; part II] one has: L(x, ξ) = v(x)-ξ\ ξ\2n if v(x) Φ 0; L(x, ξ) =
(1 + a{x))\ξ\2n if v(x) = 0. Consequently, the ellipticity condition (see [1], Eq. (1.5))
"L(x, ξ)φθ for real ξ φ 0", cannot be satisfied unless v(x) = 0, for all xeΩ.

If v = 0 and if a is small enough (for instance, if l α ^ < 1), the system is elliptic.
However, this last property cannot be used to treat the term υ Vσ as a perturbation
term. In fact, by assuming that σeWx'p, the term t Vσ belongs just to LP. In this
situation, equation div u + v Vσ + a(x)σ = g yields div ueU, and equation — Δ u +
Vσ = F gives us WliP, σeU. Hence, from the point of view of regularity, we loses one
derivative.

We also point out that the evolution problem is easier to solve due to the
presence of the term (δσ/dt) + vVσ in the evolution counterpart of Eq. (2.1)2.

Let us briefly explain the main ideas utilized in the sequel (see also [2]) to solve
the linear system (2.1): By applying the divergence operator to both sides of Eq. (2.1) 1

one shows that (μ + v)Δ div u = kΔ σ — div F, and by applying the Laplace operator
to both sides of Eq. (2.1)2 one gets

vnk
Δσ + vVΔσ = G(F,g,σ), (1.9)
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where G(F,g,σ) is given by (2.5). In order to be able to solve Eq. (1.9) for Δσ, we
replace G(F,g,σ) by G(F,g9τ)9 where τeW1^ is an arbitrary function. This yields
Eq. (2.4), where (heuristically) λ should be regarded as A σ (actually λ = A σ, if τ = σ
is a solution of (2.1)). Once λ is known, we want to determine div u. By applying the
divergence operator to both sides of (2.1)l5 we get Eq. (2.10)l5 where (heuristically) λ
should be regarded as div u (we will show that θ = div u, in the event that we have a
fixed point σ = τ). The remarkable property div u = 0 on Γ1 suggest us to impose on
θ the boundary condition (2.10)2. Once θ is known, Eq. (2Λ)1 gives u and σ, by
solving the Stokes linear problem (2.13). In Eq. (2.13) we replace θ(x) by θo(x) =
θ(x) - θ, where θ is the mean value of θ(x), since the compatibility condition
#o = 0 is required here.

For each fixed pair (F, g) the above sequence of maps define a map τ -• σ. We will
prove that this map is a contraction (in a suitable ball), and that the pair (u, σ),
corresponding to the fixed point σ = τ, is a solution of (2.11).

We end this section by calling the reader's attention to the following papers, in
which results directly related with those of Sect. 3 can be found: M. Padula [8], A.
Valli [11], A. Valli and W. Zajaczkowski [13], H. Beirao da Veiga [2], A. Valli [12].

The corresponding evolution problem has been studied by many authors.
Here, we mention only a sequence of papers by Matsumura and Nishida
(see [7], and references) and Valli's paper [11].

To readers interested in the incompressible limit of compressible fluids, we
suggest papers by Klainerman and Majda [5], Majda [6], and Schochet [9].

2. The Linearized System

In this section we study the linear system

— μA u — vV div u + kWσ = F(x),

mdivu + v Vσ + σdivi; = g, in ί2,

| Γ = 0, (2.1)

by adapting to the ί/-case the method introduced in [2]. We start with some
notation. We denote by WjtP,j an integer, 1 < p < + oo, the Sobolev space Wj'p(Ω),
endowed with the usual norm || || j>p5 and by | | p, 1 ̂  p ^ + oo, the usual norm in
LP = LP(Ω). Hence, || | |0 p = | |p. For convenience, we also use the symbol Whp to
denote the space of vector fields υ in Ω such that vίeWjfP(Ω% i= 1,2,...,n. This
convention applies to all the functional spaces and norms utilized here. For j ^ 1 we
define Wtf = {ve Wj*\υ = 0 on Γ}. Note that Wtf = WhP n W^p, is not the closure
of @(Ω) = C$(Ω). Furthermore, we set Wj>p = {τeWhP\τ = 0}, Wjόp =
Wjόp n WlP, j^i 1, where in general φ denotes the mean value of φ (x) in Ω.
Finally, for vector fields, we defined Wtfd = {veWj^p:divυ = 0 on Γ}, j ^ 2.

With the only exception for Sect. 5, c, ch i ^ 0, will denote positive constants
depending at most on Ω,n,p. The symbol c may be utilized (even in the same
equation) to indicate distinct constants. In Sect. 5, c will denote an integration
constant.

1 Equation (1.5)2 implies that every stationary solution u must verify the equation div u — 0 on Γ
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We denote by q = p/(p - 1) the dual exponent of p, and by r* the Sobolev
embedding exponent r* = (n - r)/nr. Recall that WUp c> L00, if p > n, and WUp c; U\
if 1 ̂  p < n.

