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Inéroduction
Consider the initial value problem for the non-stationary Navier-Stokes
equations in the whole space R® _
v+ @ Vo —Av+ V=0 iil O,= 10, T[<R?,
dive=0 in Qg
Py_o=a in R?, 6

fim o(f,x) =0 for £¢ 10, 7],

|| —=>o00

where

' ov 2 o
Telo, o], v =— and (”"V)":;”fﬁx—

The piven initial velocity a(x) satisfies diva = 0 in R®. Moreover, the pressure
ot is determined by the condition hm a(t, x) = 0 for £€]0, T[. By a solution

of problem (1), we mean a dlvergence free vector o(¢, x)& L0, T; L") for some
g, r with ¢, r =2, such that

T
G[f{v-ap' + @ - Vyp-v+ v -dgldxdt = ——fa(p,,:odx,
for every regular divergence free vector field g(z, x), with compact support with
respect to the space variables and such that ¢(7, x) = 0. We set
Lr= Lp(Rs)s I §p = I[ HLP(Ra)s
N = [|Vo*|ofP~*dx.
R?

Other notations are standard, or will be introduced in the sequel. Let p >3
and a; € L' N LPY2, diva, = 0. Assume that there exists a global solution
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v € L2(0, 4 oo; L7TY) of problem (1), with initial velocity a; and pressure g,
This solution is strong and unique’. We prove the following stability result:

Theorem A. Assume that the above conditions hold and let a, € L* N\ IP, be such
that diva, = 0. Then, there exists a positive constant Yo such that, if

|a1 — !p << Yo» 2)

there exists a unique solution vy € C([0, + oo); L?) of (1) with initial data a,.
This solution satisfies the estimate

|0(t) — D)), = (1 £ 77, 3

The constants y, and C depend on p, on the L! and L? norms of the initial
data a, and a,, and on the L™(0, + oo; L7*%) norm of v,. In particular, by
considering initial data a, such that

|5’2!1§|alf1+k1., |a2[z§|01fz+kz,

where k, and k, are any positive constants, y, and C depend only on ky, k, and
on the norms |a,{;, [a,}, and ||v,|lzeog, 20, z0+2) Of the unperturbed solution
v;. The local existence and uniqueness of a strongly continuous solution ,(¢)
with values in L2/ L7 is well known. The bound (3) guarantees the global
existence of v,(f). See the note added in proof.

The proof of theorem A follows the method introduced in reference [1] in
order to study the asymptotic behavior of the solutions of system (I).

Proof of Theorem A. The difference w = v, — v,, satisfies the following system:
Wt (o, Viw+ (- Vo, —Aw - VP =0 in Oy, 4)

divie==0 in Qy,

We_g==a in R?,

where P =z, —x, and & — a, — a;. Multiply both sides of equation (4) by
|w|?~% w and integrate over R®. After suitable integrations by parts we obtain

d -2
r leig + N,(w) + 4PP2 f [ V] wie2 |2
== [ (- V)w- w2y — f(w Vo lwlPrw — VP |wlP 2w,

The first term on the right-hand side is zero since o, is divergence free. By inte-
grating by parts the other two terms we get

1 d
?lelf’+ Nwy=(p — l)f[w]”*j | Vwi o} (p— 2)f[P] (w2 | Vw].
(5)

! We refer the reader to the results proved in [2]. See also [5], and references there,
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Consider the first integral on the right-hand side of (5). By Holder’s and Young's
inequalities one has

@ =D [ 1wl Vw] o] = (p — 1) N2 ([ {wl? oD
<IN W) + Ap — 1 [ |wl o, (6)
< FN,w) 4 2(p — D* [wlha log]342.

On the other hand, one can prove the following inequality (see 1], equation (1.14)):

R (¢l )}
|wleys = CNO0PHE Wi P2 ),
hence, from (6), oné obtains
Apt2)
(p— D [ 1w 1Vwl o] £ N0+ Clwlploli" (8)

Consider now the second integral on the right-hand side of (5). By Hélder’s
and Young’'s inequalities we have

(=2 [P w2 [Vw| = (p — D (| PP w[F~)1 N2
<Ap—D*[|PPIwP P+ ENm O
< Ap — 22| Pla [wlhid + & Nw).

