Diffusion on Viscous Fluids.
Existence and Asymptotic Properties of Solutions.

H, BEIRAO DA VEIGA

Summary. — In this paper we consider the motion of a continuous medium consisting
of two components, for example, water and o dissolved sall, with a diffusion effect
obeying Fick's law. We denote by v, w, ¢, =, 4, A the mean-volume velocity, mean-
mazs velocity, density, pressure, viscosily and diffuston constani, respectively, By
using Fick's low we ¢liminate w from the equations and we obtain (1.1), where p
18 the modified pressure; see section 1 and references [2], [4], [8], [61. The initial
bowndary conditions are given by equation (1.2). Kazhikhov and Smagulov [5], [6]
consider equation (1.1) for a small diffusion coefficient . More precisely they assume
that condition (1.3) holds, and they omit the A2 term in equation (1.1)y. Under these
conditions they prove the existence of a unigue local solution for the 3-dimenstonal
motion (in the two-dimensional case, solutions are global). In our paper we consider
the full equation (1.1), withou! assumption (1.3), and we prove: (i) the existence
of a (unigue) local solution; (ii) the ewxistence of a global solution in time for small
initial velocities and external forces, and for initial densities that are almost constant;
(iii) the ewponeniial decay (when ¢ — - co) of the solution (p, v} {0 the equilibrium
solution (g,0), if f=0. See Theorem A, section 1.

Main notations,

£ an open bounded set in R? locally situated on one side of
its boundary I, a regular (say €% manifeld,

n = n{z): E unit outward normal to 7.
D, D,;, Dy 8fow;, 2fow, dx,, 3[oL.

I Il €42 norm and secalar product in L2(£).
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He; Sobolev space H®:{{2) with norm

lofi= 3 1ol

where
[Pl 3 J0of.
Further,
[D'olz = 3 [0l
H}: closure of C{2) in HY(0).
[l Jfest norm in I*(£2).

L% H* H}: Hilbert spaces of vector o = (p,,7,, %) such that v L2,
v,€ H¥, v, Hy (i =1, 2, 3) respectively. Corresponding nota-
tion is used for other spaces of vector fields. Norms are defined
in the natural way, and denoted by the symbols used for
the scadar fields.

Let us introduce the following functional gpaces (see for instance [7],
[81, [12] for their properties):

'&E{UGH": 2%:0 on I a.ndfa(m) dw:(}}, k=2 .
VU ={peCl(2): dive =0 in 0},
H={vel’:divy=01in £, v-n=0 on I'},

V ={veH;: dive =0 on 2}.

H and ¥ are the closures of U in L*(£) and H}(£2) respectively. More-
over L*= H | ¢, where & = {Vp: p € HY(2)}. Denoting by P the ortho-
gonal projection of L2 onto H, we define the operator 4 =—PA on
DAy=H*¥V. One has

(du, v) = (u, ) = 3 (Diu;, Diw;), YueD(A), veV.

i

The norms |of;, |4s| are equivalens in H, |als, [V do| are equivalent
in HY and [v],, 49| are equivalent in D(4). We define |v]}=((»,v));
the norms |[v])y, [, are equivalent in V.
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L0, T; X): Banach space of strongly measurable functions defined in
10, T{ with. values in (a Banach space) X, for whieh

T
(B F-J.ﬁz(t) |% dt< + 0.
o

c0, T; X): Banach space of X-vector valued continunous functions on
[0, T'] endowed with the usual norm |z{ x5

I’y viscosity (a positive constant),
A: diffusion coefficient (a positive constant).
o(f, ), v{z):  mean-volume velocity. Initial m.v. velocity.

olt, @}, po{#):  density of the mixture. Inifial density. Further

m=inf g({w), M =supplz),
o=l 2

fom -
Q“ﬁlglj‘eo(m) dr .
a

‘We assume that m > 0.

ni{t, ), p(t, @): pressure. Modified pressure
P=n+ dv-Vo—AAp - M2pu + p')dlogg.

ft, a): external mags-force.

We denote by ¢, 6, ¢, ¢y, ... positive constants depending at most
on £ and on the parameters u, A, m, M, §. It is easy to derive, at any stage
of the proofs, the explicit dependence of the congtants on the parameters,

For convenience we gometimes denote different constants by the same
symbol ¢. Otherwise, we utilize the symbols G, ¢;, ke N.