Now we state the main result in this section (see also Theorem 3.3):

Theorem 2.1. Let p>n be fixed, and let FeLP,geWltP. There exist positive constants
c and γ,γ defined by Eq. (2.22), such that ifveWl$ verifies the assumption

\\v\\2tPύyk, (2.2)

then there exists a unique solution (u, a)eWl^ x WltP of problem (2.1). Moreover,

p . (2.3)

Proof Let τeWlfP, and consider the linear problem

mk

μ + v

where by definition

(2.4)

G{F,g,τ) = Δg + - ^ - d i v F - [2Vι>:V2τ + Δ v Vτ + Δ(τdivt?)]. (2.5)

Here, Vι;:V2τ = Σ(δt;ί/5xfc) (δ2τ/δx^xfc). Note that G is a linear map from U x
^ I , P x ψuv i n t 0 | ^ - I , P ( t h e d u a l s p a c e o f p^i,^ a n d t h a t

^ | f | P + c | | ! ; | | 2 t P l | τ | | l i P . (2.6)

In [3] we prove that there exists a positive constant cx such that if ||ι>||2,p
^ c± mk/(μ + v), then there exists a linear continuous map L: VF~1>p-^ VF" l ί P such
that λ = LG is a weak solution of Eq. (2.4), for every GeW~lp. Moreover

mk | L l i P . (2.7)

By a weak solution of (2.4) (see [3] for details), we mean a distribution λeW~ifP

such that

φ-άiv{φv),λ) = (φ,G), Vφe@(Ω). (2.8)

Here, <•,•> denotes the duality pairing between Wl*p and W~ίyP. The above result
yields

γyilζ
ffl'ΓV | | Λ II ^. J * ' * I ••—t I II II . | | | | II II 1 / ^ ΓΛ\

Now let θeWliP be the solution of the Dirichlet problem

(μ + v)ΔΘ = kλ — divF in 12,
0 |Γ=O.
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Clearly,

(μ + vJIIΘII^^clFI^ + c ^ ί l l f l f l l ^ + l l i ll^llτll^). (2.11)

Next, define

θo(x) = θ(x)-θ. (2.12)

Since ffo = 0, there exists a unique solution (M,σ)eWl'p x W1^ of the linear
Stokes problem

= θ0, in JQ,

ι (2.13)

Moreover (see [1,4])

μ\\u\\2,p + k\\σ\\Up^c(\F\p + (μ + \v\)\\ΘJUp). (2.14)

Since (2.2) holds, and | | θ o \ \ l y P ^ c \ \ θ | | 1 > p, one easily gets

^ V ^ ^ | | 1 , ; , . (2.15)^ V l P + 2 | | 0 | | 1μ + v J m

At this point, we call attention to the sequence of linear maps

(F, g, τ) -> (F, G) -> (F, 2) -* (F, 0) -> (F, θ0) -> (u, σ),

where F is left unchanged, and the elements G, λ, θ, θ0, (u, σ), are defined by Eqs. (2.5),
(2.4), (2.10), (2.12), and (2.13), respectively. The product map is linear and
continuous, by (2.15). Hence, if (u1,σ1) is the solution corresponding to the data
(FjgfjTj), it follows that (u — ul9σ — σx) is the solution corresponding to the data
(0,0,τ — τx). Consequently, \\σ — σ11| 1>17 ^ (1/2)||T — τ x | |1 > p, and the map τ^σ is a
contraction in WltP. Hence, it has a (unique) fixed point σ = τ.

Now, we prove that the pair (w, σ\ corresponding to the fixed point σ = τ is a
solutions of (2.1). The main point is to prove (2.1)2, since (2.1)x and (2.1)3 follow
immediately from (2.13). From (2.10)! we get

λ = ̂ ^-Δάivu + γdivF, (2.16)
k k

since A θ = Δ θ0 = A div u. On the other hand, by applying the divergence operator
to both sides of Eq.(2.13)l5 and by using (2.13)2 and (2.16), we show that λ = Δσ.
Now, we replace λ by the right-hand side of (2.16) in the first term on the left-hand
side of (2.8), and by A σ in the second term on the left-hand side of (2.8), This yields

<φ,mΔ divu> — <div(φυ\ Aσ}

= (φ,Δg - 2Vv\Ψσ - AvWσ - A (σ&w v)), Vφe@(Ω). (2.17)

We claim that

2 ), (2.18)
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where the pairing on the right-hand side denotes the duality between $)(Ω) and
®'{Ω). Let σMeC3(ί2),σπ->σ in WUp(Ω), as n-> + oo. The identity (2.18), for the
functions σn, follows from the formulae A (vVσn) = v VΔ σn + 2Vv:V2 σn + Δ vVσn.
By passing to the limit as n-> + oo, we prove (2.18), for σ.

