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ABSTRACT

We prove the existence and the uniqueness of differentiable
and strong sclutions for a class of boundary value problems for
first order linear hyperbolic systems arising from the dynamics of
compressible non-viscous fluids. In particular necessary and suffi-
cient conditions for the existence of solutions for the non-homo-
genecus problem are studied; strong solutions are obtained without
this supplementary condition., See Theorems3,2, 3.9, 4.1, 4.2 and
Corollarxy 4.3; see also the discussion after Theorem 4.1. In parti-
cular we don't assume the boundary space to be maximal non-positive
and the boundary matrix to be of constant rank on the boundary.

In this paper we prove directly the existence of differentia-
ble solutions without resort to weak or strong solutions. An essen-
tial tocl will be the introduction of a space Z of regular func-
tions verifying not only the assigned boundary conditions but also

some suitable complementary boundary conditions; see also the intro-

duction of Part I of this work [1].

Copyright ©® 1983 by Marcel Dekker, Inc, 0360-5302/83/0804-0407%3.50/0
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1. Notations and results,

In this paper we study problem (1.1) with boundary conditions
(1.2} or (1.3), the svolution counterpart of the stationary problem

(I.3.1) studied in Part I(l).

This problem arises from the study of
the noniinear equations of the motion of compressible non-viscous
fluids. A discussion on this subject was done in Part I, which will
be assumed familiar to the reader. We start by recalling some no-
tations,

Let T>0 and put I = [-7,7], R" = (x€m:x <0}, xt =
Groreeorny), L = {x . x, = 0} We denote by L2(E") the Hil-
bert space of real square integrable functions in ®R® ang by
Hk(FT) the Sobclev space of functions belonging to LZ(ET) to-
gether with all the derivatives of order less than or equal to k .
Moreover HS(RT), k #1, denotes the subspace of functions vanish-—
ing {enly the function, not the derivatives) on the boundary :Rm—l
and H;(RTi, k 2, the subspace of functicns with vanishing
normal derivative on the boundary. HS(Rm_l), s = 1/2, 3/2, Qe-
notes the usual Sobolev spaces of fractional order on the boundary
Em_l. The space of all real functicns which are bounded and conti-
nuous together with their derivatives up to order k will be deno-
ted by c¥(®"), and the usual norm by Il I k- et n and p be
fixed integers, 0<p<n. We define X={L2(]CRT)]D, y:[Hl(]R]l],)]n
z=[a"(®") 1", Y:[Hé(]RT}]p < [ ("1 "P,

% = [Hg{RTJ]P X [H;(RT}jn_p. In section 4 we also utilize the trace spaces
HS = w ™ )P,
P
The canonical sealar products and norms in X and Y will be denoted
by (u,v), ({(u,v)), |u] and Null. Given a fixed vgctor field h = (h1,"‘,hn)
in I x RT we also utilize (see Part I) the families of weighted scalar pro-

ducts (u’V)h(t) and ({u,v})h(t) and corresponding norms in X and Y,

namely lulh(t) and Huﬂh(t); here h(t) stands for h(t,*). For

(1}

I.3.1. means equation {3.1) in part I, and so on; a correspond-

ing notation is also used for the statements,
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convenience we will write (u,v)t instead of (u,v)h(t) and so on. Hence
n
(u,v), = I ] woun telax, (Ga,v)) = Guw) o+ (Vu, Vo)
k=1 ™
R_
T A v
where (Vu,VV)t = Z {5;— vy M 7o point out that X 1is endowed with
J=1 J 3

the norm |*| we sometimes write X,.

t

note from now on that {under the choice of

norms "'ﬂt and K+l  are equivalent in

[*1_ and |}

same holds for £

Kato's paper [5]).

hit,x)

¥, uniformly respect to t € I.

A similar notation holds for Yt' We

made in the sequel) the

The

in X (weighted norms are alsc utiliged in

We also introduce the following forms:

Ba_dv
axJ ij n'it)

{u,v)_, f w v, h'{t)ax,
h'{t} =1 RT k'k Tk
m
(€u,V))h.(t} = (u,v)h,(t) +
Moreover we pubt
Ih* (t)t = max Iht (x)i
c 1%k S " cD

here h'(t) stands for the time derivative.

Let now X be a general Banach space.

&

We will utilize classical nota-

tions for Banach spaces consisting of X-vector valued measurable functions

defined on I.

We don't repeat the definitions of THI;X),

1R g & e,

AC(I;X) means X-valued absolutely continucus functions on 1. The meaning
of Ck(I;X) is clear. Moreover L{X;X1] denotes the Banach space of the
linear continuous operators from X into X1.
1
Finally we define N = {ue Rlru, = «+* = =0}, N={uer: =
: 1 e+l
1
vee = = = e = .e
u 0}, P (up+1, ,un), P u (u1,° ,up).
Let now uU(x) and f(t,x) be giver n~dimensional vector fields defined
: m . m : P a4
in R and in I X R respectively. We want to study the mixed initial
boundary-value problem
u' + (L{t) + B(t)u=£f ia IXR,
(1.1}
- m
u(g,x}) = uﬂ{x) in R_,
with homogeneous boundary conditions
-1

(1.2} u (,0,x') =0, k=1,°""p, for (t,x') eI xR,

|
E
|
E
i
§
]
|
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or with non-homogeneous boundary conditions

-1
(1.3) u (€,0,x') = w (6,x'), k= 1,%e4,p, for (t,x') ez x g"

In (1.1} the unknown u is an n~dimensional vector field defined in

I x RT, moreover(z)
m
- -1.T 3
(1.4} Lus J H & e
x
J=1 J
where H and AJ, J = 1,***,m, are n X n watrix valued functions defined

in 1 x ®. We assume that H 1s diagonal (this condition is not essential;

see Remark 1.2) with diagonal h = (h1,"',hn) and that
(1.5) m, (t) = dinf n (x>0, ¥terl.
X € R_
18k%n

We suppose that the matrices AY are symmetric

J J . T
(1.6} aik(t,x) = aki(t,x), Wi,k = 1,**»,n, ¥(t,x) € T x R .

