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The Euler equations (1.1) for the motion of a nonviscous imcompressible fluid in 
a plane domain R are studied. Let E be the Banach space defined in (1.4), let the 
initial data no belong to E, and let the external forces f(t) belong to L:,,(If: E). In 
Theorem 1.1 the strong continuity and the global boundedness of the (unique) 
solution c(ri are proved, and in Theorem 1.2 the strong-continuous dependence of L’ 
on the data !0 and f is proved. In particular the vorticity rot cl(f) is a continuous 
function in 8. for every t E R, if and only if this property holds for one value oft. 
In Theorem 1.3 some properties for the associated group of nonlinear operators S(t) 
are stated. Finally, in Theorem 1.4 a quite general sufficient condition is given on 
the data in order to get classical solutions. 

1. INTRODUCTION AND MAIN RESULTS 

Let ~2 be an open, connected, bounded set of the plane R’ with a regular 
boundary r, say, of class CZqa, a > 0. We denote by II the outward unit 
normal to r. In this paper we study the Euler equations 

irz, 
~+(V~V)C=f-v7r in Q=RxR, 

div u = 0 in Q, 

c.n=cJ on .Z;rRxT. 
(1.1) 

Ulr=o = uo(-x> in G, 

where the velocity field v(t, xj and the pressure rr(t, x) are unknowns. In (1.1) 
the external force field f(t, X) and the velocity uo(x) are given; moreover, 
div Zig = 0 in $2 and u. . IZ = 0 on r. 

Existence of local solutions of (1.1) was proved by L. Lichtenstein. Global 
classical solutions were studied by many authors, for instance, E. Holder, .I. 
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Leray, A. C. Schaeffer [7], and W. Wolibner [8]. More recent studies are 
those of V. I. Judovich [3], T. Kato [4], J. C. W. Rogers [6], and C. 
Bardos [ 11. 

The aim of our paper is to prove some properties for the global solutions 
of Eq. (1.1) by setting the problem in a very natural functional framework, 
the Banach space E(n> consisting of all divergence-free vector fields v(x) 
which are tangential to the boundary and for which rot v(x) E C(d). The 
properties of global solutions in this space can be summarized as follows: 

(i) For every initial velocity U, E E(a) and for every exterior force 
f E L&,(R; E(B)) the solution v(t) is strongly continuous, i.e., 
u E C(R; E@)) ( see Theorem 1.1; see also Remark 2.1). 

(ii) The solution t)(t) depends continuously, in the norm topology, on 
the data-n, and j More precisely, if ohm,” + u0 in E(fi) and if f, *f in 
L’(I; E(B)) for every compact time interval 1, then v,(t) + v(r) in E(fi), the 
convergence being uniform on every compact time interval I (Theorem 1.2). 

(iii) Estimate (1.6’) h Id o s; in particular the solution is globally 
bounded in time if f E L ‘(R; E(B)). Moreover iff = 0 then ]]]u(t)l]l = i)i u,)]), 
vf E R, I]1 . ]I] being the norm of E(S)). 

The crucial property (ii) appears not to have been proved in any Banach 
space. Note that continuous dependence with respect to weaker topologies 
can be (in many cases) trivially verified. 

Property (iii) shows that E(a) might be a suitable space for the study of 
asymptotic properties; note that E(a) seems to be the space of the most 
regular functions for which property (iii) holds. 

Assuming for simplicity that f = 0, and combining the above results, one 
gets Theorem 1.3, which shows that the essential properties of hyperbolic 
groups of operators hold for Eq. (1.1) in the space E(Q). 

On the other hand, we note that Theorems 1.1 and 1.2 also prove the 
nonexistence of shocks for the curl of the velocity field; more precisely, 
rot t)(t) is a continuous function in fin, for every t E R, if and only if this 
property holds for one (arbitrary) value of t; this statement holds even in 
presence of quite discontinuous (in time) external forces. Actually, rot v(t) 
must then be a continuous function in 0. In the remainder of this section we 
introduce notation and state the above results in complete form. For 
simplicity, we will assume that R is simply-connected; the reader should 
verify that the usual device (see [3, Sect. 51 and [4]) utilized to treat the 
general case also applies to our proofs; hence the results stated in our paper 
hold for non-simply-connected domains. 