From (2.17) and (2.18) we get

A (m div u + m0"+ υ Vσ -I- σ div i; - #) = 0, (2.19)

in ί2. Assume that one has

mdivw + m@+vVσ + σdivv-g = 0 (2.20)

in ί2. Then, by integrating in Ω both sides of this equation, one easily concludes that
U= 0. Hence (2.1)2 holds, as desired. Let us prove (2.20)2. Set ΩE = {zeΩ: dist (z, Γ)
> ε}, F ε = {zeΩ: dist (z, Γ) = ε}, where ε > 0 is assumed to be enough small so that
Γε is a regular manifold. Let gε(x, y) be the Green's function for the Dirichlet problem
in β ε, and let xeΩ be fixed. We want to prove (2.20) at x. For εe]0, (1/2) dist(x,Γ)[
one has |V^ε(x,y)| ^ K,VyeΓε, where X does not depend on ε. Let U denote the
left-hand side of (2.20). Since 17 is harmonic in Ωε, one has U{x) =
J {dgε(x,y)/dny) U{y)dΓε(y), where ny denotes the outward normal to Γε at y.
rε

This shows that \U(x)\£K$\U(y)\dΓB(y). Consequently, if we show that

lim inf j | U(y) \ dΓε(y) = 0, as ε -• 0, it must be that U(x) = 0. Actually, it is sufficient to

verify that
liminfess J |ι? Vσ\dΓε = 0, (2.21)

since the function m div u + mΰ+ σ div v — ge WQ'P(Ω) converges uniformly to 0 as
dist(y,Γ)-0.

Assume by contradiction, that there exist positive constants ε0 and δ such that
the integral on the left-hand side of (2.21) is greater than <5,for a.a. εe]0,εo[.
Denoting by Ko the Lipschitz constant of v in /2, and recalling that v vanishes on Γ,
it follows that \\Vσ\dΓε^δ/{K0&\ for almost all εe]O,εo[. This contradicts the
estimate

]{\\Vσ\dΓε)dε= f |Vσ|dy<+oo.
0 rβ Ω/Ω£0

The existence part of Theorem 2.1 is completely proved. As in [2], Sect. 2,
we show that there exists a constant c0 such that the solution of (2.1) is unique if
|| v\\2tP ^ (mμok)/lco(μ + |v | ) 2 ] , where μ0 = min {μ,μ + v}.

For convenience, we set

( 2 2 2 )

2 In case that j^0 (see Theorem 1.1) the proof of (2.20) is immediate, since the left-hand side of (2.20)
is harmonic in Ω and vanishes on /"(since div u = — ϋ, v — 0, div v = g = 0, on Γ). However, if j = — 1,
this argument has to be carefully handled, since the function Vσ has not a trace on Γ
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Then, inequality (2.2) includes all the assumptions on |M| 2 , P utilized in proving
Theorem 2.1.

Remark 2.2. Define the linear operator Av by

Av(u,σ) = ( — μΛu — vVdivu + /cVσ, mdivu + vVσ 4- σdivi;), (2.23)

where v is as in Theorem 2.1, and the domain of Av is

D{Aυ) = {(u9σ)eWl>$ x ί ? 1 ^ : u VσePFj '}. (2.24)

By endowing D(AV) with the norm

,, (2.25)

D(AV) becomes a Banach space. Theorem 2.1 proves that Av maps D(Aυ)
homeomorphically onto LP x WQ'P'.

Note that, in general, £>(/!„) ^ #(-4J, if t; ̂  w.

3. The Non-linear Problem

In this section we prove the existence and uniqueness Theorem 1.1 in case that; =
— 1, i.e. we prove Theorem 3.1 below. We close the Section by showing how to adapt
the proofs, in case that ^ 0.

Recalling (1.4), we set

/(MO /(MO l ( σ , α ) - ( τ , / 0 |

Moreover, we set ώ 1(ί,5) = s u p l ω ^ σ , α ) | , for |σ | ̂  ί, |α | ^ s. We denote by c 3 a
positive constant such that

M o o ^ l M I ^ , iβL^CsWβW^, Vτeΐ^1^, V/?ePF^. (3.1)

For convenience, m this section we denote by c\ c , i ^ 0 , positive constants
depending at most on Ω9n9p9μ, v,k,m,ζo,cv,χ,χo,χι, I, ll9 ThSι. The symbol d may
be utilized, even in the same equation, to denote distinct constants.

One has the following result3:

Theorem 3.1. Let p>n be fixed. There exist constants dθ9dί9 such that if

I / I P + I I # I I I , P + I ^ C ' O , (3.2)

there exists a unique solution (w, σ, cήeWl'p x WltP x W\v of problem (1.5) m ί/ie

l l « l l 2 . p + l k l l i . P + l l « l l 2 . p ^ C 1 . (3.3)

Hence, there exists a unique solution (μ,p,ζ)eW^p x WlfP x W2'p of problem (1.1),
(1.3), in ί/ιβ corresponding neighborhood of (0,m,ζo).