Furthermore B is an n ¥ n matrix valued function {not necessarilty

gymmetric) defined in I % RT. We assume that for all indices i,k,J(3)

J
(1.7) noay . b e o™y,
dh da':f dnh
(1.8) X ik ik g Lt % (r™y)
at ' ac ' a4t ! R

From (1.7}, {1.8) it follows that the functions in {1.7) belong to

0 0 s
CIzC (RTJ). Hence m, & CG(I;R) is positive and bounded away from zero.
. . d ~ J
For comnvenience we use the notation Ka“(t)l Z sup la, (£} A
£ X ix £ m
¢ ik cT(rR)

1< i, X% n; sgimilar notations will be used for other matrices and alsoc for

norms on the boundary. Moreover WIA(e)f Py S sup HAJ(t)H 2
C 18T S C

We now give the assumptions for the matrices on the boundary. First of

all note that the boundary matrix is the restriction of A1 to Rm_1. We

assume that A1 verifies the condition (I.2.14) or equivalently that

(2)

Matrix action is understood as miltiplication from the left; in this case
vectors are understood as column vectors., ’

(3) In (1.7}, (1.8) one can replace C1{Rw) by the space of all Lipschitz

1 -]
continuous fuactions w ' (R?) and CD(R ) by the space of all hounded and

o
measurable functions I {Rm}-
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] 0 l M 1
(1.9) A = m]-, ¥ {t,x} eI x K,
o

where M is a p X {n-p) matrix valued function defined in I X Rmn1 and

T

M ig it transpose; ingtead of (31.9) we can assume that the boundary matrix

A1 has the more general form indicated in Remark I.2.4,{i). In this case all

the results and proofs hold again if ore replaces (-T,T] by {[0,T].
J

On the other hand we asgume that the matrices A", J = 2,*+»,m, verify

(I.2.15} or equivalently

RJ 1]
J m-1
{1.10) A = —_— r ¥{t,x) € I xR r
0 SJ
where R° and S° are p X p and (n-p} X {(n-p)} matrix valued functions
defined on I X R?_1 . Finally the matrix B wverifies {I.2.23)} i.e.
B1 ; ’ m-1
(1.11} B = e e—— . ¥ {t,x} 8T xR B
B B
2| ™

where By, By and By are matrix valued functions éefined on the boundary,
of types p X p, {n~p} X p and (n-p) X (n-p) respectively. As pointed out

1 to be of constant rank on

in part I we donr’t assume the boundary matrix A
the boundary. Even when this condition is utilized (Corollary 4.3} the rank
is not assumed constant near the boundary. Moreover we don't assume the
operator L to be formally dissipative and the boundary space to be maximal
non-positive.

As pointed ocut in Part I we avoid the use of mollifiers, negative norms
and distributions by proving directly the existence of differentiable solu—
tions instead of starting by the existence of weak sclutions; see for instance

the fundamental papers of K. 0. Friedrichs [3] and P. D. Lax - R. 5. Fhillips

[6].

Remark 1.1. As for Part I, all the results and procfs heold again if the prob-
lem is posed in the whole space R"; for this easier case it suffices to drop
in statements and proofs all assumptions and arguments concerning the bound-

ary. We get in this way a new and simpler proof for that particular case.
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Concerning our results, we prove that if u® gY and £ e L1(I;Y) then

the problem (1.1), (1.2} has a unique differentiable solution u & CO[I;Y) n
RC{I;X); see Theorem 3.2. Clearly if f is more regular one easily gets
from Egquation (1.1) more regularity For wu'(t).
. 1 0 1 T
Furthermore if £ € L' (I;X), u € X and w = (w1,"',wp) eL {I;%?z)
then there exists a (unigue) strong solution u of problem (1.1}, (1.3), with-

out any additional assumption on the operators; see Theorems 3.9 and 4.1.

The corresponding result for differentiable soluticns is not true in general;

however we prove that a compatibility condition for w and the boundary
values of f suffices to guarantee differentiable solutions. This condition
is also necessary, at least in order to get smooth solutions; see Theorem 4.2
anq the corresponding discussion. Note that ocur compatibility condition has
te hold for any time and is independent of the classical condition (4.7).

The compatibility condition is always verified if w=0 and f €
L1(I;Y), and in this sense the statement of Theorem 3,2 follows from that of
Theorem 4.2. We also prove that the compatibility condition is always
verified if rank M(t,x) = p on I X RF—1: hence in this case a {unique)
differentiable solution exists for ali pairs f£,w (see Corollaxy 4.3).

In the sequel we give a direct proof of Theorem 3.2 which is the evolu-
tion counterpart of the proof given in Part T for Theorem I.3.1; we show
directly that the function u(t) constructed below is an X-valued absniutely
continuous function, without resort to approximation of the time dependent
operator L(t) + B(t) by piecewise constant (respect to +t)} elements; for
another proof, using T. Kato's results and part I, see Remark 1.3.

Remark 1.2. As pointed out in Remark I.2.1 +the method used in these papers
still works under the following conditions on the matrix H(t,x}:

(i) H(t,x) is symmetric and uniformly positive definite in I % RT {instead
of diagonal plus condition (1.5});

(ii) on the boundary I X Rgug the matrix H(t,x) has the form
H 0

(1.12) H =
a n-p
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where HP(t,x') and Hn_p(t,x') are matrices of type p X p and (n-p) %

(n—p} res;.w;act:'m'ely.(4:l

In this case the scalar products (u,v)t and ((u,v})t are defined by
(u,v)t £ (H{t)u,v), ¥ u,v e Xx,
and

T 3 ?
(o, v)) = &E(e)u,v) + ) u v

(B(t) e Jo ¥ ou,voe oy,
J=1 J J

The operator D{t) (see Section 2) acting on % becomes p(t}v = H{t)v -~
aiv{#(t)Vv), or more explicitely
n m v,

] 2 i
edv) = ] B (B)v- [ 3= (7 b (£) =—%), k=1,see,n,
koo K gm1 g gay ki 9

where (D(t)v)k is the kN compenent of D{t}v. WNow equation D{t)v = f is
an elliptic system of n equations instead of n devoupled eiliptic equa-
tions. Due to the boundary assumption (%.12} the operator D{t) is again an
homeomorphism from % onto X (for almost all t € I} and {2.8}) holds
again.