1. — Main resunlts.

In this paper we cousider the motion of a viscous fluid consisting of
two components, for instance, saturated salt water and water. The equa-
tions of the model are obtained, for example, in [2], [4], [B], [6]. Let us
give a brief sketch. Let gy, o, be the characteristic densities (eonstants)
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of the two components, »(f,#) and o™(f,#) their velocities and e(1, z),
d(t, r) the mass and volume concentration of the first fluid. We define the
density o(t, x) = dp;+ (1 — &}g,, and the mean-volume and mean-mass ve-
locities v =dv® 4 (1 — @)v'¥, w = ev™ + (1 —e)v®™, Then the equations of
mofion are given by

e[Daw 4+ (w-V)w—fl—pudw—(p + p)Vdivw = — Vna,

dive =0,

Do + div (pw) = 0.

On the other hand, Fick’s diffusion law (see [2])} gives w == v — dp~'Vp.

By eliminating of w in the preceeding equation one gets, after some cal-
culations,

(D + (v-V)v) — p dv— Af{v-V)Vo -+ (Vg-V)2]
A 1 “
= (Vo V)Vo—= (Vo-Vo)Vo -+ Ao Vel = — f
+Q[(9 Ve Q(e o)Ve -+ do 4 Y!#eh _ f

Do+vVop—2dop=0,

dive =0.

(1.1)

We want to solve system (1.1) in @, = 10, T[ x 2. ‘Here p is the modified
pressure. 'We add to system (1.1) the following initial boundary-value con-
ditions

=20 on J0, T{xI",
% _y
m on 10, T{ %I,

(1.2)
V|emo = B2} in Q,

Olis= golw) In 2.

The first two conditions mean that there is no flux through the boundary.

In [p], [6] Kazhikhov and Smagulov consider the simplified system
obtained from (1.1), by omiting the term containing A2 Moreover they
assume fhat

(1.8) A%M%m. &

Under these conditions Kazhikhov and Smagulov state the existence
of a local solution in time (global in the two dimensional case).
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In our paper we take into account the full equation {1.1) and omit the
condition {1.3). For this more general case we prove: (i) the existonce of a
(unique) loeal solution for arbitrary initial data and external force field;
(i} the existence of a unique global strong solution for small initial data
and external force field. Moreover, if f =0, the solution (g, ») decays ex-
ponentially to the equilibrium seclution (g, 0). More precisely we prove the
following result: 7

TaEoREM A, ILet vV, poc Hy, feL?(0, T; L*). Then there emists T,
€10, T] such that problem (1.1), (1.2) is uniquely solvable in Q. Moreover
ve IX0, Ty; HY) N 0(0, Ty; V), Do e L2(0, Ty; H), 0 € L3(0, Ty; Hy) N O(0, Ty;
HY), Do € I3(0, T1; HY) and m<p(t, z}< M. Ny

-

Moreover, there exist positive constanis ki, ky, k; depending af most on
2, p, A and on the mean density (1) such that if

(1.4) ”%H1+ ”Qo"‘é'”z<k1 ’
and
(1.5) o0, 4 o0;1n < ey

then the solution is global in time. If f=0 the solution (p, v} decays ex-
potentially to the equilibrium solution (g, 0), i.e.

(1.8) @+ le® —élax(lvoks + loo— g2} exp [— kat],

for every 1>0.

Theorem A also holds for coefficients p, 4 regularly dependent on g, o,
provided they are strictly positive and bounded in & neighborhood of the
range of values of the initial data go(), v(x). This generalization can be
done without any difficulty. Moreover, with standard techniques, one can
prove that the solutions have more regularity (up to () if the data are
sufficiently regular and the usual compatibility conditions hold.

Local existence in the general cage (i.e. with the 13 term, and without
(1.3)) was proved in the inviscid case by Beirfio da Veiga, Serapioni, and
Valli in [1]. A similar result, in the viscous ease and for £2 = R?, was
proved by Hecchi [11]. For another kind of approach (concerning Graffi’s
medel) gee [10].