In the sequel n denotes the closure of Q and C(D) the space of continuous 
(scalar or vector valued) functions in a normed by /] 811 = sup ] O(x)], K E 6. 
For simplicity we avoid in our notation any distinction between scalars and 
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vectors. C?(G) (k, a positive integer) is the space of all k times continuously 
differentiable functions in B equipped with the usual norm I( . Ilk. Sometimes 
we will write DLC3 to denote a generical derivative of order 1. The scalar 
product in the Hilbert space L*(0) is denoted by ( ) )* 

If X is a Banach space, L:,,(R; X) is the linear space of all X-valued 
strongly measurable functions u(t), t E R, such that Ij u(t)lix is integrable on 
compact intervals [--T, T], Vt > 0. 

Some of the above definitions will be utilized also with 0 replaced by Q or 
by Qr= [O,T]XL’. 

If 19(t, x) is defined in Q we sometimes denote by 13(f) the function e(J, *) 
defined for x E fi. 

Finally, N denotes the set of positive integers and c, cO, c, ,... denote 
constants depending at most on 52. Different constants may be denoted by 
the same symbol c. 

The following definitions are classical: for a scalar function y(x) in Q we 
define the vector Rot v = (;iv/ax,, -@/a~~) and for a vector function 
z’ = (v,, u2) we define the scalar rot v = &,/ax, - &,/a?~~. One has 
-A = rot Rot. Note that Rot w is the rotation of the gradient VI,U by n/2 in 
the negative direction (counterclockwise). Let now I,U be the solution of 

-Ali/= in Gn, 
(1.2) 

y=o on r. 

By the above remarks v = Rot li/ is the solution of 

rot 0 = e in a, 

div u = 0 in R, 

v.n=O on r. 

(1.3) 

Let us introduce the Banach space 

equipped with the norm /))v\]) = jjrot u!j + Ij v ljcZ(rrj. In the sequel (.0 being 
simply-connected) we use the equivalent norm 

Ill 4ll = II rot v Il. (I-5) 

Concerning the existence of solutions we prove the following statement: 

THEOREM 1.1. Let v,, E E(B) (or equivalent/y rot u0 E C(B), div v0 = 0 
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in Q, v0 . n = 0 on I’) and letf E L&(R; L’(Q)) with rot f E L/,,(R; C(a)).’ 
Then problem (1.1) is uniquely solvable in the large, the solution ~1 belongs to 
C(R; E(a)) (or equivalently rot v E C(R; C(a))) and 

(1.6) 

If rot f = 0 equality holds in (1.6). 

Remark. Instead of fE L/,,(R; L’(Q)) we could assume that f is a 
distribution in Q, the significant condition being only rot f E L/,,(R; C(n)). 
Furthermore, in view of the decomposition formulae (5.1), our assumption 
on f is equivalent to f E L,‘,,,(R; E(G)) and estimate (1.6) is equivalent to 

(1.6’) 

Remark. We don’t consider explicitly the regularity of h/t?t and Vrr 
since it follows from the regularity of Vu andJ: See Appendix 2. 

THEOREM 1.2. Let v,,,f, tlhm,“‘, and f,, m E N, be as in Theorem 1.1, and 
let v and v, be the solutions of (1.1) with data v,,, f and Zaps’, f,, respec- 
tively. If vr’--) v0 in E(a) and rot f, + rot f in L,‘,,(R; C(6))’ then 
u,(t)+ v(t) in E(a), the convergence being uniform on every compact 
interval, i.e., v, + v in C( [-T, T]; E(B)), for every T > 0. 

Now assume rot f E 0 and denote by S(t), t E R, the nonlinear operator 
defined by S(t) ~1~ = o(t), Vu, E E(G), where v(t) is the solution of problem 
(1.1). Put also Ju = -u. One has the following result: 

THEOREM 1.3. Under the above assumptions and c1eJinition.s one has: 

(i) S(t) S(r) = S(t + r), Vt, r E R; S(0) = I. 

(ii) S(t) is “unitary” in the sense that )/I S(t)u /)I = (1) u )I(, Vz4 E E(8). 
Moreover S(t)-’ = S(-t) = JS(t)J, Vt E R. 

(iii) S(t) is a strongly-continuous group of operators, i.e., for every 
u E E(fi) the function S(t)u is a strongly-continuous function in R with 
values in E(6). 

(iv) For every t E R the nonlinear operator S(t) is a bicontinuous map 
(in the norm topology oj* E(a)) f rom all of E(a) onto itself Moreover I$ 
u, + u the convergence S(t)u, + S(t)u is @form on compact t-intervals. 

’ Plus (J uk) E L&(R), k = l,..., N. if Q is not simply-connected. For the definition of ul. 
see Appendix 1. 