3 We assume here that p(p,ζ) has Lipschitz continuous first order derivatives. However, Theorem 3.1
still holds if p(ρ, ζ) is only assumed to be continuously differentiable
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In order to prove Theorem 3.1 we state some auxiliary results. The verification of
the following statement is immediate, and is left to the reader:

Lemma 3.1. Let τeW1'p,βeWltP, verify the assumptions

I l / M l ^ - , (3.4)
c 3

and let vεW2>p, feLp,geWι

0>
p,heLp. Then

J,||τ||liJ, + |^| J ,). (3.5)

Theorem 2.1, Lemma 3.1, and classical results for the Dirichlet problem (3.7),
yield the following statement:

Theorem 3.2. Let veWl\ζ verify (2.2), and assume that the hypotheses in Lemma 3.1
hold. Then, there exists a unique solution (u,σ)eWl\ξ x WliP of problem

( -μΔu

I mάivu +v-Vσ + σdivv = g, in Ω, (3.6)

l ι ι | Γ = 0,

and a unique solution <xeWl'p of the problem

χΔ* = H{h,Ό9τ,β), in

Moreover,

μ\\u\\2,p+ kU\\i.P£c

(3.8)

+ cζ-±~(\\v\\2Jτ\\Up+\g\p). (3.9)

In the sequel, the solution (u, σ, α) of problems (3.6), (3.7) with data (v, τ, β) is
denoted by (u,σ,α) = T(v,τ,β). Let us write (3.8), (3.9) in the abbreviated form

β\\l,p).
(3.10)
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Set

. ί , ' M i Y/2 i i 1

let re]0,ro], and assume that

| / | p ^ r 2 , |/i |p^r 2, ||fif||liPgr2, (3.12)

and that

\\2tP£r9 \\τ\\Up^r9 \\β\\Upύ5C2r
2. (3.13)

Under these assumptions, the conditions (2.2), (3.4) are fulfilled. Consequently,

from (3.10) it follows that (w,σ,α) = T(v,τ,β) verifies

\\u\\2,p^r, \\σ\\UpSr, | | α | | l t P ^ 5 c ' 2 r 2 . (3.14)

Consequently T(Br) c Br, where Br is the subset of W2

0\
p

ά x WUp x Undefined
by Eqs. (3.13). In order to accomplish the proof of Theorem 3.1, we will show that T
is a contraction in J5r, with respect to the norm W\;2 x L 2 x Wl'2, if r is sufficiently
small. It follows then, by the contracting mapping principle, that T has a (unique)
fixed point (u, σ, α) = (v, τ, β) in J5r (we could also use Schauder's fixed point theorem,
since Br is a convex and compact subset with respect to the W\;2 x L 2 x W\2

topology).

Let (M,σ,α) = Γ ( r , τ , β \ ( u t , σ x , α t ) - T^i,τ x ,β ± ),F = F(f9υ9τ,β\F,= F(f9v,,
τ1,β1\ H = H(h,v,τ9β),H1 = H(h9vl9τl9β1). One has, in Ω,

f - μ4 (M - MJ - vV div(M - MX) + /cV(σ - σx) = F - F t ,

(mdiv(M - MJ 4- vγ V(σ - σ j + (t; - i O'Vσ + σi div(y - z;x) + (σ - σ jdiv t; = 0,
(3.15)

and

α1) = H - H 1 . (3.16)

Here, we use the notation || ||fct2 = || | |k. By multiplying both sides of Eq.
(3.15)! by miu — Ui), both sides of Eq. (3.15)2 by k(σ — σx), by integrating the
resulting equations in Ω, and by adding them side by side, we show that

+ c f c | | σ 1 | | l i P | | t ; - t ; 1 | | 1 | | σ - σ 1 | | o + cfc | | t ; | | 2 i J , | |σ-σ 1 | |§. (3.17)

In proving (3.17) we utilize some well known Sobolev inequalities. Note that if
2* = 2n/(n - 2), one has (1/2*) + (1/2) + (//?) < 1.