(*} Or, equivalently, depending or the total amount of mass |Q|g =[g,(w) dx.
o
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2. - The linearized equations,

‘We start by proving the following theorem:

TrroREM 2.1. Lel olt, o) be a measurable function satisfying
(2.1) O<m<plt, )< M, a6 in Qr,

and let Fel0,T; H) and v,e V. Then there erists a (unigue) strong solu-
tion v of problem

eDw—pdo=—Vp-+F in @y,

dive =0 n

(2.2) Or,
v =10 on 0, T[xI,
’U|3=ﬂ"‘—‘:‘ 'vo(w) 'in -Q-

Moreover v e L0, T; D(A)) N €0, T; V), Dve L0, T; H) and

(i) 2
(2.8)  glolaony + Mo Lxo,zm + rﬁg 14| 20,720

2 ™
<plwlp+ (,,‘n‘ + sz) 120 20,27 -

Proor. Let ug write equation (2.2) in the eguivalent form
(2.4) PlpDw) + pdo =F,  2fmg= ().
For brevity let us put

T = {v: v L*(0, T; D(4)), v'e 130, T; H)}.

From well known results (see [9], Vol. I, chap. I: theorem 3.1 with
Y=H X=D4),7=0; and (2.42) proposition 2.1) it follows that
L 00, T; V).

We start by proving the apriori bound (2.3); an essential device is
to introduce @ parameter g in order to conveniently balance the esti-
mates. In H take the inner product of (2.4} with D 4 g 4w, g, > 0. Since
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(v'y 4v) = 21 D,[[v]} one gets

25 mlDuo]r 4% 2 fop + eyl do]:
<IFUIDw] + e Pl A0] + e M) Dio] Ae] .

By using the inequalities [F|[D.o} <4 'm|D ]2\ m~{F|2, |F|[Av]
<o 1T and | Dol o] <Al 4 M Dl ono
gets

@) FmIDol+ 5 % b+ e Lol < (5 + )10+ 257 1Dl

2 dt /]

Now fix g = (4M*)~"'my and integral equation (2.6) on (0, ). This
gives the apriori bound (2.3).

Define ||v|% = «eft hand side of equation (2.3)», Y= IL2(0,T; H)xV
and ||(F, v,)|*= «wight hand side of (2.3)».

‘We solve (2.4) by the coniinuity method. Define p, = (1 —a)d + g,
o € [0, 1]. Clearly g, verifies condition (2.1), for any «. Define T, = (1 —a)T
+ «T, where

T = (P{oD ) — pAv, v|=) €Y.
Tv = (P(gDw) — pdv, v)imp) €Y.

Finally consider problem (2.2} with g replaced by ¢,, i.e. problem T, v = (F,
%), Denote by y the set of values « €[0, 1] for which that problem is solv-
able in &I for every pair (¥, )€, Clearly 0 €y, because for this value
of the parameter equation (2.6) becomes the linearized Navier-Stokes equa-
tion, Let s verify that ¢ i3 open and closed.

y is open. Let ep€y and denote by GF(F, )=+ the solution » of prob-
lem T, v = (F,v). From (2.3) one gets GeL(Y,X) (*), with |G{yx<I.
Bquation T, , v = (¥, v} can be written in the form

(2.7) [l —e@HT — T)]o = G(F, v,) .

Since [T — Dixx<|T — T|x, equation (2.7) is solvable for |ef
< |7 — T|zl (by a Neumann expansion).

y is closed. Let a,€9, o, =, and let o, be the golution of T, »,
= (¥, ). From (2.3) one has |[v.]ic <[ (F, v)]|y. Bince X is an Hilbert space,

(%) The Banach space of linear continuous operators from Y into X, with norm
Iy, -
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there exists a subsequence v, > v & X, weakly in X. From 7,T e I(XL; V)
one has To, - T, Tv, > Tv weakly in Y. Hence 7, v,—>T,v, ie. T, »
== (F; %o} n

Let us now return to problem {1.1), Define

(28)  Fle,o) =P oo-V)v+ Hr-V) Vo + (Ve Vol +

A% 1
+5¢[(V9-V) Vo (Ve'Ve) Ve -+ Ae-Ve] +ef}.

For convenience we will use in the gequel the translation
(2.9) o= é‘ -+ a.