Remark 1.3. Existence theorems for abstract evolution equations (ané applica-
tions) have been given by T. Katc in a sequence of well known papers (see [4],
[5] and references; see also [2}). By using Friedrich's classical method one
shows {see [5]) that Kato's hypothesis hold for the pure Cauchy problem for
equation (1.1) posed in the whole space R". However for mixed initial-
beundary value problems like (1.1}, (1.2} this was still an cpen problem;
nevertheless from Theorem I.3.1 it easily follows that I(t) + B{t) is

M - uo stable in X and in ¥, for suitable constants M and yﬂ; by
combining this result with Kato's theorems one gets immediately a statement

similar to Theorem 3.2. We show the above claim in the appendix.

2. Some basic estimates. 1In this paper ¢ denotes any constant which

depends at most on the integers m and n; N is the set of all positive

integers.

(4)
The regularity assumptions remain (1.7), (1.8).
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For convenience we denote by E the subset of T consisting on all
points

note that these coefficients are continuous functiong in

Clearly & has zera Lebesgque measure.
the above definitions and ﬂséhmptions it sasily follows that
1Lge) < clate)l
Li{t) Ly;x] chalt) 0

C
(2.1)

p ~
“L(t}nL[Z;y] cHA(t)ﬁC

~J
where A" Z g ' . J o= e m, moreover

"B{t)ﬂfo;x] % clB(t)l 0

C
(2.2}

I il <
B{t) Ly s clBit) 1

C

where in the left hand sides IB(t)ll denotes the norm of the linear oper-

ator B(t} and in the right hand sides the notation introduced in Section 1

for matrix-valued functions is uged. Clearly the above estimateg concerning

C1 norms hold for t € I/g and those concerning ct norms for all t e 1,

We also define as in (I.2.9) and (I.2.11) the bilinear continuous and

symmetric forms ﬁt(u,v) and Bt(u,v) on X and ¥y respectively; these

forms are now time depending. Morsover we define AD(t} as in (1,2,20)

[(Blt)u,u) + 1 @ (e,u)|
hD{t) = max {sup -

f{(B(t)u,u))t + 1 RS
— Dy 2htewd
uex

sup N
2 ‘ 2
I
[u!t uey ul?
One easily verifies that there exists a constant ¢  such that
ey 1 1
A (L) $ X () = c{-w———MA(t)ﬂ + FACEX)  In(e)d o+ kB{t)H 3.
I 0 mO(t) C1 mo(t)z CO C1 C1
We recall the following result (gee Lemmas I.2.5

and I.2.6):

Lemma 2.1 Assume that {1.9) holds. fhen for each fixed t @ /B

one has
(2.3) (Lu,v)t + (u,Lv)t = Gt(u,v), ¥uvaeary,
(2.4) (\'Lu,v)}t + ((u,Lv))t = Bt(u,v), ¥ u,vaaz.
In_particular
{2.5) I{Lu + Buu) | < xo(t)luli . vaey,
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{2.6) | (L + Buyad) | < 'inmnuali, vu e z.

Lemma 2.2 Assume that (1.9), (1.10) and {1.11) hoid. "Then for each t €

I/E one has
(2.7) Litt e LlZ;¥], B{t) e Liv;Y].
Hence estimates (2.1) and (2.2) hold with ¢ and 7 replaced by

¥ and Z xespectively.

Finally we need some results on the operator D introduced in

{I.2.27}. By definition Dk(t)¢ = hk¢ - div(th¢); here ¢{x) is a real
function defined in RT and the operatoers divergence and gradient concern
only the x variable. The time variable can be viewed as a parameter. Hence

D(t) = D1(t) . a

0 .Dn(?l

is a differential operator acting on n-dimensional vector Fields in RT; this
operator is well defined for each t € I/E.

Lemna 2.3 For each t € I/E the operator D{(t) is a homeomorphism from 2

onte X. Moreover for each pair t,s € I/E one has

{2.8) (la, w3}y = (u,p(t)v), vuey, vVveasz,
. <
(2.9) "D{t)“)L[z;x] cllh(t)llc1 .
Fhit)l
(2.10) tpeey

< c T <
L{X;%] mu(t)L1 + m (t) ]

Ih(t) K 0 In(a) Ia(e)

1 1

=1 C C C
. 1 <
(2.1 DEIDs) Ty oy S mo (s fr+ ENES) ]+ EWPT

Proof. Eguation (2.8} was proved in Lemma I1.2.%9. The proof of (2.9) is

ocbvious. Let now ¥ € X and let =z & % be the solution of Ditlz = ¥. By
(5)

the definitions

(5}

For convenience we drop the index k and the parameter t.
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(2.12) hz - div(hVz} = ¥,
consequently (1-A)z = h_1(¢ + Vh + ¥z). Well known results for the
Pirichlet and the Weumann boundary value problems For the operator 1 - A
yield (see {7]}
(2.13} FlzIIz < EE (je] + Enl 1“2").
o] £

Now by maltiplying both sides of (2.12) by =z and by integrating on RT
one easily gets Izl < m;1l¢|. Using this estimate in Equation (2.13) one
proves (2.10).

The above estimate
{2.14) bzl <m () ' Ipit)al, vz ez, ve e 1/m,
will also be useful in Section a.