Arguing as on proving Eq. (3.12) in reference [2], we show that

II w — "i II i + ci(l — ci || 171|2BJP) II σ — σ-! IIg ^ C' || O^ || f B#, II ̂  — ̂ i II f -h C || i7 — ̂ i II ?-1 -

(3.18)

Moreover,

| | α - α 1 | | 1 f g c ' | | i / - / / 1 | | _ 1 . (3.19)
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Straightforward calculations show that (see appendix)

+ c\l + \\τ\\Up)(\\v\\Up+\\vJί,p)\\v-v1\\ί

+ ^ ( l | τ | | 1 , p + | | τ 1 | | l s , + | | ^ | | 1 , , + | | i S 1 | | 1 , p ) ( | | τ - τ 1 | | 0 + | | i ? - ^ 1 | | 0 ) , (3.20)

and that

I I H - H J U ^ c ' d l t l l ^ + l l i i l l ^ + l l τ l l ^ +\\β\\Up)\\υ-υ1\\i

+ bi l l 1.^11^11^+II ϋilli.p) II i5-i»illo. (3.21)

By using (3.12), (3.13) it follows that the coefficients of \\v — vi\\li | |τ — τί\\0,
\\β — βi\\o> *n the right-hand sides of Eqs. (3.20), (3.21) are polynomials on r,
vanishing for r = 0, and with coefficients which are positive constants of type c'.
Similarly, the coefficients c'5||ι?||2,p and c71| σx ||f sP (that appear in Eq. (3.18)) are
polynomials on r of the above type. Since the exact form of these polynomials is not
important here, we will denote them by the symbol ε = ε(r).

By using the above notation, the estimates (3.18), (3.19), (3.20), (3.21), yield

(3.22)

- ϋ i l l ϊ + ε l l τ - τ i l l g + ε l l j S - i S i l l g . (3.23)

H e n c e ,

| | w _ M i | | 2 + ( ^ _ ε ) | | σ _ σ i | | 2 + | | ( χ _ α i i i 2

^ ε l l ϋ - ^ l l ϊ + ε l l τ - τ i l l g + ε l l / J - ^ H g . (3.24)

Hence, for a sufficiently small value of r (depending only on Ω, n, p,..., Ti9 St), T is a
contraction in Br, with respect to a suitable norm in W\'2 x L2 x W\f2. The proof of
Theorem 3.1 is accomplished.

Proof of Theorem 1.1. The changes to be made on the proof of Theorem 3.1, in order
to adapt it for all values of j , are quite obvious. We start by showing it for Theorem
2.1, which is the main tool in our proofs.

The proof of Theorem 2.1 was done by solving the sequence of linear problems
(2.5), (2.4), (2.10), (2.12), (2.13), and by getting suitable estimates for the correspond-
ing solutions. Let us show that the proof goes on, in case that j ^ 0, exactly as for

i = - i

Problem (2.5). The following estimate for the solution of problem (2.5) is easily
obtained by using Sobolev's inequalities:

Problem (2.4). The following result is proved in [3]: There exist positive constants c
and c1 (here the constants depend also on;) such that if || v \\j+3fP S C\ mk/(μ + v), and
v = 0 on Γ, then there exists a solution λ of problem (2.4), moreover one has
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r r ^ - r I I A | | A p g c | | Gil,,,,.
2(μ + v) J μ

Problem {2.10). For the solution θ of the Dirichlet problem (2.10) the estimate

(μ + v ) | | 0 | | J + 2 . p £ c ( | | F | | , + 1 , p + fc||A||Λj>)

is well known.

Problem (2.12). Obviously, the function θθ9 defined by Eq. (2.12), verifies the
estimate ||0oll; + 2 .p^<i0 | | j + 2i/,.

Problem (2.13). The solution (u,σ) of this Stokes linear problem (see [1,4]) verifies
the estimate

μ \ \ u \ \ J + 3,p + k \ \ σ \ \ j + 2 , p S c ( \ \ F \ \ j + U p + (μ + \ v \ ) \ \ θ 0 \ \ j + 2 , p ) .

By putting together the above estimates, one easily gets (c.f.r. (2.15))

By arguing as in Sect. 2 (recall footnote 1) one proves the following result:

Theorem 3.3. Let pj and Γ be as in Theorem 1.1 and let FeWj+Up,geWj

0

+2'p.

Then, there exist positive constants c = c(Ω, π, p, j), y = y(Ω,n, p, y, μ, v, m), 5t/c/i ίftαί ί/

y e ί ^ ^ 3 ^ verifies the condition \\v\\j + 3tP^yk, then there exists a unique solution

(u9σ)eWj

0+d

3*p x Wj + 2-p of problem (2.1).' Moreover,

The rest of the proof of Theorem 1.1 (the "non-linear part") closely follows the
proof of Theorem 3.1. For an arbitrary 7 ^ — 1, we define the set Br by the
inequalities (c.f.r. (3.13))

and we prove that (for sufficiently small values of r) T(Br) c Br, and that T is a
contraction in Br with respect to the norm W1Q2 X L2 X H^'2- The proofs of these
two statements in case that j> — 1, differ from the proofs given above only by the
particular Sobolev's inequalities to be used.

Before ending this section we remark that in Theorem 1.1, iϊheWj'p (instead of
heWJ+Up) then ζeWj + 2'p, and iϊ heWj + 2'p, then ζeWj + *-p.