Recall that 4 is a given constant. To solve problem (1.1}, (1.2) in our
functional framework is equivalent to finding » € I*(0, T; D(4)), v'e L0,
T; H) and oe L0, T; HY), o'c L*0, T; HY) such that

P{oDw) 4 udv = Flg,v),
”‘t=o = () ,

Diog—24dc =v-Vo,

G|e=o = 0ol®),

(2.10)

where v, V and oy(x) = py(w) — § € H%({2) are given. Note that from the
above conditions on ¢ it follows that o< 00, T; HZ).
We solve {2.10) by considering the linearized problem

PG Dw) - pdv =F(5,0)=F,
'Ult:o == (&},
Do— A de =—7Va,

Ul:so == ag(T) ,

(2.11)

and by proving the exigtence of a fixed point (3, ) = (g, v) for the map
(¢, T} — (g, v) defined by (2.11).

In order to get a sufficiently strong estimate for the linearized equa-
tion (2.11), we take in account the particular form of the data 7-V3. As
for estimate (2.3) we will introduce a balance parameter £ > 0.
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THREOREM 2.2, Assume that ve L0, T; H) N C(0, T; HY) and that
FeL0, T; HY) N G0, T; HY). Then the solution oel2(0, T; HY), ¢'c L0,
T; HY) of problem (2.11), (2.11), verifies the estimate

(2.12)  lofitgmay + {olzona
<6glloglz + exe™ T %] &0, 20y + V5] o0, 209]
+ esel|| 7 Zup,m ey + |V Zo, mam]

for every positive s sotisfying

A
2. ol
( 13) £ <201 H
where ¢, 18 the constant in (2.16). Here oy, 6,, 6, are positive constants depending
only on .

Proor. The exigtence of a solution ¢ in the required space follows from
standard techniques using the apriori bound (2.12) or using [9], vol. II,
chap. 4, theorem 5.2, with #= H'. Let us prove (2.12).

By applying of the operator A $o both sides of (2.11),, then multiplying
by Ao, and finally integrating over 2, one gets .D,| o2+ (V(1 Ao —5-V5),
V Ag) = 0. Note that 9/on(d Ao —7-V5) =0 on I. Hence

1d

5 7 |40l + 4|V 40]* < (15 Da] + [5 D3]V 4o .

(2.14)

Using Sobolev’s embedding theorem H®-> I’ and Hélder’s inequality
we obfain

(018) 3 Sdc|*+ |V dofr <o D3]] D] V5],
+ [EhVaIY 451V 4o

A utilization of abe< (882} tat 4 (¢/2)0°+ (g/2)0%, ¢ > 0, leads to

| Aol Y Aol 3 [ Dofi + 6]V dale+ & [ol| Vol

1d
(2.16) 57

€ =
+ 22V 45+ S I Vel

Hence for £ satisfying (2.13) one hag

d ; =2k =4 =T =2
217 |40+ AV Adii*éf—a(llﬂllzliwllﬁ ki Vo)
+ os(| Do|E + |V 45]),
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where the constants ¢ depend only on (2. This proves ineguality {(2.12).
Recall that [ofl,<<e|do|, |ofs<efV 40]. m

ReMARE, One could also consider the linearized equation Do 4-7'Ve
— A do =0 instead of (2.11);; then estimate (2,17) holds with & replaced
by o and without the term ¢,&|V Ag|%. In this case the solution ¢ of the
linearized problem satisfies the maximum principle (which doesn’t hold for
the golution of (2.11),). However, the linearization (2,11); seems to be more
in keeping with the linearization (2.11),. Begides, the maximum principle
will be recovered for the solution of the full nonlinear problem (2.10),.

3. — The nonlinear problem. Local existence.

We will not take care of the explicit dependence of contants on g, 4, m,
M; some of the constants ¢, ¢;, depend on these fixed quantities. In order
to simplify the equations, we denote by K,, K., K,, ... congtants depending
on the norms of the initial data [u, and |o.,.