’ If I? is not simply-connected we also assume that if,, uk) + (A u,) in L:,,(R), k == l,..., N. 
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We also study some questions concerning the existence of classical 
solutions. Our main concern will be the continuity of Vu on 0, additional 
conditions on f in order to get continuity for au/at and Vlr will then be 
trivial. We want to characterize explicitly a Banach space C,:(s), the data 
space, such that u E C(R; C’(a)) whenever rot ZJ~ E C,(n) and 
rot f E L t,,(R; C,(6)). 

We don’t expect the above result if we just define C,(n) as C(o). On the 
other hand, if we define C,(s) as Co,-t(n), /1 > 0, the result holds easily; 
hence we want a larger space. We construct C,(a) as follows; for every 
6’E C(B) let us denote by W@(Y) the oscillation of 19 on sets of diameter less 
than or equal to r: 

we(r) = sup / B(X) - e( 4’)/. (1.7j 
0 < I 5 p I < 1 

S,UErT 

Clearly we(r) = w,(R), ‘Jr > R s diameter of Q. Let us put 

(l.Sj 

and define C,(a) = (0 E C(a): [@I* < +a~}. Then llBlik z [6], + /(8/j is a 
norm in the linear space C,(a). Moreover C,(n) is a Banach space. Note, 
by the way, that [6]* < R”ll-1[8],1 where [.],I is the usual A-Holder semi- 
norm. 

We prove the following result: 

THEOREM 1.4. Let rot LJ,, E C,(a) and f EL&(R;L’(Q)) n&/z rotf^E 
L:,,(R: C,(fi)).’ Then the solution of problem (1.1 j belongs to C(R; C’(a)), 
moreover 

II v(tll l Q ce “Bi”~ilrot ~o//k + llr~tfllL1~0,1~C.~8ii~~ (1.9) 

where B = 1) rot oojl + 11 rot fJjLIco.r;cce~,, . If in addition f is such that the terms 
g(t) and VF(t), in the canonical decomposition (5.1), are continuous in 0 ’ 
also au/& and VX are continuous in 0 (classical solution). 

2. PROOF OF THEOREM 1.1 

In the following we consider Eq. (1.1) in the time interval [0, F], T > 0 
arbitrary. Proofs apply also to intervals [-T, 01; alternatively one can reduce 
this case to the previous one by a change of variables. In fact the solution of 

’ It suffices that f E C(R; W’3p(f2)), for some p > 2. 
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the problem (au/at) + (v . V)v = f - Vrr, t E [-T, 01, with nlrZo = v,(x) is 
given by u(t) = -u(-t) where (au/at)+ (u. V)u=g-vn,, 
g(t, x) SE f(-t, x), n,(t, x) = x(-t, x), t E [O, T], U,t=O = -u&x). 

Assume the data no and f fixed as well as T > 0. For convenience put 
co - rot uO, 4 = rotf, B E /]I&]] + I,’ []4(7)1/ dz, and define 

K = {BE C<!%,: ll%<BJ, (2.1) 
where (1 . (jT denotes the norm in C(Qr) = C([O, T]; C(a)). K is convex, 
closed, and bounded in C(QT). From now on 19 denotes an arbitrary element 
of K. Now let w be the solution of problem (1.2) 

and let u = Rot v be the solution of (1.3); since u E W’~~(fi), Vp < +CO, the 
meaning of Eq. (1.3) is clear. It is well known that the Green’s function 
g(x, y) for the Laplace operator -d with zero boundary condition (see, for 
instance, [5]) verifies the estimates 

I~,g(x,~)I,<cl~-Yl-‘~ I~:g(.~,Y)l~clx-~yl-~. (2.3) 

By using classical devices’ in potential theory one shows that (] L’ (] < ci ]I 6’]] 
and that /v(x) - U(JT)] < c1 ]]19/] ]x - yJ x(]x - ~1) where x(r) = log(eR/r), 
Vr > 0; see [4? Lemma 1.41. Hence for every t E [0, T], (] u(t)11 ,< c, B and 

Iv(t, x) - u(f, v)l < c,B 1-y - ~‘1 x(1x - YI>, vx, y E f2. (2.4) 

Clearly o E C(QT). Let U(s, t, x) be the solution of the system of ordinary 
differential equations 