Finally let ¢,s $ E, ¢ € X and gz = D(s)_1¢. By the definitions one
easily gets z - Az = Bis) (¥ + Vh(s) - Vz). Hence D{t)z = h(t)n(s)~F(y +

Vhis}) » ¥z) - Vh{t) - Vz, consequent ly

fhie)
{2.15) ip(t)z] < S (9 + bhis)b _+ Dz0] + Nh(eyd  igd.
mo(s) C1 C1
By using now (2.14) at the peint s one easily gets {(2.11). 0

For the reader's convenience we also state the following result:

Lemma 2.4. Let uw be an X-valued measurable function on I and let @ and

B be non-negative integrable functions on TI. Assume that for all t e T

and for almost all s € I one has

(2.16) lute) = uts)i < % atrrat] + |t-s|B(s).
s
Then u € AC{I;X).

Proof, Let E be the exceptional set of points s and let Ty € it,sl, tp
B E. Then |u(t} - u(s}| € ({ut) - ultg)| + lu(ty) = uls)| and by the

t
hypothesis |u(t) - uts)| [ © a(tjar + (eg-)B(t) + [% arniar + (s - o )Ble),
t t

hence °

futt)-uls)| < [Pa(ryar + (s - t3B(e
t
Integrating with respect to ty, over [t,s] one easily gets ju(t) - u(s)|

al*

< % [a(t) + B(r)iar. o
&
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3. 'The homogencous problem. In the following the expressions "differentiable

golution” and "strong solution” will be used in the following senses:

et f @ L1(I;X) and u0 & ¥X. A function u is a differentiable solution of

problem (1.1}, (1.2) if: (i) u e c(L;¥) n AC(I:N);  (11) u solves
equation (1.1). Recall that u'(t) exists and is in t'(1:%x). A function

u 1is a strong solution of problem {(1.1), (1.2} if: (i} u e c®rxy;

£ 2
(ii) for every pair of sequences f( ) e L1(I;Y), ué ! € Y such that
(%) ; 1 {2 . . .
£ + f in L (LX)} and Uy > u, in X there exists a classical
£ 2 £
solution u( ) of problem {1.1), (t.2) with data f( ), ué ) such that
(£) . 0 . s . du ,
u +u in CY(I;X}. We will use indifferently the notations T U

and  dgu. We begin with the uniqueness result:

Proposition 3.1. Let f € L1(I;X}, u, € X and let u e Li(I;x) be a

golution of {1.1), {1.2) in the following sense: there exist sequences

ftil (2} u(ﬁ}

e L (I;X) and ué“ e X guch that £ + £ in nlrix), u ¥
in X and the problem dtu(n)(t) + (L+B)u(£)(t) = fti)(t), u(E)(O) = uég)
has a solution u{x) € L1(I:Y) n AC(I;X) such that u(n) *u in thir.

Then u is the unique zcluticn {(in the sense described above} of problem

(1), {r.2).

() (L) (€3]
u u

Proof: Let w and v be two solutions and let f [ and
g(E), vél), v‘il be as in the above statement. By putting wck} = u(z) - V(E),
by multiplying scalarly in X, both sides of dtw(l) + (L+B)w(£) = ftz] - g(E)
by w(E), and by using (2.5) one easily gets
1,4 (A2 oy (%), 2 (2y_ (&) (%) 1 . (%) 2
agp 1w 1D S AR W TID + I E C AN T LA PR PR €t)"CDlw I |

By using Gronwall's lemma and by passing to the limit when £ » +%, the

proposition follows. O

We now prove the existence of a differentiable solution.
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Theorem 3.2. Assume that the conditions described in gection 1 concerning the

operators L and B hold. Let U, €Y and f e L1(I;Y} be given. Then

there exists a (unique) differentiable solution u e CO(I;Y] n BC(I;X) of

problem {1.1}, {1.2). Moreover for each t e T

o .
o (0 + Yo (0™ e gy Jlatl

(3.1) Iufe)l <o ¢ < {0+ By
t 00
L (Q,t,-Yt]

hence in particular

5y 1y
o o TR am T o jac
C ] /o e 0 ¢ .
m (L)

fn{on

lute)l < [
(3.2}

. {nuDu + £l 1.
L(0,%:Y)

Finally if £ e LU(Is¥) o LEI;X), 1S q % %, then u e wledir;xy;

if f e Lf(I;Y) n CU(I;X) then u e C1(I;X}. The corresponding estimates are

cbvicus.

For convenience some lemmas will be stated during the proof. Denote by
{as}, 5 €N a base of % and put

2
(3.3) sy = Ty a L sen.
s=1 =3 5

(t), s = 1,**+ £, as the solutions of

£
Select the real functionsg c; !

the linear non-homogenecus system of £ ordinary differential equations

aat™ e ]+ (et

fo s (%) . :
initial data {(u (D),ar)}o = ((uo,ar))a or equivalently

{t).ar))t = ((f,ar})t, r=1,°*+*,%, with

£ a : (%)
S£1 (aga ) Soe ™ (1) + 521 flimama_ia )y " (t) = ((f,a)},
(3.4)
: (2)
§ (laa 1,c ™ H0) = (ug,a ), r o= 1,000 4,
5=1
The coefficients ({as,ar))t belong to CU(I;R), the corresponding matrix is

invertible and (((L+B)as,ar)) a L1(I;R). Consequently problem (2.5) ig

ey (4}

uniguely solvable in I and the solution { 1 (t)’.--’cl {t)} is an

2
R -vazlued absolutely continucus function in I. By multiplying (3.4}, by
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(L) ; s
<L (t) and by adding in r one gets
a {2 3 % £ 2
(3.5) (G e a0 ety
for each % € K. On the other hand
1,4, (%) 2_ .4 i (%) 1 (L) (L)
(3.6) % dtilu (t)!lt ((dt u {t),u (t)))t + A (t),u (t}})h‘(t)'
Moreover
-1 Z
< ' Tl .
(3.7} i((u,u))h,(t)| mptt) Fhtie)l dull, Yuey