4. The Incompressible Limit

In this section we study the system

- μΔ u - vVdiv u + Vp(p) = p\_f - (w V)u],

div(pw) = 0, in Ω,



242 H. Beirao da Veiga

describing the barotropic motion of a compressible, viscous fluid. Since we are
interested in studying the limit of the solution u when k = p'p(m)-+ + oo, it is
necessary to state an existence result for problem (4.1) in which: (i) the dependence of
some suitable structural constants of the state function p(p) in terms of k is given; (ii)
the dependence on k of the constants appearing on the estimates, is shown. This is
the aim of Theorem 4.2 below.

Let p(p) be continuously differentiable in [m — (l/k\ m + (//&)], where 0 <
l/k < m/2, and write pf

p in the form p'p(m + σ) = k + ω{σ). We assume that there exists
αe]0,1] such that

\ω{σ)\^S\σ\\ Vσe[-J/MA], (4.2)

and we denote by φ a positive constant for which

SSφki+*. (4.3)

Arguing as in proving Theorem 3.2, we show

Theorem 4.1. Let the above assumptions on the state function p(p) hold, let veWl\p

d

verify (2.2), and let

\\kτ\\Up^-. (4.4)

If fell, there exists a unique solution (u,σ)eW^ x W1^ of the problem

- μΔ u - vV div u + kVσ = F(f, v, τ)

mdivu-fι? Vσ-l-σdivι? = O, in Ω,

, (4.5)

where F(f, v, τ) = (τ + m)[/ — (v V)y] — ω(τ)Vτ. Moreover,

? | ί + β . (4.6)

Here the positive constants c\, c'2, c'3, depend at most on β , n,p,μ, v,m (and are
distinct from the constants c'u c'2, c'3, in Sect. 3). Following Sect. 3, we denote by
(M, σ) = T(v9 τ) the solution of system (4.5). Define

ί 1 1 / 1 \ 1 / α ]
r0 = min <̂  yίc, - , — Γ , — — V, (4.7)

{ c3 3c2 \3c3φJ J
and assume that feLP is fixed, and verifies

1/1,^/(3^). (4.8)

One easily shows that T(Br) c Br, where Br is defined by the inequalities

\\v\\2,pSr,\\kτ\\Up^r. (4.9)

Moreover, there exist positive constants c', c^, c'5, depending at most on
Ω, n, p, μ, v, m, such that

(4.10)
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where (w!, σ J = T(vx, τ x), F = F(/, u, τ), i7j = F(/, i;x, τ x). Inequality (4.10) is proved
as inequality (3.18). Straightforward calculations (see (3.20)) show that

+ c | | ι ; 1 | | ? < p | | τ - τ 1 | | o + c50(||feτ||ϊ,l, + | | feτ 1 | | ϊ i P ) | |k(τ-τ 1 ) | |o . (4.11)

Arguing as in Sect. 3, one easily verifies that there exists a positive constant
rλ^r0, depending only on Ω,n,p,μ,v,m,l,φ,k0, such that for r ^ r l 5 Γ is a
contraction in Br, with respect to the WQ'2 X L2 norm (for convenience, we denote
by fe0 a positive constant such that k ^ k0). The above result proves the following
theorem:

Theorem 4.2. Let p > n be fixed, and let the above assumptions on the state function
p(p) hold. Then, there exist positive constants c'6, c'Ί, depending only on
Ω, n,p,μ, v,m, /, φ and k0, such that if fe If verifies \f\p^c'6, then there exists a unique
solution{u,p)eW^p x WUp ofproblem (4.1) (1.3)! ,in the ball \\u\\2p^c'Ί, \\p~m\\ι p

Assumptions on the family pλ(p). Here, pλ{p) is a family of state functions depend-
ing on a parameter λe[λ0, + oc[, and such that feΛ-> + oc as /-> + oo. Our
assumptions on pλ(p) are the following:

Let p'λ{p) denote the derivative dpλ(p)/dp. We set kλ = p'λ(m), we assume that
kλ^k0> 0, and we suppose that pλ(p) is defined and continuously differentiable
in the interval [m — l/kλ, m + ///cj, where 0 < / <(feom)/2. Moreover, we assume that
\p'λ(p) — P'x(m)\ = $λ\p — /^Γ, for a fixed αe]0,1]. Hence, by setting p'λ(m + σ) = kλ +
ωλ(σ\ one has ωΛ(0) = 0, and

//fcA,//fcλ]. (4.12)

We assume that there exists a positive constant φ such that

Sλύφk\ + \ V ̂ /o (4.13)

These quite general assumptions contain the physically interesting cases
described by Klainerman and Majda in [5]. In particular, if fe, α and S are the
parameters relative to a given state function p(p), and if we define pλ(ρ) = λ2p(ρ), then
Sλ^(S/k)kλ. Hence, Sλ^φk\ + a, where <£ = S/(Λgαfc1+α). In that example we may
view M = 1// as the Mach number (see [5]).