-$ U(s, t, x) = u(s, U(s, t, x)), 

qt, t, x) = x, 

for s E [0, T], 
(2.5) 

where (t, x) E Q,. Let us show that 

/ U(s, f, x) - U(s,, t, , *x,>l 
,<c,BIs--s,I+c,(l+c,B)(lx--x,I”+It--t,IS), P-6) 

where c2 3 max{ 1, eR ) and 6 = e-‘l”. Put X(S) = U(s, t, x), x1(s) = 
U(s, t, x,), p(s) = Ix(s) - x,(s>l. One has Ip’(s)l < c,B~@)x@(s)) and P@> = 
Jx -x1 ]. On the other hand the function 
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is the solution of p;(s) = c,Bp,(s)&,(s)), s E [O, r], with pi(t) = Ix -x,1. 
Hence p(s) < pl(.s) for s 2 t. For s < t a corresponding argument holds. Then 

1 U(s, t, x) - U(s, t, xl)1 < (eR)‘-’ ix -x1 is < c2 /x - x, 1’. (2.7) 

Now one easily gets /U(~,t,x)-U(~~,t,x)/~c~Bjs--~( and 
1 U(s, t, x) - U(s, t,, x)1 < c,cfBS It - t, 1’ (see [4]); estimate (2.6) follows. 

Define now the map [ = @[e] by 

THEOREM 2.1. The inclusion Q(K) cK hotds, moreover Q(K) is a 
family of equicontinuous functions in 0,. Hence Q(K) is a relatively 
compact set in C(QT). 

Proof. Obviously / [(t, x)1 < B. The equicontinuity of the family 
[,(U(O, t, x)) follows from (2.6) and from the uniform continuity of Co on 6. 
Let us prove the equicontinuity of the second term on the right-hand side of 
(2.8); clearly 

$(s, W, t, x)) ds - l;’ #(s, W, t, , x1)) ds j 

< /j: ii4(s)li ds j + .(I I& W, 4 x>j - #(s, U(S, t,, x,>>l ds. (2.9) 
I 

Moreover, to each u > 0 there corresponds I, > 0 such that 

(2.10) 

Define for every E > 0 

w(s, E) 3 sup I#(& Y) - Q(& 4’1% (2.11) 
lPY,l<E 

Since w(s, E) < 2 1) #(s)lj and lim,,, co(s, E) = 0 for almost all s E 10, T], it 
follows from the Lebesgue dominated convergence theorem that to each 
v > 0 there corresponds an E, > 0 such that 

(2.12) 

Furthermore to every E, > 0 there corresponds a ,I, > 0 such that 

max{lt-t,(,Ix--x,1} <A, 5 j U(s, t, x) - U(s, t,, x1)} < E, (2.13) 
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uniformly with respect to s; this follows from (2.6). Hence 

IJ 
-’ #(s, U(s, t, x)) ds - j-TI #(s, U(s, t,, x1)) ds < 2v (2.14) 
0 ‘0 

if max{] t - t,], ]X -s,]} < min{l,, i?}. The equicontinuity of the family 
@(K) is proved. The last statement follows from the Ascoli-Arzeli 
compactness theorem. 1 

THEOREM 2.2. The map @: K + K has a fixed point. 

ProoJ: It remains to prove the continuity of the map @. Let /3,,, E K, 
0, --f e uniformly on Q,. Denoting by o, the solution of (1.3) with data 0, it 
is clear that u, --f u uniformly on 0,. Let E > 0 be given and N, be such that 
/(u - L’, (ler < E whenever m > N,. Put X(S) = U(s, t, s), x,(s) = Um(s, t, x), 
and p(s) = Ix(s) -x,(s)], where U,,, denotes the solution of (2.5) with v 
replaced by v,. For m > N, one has [p’(s)1 <Ix’(s) -xh(s)] < 
E + c,B Ix(s) - qn(s)l x(l-Q) - .q&)l>. H ence ]p’(s)l < E + c,&x(E) because 
r~(r) is an increasing function on (0, R]. Moreover p(t) = 0. Consequently 
) U(s, t, x) - U&, t, x)1 < T(E + ~,BEx@)), Vs E [O, Tl, ad U,,& t, x> is 
uniformly convergent to U(s, t, x) on [0, T]’ X fi, when m + +co. It follows 
easily from (2.8) and (2.12) that c,,, --) [ uniformly in Q7, where 5,~ @[a, J. 
Actually, it suffices to show the pointwise convergence of c, to c; uniform 
convergence follows then from the compactness of subsets of Q(K). 1 