C
From {3,5), (3.6}, (3.7) and (2.6) one finally gets

1, 4 4E) 2 1" -1, > (£) 2
(2.8) i ¥ ar la (t)ltl < | pma (e} b (t)ch0 + Ao(t)} fu te)dy +
(£)
+ Hf{t)ﬂtﬂu (t)Ht.
Hence by compariscon theorems
Inh*(T)k
| C0
|f {AO(T) +1/2—m(—T_)—'“]dTi
3.9 M <o o Glagby + g }
L (U,t;Yt)

(&)

for every t € I; note that lu (O}H0 < HuUHU. Let L be the linear

operator defined by {Lu)(t) = L{t)u{t)} a.e. in I. By (2.1), it follows

) @
that L is a bounded operator from L (I;¥) dnto L (I;X).  Hence (3.9)
{v)

P

implies the existence of a subsequence u' ‘and of elements u € L (I;Y) and
w

w € L (I;X) such that

" IS
u( ) +u weak-* in L (I;¥),

(3.1C)
{v)

P
{L+B}u * oW weak~* in L (I;X}.
We utilize above a well known result on functional analysis; see for instance
o
[8], Chap. V, Secticn 1, Theorem 10. Recall also that LI(I;X‘)' =L (I;X),

where X' is the dual of the Hilbert space X . We remark that if we replace

1

L by n?

in the assumptions (1.7), (1.8) concerning h(t}) and h'(t) <then

in (3.10) it suffices to use the weak convergence in LZ.

On the other hand from (3.4)1 and (2.8) it easily follows for each r € Vv

and each + € I, that

Moy, ny + [F (@M man

(vi _ -
(3.11) {{u (t),ar))t = ((u ; - h'(r)dT
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- [tzma™ (0 ,00ma ar + [ ((er)a ) ac
0 r a x T
By passing to the limit in (3.11) one gets

{3.12) Lim ((u(vj(t),ar))t = ugea dyy + ft((u(T),ar))

dr -
Vg 0 R'(T)

=[Sty oima nar + [Fecn),a) ar,
0 r p r 't
for each r @ N and each t @ I. Recall that D(t)ar e L!(I;X) thanks to
(2.9) and (1.7}. From (3.12) and {3.9) it follows that

v
(3.13) u( )(t) > u(t) weakly in v , for every terx.

) » wer + Ble)ure) weakly in X,

Hence by (2.1) (L(t) + B(t})u
for each t e 1, consequently w = (L+B)u.
Since the left hand side of (3.12} is equal to ((u(t),ar}]t a density

argument in 2 shows that

t
(3.24)  {(u{t)yzd)y = (lug,2)), + g (a(T),2)), oyt -

- [* GreBratn), nin)zlac + ft((f(T),z))TdT, vz @ z.
0 0
Note that u(0) = usy by (3.13}, (3.4)2; moreover (3.13) and (3.9) yields
(3.1).

Furthermore an easy computation shows that

¥ v,z 2 Y,

t
(3.15) (vzl) = v,z + i (v,z))y g, ar,

for every t,s € I, consequently (3.14) yields the following statement:

Lemma 3.3, Let u be the function obtained above. Ther for every pair s,.t

€ I one hag
_ It
(3.18)  (tule)rz)) - Clues),z)) = i {a(m),2)),, &t -

=I5 e,z ar - [t (LAB)u(n),pinziar + (& (e(1),z)) ar,
=1 h (T) 5 5 T

for every z € 3.

Corallary 3.4. The function u is a Y-valued weakly continucus function

in 1(6),
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Progf, From (3.16) one has lim((u(t),z))s = ((u(s),z])s, ¥z € 2.
t+s
Moreover Z is dense in YS and u(t) is uniformly bounded in ¥,. Hence

when £ + 5 one has u{t) * u(s) weakly in ¥, hense in Y.

Proposition 3.5. The fupction u is an X~valued absolutely continuous

function in I, i.e.

(3.17) u e AC{I;x).

Proof. 1In the sequel we dencte by Kb different constants which will not be
o
specified. Since u e L (I;¥) one easily gets, by using {2.14), that for

each s € I/E:

t t,.,
(3.18) I f (Cult),z)),, o at] < K0|f 'O az| jp(s)zi,
s 5 C
(3.19) I Ctute), =) ar] < k_|f5Ih' (1) _dr| |Dls)z)
. L h'(T) 0 D ’
5 s o4
{3.20) [ ety ) ar| < K, 1/% 1gmnar] In(s)e].
s 5
Moreover
® s, ninz)at] < H@amyal IftﬂD(T}D(s)_1HL[X_X]I Ins)z] .
s L (I:X) s ’

Hence by preceding estimates and (2.1t)

(3.21) HECs)u(t),p(1)z)dt| < K, (£=5) {1 + Fn(s)l 1+
5 c

+x 1 (0 atl} pp(e)al,
] c

for each s € I/RE. From (3.16) and from the above estimates it follows that
t

(3.22)  [{(uter-uts),2)) ] < {|f" a(m)ar| + |t-s|B{s)) ID(s)zl, e @ 1, v s € 1/E,
5

where @ and B are real non-negative integrable functions in T. On the

other hand a classical result on functional analysis yields

Jtult}—uls),Dis)z}|
|D{s)z|

fu(t)=uls)| = sup ¥ s e I/E,

zeZ

(6}

Actwally u is strongly continuous; see Lemma 3.7 below.
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since n(s)z = ¥X. since ((ult}-uls),=z)}g = (ult)-uls),nD{s)z) one gets |ult)
- uls)| = Ift a{t)at| + lt-s|B{s); by Lemma 2.4 the statement follows.