In this section we solve {2.10) by proving the exisfence of a fixed point
{0, v) = (g, ¥} for system (2.11). Define

For= {B: Blimo = 20(@), [Blirmam + [Flko.zm + |7 |50, 7m < 2ea w0}

Hog = {6: Fliao = 0o{®), | 5|20, . %) + [E]b00,2: 5%

_ m
<2ef|o0lE, | 07| im0, 1y < Koy |G Uo”c@)*ég},

where e,=gu[min {x, M, (Mu) /(4 %)} (see (3.2) below) and K, = v2c,] 0,
+ &4y fufp]og).. Here € = &(£2) is a positive constant such that

(3.1) 15w, <3| 3 |w]., VoeV,weH:.
Note that for every € XK, one has in ¢-

(3.2) ﬁs?gg‘(t,m)gﬂff—i— =,

We now evaluate the L® norm of F = F(§, 7). By using Sobolev’s em-
beding theorem H'<s> L* and Hélder’s inequality one easily gels

(33) [P0 <l o100 + o] Dol | D751,
4 el Dol Dal? + o] DI D]+ e D) + ol
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Congequently

(3.4) (@, D) 30, mmy < ol [l + o] o) T
+-o] ool 3T + o fl 5o, v i) -

Hence, by using (2.3), it follows that the solution » of (2.11),, (2.11),
verifies

(3.5) H'UI,%‘(B,T;V)_'_ H'””i'(u,r,-m)+ H’”'"%ﬂ(o,r;m

<aoly+ E(VT + T) + of 70,z -

On the other hand, from (2.12),

{3.6) lof 6wz mp + 1ol 0,2 m <Caffon]s + BoeT + Ko

Now we fix ¢ > 0 such that K,e<2 1¢,]o);. Finally, by choosing 7 > 0
sufficiently small, it follows that » € X, ¢ € },. The estimate for Do fol-
lows by using egquation (2.11), and (3.1). The estimate for the sup norm
of ¢ — o, in Qp is proved as follows. Clearly,

]
lott) —aofs < [lo )] ds < B TP
t

On the other hand |o(?) — ool gg < a|o(t) — oo fo(t) — oo, Wwhere ¢,
depends only on £2; recall that H¥Q) <> ((J). Consequently

[0 = 00| gz < 5 KETHV 26|00y + [oulla)? -

Hence, by choosing (if neecessary) a smaller value for 7, one gets jjo
— o oty < M2-

Now we utilize Schauder’'s fixed point theorem. Clearly J = J XX,
is a convex, compact get in L0, T'; L) x L30, T'; L?). Let us denote by @
the map d{g, 7) = (g, v), defined by (2.11). Bince D(I) c X, it is sufficient
to prove that @: X — X is continuous in the I? topology. If #,— 7 in
L*Qyg), o — 8 in L@y}, it then follows by compactness arguments that
7, — 7 weakly in L2(0, T'; H?} and in HY(0, T; L%, and Vp, — Vp weakly
in L0, T'; H?) and in H*(0, T'; L*). In particular g, is a bounded sequence
in H®+a0, T; H2~%) <= 0"*(@y) (*), for suitable positive &, &,, «. Hence
p»— @ uniformly in Q.. Moreover, ¥, and Vg, are bounded in HY(0, T; HY)

() a-Hslder contivuous functions in Qq.
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and in Hi(0, T; H') respectively. Hence 7,—>7 and Vg, Vg strongly in
the 7% topology. It follows from (2.8) that #(g,, 9,) — F(9, ¥) a8 a distribu-
tion in §n. Congequently F(g,, ?,) — F(5, v} weakly in L%(@,;) because
F (s, ¥,) is a bounded sequence in this space. Analogously, #,-Vg.— % Vg
strongly in Z%(Q.). ¥t follows from the linear equations (2.1) that v, -+ v
and g,-+p¢ in L¥Qz) and L*{;) respectively. Hence ¢ ig continuous,
This finishes the proof of the existence of a local solufion. Uniqueness will
be proved in section 5.

4. — Glebal solutions. Asymptotic behavior.

In this section the congtants ¢, depend at most on £ and on the guan-
tities p, A and § i.e. on the total amount of mass |2{f. We assume that

(4.1) lloalls < (2€6) 28
where ¢, = ¢,(£2) is a positive constant, such that lof,m <efof., for all

ce H(£). Hence §/2<m< M <38/2. Let (g, ) be a solution of (1.1). From
(2.6) for = (4M2)"Imy and from (3.3) one gets

@) TyDol Lol T Aol
< oo+ To)(Tele+ ols) + obolé+ i,

where ¢ depends only on £, u, 6. On the other hand, from (2.17) for
£ = (26,)~11, one obtains

(4.3) 2 Volo+ 219 dolr<effoft + o)

From (4.2) and {4.3) it follows easily that

SE I+ 140l) + Z 1Dt + 28 el 1 0]
<elloly+ 4ol + 111

In particular, since [4v|>c|v], and |V do]>c|A4o|, one has

(4.4) %(U*’"H |40]*) <—[ew—eu(lel-+ | 4o1%)1- (Jol# + | dol)* + cul i
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Then ou(||v(t)[z + [[Ao(t}]2)*< 01,/2 holds for every { € [0, + oo provided

sullnlt + [dafrp< 22,
(4.5) —

e ¢
012"f”?r.°’(0‘+oo;ﬂ)< f 2—;:‘1' .