Remark 2.1. The above method of proving strong continuity of r(t) in 
C(n) seems not to work in Holder spaces, even if f 3 0. In fact if 
co E C”,‘(fi) we cannot prove that co(U(t, x)) E C(R; C”,‘(D)) by using 
(only) regularity results for U(t, x) (other arguments must eventually be 
added); in fact, if &,(lJ) z m and U(t, X) =t -x the function 
{(t, x) 3 [,( U(t, x)) verifies 

I qt., x) - C(L x) - 5(& I’) + lx? VI = Ix - 4’1 l/2 (2.15) 

if x’ = 5, y = 1. 
The situation becomes worse with respect to the strong-continuous 

dependence on the data. 
Now we verify that the function u corresponding to the fixed point [ = 6 is 

a solution of (1.1); see also [4]. 
We start by showing that for fixed (s, t) the map x 3 U(s, t, xj is measure 

preserving in R. Let B E K, 0, E C([O, T]; C’@)), 0, --) B uniformly on Q,. 
If u, is the solution of (1.3) with data 0, one has v, E C([O, r]; C’(c)) and 
div v, = 0. Hence x--t U,Js, t, X) is measure preserving. On the other hand 
we know from the proof of Theorem 2.1 that ZJ, -+ U uniformly on 
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[O, Ty x fi. It follows that U is measure preserving. For, define 
TX = U(s, C, x), T,x = U,,,(s, f, x), x’ E Q, and let E be a compact subset of Q 
and A an arbitrary open set verifying T(E) cA c Q. Recalling that 
T,x-, TX uniformly and that T(E) is compact one shows that there exists an 
integer r?zO such that T&E) c A; hence ( TmO(E)I = jE/ < \A 1 consequently 
/El < / TEI, where ( . 1 denotes Lebesgue measure. An analogous property 
holds for the map T-‘y = U(t, s, y), hence the measure preserving property 
holds. 

LEMMA 2.3. Let [ = 0 be thefixed point constructed above. Then C$@t = 
-div(cv) + # in the sense of distributions in QT. 

Proof. We show that 

(2.16) 

Denoting by &(t. x) the second term in the right-hand side of (2.8) and 
taking into account the measure preserving property one gets, by the change 
of variable y = U(s, t, x), 

Hence 

and returning to the variable x = U(t, s, y) in the last integral one gets (2.16) 
for &. One argues similarly with the first term in the right-hand side of (2.8). 

LEMMA 2.4. Let v E W’92(12), div v = 0 in Q and v . n = 0 on r. Put 
rot v = c. Then rot[(v - V)U] = div(vl;) in the sense of distributions in G, i.e., 
((v - V)v, Rot Y) = (UC, V!Q V’f’E C,m(.n). 

Proox A direct computation shows that for a regular P, say, u E C2(Q)p), 
the above equation holds pointwise. For a general u consider a sequence of 
regular /&, such that i,,, -+ [ in L’(D). Denoting by ly, the solution of (1.2) 
with data &, and defining v, = Rot w,,, it follows that U, + v in W’,“(G). 
This allows us to pass to the limit when m + +co in the above weak 
form. I 

Now we verify that v is a solution of (1.1). Clearly D,c E 
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C([O, T];Lp(0)), Vp < +co. Moreover, [v E C([O, T]; L’(0)) hence from 
Lemma 2.3 one gets a[/& E L ‘(0, T; rv-‘,‘(.0)). Recalling that B = [ 
Eq. (1.2) yields -A(@/&) = a[/& in J?, +Y/&= 0 on I-. Consequently 
aI@ E L 1 (0, T; P2(12)) and Sv/;it = Rot(av/&) E L’(0, T, L ‘(J2)). In 
particular (au/&) + (v . V) u - f E L ’ (0, T; L * 0)). Moreover, rot [ (&/at) + 
(v . V)v -f] = 0 in the distribution sense, by Lemmas 2.4 and 2.3. Conse- 
quently there exists rc E L ‘(0, T; Wi9’(0)) such that (1. 1)1 holds. On the 
other hand i,,ZO = IJ,, i.e., rot ulrro = rot u0 in ~2; div nlrZo = div c, = 0 in Q; 
and uIIZO . n = u0 . n = 0 on I-. Hence L’,~=~u~. Finally, the uniqueness of the 
solution z.1 follows as in Bardos [l, Theorem 21. 

3. PROOF OF THEOREM 1.2 

In this section we write [ = @i(8, co, 4) instead of c = @(B) since &, and 4 
are variable. For convenience we denote by I+Y,, ‘yz, I,Y~, respectively, the 
maps v = w,(6) defined by (1.3), U= I,Y~(L~) defined by (2.5), and 
i= WAY, Co, 4) defined by (2.8). Hence @1(8,&,, 4) =-,dv2(v1(@h CoLti). 
The map @, is defined for every (0, co, 4) E C(Q,) X C(a) X L’(0, T; C(0)). 
Note that u is the solution of problem (1.1) if and only if 2’ = w,(i) for a 5 
verifying < = @,(& co, $). 