: O

Temma 3.6. The function u verifieg equation (1‘1)1 almost everywhere.

proof. By (3.17) the derivative u'(t) exists and is in L1(I;X). Hence it
suffices to verify that there exists a subset Ey © I of zero Lebesgue

measure such that for each =z € Z

(3.23) lim (ELE%E§LEl , Dis)z) = {{L+B)u(s)~-£(s),D(s)z}, ¥ te I/E1 .
t+s
Let us verify (3.23). From the definitions one has
At - L I :
(3.24) = [ Cutkrzn,, 47 = (ale), oo Ifnr(vyar 2z
s s
w
N g 4 t ., 9z
o I g, g [T nimat s 5,
J=1 J s J

where for convenience a:z is the vector with compenents [a:z)k = ay vy

X = 1,***,n. ©n the other hand 3%“ u{t) is ¥-valued weakly continuous in
I since uft) is ¥Y=valued weakly continuous and E%A e L[Y:X]. HMoreover by
(1.8} and by a well known generalization of a Lebesgue's theorem there exists
a subset Ey = I of zero measure such that

lim —— [® nrgniar = h'(s), ¥ s e 1E,
t-s 1
t¥s 5

where the limit is in the CD(RT) norm, Hence by passing to the limit in

(3.24) one gets

(3.25)  lim 2%; JEiuter, 2 {(u(s},z}) vseLE, .
5

4t =
n'(t
s (1)

h'{s}’
Now by dividing both sides of (3.16) by t-s, by using ({ult)-uls},z) )

= (u(t)-u(s),D(s)z} and by passing to the limit when t * s one gets

(3.23). Note that the functions in the first, third and fourth integrals on

the right hand side of (3.16) are integrable on I. |
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Lemma 3.7. The function u is in C(I;¥).

Proof. From (3.1) one gets lim 3upliu(t)lit < ﬂu(D)lID and by {3.26) below it
Ll
follows that lim supllu(t}ﬁ0 < Nu{ﬂ]ﬂo; hence Corollary 3.4 yields wu(t) + u(0)
£+
strongly in ¥ge hence in Y. Now from the unigqueness of the solution it

follows the strong continuity of u{t) in every point t @ I. [1

The last statement in Theorem 3.2 follows directly from equation {1.1),
as well as the corresponding estimates. Hence it remains only ta show (3.2).

This estimate follows easily from (3.1) and from the estimates

1vi? < te) " Hvt® L, vt < khcoyE ivl? ana
g t 0 0
<
(e mD(T)_1ﬂh‘(T)H L4t
(3.26) ﬁvlli <e® ¢ IEvlli ., Vvevy.

To verify (3.26) use the estimate
Ih*(t}k
(t) 0

Cc 2
Y “vﬁt .

a 2
Ly <
I vl 0

Note by the way that ({3.26) also holds with Hvﬂt and !IvIIS replaced

Ly |v|t and |v|S respectively. Theorem 3.2 is proved. O

Remark 3.8. If h is not time dependent a shorter proof of Theorem 3.2 is
obtained by showing that (notation of Part 1)

(lalt),a )y = (lugeaddy + it (£(T)=(L+B)u(T),Da )dT, V¥V r & N;
from this equation one easily sees that u is a solution because it verifies
the integral eguation

utt) = u, + [5 £ - @emyutlaT, v te I
q

The existence result for this particular case can also be utilized to get
the existence for the general case; to this end one extends it succes—

sively to the following cases: {i) hi{t) is a piecewise constant Ffunction
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{respect to t) with values in {C1(RT)]H; (i1) ntey e CO{I:{C1{RT)}D ;

(110) ) e nl oz g™ ®

We now prove the existence of strong solutions for the homogeneous

boundary value problem,

Theorem 3.9. 1Let £ e L1(I;X) and Uy € X4 Then there exists a unique

S—===ET 9.7, Let 2nd —ae——r—Eox BXISTS a unique

strong golution 4 of problem (1.1), (1.2, Moreover qu satisfies the estimate
.

t o -1,
M By + Ym0 inr (1) REL

(3.27) )], < e f € *lugly + 1zt
L (Q,t;x% )
t
and also the estimate (3.2) with Faftye, HuDN and l£k replaced
T /= L (0,t;Y)
by Jute)], lugl ana gk . respectively,
L (0,t:X)
Proof, ILet uék) € ¥ and f(n] L] L1(I;Y), £ € N, be such that uég) + uD
. (2) . 1 (2) 0
strorgly in X and £ * f strongly in g (I:X), Tet u € C{I;¥) n
AC({I;X) be the solution of 4 utz) + (L+B)u(£) = f(E), (£)( 0} = uéﬂj.
By multiplying both sides of the last eguation {scalarly in X } by utg)
one gets (d u( ) t)l, u e )(t)) + ((L+B)u{ )( t), u(z)(t))t
= (f(ﬂ)(t),uti}{t))t. On the other handa
(%)
a , (£ Y (2) 1 (£) (#y. 2
/ lu (t )It = ar P u )t + 4 (u ,a )h'{tJ ,

moreover | (u,u) , | €m (t)—1Nh'{t)H |ul2, ¥uevy., Hence, as for (3.9),
h'(t) i} CO t

one easily gets the estimate (3.27} for the approximating solutions u(i)(t).

: : . {4 {k) 5
By applying thig last estimate to u {(t) ~u (t) one showsg that u is
a Cauchy sequence in CD(I;K). Hence there exigts ue CO(I;XJ such that

u *u in CO(I;X). Clearly {3.27) holds for aft). Finally the last

statement in Theorem 3,9 follows from (3, 27) by using formulae {3.26) with

ﬂvﬂt and Hvﬂs replaced by ]vft and lvlS respectively, 0
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4. The non—homogeneous problem. We recall some usual notatioas and results. If

y e Hl(RT} we denote by YO¢ the trace of ¥ on L 3 HZKRT) we

denote by Y1¢ the trace of the normal derivative of ¥ on AT, e is well
s _ o m-
known that Y, € c @ w2 @, v, e L™ w2, v e

1 -1
L[HZ(RT); H %2 (Rm 3}. It is also well known that there exists (non unique)
-1 -1 .
linear centinuous right inverses YG and Y1 in the above spaces.
In the sequel, boundary values are always to be understood in the trace

Sense.