Proof of Theorem 1.2. Part (i) follows from Theorem 4.2. Moreover, the estimates
show that there exists uaoeW2

)'
p such that ux^u^, and pλ->m, in the topologies

indicated in the statement. The convergence of all the sequence uλ to u^ follows from
the uniqueness of the solution of (4.15), which holds if cf

8 is sufficiently small.
From Eq. (4.14)2, one easily verifies that div uλ -> 0 in LP. Since || div uλ || x p g c'9,

one gets the weak convergence in Wl'p. Clearly, divM^ = 0 .
Finally, we pass to the limit in Eq. (4.14)!. One has Vpλ(pλ)-+μΔuOD +

mlf—{uoo'V)uoo^ weakly in LP, since: Auχ-^Au^ and — vVdivt^-^O weakly in
LP; pλ-+m strongly in WltP; and pλ(uλ V)uλ-+m(uO0'V)uO0, strongly in U. Obviously
the limit of the sequence Vpλ(pλ) must be of the form Vπ(x), for πeWUp. •
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5. The Equilibrium Solutions

The results described in this section are obtained by using very elementary methods.
The proofs are independent of the results of the preceding sections.

By an equilibrium solutions (e.s.) of system (4.1) [respectively (1.1)] we mean a
solution (u,p) [respectively (w,p,()] such that u = 0 in Ω, and

0 < ess inf p(x), esssupp(x)< + oo. (5.1)
xeΩ xeΩ

If h = g = 0 the two problems are equivalent (set p{p) = p(p, ζ0) in system (4.1)). In
the sequel we will consider the system (4.1). We call equilibrium solutions the
functions p(x\ in the class (5.1), such that (0, p(x)) solves (4.1). It is easily shown that a
necessary condition for the existence of the equilibrium solution is t h a t / = VF, for
some potential F. Moreover, the equilibrium solutions are the solutions of the
equation

Vp(p(x)) = p(x)VF(x), xeΩ. (5.2)

Here, we are interested in the study of the e.s. under the effect of arbitrarily large
external forces / = VF. We will present useful necessary and sufficient conditions for
the existence of the equilibrium solution for an arbitrary FeU° (Ω).

In the sequel, p is a continuously differentiable real function defined on
R+ = {seR'.s > 0}, such that pf(s) > 0, MseR + . We look for equilibrium solutions
verifying (5.1) and (1.3)l9 for a fixed m > 0. We define

π{s) = ]r1p'(t)dt9 VseR + . (5.3)
m

We denote by ]α, b\_ the range of π, ]α, fr[ = π(K + ) . One has — oo ^a<0<b^
+ oo, since π(m) = 0. We define Φ = π~K Clearly, Φ(]a, b[) = R + .We set Φ(a) = 0,
φ(b)= + oo.

Let p and F be defined and measurable in Ω, and let p verify the assumptions (5.1)
and (1.3)!. Then p is said to be a weak-equilibrium solution if there exists a real
constant c such that

π(p{x)) = F(x) + c, a.e. in Ω. (5.4)

Moreover, p is said to be a strong-equilibrium solution ΊipeW1Λ and if (5.2) holds
a.e. in Ω. A weak-equilibrium solution is a strong e.s. if and only if peW1Λ.
Furthermore, peWίΛ if and only if FeW1Λ. Hence it is sufficient to take in account
the weak formulation (5.4). Note that Eq. (5.4) shows that p and F have the same
regularity, if p is sufficiently smooth. For the sake of convenience we will concentrate
here on the L00 case.

Definition 5.1. Let FeU°. A function p is called an equilibrium solution of system (4.1)
if'peU° and z/(5.4), (5.1) and (1.3)j hold.

We set mo = essinfF in Ω, M 0 = esssup F in Ω. One has the following
result:

Theorem 5.2. Let FeU°, be given. There exists an equilibrium solution p(x) if and only
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if there exists a constant

c e ] α - m o , b - M o [ , (5.5)

such that

-j-ΪΦ(c + F(x))dx=m. (5.6)

If such a constant exists then the (unique) equilibrium solution is given by

Φ(c + F(x)), Vxeίλ (5.7)

Proof The condition (5.6) corresponds to condition (1.3)i. Uniqueness is shown by
noting that the left-hand side of (5.6) is a continuous and increasing function of c in
the interval (5.5). The details are left to the reader.

Theorem 5.3. Under the assumptions of Theorem 5.2, there exists an equilibrium
solution p(x) if and only if

a~mo<b- M o , (5.8)

and

lim

lim
c-*{b-M0)~

1

\Ω

1

\Ω\

\ί

Ω

Φ(c +

Φ<c +

F(x))dx < m,

jφ(amo + F(x))dx<m<j$Φ(bMo + F(x))dx. (5.9)
\U\Ω \U\Ω

In this case the e.s. p(x) is given by (5.7), where c is the (unique) solution of (5.5), (5.6).