THEOREM 3.1. Let K, be a relative& compact set in C(s), K? a 
relatively compact set in L ‘(0, T; C(a)), and K a bounded set in C(Q,). 
Then the set @,(K x K, x K,) is relative@ compact in C@,). 

ProoJ: Let K,, K,, and K be contained in balls with center in the origin 
and radius k,, k2, and B,, respectively. The-set of functions i,(U(O, t, x)), 
for 8 E K and co E K,, is bounded in C(Q,) by k,. By the necessary 
condition of the Ascoli-Arzelh theorem the functions &, E K, are equicon- 
tinuous in fi. By (2.6) the functions U(0, t, x) are equicontinuous in 0,. 
Hence the family &,(U(O, t, x)) is equicontinuous in Q, and by the 
Ascoli-Arzela theorem constitutes a relatively compact set in C(Q,). 

Analogously the family 

is bounded by k, in C(Q7). We want to prove that every sequence c$“‘“‘(t, X) 
contains a convergent subsequence in C(Q,). This proves compactness for 
the family (3.1). 

Let 19~ E K and 4, E Kz be arbitrary sequences and consider 

C:‘% x) = -,[ gtz(s, Um(s, t, *Y)) dx (3.2) 
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By the compactness of K, there exists a subsequence of 4, and a function 
4 E L ‘(0, T; C(b)) such that $,,, -+ $ in L ‘(0, T; C(n)).’ Moreover a well- 
known theorem ensures the existence of a subsequence such that 

4& .> + es, -1 in C(0), for almost all s E [0, T]. (3.3) 

Denote by w*(s, E) the modulus of continuity of $m(~, .j in fi (see (2.11)) 
and define ti(s, E) E sup,,, E N o,,,(s, E). From (3.4) and from the Ascoli-Arzela 
theorem it follows that 

lim G(s, E) = 0, c-0 for almost all s E [0, T]. (3.4) 

Now let bklkEN be a sequence of real positive numbers such that 
Ttrn ak < +cn. Since 4, uk=l -+ $ in L’(0, T, C(fi)) there exists a subsequence Qk 
such that 

Define b,(s) = Cl:; [i@(s) - gk(s)(], s E [O, T]; clearly b, is integrable over 
[0, I”]. Moreover mk(s3 El < 2 II 4k@)lI < 2 ll$(s)ll + 2f-@) = Ws) hence 

O(s? E) < 2b(s) where 6 is defined with respect to the subsequence ok and 
b(s) is integrable. By using (3.4) and Lebesgue’s dominated convergence 
theorem it follows that to every v > 0 there corresponds an E,, > 0 such that 

f 
T 

wk(s, 6,) ds < v, ‘dkEN. (3.5) 
'0 

Equation (3.5) generalizes (2.12) in the proof of Theorem 2.1. 
On the other hand, by the boundedness of K, t.he functions ~7~ and U, 

verify (2.4) and (2.6) uniformly with respect to k. Hence (2.13) holds for 
every Uk with AZ = &(c,j independent of k. We now proceed as in the proof 
of Theorem 2.1 and we show the equicontinuity of the set of functions 
<ik’(t9 .xj in 0, (note that (2.10) holds uniformly with respect to k, since 
!I (6k(S)ll G W. F rom the equicontinuity the existence of a subsequence 
convergent in C(r2,) follows. # 

THEOREM 3.2. The map @, : C(G,) x C(a) x L’(0, T; C(a)) -+ C@,) is 
continuous. 

Pro-oqf. Let (e,, [b”‘. 4,) + (0, &,, $). Arguing as in the proof of the 
continuity of the map @ in Theorem 2.2 one shows that U, = v,(S,)-+ L! 5 
w,(e) uniformly in Q,, consequently U,, = v12(um) 9 U Z v,(v) uniformly in 

’ For convenience we use the same index m for sequences and for subsequences. 
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[0, T]* X fi. Now one easily verifies that 5, = I,Y~(U,~, ihm), 4,) -+ i = 
y,(U, &,, 4) pointwise in Q, since 

JI MS, U,(-G t, 4) - $(s, u(s, t, x))I ds 

< -1; II Q&) - $(sll ds + j,’ I$@, um(s, t, du)) - $(s, U(s, t, x)>l ds. 