We gtart by studying the existence of strong solutions for the non-

homogeneous problem (1.1}, (1.3). Assume that w = (w1,"',wP) e L‘(I;HE?h)
is the trace on the boundary of a function w = (;1,"',;P) such that
sectmm &P,
@ e Lt it @,
We also denote by W the n—dimensional wector field w = (;i,---,ap,ﬂ,---,o);

clearly v e L1(I;j) and W' € L1(I;x). Note that from {4:1) it follows that
we CD(I;X), congequently w(0} e X. By carrying out the change of vari=-
ables u=v + @ in (1.1), (1.3) ocur problem is equivalent to proving the
existence of a strong solution v of the homegeneous boundary.value problem
o' b (LHB)v = £ - @' + (L+B)w] with initial condition v(0) =m, - wid).
since £ - [w' + (L+Blwl e 2 (1;0)  and u, - %(0) @ X this problem has a
gnique solution, due to fheorem 3.9. Consequently the non—homogeneous problem

{1.1), (1.3) has a strong solution u = v + @ in the abave sense. Clearly

this solution satisfies the following property:

{S) There exist sequences f(a) e L1(I:K), uék) e X and u(E) e Li(I;y) 0
ac(I;X) such that P; u{E) = w on I X R$_1, dtu(z) + (L+B)u(£} = f{g)
u(ﬂ)(D) = uél), uék) + u, in %, f(E) > £ in L1(I;X) and u(g) +u in C1(I;X).

Note that from Proposition 3.1 it follows that a strong golution of prob-

lem (1.1), {1.3} in the sense (8) is unigue. Hence we proved the following

result:
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1 1
Theorem 4.1. Let u, & X, fe L1(I;XJ and w € L (J:,-Hp‘/2 J. Moreover assume

that w verifies the regularity assumption {4.1). Then there exists a unique

strong golution u of the non-homogenecus boundary walue problem (1.1}, {1.3).

Moreover u € CG(I;X).

We leave to the reader the deduction of the estimate of  |u(t})| in terms
of the data.
We are looking now for differentiable solutions for the non-homogeneous
problem. For the sake of simplicity we assume from now on that for each index
i,%,J,
(4.2) hooal e n e @M.
We start by remarking that a statement similar to Theorem 4.1 fails for

differentiable solutions. In fact besides the usual compatibility condition

(4.7) between Uy and w also a compatibility condition between w and the

boundary values of £ is needed (for any time t). For, assume that w8 Y,
2 3/2 . 2 1 .

E e Lz(I;y) and w € L (I;H{ g ] with w' e (I;l‘1’P/2 )+ Let u be a differ—

entiable solution of problem (1,1), (1.3) and assume u  smeolh in the following

sense: u € L2(I;7) with u' e LZ(I;g). Define

m
_ -1 3
(4.3) Fiwl 2w+ ow /22w,
P X 1
J=2 d 3 3/2
F is a bounded linear operator from A = {wiw e L%(1; H ) w' e

1 H
2 2
L (I:Hpéz)} inte T (I;Hpéz). By restricting eguation {1.1) to the

L
boundary, by applying PN to both sides and by usirg (I.4.3} cne gets

1 3u 1 du
- E I
(4.4) H M( ax1 Pttt g ) = FLME W],
where by definition(v)
JE
{4.5) Fl(E,w)] = Pt = Flwl.

7
{ )Note by the way that the map (f,w) * P[(f,w)] is linesar-continuous from

1
LZ(I;U] x A to LZ(I;HP/Z}.
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Hence if there exists a smooth solution u of problem (1.1), (1.3) the
equation
(4.6) 5 u see,g ) = FI{£,w)]
. B gp+1 ] lqn ' r

1
admits at least one solution g € LZ{E;HPé }. Conversely, one has

Theorem 4.,2. Let uy € y and f € LZ(I;g) verify

(4.7) Pl u = wo) on R
: i T '
and let w & A, i.e.
1
(4.8) wELz(I;Hi)/z) with W' ELZ(I;HP/Z}.

1
Assume that (4.6) has at least one solution g € L2{I; HP/2 } satisfying the

additional reqularity assumption: there exists E such that

22
{4.9) q = d%
1
with
4.10)  3e AmmEiE™™Ry, et ! Ry (8),

Then problem (1.1}, (1.3) admits a (unique} differentiable solution u €

xi) n AC(L:X), u' e 12(I;X) and additionally

INCTIIN |[t[1'0(r}+m0(r)'1nh'mn Jatl
ki 0 C
(4.11)  atedi < {1+ [T(—ﬁc—] 2 ¢ b
0
~ ¥ -
. {IEuDJI + Bu(0dl + £ 72 LIEN + la'h +
LU0, tiy) LU0, ty)
+clial ;o ts ) kul 1.
L (0,t5C ) L (0,5:C) LO(0,t;2)
The function G depends only on the data ({see below) and its norms can

be estimated from those of the data.