Proof Condition (5.7) follows from (5.5). Moreover, (5.6) holds for some ce]a — m0,
b — M o [ if and only if

(5.10)

(5.11)

These two conditions are equivalent to (5.9), by a well known generalization of Beppo
Levi's theorem to functions taking values in [0, + oo]. Note in particularly that the
integral on the right-hand side of (5.9) is well defined, since 0 g Φ(b — M o + F(x)) g
+ oo, a.e. in Ω.

Corollary 5.4. If a = — oo [respectively b = + oo] then the conditions (5.8) and (5.9)!
[respectively (5.9)2] hold, for every FeL 0 0. In particular, if~\a, b[ = ] — oo, + oo [ the
equilibrium solution exists for every FeL 0 0.

Corollary 5.5. Let FeΠ°. Then, the equilibrium solution exists if

Mo — m0 <min{ — a,b}. (5.12)

In particular this holds if\F\ao <(l/2)min{ — a,b}.

Proof If (5.12) holds then a-mo + F(x)<0, and b-Mo + F(x)>0, a.e. in Ω.
Hence Φ(a - m0 + F(x)) <m<Φ(b-M0 + F(x)), and assumption (5.9) holds. •
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Remark 5.6. The lack of condition (5.9)! [respectively (5.9)2] corresponds to the
formation of vacuum [respectively points of infinite density]. If a = — oo [respec-
tively b = + oo] the first [respectively second] phenomena does not occur, under
the effect of bounded pontentials F.

Let us now consider the one dimensional case Ω = ]0, /[, / > 0, in the presence of
external forces feL1. The potential

is then an absolutely continuous function in [0, /]. Consequently, the equilibrium
solution p (if exists) belongs to Wlfί and verifies (5.2). The sufficient condition (5.12)
can be written in the equivalent form

if(t)dt Vx,j;e[0,Γ|. (5.13)

Examples. As shown before, the existence of the equilibrium solution under a given
potential F, strongly depends on the values of a and b. It is of interest to consider the
classical case p(ρ) = Rp\ R > 0, y > 0. It follows immediately from our results that if
y > 1 [respectively y < 1], vacuum [respectively infinite densities] may occur. On the
contrary, if y = 1 the e.s. exists, for every bounded potential F.

Let us give an example, corresponding to the main case y > 1. For convenience,
we consider the one dimensional case Ω = ]0,1[. Let m = 1, γ = 2, R = 1/2. Then
p(p) = (l/2)p2,π(p) = p - l , Φ(s)= 1 + s , α = - 1, fc=+αo. In the light of
Corollary 5.4, we have only to check the first condition (5.9), which corresponds to the
formation of vacuum. By assuming that/(x) = β is constant, this condition is | β \ < 2.
Formulae (5.6) and (5.7) yield c = - β/2 and p(x) = 1 + β(x - 1/2), respectively. If
β > 0, the forces act on the positive direction, and the point x = 0 is subject to the
largest decompression. For β = 2 the vacuum is attained at the point x = 0, since
p(0) = 0.

Appendix

For the reader's convenience, we will prove here the estimate (3.21). The proof of
(3.20) is easier, and is left to the reader. Recall that under the assumptions made in

o 1

In the sequel we use freely the inequality

p. (1)

which is easily proved by using Sobolev's inequality |φ\ 2 * ^ c \\ φ \\ j , Vφe WQ'2. One
has
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i. (2)

By using adequately the inequality (1), one gets

+ C(ζo + / 1)(4/m 2)Γ 2(| |D| | 1 > p | |τ | | 1,p + | 0 | p ) | | τ - τ 1 | | o

+ c(ζo + l1)(2/m)(\\v\\ίJτ\\Up + \g\p)S2(\\τ~τι\\o+\\β-β1\\0)

+ c(C0 + / 1 ) ( 2 / m ) T 2 | | τ | | 1 > > - ι > 1 | | 0

+ II (Co + βi)(m + τ1)~1co2(τ1,^1)ι;1 V(τ — τ±) || _ 1 . (3)

We remark that each term on the right-hand side of (2) is bounded by the term on
the right-hand side of (3) that occupies the same relative position. In order to
estimate the fourth and the last term on the right-hand side of (3) we will use the
estimate

/ \
Allo (4)

Here w is a vector field and φ a scalar field in Ω. This inequality is proved by
noting that

By using inequality (4), one easily verifies that the fourth and the last term on the
right-hand side of (3) are bounded by c(m + lι + \\ τ11| ltP) \\ υx || Up || β - β11|0, and by

respectively. By using these estimates together with (3), one gets (3.21).
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