Now by using Theorem 3.1 with K = {B,“}, K, = {<h”‘}, and K, = ($,} it 
follows that the convergence of i, to [ is uniform in Q, (this can be shown 
without resort to Theorem 3.1). m 

Proof of Theorem 1.2. Assume the hypothesis of Theorem 1.2 and put 
[,rrotv,, #-rotf, [=rotv, [:m’rrotL~~‘, #m-rotj~, 5,srote,, 
‘dm E N. By the assumptions &,, = @,(1;,, 1;1;“‘: d,), tin-l E N. Further, 
cfrn’ + &, in C(a) and 4, + d in L’(0, 7’; C&2)). 
‘Define K = {[,n}, K, = {[r;“)}, K, = (d,}. From (2.8) it follows that a set 

I,u~(S, S,, S,) is bounded whenever S, and Sz are bounded, independently of 
the particular set S. Consequently K is bounded because 
[, = y3(y2(y,((,njjT cp’, #,), Yrn E N. Now Theorem 3.1 shows that 
@,(K, K,, KJ is a relatively compact set in C(Q,) hence K c @i(K, K,, KJ 
verifies the same property. 

Let [, be any convergent subsequence of [, and put for convenience 
4~ lim,,, co [ ‘,._ From t_he identity [,. = @i(c,, [r’, #,)-and from Theorem 3.2 
it follows that [= @,([, co, 4). Consequently ts= w,(i) is a solution of (1.1) 
hence fi= o and r= c. It follows that all the sequence c,,, converges to [ 
uniformly in C(Q,), i.e., v,~ -+ L’ in C([O, T]; E(a)). 1 

Remark 3.1. In Theorem 1.2 convergence of fern) to f is not requested 
since v is determined by system (4.2). Convergence of f(‘“) to f in 
L&JR; L’(G)) would imply the additional convergence Vrc, --) Vn in 
L/,,(‘R: L*(Q)). 

4. PROOF OF THEOREM 1.4 

We start by proving that composition of &-functions with Holder 
continuous functions yields C,-functions. 

- - 
LEMMA 4.1. Let arc* and UEC”~S(12;12), 0<6<1. Then 

u 0 U E C,(fi), moreover 

(4.1) 
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irt particular 

where R = diameter 0 and the second term in the right-hand side of (4.2j is 
dropped if ([U],R@‘)/R < 1. 

Proof. Put ( s u o U, [U], s K. One easily verifies that 

c+(r) < w,(f@), Vr > 0, 

consequently 

By using the change of variables p = Kr’ one has dp/p = 6 drjr hence 

LEMMA 4.2. Let U: [0, T]’ x a-, r;;! be a continuous map verijjjing 

I U(s, t, -x) - U(s, t, y)l < K, lx - YI’, \J(s,t,x)E [O,T]‘x& (4.3) 

where 0 < 6 < 1. Let q% E L ‘(0, T; C,(G)) and define 

i2(t, x) = (’ qi(s, U(s, t, x)) ds. 
-0 

(4.4) 

Then iz E C([O, T]; C,(s)) moreover 

Proof. With straightforward calculations one shows that 

[&)I* Gj”).!b” ,/,y<, (4.6) 
_ ‘\ 
X.?ETi 

hence 
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where 4(s) = #(s, .) and U,,, 3 U(s, t, .). By using (4.2) one gets 

K,R” 

( 1 y- II 4(s)llI ds, (4.7) 

i.e.? Eq. (4.5). 
We now prove the continuity statement. Assume, for instance, t, < t. From 

definition (4.4) one gets 

- #(s, U(s, 4 y)) + $(s, U(s, to, Y))/ $ = B, + B, . (4.8) 

As for (4.6) we show that B, is bounded by the right-hand side of (4.7) 
with the interval (0, t) replaced by (to, t); hence B L goes to zero when ] t - to ] 
goes to zero. We now prove that B2 --f 0 when t -+ to. Assumption (4.3) yields 
F(t,, t, s, I) ,< 2r-1000,(K1 r”) where F(t,, t, s, r) is the integrand in Bz. The 
above function is integrable over [0, r] x [0, R] since for almost all 
s E. [0, T] one has 

as one shows by arguing as in the proof of Lemma 4.1. Moreover for every 
s E (0, T] for which #(s, .) E C(G), and for every r E IO, R], one has 
lim t+t0 F(t,, t, S, r) = 0. An application of Lebesgue’s dominated convergence 
theorem proves that Bz -+ 0 if t + to. m 