1 -
(E}Note that for every g @ LZ(I; ! ) there exists g such that {4.9) and
(4.10)1 hold. Hence the additional regularity assumption is only (4.10)2.
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. ~ ~o 9 ) . )
Proof. Define u by u = YG wJ if J = %,*+**,p, and w, s g if

1~
J = ptl1,***,n. Clearly PNu = w on the boundary, moreover

+ gk + Ng't

Nl + har < o Hul
L% (1; n1"P) 2?1, m")VP)

L2(1:7) L2 (1) A

(4.12}

(o)l < c(Ig(o)l .+ lu I).
[H1]n is} 0

By carrying out the change of variables u = v + u our preblem can be
written as v' + (L+B)v = f - [u' + (L+B)ul, with the initial condition

~ 1
vi0} = vy u(0) and the boundary condition BeY = 0. By using (1.4.3),

(4.9) and the definition of u one easily gets

L ~ ~ -1
- ' = - - 4
Pelf = {u' + (L+Blul] = Pf [HP M(gp+1, rg,)
m
- 3 -
+ § H 1RJ %ﬁ— + Bw ok 5%] on R 1,
g=2 F b
for almost all t & I. Recalling definitions (4.3), (4.5) and Equation (4.6)
i ~ ~ ~ ~
one gets PN[E - (u' + {L+B)u)] = 0. Hence f -~ [u'+ {L+B}u] € LZ(I;Y) and

by Theorem 3.2 there exists a (unique} differentiable solution v for the
G . 2
above homogeneous problem, v € C (I;¥) n AC(I;X) with +' & L°(I:X).

Clearly u = u+ v is a differentiable solution of the non~homegenecus prob-

~ ~ 1 ~
lems {1.1), (1.3). since Hult)l < luf0)i + £ ) lu'k and lv(e)d
- L (0.t;4)
verifies (3.2) with {flw(D)l £ ﬂuOH + fu{0)! and with
(4.13} . UF = [ + {L+B)all < el + i +
L7(I;Y) L7 (I;y) L7 (I:y)
+ Al + kel 1hk .
L {1;c) L (I;c) L7152}
one easily gets (4.10). [}
Consider now the matrix M{t,x). We say that rank M=p uniformly on
-1,
xR if the sum of the squares of the determinants of order p con-

tained in M{t,x) is bounded below by a positive constant d° independent of

-1
(g,x} 6T X B° '« We prove the following result:
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Corcllary 4.3. Let u, € 4, fe LZ(I:y) with f' € LZ(I;X) and
{4.14) we w2 x &P

Assume that (4.7) holds and that

(4.15) rank M(t,x) = p, uniformly on I X Rmh1.
Then the nop~homogenecous initial-boundary value problem (t.1), (1.3) has
a (unigque) differentiable solution u € CO(I;y) n AC(I;X) with u' €
L2(I;X}. An estimate for lu{t)l follows from (4.10) and from the explicit
construction below.
Proof. Condition (4.14) means that w 1is the trace om I X RW—1 of a
function ; verifying
we i wt®P),
(4.16) woe i m' @B,
w e tfi P,
Consider for eagh (t,x} @ I X FE the egquation
~ m ~
(4.17 H;1 M(;P+1""'En} = P;f - %% + Z H;1 - %E_ + 31;),
J=2 J
where the unknown is the vector field ; = (§£+1’..";n) defined in

I x R?. In Equation (4.17) the matrix M is extended from the boundary to
the interier by shifting it in the negative %y direction. In particular_
property (4.15) holds uniformly om I * RT(g}. To solve system (4.17) in

I XR T we arque as in the proof of Corcllary T.4.4 (see also part I for
notations); one easily shows that the right hand side F of (£.17) wverifies

HF e st Py, (m )" e 12(r; 22 (R")1P. Hence by using the explicit
formila (1.4.16) one gets & & L(Ii(n (@™ ), g et (@ ®IT) or
equivalently ; e [HK(I x RT)}j—p.

Clearly g = YU; verifies eguation {4.17) on the boundary, moreover the

right hand side of (4.17) coirncides on the boundary with the right hand side

(Q)One could also let the coefficients have their original values in the
interior and argue in a neighbourhood of the boundary.
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of (4.6}; hence g = Yog verifies equation (4.6} and the result follows From
Theorem 4.2. Wote that the existence of a verifying {4.9), (4.10) follows

1 — -
from g & [H /Z(Ix )" 3)]np- a

APPENDIX

5. This section concerns Remark 1.3. Feor cenvenience we take in account
the time interval [0,7]; since Theorem I.3.1, Part I zolds for |A| > AD a
similar proof is valid For the backward problem in time.

Let D{T) € X denote the domain of i(t), the closure in X of the
cperater L(t): ¥ + ¥, Clearly Y < D(t). 1In the sequel we denote by L(t)
both the closure L(t) and the restriction of L{t) to the subspaca

{uey: Lithue ¥}, Let us put for brevity E(t) S L{t) + B(t}.

For convenience we assume in the sequel that

et By € Doto,mic ('),

(5.2} hk' aikf ik

It follows that

(5.3} Hy 5 sup AO(t) < c[i— kat 4
tefn,T] 0 L {0,T:C )
+ L Thi + 1Bl i
2 @ 8 @ o 1 '
m) L (8,7:C) L {o,T;C) L (0,1;C)
where
m, = inf m o (t},
]
tefo,T] 0
Define
-1
l 1
, \ N ih iIL o T.CO)
MY = m_ Eni e e .

= a
L (0,T;C7)
We shall prove that the family E(t}, t e [0,T], isg (M,HO)—stable
in ¥ and in X. penote by R{A,t) the resolvent operator of L{t) and let

0 < tk < ser g t1 LT (k€N arbitrary) and A » no. Then for every u &
Y one has

K k

= 2 1 2
K2z 0w rone w <Ly o R(A,E ul

. i Y m s i Y

i=1 0 i=1 t1
and by using {1.3.2)

L

2
R[A,ti)ullY ;

2 t

K2 < ;— i)™
0 T

i 3

i
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hence by (3.26)
[ e o M ar
1] il
) ] _ £ c k 2
Ke ¢ 1 (A-p ) e I R{X,t )ul .
m 0 . i Y

0 =2
i t2

By repeating this argument one gets

ty -1
f mo (1) HR(TYE at
i, C z
K2 < L TETS I Euﬂi s 2
0 t, (k—po)

hence

k

I TrR(I\,t,)HL N ———,
1=1 i [¥+¥] (A"NG} k

M

The (M,uo)-stability in ¥ is proved analogously. 0
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