In fact, if cu(||v(®)]y + do(t)|?)2= cf2 it must be, from (4.4}, that

afds (Jo@)||5+ do(t}]?) < 0.
Let us now prove the last assertion in theorem A. Under the hypothesis

{4.5), it follows from {(4.4) that
a 2 C1p 3
= (o34 [ dof*) <— 3 (Jolp + [4e]7)

This proves {1.6). ®

5. — Uniqueness.

‘We prove that the solution {g, v) of problem (1.1) is unique in the class
for which existence was proved; see theorem A. We remark that more
careful ealculations lead to uniqueness in a larger class.

Let {g, v), (@, 7) be two solutions of problem (1.1), (1.2) and put e = v — 7,
7 = p —§. By subtracting the equations (2.10), written for (g, v} and (g, 7)
regpectively, and by taking the inner product with « in H one gets

14
= == (%, #) - f“il“ll%":_% (v- Vg, u?) +§(AQ:'”'2)_ (%, Dyw-u} + (F—F, u).

24

By using (Ag, u?) == — (Vp, Vu#), we show that
14 1
(5.1) 5 3 (0w + 5 Julp <5 ol Vel of o[
as _
+3 IVelsul + o D3]]
+1ate+ @— .

On the other hand, by subtracting equations {2.10), written for (g, v)
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and for (g, %) respectively, and by taking the inner product with Ay in
LA(L) one gets

1d A Ju 7S 2
(6.2) 5 7 1Vale+ 5 ldal* <e| Valiful* + <fofis] Val* .
By adding {5.1) and {5.2) it follows that

d A
(8.3) = [lew,w} + [Vl ] + plulp + 5 | 4nl®
<Ou@)(ul+ | Vyl?) + (F— F,u),

where 0,({) is a real integrable function on [0, Z'].

On the other hand, by using Sobolev’s embedding theorems and Hilder’s
inequality (and also ab<za®-+ £1b%) the reader easily verifies that given
¢ > 0 there exists an integrable real function 8,(¢) (dependent on p, g, v, %
and on g) such that

(5.4) (F — F, w)| <6®)]ul* + e(In)i -+ [uli) .

From |u|*<m(gu, %), (5.3) and (5.4) it follows that

» d
2 tow )+ [Vl1< (0.0) + 0.0)((eu, ) + [Val1).

Uniqueness follows now from Gronwall's lemma and from #)s-e=0,
=0 =
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ERRATA - CORRIGE

RS

Diffusion on Viscous Fluids.

Existence and Asymptotic Propertics of Solutions,

H. BEIRAOQ DA VEIGA

Serie 1V, vol. X, n. 2 (1983), pp. 341-355

In the paper by the same title appeared in this Journal the following
minor corrections must be made, even if they are quite obvious fo a careful

reader:
P. 344:

p. 345:

p. 348:

Pp. 350:

In the right hand side of the first equation (1.1) one must replace
— Ve by — Vp. Moreover in equation (1.3) the symbol » must
be replaced by <.
In theorem A, it is obvious that the condition
e, Hy
must be replaced by
g,— & eH;.
Similarly, (in the same theorem) in the expression
o eLX0, T); H3) 0 C(0, T,; H2)
o must be replaced by ¢ — §.
In the right hand side of equation (2.8), A*/p* must be replaced

by Ao
Moreover, in equation (2.10) »-Ve must be replaced by —v-Vo.

In the definition of 7 the ferm
L e
must be replaced by
"Jr Hi'(o,r;z‘) .

Moreover, in the definition of K, (line 20), v/2 ¢, must be replaced

by V' 2e,.

Pervenuto alla Redazione il 20 Settembre 1984,