2

To estimate P, we take the divergence of (4) and obtain

2 2

0 o . 0 L .
AP = Tpm Wl + eh = T g ] Wl

i iJ

From the Calderon-Zygmund inequality one has
[Pl =C X |wi2of + whl, 23
2 iJ i
then by Hélder’s inequality

ipiéﬁg CEW|§+2 (lvll?ﬂrl 4 |W|§+2)'
)

By introducing this last inequality in (9) and by using ineqﬁality (7), we get
(p—2 [IP]|wf2|Vwl

< Clwlp o, (o242 + |wlied + § N(w) (10)
_3. plp— 1) 3
< CN) P 2wl 7T oy 20 + CNw)? | wih ™! 4 § Nyw)
_ 4 242 plo—1)
=3 N, + Clwlh ol + Clwl7 .
Hence, by using inequalities (8) and (10), we get from (5)
1 2(p+32) plp—1)

d plr—1)
}"d—tlwlﬁJr%Np(W)éClW!ﬂfvllpiEl +Clwl, (11)
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On the other hand, one can prove the following Sobolev type mequality (see
[1], equation (3.2))
N,(w) = C|w]5,.
By interpolation, one has
A ey
Iwlp < [l =2 [w] ¥ 2.
Hence : _
| N, = Clwlrf | wipt, (12)
where f = 4p/3(p — 2). On the other hand, by a result proved in reference [3]

(see also [4]) on the L*-decay of the solutions of the Navier-Stokes equations,
one has

. |W(t)!z g_l”l(‘)fz_ + fvz(t)!z = O+ I)g3,4’ (13)

where C depends only on the L! and L2-norms of the initial velocities. Then, from
(12) and (13), we obtain

Ny(w) = C(r + 1) |wlp+d, | (14)

Hence, from (11) and (14), we have
1 d ' Ap12) pp—1)

7 @ W G+ DMl < w257 4 C ],

from which we obtain, since », is bounded in Z7+2 uniformly in time,
d
EEIWI" + C(t + ‘1)3‘3"4 fwlil < ¢, | wl, + G5 |w]itety, (15)

where y == 2p%/3(p — 2) (p — 3). In (15), Cy depends on p and on the L' and
L*-norms of the initial velocities, C, depends on p and |p, lzee,mzp+2y, Cy de-
pends only on p. Consider now the corresponding ordinary differential equation

V(&) 4 Colt + 174 (pa))* 1 = ) -+ (),
2O = |«],.

We prove now that, if ||, is sufficiently small, then W) < C@ -+ 1)"3%, By
comparison theorems for ordinary differential equations it will follow that
[w(0){, = 3(1); hence (3) holds. Let ¢,¢ 10, 4+ cof be such that

C, + Cy\ 4%
Iy > (_”Z"'Ci'j) — 1, {amn

1

(16)

By the continuous dependence on the initial data of the solution of (16), one
can find y, >0 (depending on p and on C,, i = 1, 2, 3) sufficiently small that,
if o], < yo, then p(t)<1 for-each f¢ [0, £): Moreover, if there exists 1 == ¢,
such that y(f) =1, then from (16) and (17) one has

V() =~Ct+ 1 ¢, + ¢,
=—CGlty+ D¥* + ¢+ ¢, < 0.

P
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This implies p(t) = 1, for any = 0. From (16), we then obtain (¢} < z(z)
for any =0, where z(t) is the solution of

2'(8) -+ Colt + DR 2 = (C, + Ca) (1),

18
z(0) = i“lp' 9

Equation (18) is of Bernoulli type and its solution is given by

: L
z(t) = g{Ca+Cat [Eo‘lp_ﬁ 4+ f ofCa+Ca)s ﬁC}(S 4 1)3.31‘4 dS:I #
Q

Hence

t —1
(Y (1 + 1)1 < (1 . )14 PCatCon [yﬂ—ﬁ + BCy [ HCrCs (] . g)iis ds} )
0

By the I'Hépital theorem one casily shows that the right-hand side of the
above inequality converges to (C, + C,)/C, as t—> 4+ co. Since it is equal
to 35 for t=0, itis bounded in the interval [0, + oo) by a constant C (which
depends only on C;, C,;, C; and p).

Note added in proof. We point out that both v, and v, (hence v, — v,) must

decay like (1 + t)“%(l_}lT). This follows from the estimates in references
[1], since v and v, belong to C([0, +00); L”). However, theorem A guaran-
tees that v, exists (in the above space), and that the constants C and y, depend
only on the unperturbed solution v,.
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