LEMMA 4.3. Let U verijjy the assumptions of the preceding lemma, let 
&, E C,(a), and define cl(t, x) = c,(U(O, t, x)). Then c, E C( [O, T]; C,(a)), 
moreover 

[t;,Wl* G fi Irnl* + +g (F) IIt-OIL vt E [O, 7-l. (4.9) 

ProoJ: Estimate (4.9) follows from Lemma 4.1. The continuity statement 
follows as in the preceding lemma (with many simplications). 
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Equations (2.6), (2.7), (2.8), definition of 6, and the two preceding lemmas 
give the following result: 

LEMMA 4.4. Assume that hypothesis of Theorem 1.4 holds and let 
[ E rot v, 4 s rot f, &, I rot vO. Then l$’ E C(R; C,(Q)), moreover for every 
tER 

where B = II ioIl + II 4 ILI~~,~:~NT~~~ 
The following theorem is crucial for our proof. 

THEOREM 4.5. Let 0~ C,(G) and let ye be the solution ofproblem (1.2). 
Then ye E C”(a), moreover 

(4.11) 

This result seems well known even if an exact reference is not available to 
us (see [2, Chap. 4, problem 4.21); we are able to prove it for a uniformly 
elliptic second-order equation LI,U = 0 in Q, Bu = 0 on r, at least if L has 
smooth coefficients and the boundary operator B is regular (for instance, 
Dirichlet or Neumann boundary value problem). This result doesn’t depend 
on the dimension n > 2. 

The main statement in Theorem 1.4 follows immediately from z’ = Rot w 
and from (4. lo), (4.11); recall that 0 = [. Moreover if g and VF are 
continuous in 0, it follows from (5.3) that Vz, is continuous, from 
V7c = Vrc, + VF that Vrt is continuous, and from (l.l), or (5.2), that &?/at is 
continuous. I 

APPENDIX 1 

We recall some well-known facts about vector fields defined in non- 
simply-connected domains. Let J2 be an (N + l)-times connected bounded 
region, the boundary of which consists of simple closed curves To, I-, ,+.., I’, , 
the curve r, containing the others. In that case the kernel of the linear 
system rot v = 0 in II, div c = 0 in a, r~ . IZ = 0 on I- has finite dimension N. 
Let us fix a base ur,..., u,,, and assume for convenience that (ui, u,J = Sik. 
i, k = l,..., N. Any tangentia1 flow (vector field verifying div v = 0 in .5;1, 
u . n = 0 on r) is uniquely determined by the field rot v in L2 and by the real 
numbers (u, uk), k = I,..., N. The quantity \\\n (// = J/rot v (/ + Cc= 1 \(u, uk)/ is a 
norm in E(a), equivalent to the norm (/rot v I/ + /(u /\L2(R). 
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Let now f be an arbitrary vector field in Q. Solve the problem 
--dy/, = rot f in 0, ‘y, = 0 on r and put g, E Rot ‘y,. Clearly rot g, = rot f, 
div g, = 0, and go . n = 0 on r. If g E g, + Ck Izkuk: where 3Lk = (f, uk), it 
follows that g is a tangential flow, moreover rot(f - g) = 0 in R, 
(f - g, uk) = 0, k = I,..., N. Hence there exists a scalar field F such that 

f - g = OF in R, i.e., the vector field g is the tangential flow in the canonical 
decomposition 

f= g+VF. (5.1) 

Note that g depends only on rot f and on the N real numbers (J; uJ. 

APPENDIX 2 

Let us decompose the external force f in Eq. (l.l), as indicated in (5.1) 
and let us consider the auxiliary problem 

ac ‘t+(v.v)v=g-vn, in Q. 

div v = 0 in Q, 

v.n=O on Z, 

v,,,. = V” in J2. 

The solution of (1.1) consists on the same velocity field L’ as in (5.2) and on 
the pressure term 0~ = 071, + CF. Moreover, from (5.2) it follows that 

(5.2) 

(5.3) 

Assume that the regularity of Vu(t) is known. Then the elliptic boundary 
value problem (5.3) gives the regularity of 07~~ and (5.2) gives the regularity 
of au,/&. In particular various regularity results for &l/at (and for On> are 
trivially obtained by assuming different conditions onJ: Hence the regularity 
of Vu(t) is the basic one. Note by the way that Vz is the only term 
depending fully onJ: The other terms considered above depend only on rot f 
and on (j; u,), k = l,..., N. 
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